
U N I V E R S I T Y O F C O P E N H A G E N

Hindsight: Flexible, secure and efficient backup
Johan Brinch and Morten Brøns-Pedersen

File system

Time

home~925556622

Key DB

home~934790682

Key DB

home~978215652

Key DB

Hash store

Hash DB

Back-end

Storage

Network
Snapshot DB

Hash store

Hash DB

home~925556622

Key DB

~/foo
1

~/bar

~/baz

6

Back-end

Storage

1 1

2 3

4 5

6 7

8 9 10

2

4

8

4

8

7

9 9

7

2

Udi Manber. Finding similar files in a large file system. In Proceedings of the USENIX
Winter 1994 Technical Conference on USENIX Winter 1994 Technical Conference,
pages 2–2, Berkeley, CA, USA, 1994. USENIX Association.

[1]

Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security impact of a new
cryptographic library. 2011.

[2]

Kim S. Larsen and Rolf Fagerberg. B-trees with relaxed balance. In Proceedings of the
9th International Parallel Processing Symposium, pages 196–202. IEEE Computer
Society Press, 1993.

[3]

5

10

15

20

25

30

35

Rem
ove

Libre
 O

ffi
ce

Clea
n In

sta
ll

Emac
s

Sy
ste

m

update In
sta

ll

lig
http In

sta
ll

Gim
p In

sta
ll

Libre
Offi

ce

Hindsight

Accumulated

G
ig

ab
yt

es

Abstract
Hindsight is a snapshot-based backup system providing guaranteed safe backup to untrusted sources such
as Amazon S3 or DropBox. Our design features global de-duplicity through content-based indexing [1]; a
means for exploiting data redundancy across all files in all snapshots.

Introduction
Hindsight is a backup system for filesystems. It backs up files
and directories — and their metadata — to an external location.
Multiple named snapshots are supported. A snapshot reflects
the state of a directory at a particular time. Though usually only
requiring a fraction of the space, each snapshot contains all files
and directories that were in the file system when the snapshot
was taken.

Hindsight is flexible. It can search through directory structures
in snapshots and download just the directories or files you need;
no more. This is especially useful when a range of snapshots
must be searched for a file.

Hindsight is efficient. It uses compression to save space and
eliminates redundant data across files; if more copies of the
same file — or even just parts of it — exist, only the first one will
travel to the back-end and be stored there. This is true across all
snapshot ever taken. It processes several files concurrently to
better utilise the disk and network, and it supports multi-core
systems.

Hindsight is secure. It uses the NaCl [2] encryption library by
Bernstein et al. to encrypt and authenticate the stored data. This
prevents people who eavesdrop or has access to the back-end
from reading or modifying the user's private data.

Overview
Each snapshot is represented as a database which contains all
file system paths associated with that snapshot (figure: key DB).
All the snapshots share a single global file-block database
(figure: hash DB). Each file-block goes through this database
which prevents multiple instances of the same block from being
stored.

A database keeps track of all the snapshots (figure: snapshot
DB), and is used when restoring or searching old snapshots. This
is the entry point into the saved data.

Everything that is stored on the back-end is stored under a
random ID, except the snapshot database. To restore the
snapshot database in the event of a disk crash, it must be saved
under a fixed name.

We require a minimal API of the back-end: PUT, GET, and
DELETE. This makes it trivial to support new back-ends. So far,
Hindsight supports remote storage in form of SSH, CouchDB,
Amazon S3 [4] and local path (mount point).

Overview:
An overview of Hindsight. Each snapshot is represented by an database mapping file paths to data-blocks. The hash database knows where each
file-block is located on the back-end. A snapshot database keeps track of all the snapshots. In this figure three snapshots named home was taken.

Deletion
Global de-duplicity comes at a price. In order to share blocks
between one file and another, we have to re-arrange the data
and keep track of who's using what.

When a snapshot is deleted, we cannot simply delete all the
blocks it is using. What if another snapshot is using them as
well? Instead a garbage collector must analyse the block usage
and remove the file-blocks that are referenced by no-one.

A classic approach for keeping track of references is called
reference counting [5]. Here, each file-block is associated with a
count of those referencing it. When the count goes to zero, the
block can be safely deleted.

But reference counting requires transactions, which are
incompatible with our b-trees. Instead, we solve the problem
using reference sets [6]. Like reference counting, a reference set
keeps track of references to a file-block. But instead of just
maintaining the count, the set keeps track of everyone using the
block. Thus adding or removing a reference several times is no
longer harmful, which means transactions are no longer
necessary.

The cost of maintaining reference sets — as opposed to reference
counts — is more than made up for by a faster system, and a
smaller space overhead. Our b-trees split naturally into multiple
files, making it trivial to take advantage of the usually large
amount of redundancy between b-trees belonging to different
snapshots. This again means a faster system with a smaller per-
snapshot space overhead.

