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Abstract

In this work, the isothermal-isochoric integration (ITIC) method is demonstrated as a viable method for vapor-liquid coexistence cal-
culation by molecular simulation. Several tests are carried out to validate the method. The first group of tests utilizes self-consistent
NIST REFPROP values to demonstrate that, in the absence of simulation uncertainties, the ITIC method yields coexistence values
with less than 1 % deviation for reduced temperatures of less than 0.85. The impact of various simulation specifications are then
compared. Following our recommended simulation methodology, consistent results are achieved between the ITIC method, Gibbs
Ensemble Monte Carlo (GEMC) method, and Grand Canonical Monte Carlo (GCMC) method for reduced temperatures of 0.6-
0.85. The ITIC method proves to be much more effective compared to GEMC and GCMC methods for vapor-liquid coexistence
calculations at reduced temperatures of 0.45-0.6, which are important for practical applications. It is shown that computational
efficiency is often served best by applying the ITIC method for the entire temperature range rather than applying Monte Carlo (MC)
methods for part of the range. Furthermore, the ITIC method lends itself to application with molecular dynamics (MD) as well as
MC, advancing the prospect of simulation results that are quantitatively consistent across software platforms.
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1. Introduction

Phase coexistence determination is important when charac-
terizing the physical properties of a chemical compound. Both
the vapor pressure (Psat) and saturation liquid and vapor density
(ρliq and ρvap) provide sensitive measures of the quality pro-
vided by a particular force field. In principle, the computation
of phase coexistence is a simple matter of equating pressures,
temperatures, and chemical potentials between the coexisting
phases. Nevertheless, accurate computation of phase coexis-
tence by molecular simulation has posed challenges over the
years.

The most straightforward method to compute phase transi-
tion in molecular simulation is to simply define an NVT sys-
tem (constant number of molecules, volume, and temperature)
of sufficient size and overall density that an explicit interface is
encountered. However this method often results in imprecise
results [1]. First order phase transitions exhibit a considerable
free energy barrier between two phases due to interfacial free
energies. For systems with large interfaces, this energy barrier
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increases. This often results in hysteresis, and phase transfor-
mation irreversibly proceeds beyond the coexistence point. [1]

Alternatively, there are methods for calculating phase co-
existence while avoiding explicit interfaces. The Gibbs En-
semble Monte Carlo (GEMC) method [2] is one of the most
popular phase coexistence determination methods [3]. GEMC
requires particle exchange between two phases which leads to
its major drawback, i.e. insertion of particles in dense phases
for large molecules. Histogram reweighting Monte Carlo and
Transition-matrix Monte Carlo methods are two closely related
methods used for calculation of phase equilibrium based on
Grand Canonical Monte Carlo (GCMC) simulations. These
methods also involve the problematic insertion/deletion moves.
This problem is especially exacerbated at low temperatures and
for large and branched molecules. The lowest temperatures that
are available in the literature rarely extend below a reduced tem-
perature (Tr = T/Tc, where Tc is the critical temperature) of 0.6
[4, 5]. However, common methods for industrial applications
treat the temperature range from triple point (which may be as
low as Tr = 0.3) to the critical point. The Peng-Robinson equa-
tion of state, for example, is valid for reduced temperatures as
low as 0.45 [6]. To provide fundamental physical models that
address issues with industrial applications, molecular simula-
tions must address the entire temperature range of interest.

Preprint submitted to Fluid Phase Equilibria February 6, 2019



As another alternative, Kofke [7] developed a method called
Gibbs-Duhem integration which makes use of the Clapeyron
equation to numerically integrate and proceed along the sat-
uration line starting from one single coexistence point. This
method has been extensively used to extend the lower temper-
ature limit of coexistence calculations much below the normal
boiling point [8] [9] [10] [11] [12]. The Gibbs-Duhem method
can solve the insertion problem, but it relies on a second method
to obtain the initial coexistence point. Ahunbay et al. [8],
for example, have applied this approach in conjunction with
GEMC to obtain the initial coexistence point, NPT simula-
tions (constant number of molecules, pressure, and tempera-
ture) to estimate saturation liquid densities, and parallel tem-
pering method [13] to increase the efficiency of low temper-
ature simulations. Their implementation is tested at reduced
temperatures above 0.45 for several compounds. Note that in
Gibbs-Duhem method, vapor density can also be obtained from
the ideal gas equation or through separate NPT simulations at
the computed saturation pressure and temperature.

As one more alternative, thermodynamic integration can
provide a reliable solution for free energy calculation. In this
method, a series of simulations are performed along a path that
connects the state of interest to a system for which the free en-
ergy is known. One should be careful that the path does not
include any type of phase change[9]. Elliott et al. [14] applied
an isochoric integration method to calculate vapor-liquid equi-
libria (VLE) of square well spheres, demonstrating deficiencies
in the preceding MC results. For square well spheres, a con-
venient starting isotherm is the hard sphere limit, for which the
thermodynamics are well represented by the Carnahan-Starling
equation[15]. In this work, however, results are sought for soft
potential models of arbitrary molecular shape, for which the in-
finite temperature limit is not convenient.

In the proposed method, NVT simulation points are used
across an isotherm and along several isochores, hence the name
isothermal-isochoric (ITIC). Because the approach to low tem-
peratures proceeds along an isochore initialized at the high tem-
perature (supercritical) isotherm, the insertion move problem is
alleviated. In principle, there is no low temperature limit for the
applicability of this method, except the triple point.

Also, the data generated along the paths of integration are
valuable on their own merits, providing distinct insights about
how well the molecular model is performing under conditions
of high temperature and pressure. In other words, ITIC provides
greater quality of characterization than other vapor-liquid co-
existence calculations at low saturation temperatures and non-
saturation temperatures. In addition, with combination of deriva-
tive properties from the work of Lustig et al [16], it should be
possible to utilize these data in order to generate high accuracy
multi-parameter equations of state [17, 18, 19, 20, 21, 22, 23,
24].

As another advantage, vapor pressure calculation using molec-
ular dynamics (MD) is often perceived as an impractical ap-
proach [25]. In this work, we show the possibility of using
molecular dynamics in the context of ITIC integration as a vi-
able tool for VLE calculation. The ITIC method provides a
cross-platform solution to the problem of VLE calculation with-

out a significant increase in computational effort compared to
the typical GEMC or GCMC approaches.

The presentation is initiated in Section 2 with a review of
the thermodynamics underlying the integration method and some
practical implementation aspects. The approach is validated in
Section 3 by applying it to coexistence data available from the
National Institute of Standards and Technology (NIST). Sec-
tion 4 describes the details of simulations that are found in Sec-
tions 5-7. Section 5 provides recommendations for the most
convenient and effective methods for characterizing the virial
coefficients by molecular simulation. Section 6 investigates the
impact of system size, fixed or flexible bonds, and Monte Carlo
or molecular dynamics when simulating at low densities. Sec-
tion 7 demonstrates applications to molecular simulations and
comparison between the ITIC method and other methods of
phase coexistence calculation. Finally, Section 8 summarizes
the conclusions from this work.

