Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Information Theory, Inference, and Learning Algorithms

David J.C. MacKay

5 CAMBRIDGE

&) UNIVERSITY PRESS

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Information Theory,
Inference,

and Learning Algorithms

David J.C. MacKay

mackay@mrao.cam.ac.uk

(©1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
(©Cambridge University Press 2003

Version 7.2 (fourth printing) March 28, 2005

Please send feedback on this book via
http://www.inference.phy.cam.ac.uk/mackay/itila/

Version 6.0 of this book was published by C.U.P. in September 2003. It will
remain viewable on-screen on the above website, in postscript, djvu, and pdf
formats.

In the second printing (version 6.6) minor typos were corrected, and the book
design was slightly altered to modify the placement of section numbers.

In the third printing (version 7.0) minor typos were corrected, and chapter 8
was renamed ‘Dependent random variables’ (instead of ‘Correlated’).

In the fourth printing (version 7.2) minor typos were corrected.

(C.U.P. replace this page with their own page .)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Contents
Preface

Introduction to Information Theory 3

2 Probability, Entropy, and Inference 22

3 More about Inference 48

| Data Compression v v v v vttt 65
4 The Source Coding Theorem 67

5 Symbol Codes 91

6 Stream Codes 110

7 Codes for Integers o 132

Il Noisy-Channel Coding 137
8 Dependent Random Variables 138

9 Communication over a Noisy Channel 146

10 The Noisy-Channel Coding Theorem 162

11 Error-Correcting Codes and Real Channels 177

Il Further Topics in Information Theory 191
12 Hash Codes: Codes for Efficient Information Retrieval . . 193

13 Binary Codes 206

14 Very Good Linear Codes Exist 229

15 Further Exercises on Information Theory 233

16 Message Passing 0L 241

17 Communication over Constrained Noiseless Channels . .. 248

18 Crosswords and Codebreaking 260

19 Why have Sex? Information Acquisition and Evolution . . 269

IV Probabilities and Inference 281
20 An Example Inference Task: Clustering 284

21 Exact Inference by Complete Enumeration 293

22 Maximum Likelihood and Clustering 300

23 Useful Probability Distributions 311

24 Exact Marginalization 319

25 Exact Marginalization in Trellises 324

26 Exact Marginalization in Graphs 334

27 Laplace’s Method L. 341

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

28 Model Comparison and Occam’s Razor 343
29 Monte Carlo Methods 357
30 Efficient Monte Carlo Methods 387
31 Ising Models 400
32 Exact Monte Carlo Sampling 413
33 Variational Methods 422
34 Independent Component Analysis and Latent Variable Mod-
elling 437
35 Random Inference Topics 445
36 Decision Theory 451
37 Bayesian Inference and Sampling Theory 457
V. Neuralnetworks. v v iie e 467
38 Introduction to Neural Networks 468
39 The Single Neuron as a Classifier 471
40 Capacity of a Single Neuron 483
41 Learning as Inference 492
42 Hopfield Networks 505
43 Boltzmann Machines 522
44 Supervised Learning in Multilayer Networks 527
45 Gaussian Processes L L L 535
46 Deconvolution 549
VI Sparse Graph Codes 555
47 Low-Density Parity-Check Codes 557
48 Convolutional Codes and Turbo Codes 574
49 Repeat—Accumulate Codes 582
50 Digital Fountain Codes 589
VII Appendices o it e e e e 597
A Notation 598
B Some Physics 601
C Some Mathematics 605
Bibliography 613

Index 620

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Preface

This book is aimed at senior undergraduates and graduate students in Engi-
neering, Science, Mathematics, and Computing. It expects familiarity with
calculus, probability theory, and linear algebra as taught in a first- or second-
year undergraduate course on mathematics for scientists and engineers.

Conventional courses on information theory cover not only the beauti-
ful theoretical ideas of Shannon, but also practical solutions to communica-
tion problems. This book goes further, bringing in Bayesian data modelling,
Monte Carlo methods, variational methods, clustering algorithms, and neural
networks.