The red line shows the space used by Hindsight and the blue
shows the accumulated space requirement (i.e. the space
required if a full file copy was performed for each snapshot —
this would be the case if for example Apples Time Machine had
been used, because it doesn't support inter-file de-duplication).
The green line is the size of the virtual machine image at the
time of each snapshot.

We see that after the initial backup, space requirements are
almost constant. Even though the virtual machine image
changes from snapshot to snapshot Hindsight can see that most
of the file hasn't changed and thus skip those parts. In this case
the Hindsight back-up uses around 9% of the naïve approach.

Internals
The figure below shows how data is stored internally in
Hindsight. On the left are three files. The first block of each file
is its metadata which always constitutes a single block. The rest
of the files is split up into several blocks.

The key database maps each file path to references to the blocks
it consists of. These references are in turn stored in the hash
database, which maps them to the location of the block data
inside blobs. Finally the blobs are wrapped in a layer of
authentication and encryption before being stored on the back-
end.

The shaded blocks in the figure are blocks which have been
saved at an earlier time. Notice also that some blocks are equal
and thus share the same reference.

To be able to recover the hash and key databases in the event of
a disk crash, they must also be saved on the back-end. We use
Hindsight itself to save these databases. This yields a new set of
databases but these are much smaller, which enables us to save
them as tarballs.

Performance
The graph shows the amount of storage required to back up a
virtual machine image (figure: space usage). The image is a
KVM image of a machine running Ubuntu Linux 11.10. The first
snapshot was taken right after the operating system finished
installing. Then the system was updated, and software was
installed and removed. A snapshot was performed after each
such change.

Space usage:
The graph shows the space required to hold seven snapshots of a
KVM virtual machine image going through various changes. The blue
line shows the spaces needed to make a new copy for each snapshot,
the red line shows the space needed by Hindsight, and the green
shows the size of the virtual machine image at each snapshot.

The internals of Hindsight:
On the left are the files being backed up, and on the right is the back-end. The vertical lines represents mappings; the solid are databases stored
locally as b-trees, and the dashed is the back-end API.

Branches

Root

Leaves

Crash safety
Hindsight uses concurrent b-trees [3] for all its internal state.
This includes its two main databases: one maintaining files in
the snapshots; and one maintaining known (i.e. previously
saved) file-blocks.

For Hindsight to be crash-safe, these databases need to be crash-
safe. We achieve this in a very simple, yet elegant way: due to
the b-tree structure, we can simply write the trees button up:
from leaf to root.

After a crash due to a failure (e.g. no more battery), a recovery
mechanism sets in to recover as much of the prior state as
possible. This allows Hindsight to resume a snapshot after a
crash, and quickly skip to the stage at which it crashed or was
forced to stop.

Hindsight can work on very hostile systems, that shuts down
often. Tests show that Hindsight can work with just a few
minutes between crashes, and still complete the snapshot
eventually.

Hindsight is crash-safe. If the system shuts down (e.g. due to
power failure) while taking a backup, it still works. As soon as
the system is running again, Hindsight can efficiently continue
from where it left of; nothing is wasted.

[4] Amazon Web Services. Amazon Simple Storage Service, 2012. http://goo.gl/wXJ1r.

[5] J. Weizenbaum. Knotted list structures. Commun. ACM, 5:161–165,
March 1962. ISSN 0001-0782. http://goo.gl/PlmHU.

[6] U. Maheshwari and B.H. Liskov. Fault-tolerant distributed garbage collection in a client-
server object-oriented database. In Proceedings of the Third International Conference on
Parallel and Distributed Information Systems, pages 239–248. IEEE, 1994.

Snapshot

Examples
Below we give a few examples of how to list file structures with
Hindsight. The snapshot contains a total of 104391 files and are
located on Amazon S3. Before each test, we clear the local cache.

First, we list all 104391 files in the snapshot:

jos@laptux ~ > time hindsight list diku | wc -l
104391

real 26m00.28s

Next, we list only the 14597 files in the folder "speciale",
including all files in all subfolders:

jos@laptux ~ > time hindsight list diku:speciale | wc -l
14597

real 3m20.21s

Last, we list just the files of the "speciale" folder, excluding
subfolders:

jos@laptux ~ > time hindsight listdir diku:speciale
speciale/.git
speciale/.gitmodules
speciale/INSTALL
speciale/README
speciale/TODO.org
speciale/code
speciale/literature
speciale/poster
speciale/report
speciale/salt

real 0m19.56s

We see that the time needed for a list command varies greatly.
This is because we try to only download the needed part of the
directory structure. The same approach is used for partial
checkouts.

http://github.com/mortenbp/hindsight