2. The Isothermal-Isochoric Integration Method

2.1. Free energy departure function derivation

For a single component system, Eq. (1) must be satisfied at
vapor-liquid phase equilibrium

Tvap = Tliq
Pvap = Pliq
Gvap = Gliq

(1)

where G represents the molar Gibbs free energy, T is the tem-
perature, P is pressure, and subscripts “vap” and “liq” denote
the vapor and liquid phases, respectively.

The Gibbs energy criterion of phase equilibrium can be rewrit-
ten in departure function form(

Gliq −Gig

RT sat

)
T,P

=

(
Gvap −Gig

RT sat

)
T,P

(2)

where the subscript “ig” denotes the ideal gas, R is the gas
constant (8.3144598 J/(mol K)), and T sat represents saturation
temperature. This equation can be rearranged in terms of the
Helmholtz energy (A) departure function( Aliq−Aig

RT sat

)
T,V

+ Zliq − 1 − ln(Zliq)

=
( Avap−Aig

RT sat

)
T,V

+ Zvap − 1 − ln(Zvap)
(3)

where Z is the compressibility factor (Z ≡ P
ρRT ). Note that the

ln(Z) terms are introduced when converting Gibbs energy de-
parture function at constant T, P in Eq. (2) to Helmholtz energy
departure function at constant T,V in Eq. (3) [26].

Calculating Helmholtz energy departure functions (Adep ≡
A−Aig

RT sat ) in Eq. (3) requires conntecting the state of interest to the
reference state that is ideal gas at saturation temperature. In
the ITIC integration method the states of interest (saturated liq-
uid and vapor) are conncected to the reference state (ideal gas
at saturation temperature) through isochoric and/or isothermal
pathways. Several separate simulations in the canonical ensem-
ble (NVT ) are needed to construct these paths (See Section 2.4).
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The Helmholtz energy change during isochoric and isothermal
pathways are calculated by using Eq. (4) and Eq. (5), respec-
tively [26].

A
RT

∣∣∣∣∣
ρ
−

Aref

RTref

∣∣∣∣∣
ρ

=

∫ T

Tref

U
R

∣∣∣∣∣
ρ

d
(

1
T

)
(4)

A
RT

∣∣∣∣∣
ρ
−

Aref

RT

∣∣∣∣∣
ρref

=

∫ ρ

ρref

Z − 1
ρ

∣∣∣∣∣
T

dρ (5)

Saturated vapor is connected through one isothermal path
to ideal gas at saturation temperature. Because the density of
vapor phase is low at most conditions of interest, the value for
Zvap in Eq. (3) can be approximated using a virial expansion
truncated at the B3 term

Zvap = 1 + B2ρvap + B3ρ
2
vap (6)

which is substituted in Eq. (5) to obtain(Avap−Aig

RT sat

)
T,V

= B2ρvap + 1
2 B3ρ

2
vap (7)

where B2 and B3 are second and third virial coefficients at sat-
uration temperature.

On the liquid side, the pathway from saturated liquid to
ideal gas cannot be constructed using a single isotherm. In-
stead, in order to avoid the two phase region, the saturated liq-
uid is connected to a supercritical liquid (T IT ≈ 1.2Tc) through
an isochoric path, the density of the supercritical state is de-
creased to zero through an isotherm, and, finally, the supercrit-
ical ideal gas is connected to an ideal gas at saturation temper-
ature through another isochore.(Aliq−Aig

RT sat

)
T,V

=
∫ T sat

T IT
U
R

∣∣∣
ρ=ρliq

d
(

1
T

)
+

∫ ρliq

0
Z−1
ρ

∣∣∣∣
T=T IT

dρ +
∫ T IT

T sat
U
R

∣∣∣
ρ=0

d
(

1
T

) (8)

Because the last integral is evaluated at zero density, the
integrand corresponds to the ideal gas internal energy (U ig).
Therefore, Eq. (8) can be written as(Aliq−Aig

RT sat

)
T,V

=∫ T sat

T IT

U−Uig

R

∣∣∣∣
ρ=ρliq

d
(

1
T

)
+

∫ ρliq

0
Z−1
ρ

∣∣∣∣
T=T IT

dρ
(9)

2.2. Vapor pressure and density calculation

We have characterized the Helmholtz energy departure func-
tion in vapor and liquid phases. Substituting Eqs. (6-7) in Eq. (3)
yields(

Aliq − Aig

RT sat

)
T,V

+Zliq−1+ln
(
ρliq

ρvap

)
= 2B2ρvap+

3
2

B3ρ
2
vap(10)

which can be rearranged in terms of ρvap

ρvap = ρliq exp
(
Adep

liq + Zliq − 1 − 2B2ρvap −
3
2

B3ρ
2
vap

)
(11)

where Adep
liq represents Helmholtz energy departure function of

liquid phase. Since ρvap appears on both sides of Eq. (11), this
equation can be solved iteratively, as explained in detail in Sec-
tion 2.3.

Finally, assuming ρvap, T sat, and virial coefficients at T sat

are known, vapor pressure (Psat) can be calculated using

Psat = Pvap = ZvapρvapRT sat

= (1 + B2ρvap + B3ρ
2
vap)ρvapRT sat (12)

2.3. ITIC algorithm

Implementation of the ITIC procedure starts with determin-
ing the temperatures and densities of the ITIC points shown in
Figure 1. In ITIC method, ρliq is imposed and T sat, Psat, and ρvap
are calculated. This involves estimating saturation temperatures
(T sat

est ), i.e. T at points 11, 13, 15, 17, and 19. Once ITIC state
points are determined, NVT simulations are performed at the
obtained conditions using either MD or MC, and the ensemble
averages of compressibility factor and internal energy departure
function (Udep ≡

U−Uig

RT ) are calculated from simulation output.
Adep

liq is then calculated as explained in Section 2.4.
The first iteration starts by setting Zliq to an initial value

of zero (After the first iteration, Zliq is updated with the value
from previous iteration). Next, T sat is calculated by inter- or
extrapolating the isochoric simulation results, specifically, we
fit Z vs reciprocal temperature to a second order polynomial and
solve for T sat such that Z(T sat) = Zliq. It should be noted that
iterations of T sat do not require further simulations because the
isochoric integration can be performed with interpolated values
of the compressibility factor, noting the smooth behavior of Z
vs. reciprocal temperature.

Since the value of T sat has changed, Udep and Adep should be
recomputed. Udep is updated by inter- or extrapolating UdepT
vs 1/T (i.e. (U − U ig)/R vs. 1/T in Eq. 9) using a first order
polynomial along the isochore, such that Udep

new = Udep(T sat
new).