Why unify information theory and machine learning? Because they are
two sides of the same coin. In the 1960s, a single field, cybernetics, was
populated by information theorists, computer scientists, and neuroscientists,
all studying common problems. Information theory and machine learning still
belong together. Brains are the ultimate compression and communication
systems. And the state-of-the-art algorithms for both data compression and
error-correcting codes use the same tools as machine learning.

How to use this book

The essential dependencies between chapters are indicated in the figure on the
next page. An arrow from one chapter to another indicates that the second
chapter requires some of the first.

Within Parts I, IT, IV, and V of this book, chapters on advanced or optional
topics are towards the end. All chapters of Part III are optional on a first
reading, except perhaps for Chapter 16 (Message Passing).

The same system sometimes applies within a chapter: the final sections of-
ten deal with advanced topics that can be skipped on a first reading. For exam-
ple in two key chapters — Chapter 4 (The Source Coding Theorem) and Chap-
ter 10 (The Noisy-Channel Coding Theorem) — the first-time reader should
detour at section 4.5 and section 10.4 respectively.

Pages vii—x show a few ways to use this book. First, I give the roadmap for
a course that I teach in Cambridge: ‘Information theory, pattern recognition,
and neural networks’. The book is also intended as a textbook for traditional
courses in information theory. The second roadmap shows the chapters for an
introductory information theory course and the third for a course aimed at an
understanding of state-of-the-art error-correcting codes. The fourth roadmap
shows how to use the text in a conventional course on machine learning.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

vi Preface

c Introduction to Information Theory‘

/ e Probability, Entropy, and Inference‘

a More about Inference‘

EH Data Compressi0n|
a The Source Coding T hcorem‘

Symbol Codes

e Codes for Integers‘

Noisy-Channel Coding |

Error-Correcting Codes and Real Channels‘

v L
Further Topics in Information Theory|

@ Hash Codes
@ Binary Codes

@ Very Good Linear Codes EXiSt‘
@—‘ Further Exercises on Information Theory‘
|

@ Constrained Noiseless Channels‘

Crosswords and Codebreaking‘
@ Why have Sex?

Dependent Random Variables‘

Communication over a Noisy Channel‘

The Noisy-Channel Coding Theorem‘

Dependencies |-

Probabilities and Inference|

@ An Example Inference Task: Clustering‘
@—‘ Exact Inference by Complete Enumeration‘

Maximum Likelihood and Clustering‘

@ Useful Probability Distributions‘
@ Exact Marginalization‘

(25)

20)

Exact Marginalization in Trellises‘

Exact Marginalization in Graphs‘

@—‘ Laplace’s Method ‘

@ Model Comparison and Occam’s Razor‘
Monte Carlo Methods‘

@ Efficient Monte Carlo Methods‘

)
@ Exact Monte Carlo Sampling‘

@ Variational Methods ‘

@ Independent Component Analysis‘
@—‘ Random Inference Topics‘

@ Decision Theory

@—‘ Bayesian Inference and Sampling Theory‘

Neural networks |

@ Introduction to Neural Networks‘

The Single Neuron as a Classiﬁer‘

Capacity of a Single Neuron‘

Learning as Inference‘

Hopfield Networks ‘

Boltzmann Machines ‘

Supervised Learning in Multilayer Networks

Gaussian Processes ‘

®
Sparse Graph Codes|

@ Low-Density Parity-Check Codes‘

@ Convolutional Codes and Turbo Codcs‘
@ Repeat—Accumulate Codes‘

@ Digital Fountain Codes‘

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Preface vii

@—| Introduction to Information Theory|
@—| Probability, Entropy, and Inference|

@—| More about Inference|

EH Data Compressi0n|
@—| The Source Coding Theorem|

Symbol Codes
@—‘ Codes for Integers‘

IT H Noisy-Channel Coding |

The Noisy-Channel Coding Theorem|
@—| Error-Correcting Codes and Real Channels|

Further Topics in Information Theory|

Hash Codes
Binary Codes

Very Good Linear Codes EXiSt‘

ei

it

Further Exercises on Information Theory‘

Message Passing

Constrained Noiseless Channels‘

H Crosswords and Codebreaking‘

Why have Sex?

