Port Move to WebAssembly

yuyangxxxmail@gmail.com

June 2, 2023

1 Introduction

1.1 Introduce to Move

Move is a programming language for writing safe smart contracts originally developed at Facebook to
power the Diem blockchain.

Move is a strongly-statically-typed programming language originally developed at Facebook for
smart contract, Right now Move mainly use in ’Sui’ and "Aptos’.

Move is written in Rust and is heavily influenced by Rust,Move followed the Rust ownership system.

A example of Move code.

module 0x42::test {
struct Example has copy, drop { i: u64 }

use std::debug;
friend 0x42::another_test;

const ONE: u64 = 1;

public fun print(x: u64) {
let sum = x + ONE;
let example = Example { i: sum };
debug: :print (&sum)

}

Move code is compile to Move bytecode to run, before run There is a bytecode verifier ensure that the
Move bytecode is well formed.

1.2 Introduce to WebAssembly

WebAssembly (abbreviated Wasm) is a binary instruction format for a stack-based virtual machine.
Wasm is designed as a portable compilation target for programming languages, enabling deployment
on the web for client and server applications.

WebAssembly is a neutral universal compile target, It is very easy from high level language to
generate.
Stack-based virtual machine is a machine that have operand stack and operation that only operate the
value on stack.
Here is a example.

local.get O // push local variable O to stack
local.get 1 // push local variable 1 to stack
i32.add // pop out two value on stack and perform addition

Another thing that I want emphasize is that wasm doesn’t have a goto statement.
After many years of practise of programming, The industry founds goto is very harmful.



wasm designed ’loop’ ’if” ,etc to get rid of harmful goto.
For examples.

loop
local.get O
local.get O
break // break loop

end // end of the loop

These key features make wasm is very suitable compile target for high level language. Stack-base
machine is very common in virtual machines design.

2 Stackless Bytecode

This article mentioned before Move compile to Move bytecode and run by MoveVM. However the
Move bytecode is tightly integrated with Move bytecode verifier and MoveVM runtime, Every Move
code need be verified before run and there is a lot of safety guarantee that hard to port to wasm.

Stackless Bytecode is refreshing simple bytecode than the MoveVM bytecode.

pub enum Bytecode {
Assign(AttrId, TempIndex, TempIndex, AssignKind),

Call(
Attrld,
Vec<TempIndex>,
Operation,
Vec<TempIndex>,
Option<AbortAction>,

),

Ret (AttrId, Vec<TempIndex>),

Load(AttrId, TempIndex, Constant),
Branch(AttrId, Label, Label, TempIndex),
Jump (AttrId, Label),

Label (AttrId, Label),

Avort (AttrId, TempIndex),

Nop(AttrId),

SaveMem (AttrId, MemoryLabel, QualifiedInstId<StructId>),
SaveSpecVar (AttrId, MemoryLabel, QualifiedInstId<SpecVarId>),
Prop(AttrId, PropKind, Exp),

The TemplIndex is index of local variables,local variable can mapping to wasm locals directly.

The Stackless Bytecode is register-based, When I see this IR,I know how to translate this IR to
wasm directly.

For example of Assign.

Assign(AttrId, TempIndex, TempIndex, AssignKind),

// can generate list of wasm codes.

local.get right_local_index // push right value on stack
local.set left_local_index // store into local variable slots


https://github.com/move-language/move/blob/main/language/move-prover/bytecode/src/stackless_bytecode.rs#L353

A lot of Move functionality encode in Call bytecode.

Call(
Attrld,
Vec<TempIndex>,
Operation, //
Vec<TempIndex>,
Option<AbortAction>,
),

/// An operation -- target of a call. This contains user functions, builtin functions, and
/// operators.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum Operation {
// User function
Function(ModuleId, FunId, Vec<Type>),

// Markers for beginning and end of transformed

// opaque function calls (the function call is replaced
// by assumes/asserts/gotos, but it is necessary to

// add more assumes/asserts later in the pipeline.
OpaqueCallBegin(ModuleId, FunlId, Vec<Type>),
OpaqueCallEnd (ModuleId, FunId, Vec<Type>),

// Pack/Unpack
Pack(ModuleId, StructId, Vec<Type>),
Unpack(ModuleId, StructId, Vec<Type>),

// Resources

MoveTo(ModuleId, Structld, Vec<Type>),
MoveFrom(ModuleId, StructId, Vec<Type>),
Exists(ModuleId, StructlId, Vec<Type>),

// Borrow

BorrowLoc,

BorrowField(ModuleId, StructId, Vec<Type>, usize),
BorrowGlobal (ModuleId, StructId, Vec<Type>),

// Get
GetField (ModuleId, StructId, Vec<Type>, usize),
GetGlobal (ModuleId, StructId, Vec<Type>),

// Builtins
Uninit,

Destroy,

ReadRef,
WriteRef,
FreezeRef,

Havoc (HavocKind) ,
Stop,

// Memory model

IsParent (BorrowNode, BorrowEdge),
WriteBack(BorrowNode, BorrowEdge),
UnpackRef,

PackRef,

UnpackRefDeep,



PackRefDeep,

// Unary
CastU8,
CastU16,
CastU32,
CastU64,
CastU128,
Not,

// Binary
Add,
Sub,
Mul,

// Debugging
TracelLocal (TempIndex),

Porting Call bytecode typically involve next step.

1. loading value to stack.
2. perform operation.
3. store back.