Becuase UdepT vs. 1/T has a linear shape in the vicinity of T sat,
trapezoid rule is used to update Adep according to the following
equation

Adep
new = Adep

old +

(
1

T sat
new
−

1
T sat

old

)
Udep

newT sat
new + Udep

old T sat
old

2
(13)

where subscript “old” denotes the corresponding property at
T sat

old and subscript “new” denotes the property at updated T sat
new

(For the first iteration, T sat
old = T sat

est ).
At this point, all terms on the right-hand side of Eq. (11) are

known except ρvap. For the the first iteration, ρvap on the right-
hand side of Eq. (11) is set to zero and the new ρvap is calculated
(After the first iteration, ρvap on the right-hand side is updated
with ρvap from previous iteration).

Then, Psat is computed by substituting the new ρvap in Eq. (12)
and the new value of Zliq is calculated using

Zliq =
Psat

ρliqRT sat (14)

where ρliq is equal to the isochoric density.
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Figure 1: A schematic plot of the ITIC state points. Squares and diamonds
represent NVT state points obtained from simulation. Square points 11, 13,
15, 17, and 19 represent the initial estimated T sat values, therefore they do not
necessarily match the coexistence curve. Green and purple diamonds show the
state points required for B2 calculation at isothermal temperature and Tr = 0.9,
respectively. Red points show the saturated vapor and liquid obtained from
ITIC method.

Having new value for Zliq, the next iteration starts by calcu-
lating the new T sat. The iterations are stopped when the differ-
ence in two consecutive ρvap values are less than a defined tol-
erance (We use 0.1 % deviation as the stopping criterion. Using
smaller tolerances does not significantly improve the accuracy.)
This procedure is repeated for other isochores. Figure 2 illus-
trates a detailed step-by-step algorithm starting from determin-
ing ITIC state points to obtaining VLE properties. As shown
in this figure, the iterations discussed above do not involve per-
forming additional molecular simulations, rather the iterative
solution of the ITIC equations is performed post-simulation.

The algorithm in Figure 2 also includes a step for obtain-
ing second virial coefficient along isotherm (BIT

2 ) and saturation
second virial coefficients (Bsat

2 ) which is explained in Section 5.

2.4. ITIC state points and integration schemes

Figure 1 provides a schematic plot of ITIC state points. The
minimal number of data points on each path required to achieve
reliable results is determined. In order to estimate VLE data
to a reduced temperature of 0.45 with precision comparable to
that of GEMC and GCMC methods, one needs at least 9 data
points on the isotherm and three data points on the isochore for
each saturation point (see Section 3). The highest temperature
state points, however, can serve on both isochores and isotherm,
hence these points are only simulated once. The isotherm is
constructed at a supercritical temperature. A reduced temper-
ature of Tr ≈ 1.2 was the default value for the isotherm. For
some compounds, owing to lack of NIST REFPROP values
at high temperatures and the desire to compare isochores and
isotherms to NIST REFPROP values when possible, a lower re-
duced temperature (Tr ≈ 1.05) is chosen for the isotherm. Val-

Determine ρ and T values in Figure 1:

• Choose ρ9, and calculate ρ1−8

• Estimate T sat
est values (T 11,13,15,17,19)

• Calculate T 10,12,14,16,18

• Choose ρ for diamond points (TIT and T0.9
isotherms)

Run NVT simulations

Calculate Z and Udep for all NVT simulations

Calculate BIT
2 (Eq. 27) and Bsat

2 correlation (Section 5)

For each IC, calculate Adep based on T sat = T sat
est (Eq. 9)

Calculate T sat
new from Z vs. 1/T such that Z(T sat) = Zliq

Calculate Udep
new from Udep vs. 1/T , i.e., Udep(T sat

new)

Calculate Adep
liq (Eq. 13) based on T sat

new

Calculate ρnew
vap = RHS of Eq. 11 evaluated with ρold

vap

Calculate Psat (Eq. 12)

|ρnew
vap − ρ

old
vap | < tol ?

Report Psat, T sat, ρvap, and ρliq for IC

Update Zliq (Eq. 14)
Set ρold

vap = ρnew
vap

Set Zliq = 0.0, ρold
vap = 0.0

no

yes
Next IC

Figure 2: Algorithm to obtain VLE from NVT simulations using ITIC method
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idations against NIST REFPROP values show that any reduced
temperature from 1.05 to 1.2 led to acceptable accuracy (results
not presented here).

The integrations along the isotherm and isochores are per-
formed using Simpson’s rule [28], due to its simplicity com-
pared with other integration schemes as well as the possibility
to use fixed step size for the integration so that simulations can
be re-used for different isochores. Eq. (15) and Eq. (16) are
articulations of Simpson’s rule used for numerical integration
along the isotherm and isochores to calculate Adep by Eq. (9).

b∫
a

f (x)dx ≈
b − a

6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]
(15)

b∫
a

f (x)dx ≈

b−a
8

[
f (a) + 3 f

(
b−a

3

)
+ 3 f

(
2(b−a)

3

)
+ f (b)

] (16)

The Adep values at points 2, 4, 7, and 9 in Figure 1 are se-
quentially calculated using Eq. (15) in which the value of func-
tion at three equidistant points on the x-axis are needed. The
Adep values at points 3, 5, and 8 are sequentially calculated us-
ing Eq. (16) in which the value of the function at four equidis-
tant points on the x axis are needed. The Adep at point 6 is equal
to the integration value from point 6 to point 8 (from Eq. (15))
subtracted from the Adep value at point 8. The Adep value at
point 1 is equal to the integration value from point 1 to point 4
(from Eq. (16)) subtracted from Adep value at point 4.

Second virial coefficient at a given temperature can be esti-
mated by extrapolating (Z − 1)/ρ to ρ = 0 at that temperature.
The green and purple diamonds in Figure 1 are used to obtain
the intercept of (Z − 1)/ρ vs. density at isothermal temperature
and Tr = 0.9, respectively (represented by green and purple
squares). These values are used to obtain a B2 correlation as a
function of temperature. The green square is also used to ob-
tain Adep at point 2. In Section 5, a more detailed discussion of
obtaining virial coefficient is provided.

2.5. Enthalpy of Vaporization Calculation

In the ITIC method, enthalpy of vaporization (∆Hv) is cal-
culated using

∆Hv = (Hdep,sat
vap − Hdep,sat

liq )RT (17)

where Hdep,sat
vap and Hdep,sat

liq are unitless enthalpy departure func-
tions of saturated vapor and liquid, respectively, defined as

Hdep =
H − Hig

RT
(18)

Hdep,sat
vap and Hdep,sat

liq can be calculated by subtracting the ideal
gas contribution from both sides of H = U + PV

Hdep,sat
liq ≈ Udep,sat

liq + Zliq − 1 (19)

Hdep,sat
vap ≈ Udep,sat

vap + Zvap − 1 (20)

The value of Udep,sat
liq is calculated at each fixed-point itera-

tion based on the updated value of T sat. Udep,sat
vap , on the other

hand, is calculated by taking the derivative of B2 with respect
to β as shown in Eq. (21).