®

;i

&

®

My Cambridge Course on,
Information Theory,

Pattern Recognition,
and Neural Networks

Probabilities and Inference|

An Example Inference Task: Clustering|
@—| Exact Inference by Complete Enumeration|

@—' Maximum Likelihood and Clustering|
@—‘ Useful Probability Distributions‘
Exact Marginalization |

@—‘ Exact Marginalization in Trellises‘
@ Exact Marginalization in Graphs‘
@—' Laplace’s Method |

@ Model Comparison and Occam’s Razor‘
Monte Carlo Methods|

Efficient Monte Carlo Methods|

@

@—| Exact Monte Carlo Sampling|

@—' Variational Methods |

Independent Component Analysis‘

@—‘ Random Inference Topics‘

@ Decision Theory

@—‘ Bayesian Inference and Sampling Theory‘

Neural networks |

Introduction to Neural Networks|
The Single Neuron as a Classiﬁer|
Capacity of a Single Neur0n|
Learning as Inference|

Hopfield Networks|

@ Boltzmann Machines ‘

@ Supervised Learning in Multilayer Networks
@ Gaussian Processes‘

(1| Decomtuion

Sparse Graph Codes|
Low-Density Parity-Check Codes|

@ Convolutional Codes and Turbo Codes‘
@ Repeat—Accumulate Codes‘
@ Digital Fountain Codes‘

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

viii

@—{ Introduction to Information Theory|
@—{ Probability, Entropy, and Inference|

@—‘ More about Inference‘

EH Data Compressi0n|
@—{ The Source Coding Theorem|

Symbol Codes
@—‘ Codes for Integers‘

IT H Noisy-Channel Coding |

The Noisy-Channel Coding Theorem|
@—‘ Error-Correcting Codes and Real Channels‘

Further Topics in Information Theory|

Hash Codes
Binary Codes

Very Good Linear Codes Exist‘
@—‘ Further Exercises on Information Theory‘

Message Passing

Constrained Noiseless Channels‘

H Crosswords and Codebreaking‘

Why have Sex?

ei

9

®

;i

&

(19)

Short Course on
Information Theory

Probabilities and Inference|

An Example Inference Task: Clustering‘
@—‘ Exact Inference by Complete Enumeration‘

@—‘ Maximum Likelihood and Clustering‘
@—‘ Useful Probability Distributions‘

@ Exact Marginalization‘

@—‘ Exact Marginalization in Trellises‘
@ Exact Marginalization in Graphs‘
@—‘ Laplace’s Method ‘

@ Model Comparison and Occam’s Razor‘
@ Monte Carlo Methods‘

@—‘ Efficient Monte Carlo Methods‘

@

@—‘ Exact Monte Carlo Sampling‘

@—‘ Variational Methods ‘

Independent Component Analysis‘

@—‘ Random Inference Topics‘

@ Decision Theory

@—‘ Bayesian Inference and Sampling Theory‘

Neural networks |

@ Introduction to Neural Networks‘
@ The Single Neuron as a Classiﬁer‘
Capacity of a Single Neuron‘

@ Learning as Inference ‘

@ Hopfield Networks‘

@ Boltzmann Machines ‘

@ Supervised Learning in Multilayer Networks
@ Gaussian Processes‘

®
Sparse Graph Codes|

@ Low-Density Parity-Check Codes‘

@ Convolutional Codes and Turbo Codes‘
@ Repeat—Accumulate Codes‘

@ Digital Fountain Codes‘

Preface

Preface

@—‘ Introduction to Information Theory‘
@—‘ Probability, Entropy, and Inference‘

@—‘ More about Inference‘

EH Data Compressi0n|
@—‘ The Source Coding Thcorcm‘

Q Symbol Codes
@—‘ Codes for Integers‘

Noisy-Channel Coding |
®

@ Hash Codes
@ Binary Codes

Very Good Linear Codes Exist|

@—{ Further Exercises on Information Theory|

@ Message Passing

@—{ Constrained Noiseless Channels |
C

rosswords and Codebreaking‘

@ Why have Sex?