If we are load every operator from memory looks inefficient, But typically wasm runtime has an
optimization pass called mem2reg that transforms load(store too) to SSA registers.

For examples of porting Add.

call add inputs[
1 // local slots 1
2 // local slots 2
] to outputs 3 // local slots 3

// can translate to

local.get 1 // load from local slots 1
local.get 2 // load from local slots 2
i32.add // perform add

local.set 3 // store back.

Stackless IR is more simple to translate to wasm.

3 Branch

We have lowered some simple instruction to wasm, But I has not talk about how to port branch
instruction.

Porting branch instruction is hard because of wasm doesn’t support goto , and Stackless IR is register-
based that contains conditional and unconditional branch.

Branch(AttrId, Label, Label, TempIndex),
Jump (AttrId, Label),



To solve this issue we need be able to build "loop’,’if” statement from Stackless bytecode.
To understand What I am talking about you better understand some concept related to compiler
design.

e Basic block

e Control-flow graph

e Dominator Tree

In compiler there are two ways of iter all Basic Block.

e postorder

// image the code below compile to Stackless bytecode

let i = 0; // these two will visit lastly
let max = 10;

while(i < max) { // visit thirdly
// do something
// visit secondly

}
// visit firstly
return

e preorder just opposite of postorder

successors,predecessors
The blocks to which control may transfer after reaching the end of a block are called that block’s
successors, while the blocks from which control may have come when entering a block are called that
block’s predecessors. The start of a basic block may be jumped to from more than one location.

3.1 Loop analyze

Let’s use talk about loop analyze briefly.
Loop Header

fun main() {
let i = 0;
loop { // This is a loop header.
i=1i+1;

}

But I do we detect a loop header?
Base on some theory we have learn about compiler,detect loop header contains next steps.

1. We travel basic blocks in preorder.

2. If a block dominates it’s any of predecessors then It is a loop header.

After we detect the loop header,we can find the loop depth,block belong to which loop,etc.

3.2 solve branch

Based on loop analyze we talked about before. We can solve the branch target by list of rules.

e target is loop header, this is a continue statement in Move.
e target have different loop depth(compare to current), This is break in Move.
e ... then This is a if statement.


https://en.wikipedia.org/wiki/Basic_block
https://en.wikipedia.org/wiki/Control-flow_graph
https://en.wikipedia.org/wiki/Dominator_(graph_theory)

4 Generation

So far We have analyzed the 'loop’ and the ’if’,generate code is relatively simple.

We just just generate basic block in preorder one by one, When we met a loop header, we generate
a 'loop’,etc.

5 Type Representation

We will need value’s type in various places.
e vector push back
e vector drop (We need know vector’s type to perform proper drop to avoid memory leak.)
e ctc...

Value’s type may represent as a Enum.

pub enum Type {
Primitive(Primitive),

}

In compile Time we can save all Move value’s type in some global storage,and pass it as argument to
natives functions,etc.

6 Natives

6.1 Vector
6.1.1 Implementation

pub struct MoveVector {
/// Safety: must be correctly aligned per type
pub ptr: *mut u8,
/// in typed elements, not u8
pub capacity: u64,
/// in typed elements, not u8
pub length: u64,
pub ety_length: u64, // cached,also can compute from ‘ety
pub ety: &’static Type,

3

}

This is a code snippet of Rust, Vector can be implement in Rust, and Move make call the these code.
We can go though a typically function implementation 'push back’.
Prototype:

#[bytecode_instruction]
/// Add element ‘e‘ to the end of the vector ‘v‘.
native public fun push_back<Element>(v: &mut vector<Element>, e: Element);

Implementation:

1. ensure capacity of the current vector because of capacity maybe not enough to accommodate the
value.

2. Copy type length of data of e to v.



#[export_name = "move_native_vector_push_back"]
pub unsafe fn push_back(v: &mut MoveVector, e: *const AnyValue) {
v.ensure_cap(v.length + 1);
std: :ptr::copy: :<u8>(
e,
unsafe { v.ptr.add((v.ety_length * v.length) as usize) },
v.ety_length as usize,
)3
v.length += 1;

6.1.2 Drop

Vector is variable-length type, We can’t know the size of the vector at compile time. So we must alloc
vector on heap instead of stack.

MoveVM using Rust Vec ,Rc to implement a Move vector , So there is no code in MoveVM explicitly
to drop the vector. But porting to wasm , When return We need to drop all the vector type in locals
except values in return values.

6.1.3 Alloc vector on stack

Vector usually need alloc on heap,But if the vector never escape and vector’s length is fixed,we can
alloc on stack.

6.2 debug::print
Prototype like this.

fn move_debug_print(x: &AnyValue, t: &’static Type) {
unimplemented! ()

}

7 Thanks

Thanks for read this document, the document right now is very incomprehensive , I just outline most
important things in my mind.

8 Useful links

Move

WebAssembly

Wasmtime

Wasm-tools

Stackless Bytecode


https://github.com/move-language/move
https://webassembly.org/
https://github.com/bytecodealliance/wasmtime
https://github.com/bytecodealliance/wasm-tools
https://github.com/move-language/move/blob/main/language/move-prover/bytecode/src/stackless_bytecode.rs#L352

	Introduction
	Introduce to Move
	Introduce to WebAssembly

	Stackless Bytecode
	Branch
	Loop analyze
	solve branch

	Generation
	Type Representation
	Natives
	Vector
	Implementation
	Drop
	Alloc vector on stack

	debug::print

	Thanks
	Useful links