Udep,sat
vap ≈ ρvapβ

dB2

dβ
(21)

2.6. Critical Point Calculation
We follow the standard approach used in GEMC and GCMC

methods to calculate the critial point. The critical temperature
and critical density (ρc) are estimated by the law of rectilinear
diameter [29] and the density scaling law [30]

ρliq + ρvap

2
= ρc + A(Tc − T sat) (22)

ρliq − ρvap = B(Tc − T sat)0.325 (23)

where ρc, Tc, A and B are fit to simulation data.
The critical pressure (Pc) is computed in two steps. The

first step is to fit the ITIC saturation temperatures (T sat) and
pressures (Psat) to the Antoine equation [31]

log10(Psat) = a0 +
a1

a2 + T sat (24)

where ai are fitting constants and a1 is constrained to be neg-
ative. The second step is to evaluate Eq.(24) with the optimal
values of ai for T sat = Tc.

Some caution should be exercised when extrapolating Eqs.(22-
24) because ITIC data are typically not available near the criti-
cal point. For example, we recommend excluding low temper-
ature ITIC data (Tr < 0.6) when fitting Eqs.(22-24) as these
equations are typically not reliable over the entire temperature
range. The results in Section 7 demonstrate that, although ITIC
is generally limited to Tr < 0.85, careful application of Eqs.(22-
24) provides reasonable estimates for all three critical constants.

3. ITIC Validation

3.1. Validation using NIST REFPROP
A first test to validate the ITIC method is to use a database

that provides precise and self-consistent saturation properties
and isochoric/isothermal properties. NIST Reference Fluid Prop-
erties software (REFPROP) provides such values [32], which
were used to validate the ITIC method. The following com-
parisons are solely based on NIST REFPROP equations, there-
fore the lack of statistical noise inherent to molecular simula-
tion enables an accurate evaluation of the numerical integration.
Reproducing the REFPROP Psat values using ITIC state points
obtained from REFPROP is effectively a test of the spacing of
the quadrature points since all the REFPROP thermodynamics
derive exactly from their analytical equation of state.

Figure 3 shows the ITIC validation results for n-dodecane
when virial expansion in Eq. (6) includes or excludes the B3
term. The deviations of calculated Psat, ρliq, ρvap, and ∆Hv from
the data obtained directly from NIST REFPROP [33] are plot-
ted in Figure 4. According to this figure, by including the B3
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term, one can reach a reduced saturation temperature (T sat
r ) of

0.9 with less than 1 % error in all saturation properties. The
ITIC method is not able to calculate accurate saturation proper-
ties when T sat

r > 0.9. If the B3 term is excluded from Eq. (6),
the ITIC method does not converge for T sat

r > 0.85. When
T sat

r < 0.85, excluding the B3 term provides less than 1 % de-
viation in Psat, ρliq, and ∆Hv , and less than 2.5 % deviation in
ρvap.

Figure 5(a) illustrates the convergence paths taken by a fixed-
point method to calculate ρvap, with B3 included in Eq (6). Fig-
ure 5(b) shows the same plot, except B3 is excluded, i.e. virial
expansion in Eq. (6) is truncated at B2 term. Using B3 corrects
the curve representing the right-hand side of Eq. (11) (g(ρvap))
in such a way that fixed-point iteration converges.

3.2. Vapor Pressure Sensitivity to Virial Coefficients

In this section, we investigate the sensitivity of vapor pres-
sure to accuracy of B2 and B3 at saturation temperatures as well
as B2 at supercritical isothermal temperature. This is important
because B2 and B3 are often unknown for a given force field.

In order to estimate the required accuracy of the second
virial coefficient at the isothermal temperature, Figure 6(a) is
generated by changing the REFPROP B2 and calculating the
corresponding deviations in n-dodecane vapor pressure. For
example, a 5 % change in B2 results in around 2 % deviation
in n-dodecane Psat. This shows that it is imperative to use an
accurate B2 value at the isothermal temperature.

Vapor pressure estimate is very weakly influenced at low
saturation temperatures by accuracy of the second and third
virial coefficients in Eq. (11) and Eq. (12). Figure 6(b) shows
the Psat sensitivity to B2 at various reduced temperatures, each
representing one isochore. The first three lowest temperatures,
are fairly insensitive to B2 precision such that even 50 % er-
ror in B2 results in less than 1 % deviation in Psat. However, a
relatively accurate B2 is required to obtain accurate Psat when
T sat

r > 0.75. Similarly, when T sat
r ≈ 0.84 B2 deviations must not

be greater than 2 % in order to have less than 1 % error in vapor
pressure.

Figure 6(c) was plotted similar to Figure 6(b), with respect
to B3. It is worth mentioning that in order to truly understand
the influence of B3, exact values of B2 were used from NIST
REFPROP. Even though adding B3 improves the overall behav-
ior of fixed-point iteration in terms of convergence (Figure 5),
the sensitivity of Psat to B3 is negligible when T sat

r is less than
0.85. This supports the idea of setting the B3 term to zero with-
out significant loss of precision at such temperatures.

Similar to Figure 6, the effect of changing virial coefficients
on ρvap and T sat was considered. The sensitivity of ρvap to virial
coefficients is similar to Psat, and T sat was found to be insensi-
tive to virial coefficient deviations.

3.3. Sensitivity to Estimated Saturation Temperature

As mentioned in Section 2, saturation liquid densities in the
ITIC method are fixed values at which we compute other satu-
ration properties. This requires an initial estimate for saturation
temperatures at the densities of interest.

It is important that the ITIC method does not depend strongly
on the accuracy of T sat

est . Figure 7 demonstrates that deviations in
Psat are less than 1 % and deviations in ρliq are less than 0.25 %
when errors in T sat

est are within 10 %. Deviations in ρvap are less
than 1 %, except for the high temperature point for which devi-
ations are smaller than 3 %. This can be improved by including
B3. Typical errors in T sat

est are less than 1 %, in which case the
deviations for all three properties are nearly indistinguishable
from the deviations resulting from numerical integration alone,
i.e., those for 0 % error in T sat

est .
Note that in Figure 7, isochoric/isothermal properties (Z and

Udep) used for determining saturation properties are obtained
from REFPROP. If T sat

est percent deviation shown in the legend
of Figure 7(a) is less than zero (i.e. T sat

est < T sat
REFPROP), some of

the ITIC points are in metastable state. Since the REFPROP
database does not provide Z and Udep for such points, a linear
extrapolation of REFPROP data was used to approximate Z and
Udep. A similar sensitivity analysis using simulation results is
included in supplementary material.