Advanced Course on
Information Theory and Coding

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Probabilities and Inference|

An Example Inference Task: Clustering‘
@—‘ Exact Inference by Complete Enumeration‘

@—‘ Maximum Likelihood and Clustering‘
@—‘ Useful Probability Distributions‘
Exact Marginalization |

@—{ Exact Marginalization in Trellises|
Exact Marginalization in Graphs |
@—‘ Laplace’s Method ‘

@ Model Comparison and Occam’s Razor‘
@ Monte Carlo Methods‘

@—‘ Efficient Monte Carlo Methods‘

@

@—‘ Exact Monte Carlo Sampling‘

@—‘ Variational Methods ‘

Independent Component Analysis‘

@—‘ Random Inference Topics‘

@ Decision Theory

@—‘ Bayesian Inference and Sampling Theory‘

Neural networks |

@ Introduction to Neural Networks‘
@ The Single Neuron as a Classiﬁer‘
Capacity of a Single Neuron‘

@ Learning as Inference ‘

@ Hopfield Networks‘

@ Boltzmann Machines ‘

@ Supervised Learning in Multilayer Networks

@ Gaussian Processes ‘

(1| Decomtuion

Sparse Graph Codes|
Low-Density Parity-Check Codes |

Convolutional Codes and Turbo Codes |

Repeat—Accumulate Codes |
Digital Fountain Codes |

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

X

@—‘ Introduction to Information Theory‘
@—| Probability, Entropy, and Inference|

@—| More about Inference|

EH Data Compressi0n|
@—‘ The Source Coding Thcorcm‘

Symbol Codes
@—‘ Codes for Integers‘

IT H Noisy-Channel Coding |

The Noisy-Channel Coding Theorem‘
@—‘ Error-Correcting Codes and Real Channels‘

Further Topics in Information Theory|

Hash Codes
Binary Codes

Very Good Linear Codes EXiSt‘
@—‘ Further Exercises on Information Theory‘

Message Passing

Constrained Noiseless Channels‘

H Crosswords and Codebreaking‘

Why have Sex?

ei

9

®

;i

&

(19)

A Course on Bayesian Inference
and Machine Learning

Probabilities and Inference|

An Example Inference Task: Clustering|
@—| Exact Inference by Complete Enumeration|

@—' Maximum Likelihood and Clustering|
@—‘ Useful Probability Distributions‘
Exact Marginalization |

@—‘ Exact Marginalization in Trellises‘
@ Exact Marginalization in Graphs‘
@—' Laplace’s Method |

Model Comparison and Occam’s Razor|
Monte Carlo Methods|

Efficient Monte Carlo Methods|

@

@—| Exact Monte Carlo Sampling|

@—' Variational Methods |

Independent Component Analysis|

@—‘ Random Inference Topics‘

@ Decision Theory

@—‘ Bayesian Inference and Sampling Theory‘

Neural networks |

Introduction to Neural Networks|

The Single Neuron as a Classiﬁer|

Capacity of a Single Neur0n|

Learning as Inference|

Hopfield Networks|

Boltzmann Machines |

Supervised Learning in Multilayer Networks
Gaussian Processes|

®

Sparse Graph Codes|

@ Low-Density Parity-Check Codes‘

@ Convolutional Codes and Turbo Codes‘
@ Repeat—Accumulate Codes‘

@ Digital Fountain Codes‘

Preface

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Preface

About the exercises

You can understand a subject only by creating it for yourself. The exercises
play an essential role in this book. For guidance, each has a rating (similar to
that used by Knuth (1968)) from 1 to 5 to indicate its difficulty.

In addition, exercises that are especially recommended are marked by a
marginal encouraging rat. Some exercises that require the use of a computer
are marked with a C.