4. Simulation Details

In principle, both Monte Carlo and molecular dynamics meth-
ods can be used to simulate the NVT state points required to
construct the isothermal and isochoric paths in the ITIC method.
In this study, the MC method is favored due to smaller uncer-
tainties at low density. The Cassandra [34] and GOMC (GPU
Optimized Monte Carlo) [35] packages are used to simulate
several molecules in NVT ensemble using united-atom poten-
tial models. In united-atom force fields, interaction sites may
consist of a group of atoms, which is centered on the main atom
of the group for the TraPPE-UA method [36]. In the TraPPE-
UA model van der Waals interactions are truncated at 1.4 nm
and standard analytical long-range corrections are applied to
compensate for truncation effects on energy and pressure[37].
Furthermore, the bond lengths are considered fixed and the bond
energy is zero. This approximation results in smaller pressure
fluctuations at low densities, but we note that the MC results
at high densities were consistent with MD results simulated
in Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) [38] and GROMACS [39] within their uncertain-
ties.

For each compound, 26 NVT points are simulated in order
to obtain 5 saturation points, as illustrated in Figure 1. The den-
sity of the isochore with highest density is chosen to match the
experimental liquid density at the minimum reduced saturation
temperature (T min

r ) of 0.45. Densities and temperatures of all
simulated state points are listed in the supplementary material
along with average pressures and average energies.

The Packmol [40] software is used to create the initial con-
figurations for LAMMPS and GOMC simulations, while Cas-
sandra and GROMACS simulations were initialized using inter-
nal capabilities of this software. The simulation boxes contain
1200 sites except for the four simulations required for estimat-
ing B2 at the isotherm temperature (the purple and green dia-
monds in Figure 1) for which simulation boxes contain 4800
sites. Standard Periodic Boundary Conditions (PBCs) are used.
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(a) (b)

Figure 3: n-Dodecane Clausius-Clapeyron and coexistence curves. ITIC results (symbols) are obtained using NIST REFPROP [33] values for Udep and Z. Circles
and triangles represent ITIC results when virial expansion in Eq. (6) is truncated at B2 and B3 terms, respectively. Solid line represents true NIST REFPROP VLE
data.

(a) (b)

(c) (d)

Figure 4: Accuracy of the ITIC method for n-dodecane when Eq. (6) is truncated at B2 and B3 term. If B3 is excluded the fixed-point iteration does not converge,
when T sat

r > 0.9. Y-axis represents deviations calculated using ITIC−REFPROP
REFPROP × 100, which compares ITIC results using REFPROP state points with REFPROP

coesistence data.
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(a) (b)

Figure 5: Fixed-point method iteration and convergence path for n-dodecane for the isochore corresponding to ρliq = 0.4269 g/cm3. Eq. (11) is summarized into
ρvap = g(ρvap), i.e. the standard form of fixed-point method, where the g(ρvap) curves represent the right-hand side of Eq. (11). At each iteration, g(ρvap) is calculated
based on a new set of T sat, Psat, Adep, and Zliq. Iteration starts with a low initial guess for ρvap and stops when absolute percent deviation between two consecutive
ρvap values is less than a small tolerance, e.g. 0.1 %. The blue line represents the 45-degree line. a) B3 term is used in Eq. (6) , b) B3 term is excluded from Eq. (6).
Using B3 helps iteration to converge for high T sat values.

(a) (b) (c)

Figure 6: a) n-Dodecane Psat sensitivity to isotherm B2 ,b) Psat sensitivity to second virial coefficient used in Eq. (12) , and c) Psat sensitivity to third virial coefficient
used in Eq. (12)
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(a) (b) (c)

Figure 7: Sensitivity of the ITIC method to T sat
est for n-dodecane. The ITIC method is applied using REFPROP values of Z and Udep. The y-axis represents percent

deviation of the corresponding property calculated using ITIC compared with REFPROP saturation data. Triangles pointing up or down represent ITIC results when
T sat

est is increased or decreased by the percentage shown in the legend, respectively. B3 is not included in Eq. (11).

Simulations are run for 10 million Monte Carlo steps, and the
last 5 million MC steps are used for calculating the properties
which ar stored every 50,000 MC steps.

In order to approximate the computational cost of the ITIC
method, n-dodecane coexistence points obtained at reduced tem-
peratures of 0.65, 0.75, and 0.85 using GEMC are compared
with the ITIC coexistence points obtained at liquid densities
corresponding to reduced temperatures of approximately 0.65,
0.75, and 0.85. This temperature range is chosen because both
GEMC and ITIC are reliable within 0.65 < Tr < 0.85. Cas-
sandra package is used for both simulations using an AMD 1.3
GHz processor. 3,500 and 13,500 MC cycles are used for equi-
libration and production of GEMC simulation, using five block
averages to characterize the uncertainty. The average run-time
of the three GEMC simulations is 15.8 hours with each simu-
lation running on a separate CPU core, resulting in an average
Psat uncertainty of 7.5 % (relative standard error). On the other
hand, running ITIC state points for 500 MC cycles of equilibra-
tion and 2000 MC cycles of production with four block aver-
ages reproduced the GEMC results with 7.1 % Psat uncertainty.
The ITIC simulations were run on 20 CPU core. The maximum
run-time (highest density and lowest temperature) of ITIC sim-
ulations is 18.9 hours. Therefore, when the number of available
CPU cores is not limited, the ITIC method is approximately
20% slower than GEMC. If ITIC coexistence points at reduced
temperatures of 0.45 and 0.55 are to be included, the maximum
run-time slightly increases (i.e. 22.3 hours ≈ 40 % additional
computational time compared to GEMC), whereas GEMC is
not feasible for n-dodecane, unless a thermodynamic integra-
tion approach (i.e. Gibbs-Duhem) is used to extend the lower
temperature limit of GEMC.

1
1
1

4.1. Internal Energy Departure Function Calculation
Computing the internal energy departure function in Eq. (9)

requires estimating the ideal gas energy (Uig) at each temper-
ature simulated along a given isochore. The most rigorous ap-
proach to determine Uig is by simulating a single molecule sys-
tem at the corresponding temperature, such that

Udep =
Etot − N × EN=1

NRT
(25)

where Etot and EN=1 are the total potential energy and the single
molecule potential energy, respectively. Some caution should
be exercised when computing EN=1. For example, molecular
dynamics simulations with a single molecule are ill-advised
when performed with standard thermostats that couple many
degrees of freedom to a single bath [41]. For this purpose,
we recommend using either chains of thermostats, Monte Carlo
simulations, or stochastic (Langevin) dynamics [42] to compute
EN=1.