Answers to many exercises are provided. Use them wisely. Where a solu-
tion is provided, this is indicated by including its page number alongside the
difficulty rating.

Solutions to many of the other exercises will be supplied to instructors
using this book in their teaching; please email solutions@cambridge.org.

Summary of codes for exercises
ﬁ% Especially recommended [1] Simple (one minute)
[2] Medium (quarter hour)
> Recommended [3] Moderately hard
C Parts require a computer 4] Hard
[p-42] Solution provided on page 42 [5] Research project

Internet resources

The website
http://www.inference.phy.cam.ac.uk/mackay/itila

contains several resources:

1. Software. Teaching software that I use in lectures, interactive software,
and research software, written in perl, octave, tcl, C, and gnuplot.
Also some animations.

2. Corrections to the book. Thank you in advance for emailing these!

3. This book. The book is provided in postscript, pdf, and djvu formats
for on-screen viewing. The same copyright restrictions apply as to a
normal book.

About this edition

This is the fourth printing of the first edition. In the second printing, the
design of the book was altered slightly. Page-numbering generally remained
unchanged, except in chapters 1, 6, and 28, where a few paragraphs, figures,
and equations moved around. All equation, section, and exercise numbers
were unchanged. In the third printing, chapter 8 was renamed ‘Dependent
Random Variables’, instead of ‘Correlated’, which was sloppy.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

i Preface

Acknowledgments

I am most grateful to the organizations who have supported me while this
book gestated: the Royal Society and Darwin College who gave me a fantas-
tic research fellowship in the early years; the University of Cambridge; the
Keck Centre at the University of California in San Francisco, where I spent a
productive sabbatical; and the Gatsby Charitable Foundation, whose support
gave me the freedom to break out of the Escher staircase that book-writing
had become.

My work has depended on the generosity of free software authors. I wrote
the book in IATEX 2¢. Three cheers for Donald Knuth and Leslie Lamport!
Our computers run the GNU /Linux operating system. I use emacs, perl, and
gnuplot every day. Thank you Richard Stallman, thank you Linus Torvalds,
thank you everyone.

Many readers, too numerous to name here, have given feedback on the
book, and to them all I extend my sincere acknowledgments. I especially wish
to thank all the students and colleagues at Cambridge University who have
attended my lectures on information theory and machine learning over the last
nine years.

The members of the Inference research group have given immense support,
and I thank them all for their generosity and patience over the last ten years:
Mark Gibbs, Michelle Povinelli, Simon Wilson, Coryn Bailer-Jones, Matthew
Davey, Katriona Macphee, James Miskin, David Ward, Edward Ratzer, Seb
Wills, John Barry, John Winn, Phil Cowans, Hanna Wallach, Matthew Gar-
rett, and especially Sanjoy Mahajan. Thank you too to Graeme Mitchison,
Mike Cates, and Davin Yap.

Finally I would like to express my debt to my personal heroes, the mentors
from whom I have learned so much: Yaser Abu-Mostafa, Andrew Blake, John
Bridle, Peter Cheeseman, Steve Gull, Geoff Hinton, John Hopfield, Steve Lut-
trell, Robert MacKay, Bob McEliece, Radford Neal, Roger Sewell, and John
Skilling.

Dedication

This book is dedicated to the campaign against the arms trade.
www.caat.org.uk
Peace cannot be kept by force.

It can only be achieved through understanding.
— Albert Einstein

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

About Chapter 1

In the first chapter, you will need to be familiar with the binomial distribution.
And to solve the exercises in the text — which I urge you to do — you will need
to know Stirling’s approximation for the factorial function, z! ~ x®e™*, and

be able to apply it to (J;[) = (N_LTI)W These topics are reviewed below. Unfamiliar notation?
See Appendix A, p.598.

The binomial distribution

Example 1.1. A bent coin has probability f of coming up heads. The coin is
tossed N times. What is the probability distribution of the number of
heads, r? What are the mean and variance of r?

Solution. The number of heads has a binomial distribution. 03
0.25 4
0.2 o

Perlsn = (V) ra- any

0.05

The mean, &[r], and variance, var[r], of this distribution are defined by

N . L
E =Y P(r|f,N)r (1) Gifobution Plr | =03, N =10).
r=0
var[r] = & {(r —S[r])z} (1.3)
N
= W = (Elr)* =D P(r|f,N)r? — (E[r])*. (1.4)
r=0

Rather than evaluating the sums over r in (1.2) and (1.4) directly, it is easiest
to obtain the mean and variance by noting that r is the sum of N independent
random variables, namely, the number of heads in the first toss (which is either
zero or one), the number of heads in the second toss, and so forth. In general,

Elz+y] Elx] + Ely] for any random variables = and y;
var[t +y] = varz]+ varly] if z and y are independent.

(1.5)

So the mean of r is the sum of the means of those random variables, and the
variance of r is the sum of their variances. The mean number of heads in a
single toss is f x 14+ (1 — f) x 0 = f, and the variance of the number of heads
in a single toss is

[fxPP4+(1-f)x0]=f2=f—fr=f1-1), (1.6)
so the mean and variance of r are:

Elr]=Nf and var[r] = Nf(1— f). 0 (1.7)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

2 About Chapter 1

Approzimating x! and (];])

Let’s derive Stirling’s approximation by an unconventional route. We start
from the Poisson distribution with mean A,

)\7‘
P(ri)) =e = ref{0,1,2,...}. (1.8)
7l
For large), this distribution is well approximated — at least in the vicinity of

r ~ A — by a Gaussian distribution with mean A and variance \:

AT 1 _ (r—=))?
e N~ e 2x (1.9)
7! V2T
Let’s plug » = X into this formula, then rearrange it.
A 1
—-A
e T — ~ 1.10
Al 2w\ ()
= A~ MeMNVora (1.11)
This is Stirling’s approximation for the factorial function.
2! ~ 2" e *V2rz & Inz! ~ zlnz — 2+ In2nz. (1.12)

We have derived not only the leading order behaviour, z! ~ x* e™*, but also,
at no cost, the next-order correction term +/2mx. We now apply Stirling’s
approximation to In (]X):

1 N =In N ~
") = (N —n)lr!l

Since all the terms in this equation are logarithms, this result can be rewritten
in any base. We will denote natural logarithms (log,) by ‘In’, and logarithms
to base 2 (log,) by ‘log’.

If we introduce the binary entropy function,

N N
N —7)l In—.
(r)nN +an

- T

(1.13)

1 1
Hs(x) Exlogg—i-(l—x)log = (1.14)
then we can rewrite the approximation (1.13) as
N
log (r> ~ NHs(r/N), (1.15)
or, equivalently,
NY o g/, (1.16)
T

If we need a more accurate approximation, we can include terms of the next
order from Stirling’s approximation (1.12):

N N—r r
1 ~ NHy(r/N) — ilog |27 N — 1. 1.1
o8 () = Nia(r/) ~ f1og [2en T L (117)

0.12

0.1

0.08

0.06 |

04 m““ “MMM
—

0.04
0.02 +

T

0 5

10 15 20 25

r

Figure 1.2. The Poisson
distribution P(r | A=15).

1
Recall that log, x = 122: ;E
01 1 1
Note that Z—22% _ —.
ox log.2 x
Hy(x)
0.8+
0.6+
0.4-
0.2+
0+ T 1 T v |
0 0.2 0.4 0.6 0.8 1 X

Figure 1.3. The binary entropy
function.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Introduction to Information Theory

The fundamental problem of communication is that of reproducing
at one point either exactly or approximately a message selected at
another point.

(Claude Shannon, 1948)

In the first half of this book we study how to measure information content; we
learn how to compress data; and we learn how to communicate perfectly over
imperfect communication channels.

We start by getting a feeling for this last problem.

» 1.1 How can we achieve perfect communication over an imperfect,
noisy communication channel?