The additional single molecule simulations equilibrate very
quickly, such that the extra CPU time incurred to compute EN=1

is not significant. However, a slightly simpler approach is to
assume that Uig is approximately equal to the intramolecular
energy at the isochoric state point, such that

Udep =
Etot − Ebonded − Eintra

NRT
(26)

where Ebonded and Eintra are, respectively, the bonded energy
(bond, angle, and dihedral) and intramolecular pairwise energy
(Coulombic and van der Waals) from the isochoric simulation.
If the molecular simulation package does not provide an inter-
nal way of estimating Eintra, a post-processing code is required
to calculate this quantity. For example, LAMMPS simulations
require this post-processing. Note that failure to subtract Eintra

causes a significant error in vapor pressure.
We emphasize that Eq. (26) should only be applied with

small molecules (i.e., 5 or fewer atoms along the backbone),
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where the molecular configurations are similar for the ideal gas
and condensed phases. Typical errors in Psat are between 10%
and 20% when applying Eq. (26) to larger molecules, where the
deviation increases with decreasing T sat.

Section 7 utilizes both methods for demonstrative purposes,
where the single molecule method is implemented for larger
molecules. A more detailed comparison between the two meth-
ods of calculating Udep (i.e., Eq. (25)-(26)) is discussed in Sup-
plementary Material.

4.2. Bootstrapping Method for Uncertainty Calculation
Bootstrapping is used to estimate the statistical uncertain-

ties [43] in T sat, Psat, ρvap, and ∆Hv. Note that the ITIC method
determines saturation conditions at a fixed value of ρliq (equal to
the isochoric density) and, therefore, the bootstrap uncertainty
in ρliq is zero. Four series of independent NVT simulations are
performed for each compound using different random number
generator seeds. Each series of NVT simulations comprises 26
state points including four at Tr = 0.9 and three on isotherm
used to estimate B2. In order to increase the number of sam-
ples, the production data in each run is divided into two blocks.
The ITIC analysis is performed using NVT state points ran-
domly selected from the eight blocks, and saturation properties
are computed. This process is repeated 500 times resulting in
500 sample values for each saturation property. The 95 % confi-
dence intervals are then calculated from the resulting 500 ITIC
outputs.

The resulting uncertainties are used to generate error bars
represented in Figure 11, however in most cases the error bars
are smaller than the symbols. For greater clarity, uncertain-
ties are tabulated in supplementary material for each property
at each saturation condition.

5. Calculation of Virial Coefficients

Mayer Sampling is a common approach for estimating virial
coefficients of a given force field [44]. For example, Kofke
and Schultz implement this approach for n-alkanes [45]. Ef-
forts like those of Kofke and Schultz could make simulations
on the lower end of supercritical isotherm unnecessary [46],
in addition to facilitating computations just below the critical
temperature. Furthermore, the higher virial coefficients play a
significant role on their own merits in the development of high
accuracy equations of state for simulation models [47].

In this study, we use a simpler approach that is amenable for
developing a correlation for B2 and B3 with respect to tempera-
ture. Second virial coefficients are estimated by calculating the
intercept of (Z − 1)/ρ with respect to ρ. In principle, the slope
of this line at zero density also gives the third virial coefficient.
Figure 8 shows the accuracy of this method when used at var-
ious temperatures. The blue lines in Figure 8(a) are obtained
from Eq. (27)

Z − 1
ρ

= B2 + B3ρ (27)

where the intercept (B2) and slope (B3) correspond to Schultz’s
values [45].

Figure 8(a) shows that for TraPPE-UA ethane at tempera-
tures above T sat

r = 0.85, B2 values calculated using this method
agree with values reported by Schultz to within 2 %. In Fig-
ure 8(a), Z at Tr = 0.8 and ρ ≈ 0.085 g/cm3 is not consistent
with the Schultz values due to proximity with the two-phase
region. Therefore, using the lowest three densities would give
a more accurate estimate for those temperatures. It is worth
considering that the value of accurate virial coefficient charac-
terization is enhanced in the context of the ITIC method.

According to Eq. (11), it is important to have a correlation
for B2 and B3 with respect to temperature, because T sat esti-
mates change after each iteration and updated values for B2
and B3 are needed. Recently, a Taylor Series expansion with
Mayer Sampling approach has been utilized to generate corre-
lations with respect to temperature for B2 and B3 [49]. In this
study, we obtain such a correlation from the formula used in
the DIPPR [50] database, except the last term is omitted to de-
crease the number of parameters and avoid overfitting, as shown
in Eq. (28)

B2 = A +
B
T

+
C
T 3 (28)

Eq. (29) and Eq. (30) are obtained by inserting B2 values ex-
trapolated using Eq. (27) and their corresponding temperatures
into Eq. (28).

B2(TIT) = A +
B

TIT
+

C
T 3

IT

(29)

B2(T0.9) = A +
B

T0.9
+

C
T 3

0.9

(30)

where T0.9 is the temperature corresponding to reduced temper-
ature of 0.9 and TIT represents the isothermal temperature.

Subtracting Eq. (30) from Eq. (29) gives

B2(TIT)−B2(T0.9) = B
(

1
TIT
−

1
T0.9

)
+C

 1
T 3

IT

−
1

T 3
0.9

(31)

Taking the derivative of B2 with respect to β, as shown in
Eq. (21) leads to the internal energy departure function

ρ
β∂B2

∂β
= ρ

(
B
T

+
3C
T 3

)
=

U − Uig

RT
(32)

Therefore, the intercept of U−Uig

ρRT with respect to ρ gives the

value of β ∂B2
∂β

. Having this value can lead to Eq. (33) with two
unknowns (B and C)

β
∂B2

∂β
=

B
T0.9

+
3C
T 3

0.9

(33)

Solving three equations (Eq. (29)/(30), (31), and (33)) with
three unknowns gives the values of A, B, and C, hence a corre-
lation for B2 with respect to temperature is derived. Figure 8(b)
shows a correlation obtained by this method which is in good
agreement with Schultz’s simulation results [45].
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(a) (b) (c)

Figure 8: Panel a) shows the plot of (Z − 1)/ρ with respect to ρ for TraPPE-UA ethane. Blue solid squares represent Schultz’s B2 values. [45]. Blue dashed lines
represent Schultz values of B2 (intercept) and B3 (slope). Circles and diamonds are NVT state points simulated with the GOMC package [35]. Using circles in a)
suffices to obtain accurate virial coefficients, therefore diamond points are are not used in B2 and B3 calculations. In panel b) and c) black squares represent the
median of B2 and B3 when circle points {1,2,3}, {1,2,3,4}, {2,3,4}, and {1,2,4} from panel a) were used in linear regression according to Eq.(27). Error bars represent
bootstrapped uncertainties. The blue circles in panel b) represent B2 values obtained by Martin and Siepmann [4] using a Monte Carlo method [48].

B3 calculation using Eq. (27) deviates significantly from the
rigorous values, as shown in Figure 8(c). Therefore, B3 val-
ues estimated this way are useful but should be regarded as
“effective” values that indirectly account for B4 and higher or-
der terms. On the other hand, more accurate representation of
(Z − 1)/ρ is achieved using the Beff

3 from Eq. (27) than using
the rigorous B3 or the rigorous B3 and B4 in combination, as
shown in Figure 9 (compare solid and dashed black lines with
green line). Note that in the ITIC applications considered in this
study, only second virial coefficient is used, therefore obtaining
accurate B3 is not a concern.

6. Accurate Low Density Simulations

According to Figure 6(a), Psat accuracy is sensitive to accu-
racy of B2 values at the isothermal temperature (BIT

2 ). This sen-
sitivity is due to accumulation of errors when integrating along
isotherm, such that an error in BIT

2 affects the Adep values at all
other points along the isotherm and isochores. Similarly, one
would expect a significant influence from low density points,
i.e. points 1, 2, and 3 in Figure (1). Therefore, it is important
to investigate the factors affecting the accuracy of Z at low den-
sities on the isotherm. The factors considered in this study are
system size, the choice of MD or MC, and the choice of fixed
bonds or flexible bonds.

The system size effects at low densities are demonstrated in
Figure 9. Plot of (Z−1)/ρwith respect to ρ shown in Figure 9(a)
demonstrates the effect of varying number of molecules in MD
simulation of ethane with rigid bonds. Figure 9(a) demonstrates
that, for the simulation times chosen, 3200 ethane molecules
are necessary to obtain reliable estimates of B2 and to match
the B2 + B3ρ + B4ρ

2 line, which represents the rigorous values
of (Z − 1)/ρ. In the MD simulations shown in Figure 9(a) C-C
bonds are held constant using the SHAKE algorithm [51].

The effect of using flexible bonds is shown in Figure 9(b).
The systematic discrepancy from rigorous values (solid black
line) as well as large uncertainties suggests not using flexible
bonds at very low densities. The divergence of pressure at low
densities is presumably due to the small number of intermolec-
ular collisions at low density relative to the large number of
intramolecular collisions, inhibiting proper sampling of the var-
ious components of momentum. In Supplementary Materials,
we illustrate one manner of correcting for this deficiency by
modifying the intramolecular virial when different virial contri-
butions are separately accessible.

Figure 9(c) shows the low density NVT state points simu-
lated using GOMC [35]. This plot shows that the MC method
gives more reliable results than MD for low density NVT state
points. Therefore, we recommend using MC when simulating
these low density points. The choice of MD or MC for other
high density state points in ITIC method is less important, be-
cause they generally agree with each other within their uncer-
tainties.

7. Example Simulations

The TraPPE-UA [4, 58, 53], Mie-UA [5, 55, 59, 60], and
TIP4P/2005 [61] models were chosen for the purpose of testing
the ITIC method due to the availability of literature vapor-liquid
coexistence simulation results. Figures 10 and 11 demonstrate
good agreement between traditional GEMC/GCMC methods
and the ITIC approach using both MC and MD. The ITIC and
literature values (GEMC/GCMC) typically agree to within less
than 0.5 % for ρliq and within a few percent for Psat and ρliq.

Figure 10 provides a quantitative comparison between ITIC
method and traditional vapor-liquid coexistence Monte Carlo
methods. This figure compares the deviations of ITIC and MC
methods from REFPROP values as a baseline to make the mag-
nitudes of the discrepancies more clear. Figure 11 shows the
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(a) MD rigid (b) MD flexible (c) MC rigid

Figure 9: Effect of number of ethane molecules on compressibility factor at low densities at T IT = 360. Panel a) is from MD with rigid bonds (using SHAKE
algorithm in LAMMPS), panel b) is from MD with flexible bonds (harmonic potential using multiple-time-step algorithm RESPA [52] algorithm), and panel c) is
from MC with rigid bonds (GOMC). Solid black lines represent B2 + B3ρ + B4ρ

2 curve where B2−4 are obtained from Schultz’s work [45]. Dashed black lines
represent B2 + B3ρ line where B2−3 are obtained from Schultz’s work. Solid black circle shows the Schultz’s value of B2. Dashed purple lines represent B2 + Beff

3 ρ

where B2 and Beff
3 are fit to four lowest density simulation values. Note that the increasing deviation between black line and simulation points at higher densities is

due to truncation of virial equation at B4. The error bars illustrate the 95 % confidence intervals calculated from four separate runs each consisting two blocks (8
samples). Number of MD steps used to calculate averages is inversely proportional to N with 6 million timesteps for N=120.

(a) (b) (c)

Figure 10: Comparison between ITIC (filled) with respect to GEMC and GCMC methods (unfilled). The y-axis represents deviation from REFPROP data. GEMC:
TraPPE-UA n-dodecane (orange) [4], TraPPE-UA ethane (cyan) [4], TraPPE-UA isobutane (purple) [53]; GCMC: TraPPE methane[54] (blue), Mie-UA n-dodecane
(red) [5], TIP4P/2005 water (green) [54], and TraPPE-UA isohexane (brown) [55]. Black filled symbols represent ITIC results simulated with GROMACS [39].
Black unfilled triangles represent TraPPE-UA n-dodecane from Ref. [10]. Udep is computed with Eq. (25) for n-dodecane and isohexane by performing single
molecule simulations, while Udep is computed with Eq. (26) for other compounds.
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(a) (b)

(c) (d)

Figure 11: Comparison between ITIC method and Monte Carlo methods: GEMC (TraPPE-UA n-dodecane [4], TraPPE-UA ethane [4], and TraPPE-UA isobutane
[53]), and GCMC (TraPPE-UA methane [54], Mie-UA n-dodecane [5], TIP4P/2005 water [54], and TraPPE-UA isohexane [55]). B2 values at saturation temper-
atures were obtained using low density simulations described in Section 5, except for TIP4P/2005 simulation where B2 correlation is obtained from Ref. [56, 57].
Black and red filled symbols show the critical points from literature and ITIC, respectively.
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Clausius-Clapeyron and coexistence curves for all example sim-
ulations compared to MC methods. In all ITIC calculations,
B2 is included in Eq. (11) and Eq. (12), while B3 is set to
zero for simplicity. Initial T sat values for all the compounds
shown in Figures 10 and 11 were obtained from the DIPPR
[50] database. Complete information about chosen ITIC state
points as well as the results of NVT simulations is included in
Supplementary Materials.

Saturation points calculated using the ITIC method are com-
pared against TraPPE-UA results obtained using GEMC which
are available from the TraPPE website [62]. Figure 10, 11(a),
and 11(b) compare the ITIC and GEMC results for pure ethane,
n-dodecane, and isobutane systems. NVT simulations at ITIC
state points are performed using the Cassandra Monte Carlo
[34] and GROMACS molecular dynamics [39] packages.