Some examples of noisy communication channels are: phone

. — modem
line

modem —
e an analogue telephone line, over which two modems communicate digital

information;

Galileo — radio . paep

e the radio communication link from Galileo, the Jupiter-orbiting space- waves
craft, to earth;
daughter
e reproducing cells, in which the daughter cells’ DNA contains information parent cell
from the parent cells; cell
. . daughter
e a disk drive. cell
The last example shows that communication doesn’t have to involve informa- computer _ disk __computer
tion going from one place to another. When we write a file on a disk drive, =~ memory drive = memory

we’ll read it off in the same location — but at a later time.

These channels are noisy. A telephone line suffers from cross-talk with
other lines; the hardware in the line distorts and adds noise to the transmitted
signal. The deep space network that listens to Galileo’s puny transmitter
receives background radiation from terrestrial and cosmic sources. DNA is
subject to mutations and damage. A disk drive, which writes a binary digit
(a one or zero, also known as a bit) by aligning a patch of magnetic material
in one of two orientations, may later fail to read out the stored binary digit:
the patch of material might spontaneously flip magnetization, or a glitch of
background noise might cause the reading circuit to report the wrong value
for the binary digit, or the writing head might not induce the magnetization
in the first place because of interference from neighbouring bits.

In all these cases, if we transmit data, e.g., a string of bits, over the channel,
there is some probability that the received message will not be identical to the

3

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

4 1 — Introduction to Information Theory

transmitted message. We would prefer to have a communication channel for
which this probability was zero — or so close to zero that for practical purposes
it is indistinguishable from zero.

Let’s consider a noisy disk drive that transmits each bit correctly with
probability (1— f) and incorrectly with probability f. This model communi-
cation channel is known as the binary symmetric channel (figure 1.4).

Figure 1.4. The binary symmetric
0—0 Ply=0|z=0) = 1—f; Py=0|z=1) = f; channel. The transmitted symbol
1>_<;1 Yy Ply=1|z=0) = f;) = 1-—F. is = and the received symbol y.
’ The noise level, the probability
that a bit is flipped, is f.

Figure 1.5. A binary data
sequence of length 10 000
transmitted over a binary
symmetric channel with noise
level f =0.1. [Dilbert image
Copyright(©1997 United Feature
Syndicate, Inc., used with
permission. |

As an example, let’s imagine that f = 0.1, that is, ten per cent of the bits are
flipped (figure 1.5). A useful disk drive would flip no bits at all in its entire
lifetime. If we expect to read and write a gigabyte per day for ten years, we
require a bit error probability of the order of 1071, or smaller. There are two
approaches to this goal.

The physical solution

The physical solution is to improve the physical characteristics of the commu-
nication channel to reduce its error probability. We could improve our disk
drive by

1. using more reliable components in its circuitry;

2. evacuating the air from the disk enclosure so as to eliminate the turbu-
lence that perturbs the reading head from the track;

3. using a larger magnetic patch to represent each bit; or

4. using higher-power signals or cooling the circuitry in order to reduce
thermal noise.

These physical modifications typically increase the cost of the communication
channel.

The ‘system’ solution

Information theory and coding theory offer an alternative (and much more ex-
citing) approach: we accept the given noisy channel as it is and add communi-
cation systems to it so that we can detect and correct the errors introduced by
the channel. As shown in figure 1.6, we add an encoder before the channel and
a decoder after it. The encoder encodes the source message s into a transmit-
ted message t, adding redundancy to the original message in some way. The
channel adds noise to the transmitted message, yielding a received message r.
The decoder uses the known redundancy introduced by the encoding system
to infer both the original signal s and the added noise.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

1.2: Error-correcting codes for the binary symmetric channel 5
Source Figure 1.6. The ‘system’ solution
for achieving reliable
communication over a noisy
s S channel. The encoding system
introduces systematic redundancy
Encoder Decoder into the transmitted Vec_tor t. The
decoding system uses this known
redundancy to deduce from the
received vector r both the original
t L Nois r source vector and the noise
y introduced by the channel.
channel

Whereas physical solutions give incremental channel improvements only at
an ever-increasing cost, system solutions can turn noisy channels into reliable
communication channels with the only cost being a computational requirement
at the encoder and decoder.