In Figure 10, the ITIC results of TraPPE-UA n-dodecane
are also compared with the Gibbs-Duhem integration method
[10]. Both methods provide a similar lower temperature limit
and they are in relatively good agreement.

The ITIC method was also compared to histogram-reweighting
GCMC provided in Figure 11(c) and Figure 11(d). GCMC re-
sults for Mie-UA n-dodecane are not available below a min-
imum reduced temperature (T min

r ) of 0.67, however the ITIC
method allowed us to calculate vapor pressure and liquid den-
sities for reduced temperatures as low as 0.45.

In order to validate the ITIC method for polar molecules, the
results of the ITIC method using TIP4P/2005 water simulated
in Cassandra were compared against TIP4P/2005 data from the
NIST Standard Reference Simulation Website [54] simulated
using grand-canonical Wang-Landau/Transition-matrix Monte
Carlo and histogram re-weighting. Figure 10, 11(c), and 11(d)
show the agreement between the two methods for TIP4P/2005
water. The absolute average percent deviation between vapor
pressure calculated using ITIC method and GCMC method for
TIP4P/2005 water shown in Figure 10(a) is less than 1 %. This
agreement shows that second virial coefficient can be obtained
using Eq. (27) for TIP4P/2005 model.

Figure 11 includes the critical points obtained using the
method described in Section 2. The ITIC coexistence points
shown in this figure do not exceed T sat

r ≈ 0.85, the estimated
critical properties are subject to larger uncertainties and possi-
ble systematic deviations. In the case of TIP4P/2005 water, crit-
ical point calculation requires a more suitable method as shown
in Ref. [11]. Accurate estimation of critical points by molecular
simulation requires a careful and deliberate effort that includes
accounting for system size effects [63]. That effort goes beyond
the scope of the current manuscript.

One limitation of the ITIC approach is the need for a rea-
sonable value of T sat

est . The ITIC calculations shown so far are
done for well-known molecules for which extensive experimen-
tal data are available. All force fields considered (TraPPE-
UA, Mie-UA, TIP4P/2005) provide accurate representation of
the T sat vs. ρliq curve compared to experimental data. There-
fore, the T sat

est values for these compounds were obtained from
DIPPR database. However, it is important to make sure that
ITIC method also works for the molecules for which experi-
mental data are not available. For example, 1-naphthalenyl, 4-

phenanthrenyl butane is a large aromatic with 5 rings and 28
united-atom sites for which, to the best of our knowledge, no
experimental data is available. In this case, a simple linear ex-
trapolation using two points (black (x) symbols in Figure 12(a))
along the isochore is used to obtain T sat

est , i.e. the temperature at
which Z ≈ 0. Once T sat

est is calculated, the procedure in Figure 2
is followed. Figure 12(b-c) shows a good agreement between
the ITIC method with GEMC results that we obtained using
GOMC.

Alternatively, one can improve ITIC results when a rea-
sonable estimate for T sat

est is not available, by running the ITIC
procedure iteratively, i.e. using T sat from the previous itera-
tion. It’s worth mentioning that we do not need to resimulate
the isotherms, and the isochoric information from previous it-
erations can potentially help improve the integration accuracy
along the isochores.

The isothermal/isochoric plots of Helmholtz energy depar-
ture function, compressibility factor, and internal energy depar-
ture function as well as plots of second virial coefficient and
heat of vaporization for all example simulations are included in
supplementary material. Also included in supplementary ma-
terial are tables containing ITIC results for all example simula-
tions.

8. Conclusions

The ITIC method is shown to be a reliable alternative for
phase equilibrium calculations. In the absence of simulation
uncertainty, i.e. when REFPROP data was used as input, the
vapor pressure calculated by the ITIC method with 9 points on
isotherm and 3 points on isochore reproduces NIST REFPROP
vapor pressure within 1 % deviation. In applications where
simulation uncertainty is significant, ITIC is sensitive to low
density NVT simulations, but the noise at low densities can be
addressed by simulating larger systems, and preferring NVT
Monte Carlo method when feasible.

It is important for engineering applications to be able to
simulate systems at temperatures as low as Tr = 0.45. Monte
Carlo methods such as GEMC and GCMC usually have a min-
imum reduced temperature limit of about 0.6, due to the in-
sertion/transfer moves The ITIC method, hence, outperforms
GEMC and GCMC when Tr is less than 0.6. This method,
on the other hand, is less favorable at high reduced tempera-
tures, especially above Tr = 0.85, mostly due to lack of a con-
venient method to characterize the virial coefficients. In ad-
dition, ITIC requires high temperature high pressure property
estimates, which provide additional information for force field
characterization.

The presentation here has focused primarily on GEMC as
a basis for comparison, owing to its common application to
this purpose and reader familiarity. Our comparisons show that
ITIC is moderately more computationally expensive than GEMC,
but that the added expense is worthwhile because it provides
simulation results throughout phase space and accesses lower
reduced temperatures. Other approaches, such as GEMC com-
bined with Gibbs-Duhem integration could address the lower
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(a) (b) (c)

Figure 12: Simulation of 1-naphthalenyl,4-phenanthrenyl butane based on an extended TraPPE-UA model [12]. Both ITIC and GEMC results are obtained using
GOMC. Black (x) symbols are simulated at two arbitrarily chosen temperatures to obtain T sat

est (black circles) for each isochore. Both ITIC and GEMC results are
obtained in this study using GOMC.

temperatures, but the computational expense would then ap-
proach that of ITIC, but still not provide simulation results away
from the coexistence curve.

In conclusion, ITIC can easily be implemented from Tr =

0.45 to 0.85 with approximately 40 % additional computational
time over the 0.6 to 0.85 temperature range using GEMC. If
temperatures above 0.85 are required, it is recommended to
approach the problem of coexistence calculation with a com-
bination of Monte Carlo (GEMC or GCMC) and isothermal-
isochoric integration. If a single method is preferred, or if MD
is the preferred simulation method, ITIC has notable advan-
tages. These advantages could be enhanced over time with
the availability of rigorous higher order virial coefficients for
broader ranges of molecular types.
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10. Supplementary Material

See supplementary material for the isothermal/isochoric plots
of Adep, Udep, Z, and plots of ∆Hv, and B2 for all example sim-
ulations. Also included are data shown in Figure 4 and figures
of T sat

est sensitivity study using simulation data.
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[17] M. Thol, G. Rutkai, A. Köster, R. Lustig, R. Span, J. Vrabec, Equation
of state for the Lennard-Jones fluid, Journal of Physical and Chemical
Reference Data 45 (2) (2016) 023101. arXiv:https://doi.org/10.
1063/1.4945000, doi:10.1063/1.4945000.
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