Information theory is concerned with the theoretical limitations and po-
tentials of such systems. ‘What is the best error-correcting performance we
could achieve?’

Coding theory is concerned with the creation of practical encoding and
decoding systems.

» 1.2 Error-correcting codes for the binary symmetric channel

We now consider examples of encoding and decoding systems. What is the
simplest way to add useful redundancy to a transmission? [To make the rules
of the game clear: we want to be able to detect and correct errors; and re-
transmission is not an option. We get only one chance to encode, transmit,
and decode.]

Repetition codes

Source Transmitted
A straightforward idea is to repeat every bit of the message a prearranged sequence sequence
number of times — for example, three times, as shown in table 1.7. We call s t
this repetition code ‘Rs’. 0 000
Imagine that we transmit the source message 1 111

s=0010110
Table 1.7. The repetition code Rs.

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector — adding in modulo 2 arithmetic, i.e., the binary algebra
in which 14+1=0. A possible noise vector n and received vector r = t + n are
shown in figure 1.8.

Figure 1.8. An example
0 0 1 0 1 1 0 transmission using Rs.

AN AN AN S AN AN A
000 000 111 000 111 111 00O
000 001 000 00O 101 000 O0OO
000 001 111 000 010 111 000

= 5 &+ ®w

How should we decode this received vector? The optimal algorithm looks
at the received bits three at a time and takes a majority vote (algorithm 1.9).

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6 1 — Introduction to Information Theory
Algorithm 1.9. Majority-vote
Received sequence r Likelihood ratio % Decoded sequence § decoding algorithm for R3. Also

shown are the likelihood ratios

000 y3 0 (1.23), assuming the channel is a

001 ’y_l 0 binary symmetric channel;

010 A1 0 y=01-0H/f

100 1 o

101 ! 1

110 ! 1

011 A1 1

111 ~3 1

At the risk of explaining the obvious, let’s prove this result. The optimal
decoding decision (optimal in the sense of having the smallest probability of
being wrong) is to find which value of s is most probable, given r. Consider
the decoding of a single bit s, which was encoded as t(s) and gave rise to three
received bits r = ryrors. By Bayes’ theorem, the posterior probability of s is

P(ryrars | s)P(s).

P(s|rirers) = 1.18
(s]rarars) P(ryrors) (1.18)
We can spell out the posterior probability of the two alternatives thus:

P(rirars|s=1)P(s=1)

P(s=1 = ; 1.19

(s | r17273) P(rirars) ; ()
P =0)P(s=0

P(s =0 ryrary) = LAT2ra| s=0)P(s=0) (1.20)

P(’l"ﬂ"g?"g)

This posterior probability is determined by two factors: the prior probability
P(s), and the data-dependent term P(rirars|s), which is called the likelihood
of s. The normalizing constant P(r17r27r3) needn’t be computed when finding the
optimal decoding decision, which is to guess §=0 if P(s=0]|r) > P(s=1]|r),
and §=1 otherwise.

To find P(s=0]r) and P(s=1|r), we must make an assumption about the
prior probabilities of the two hypotheses s =0 and s =1, and we must make an
assumption about the probability of r given s. We assume that the prior prob-
abilities are equal: P(s=0) = P(s=1) = 0.5; then maximizing the posterior
probability P(s|r) is equivalent to maximizing the likelihood P(r|s). And we
assume that the channel is a binary symmetric channel with noise level f < 0.5,
so that the likelihood is

N

P(r|s) = P(r|t(s)) = H P(ry | ta(3)), (1.21)

n=1

where N = 3 is the number of transmitted bits in the block we are considering,

and . "
Pl ={ 70 % oy (122

Thus the likelihood ratio for the two hypotheses is

N
P(r|s=1) _ H P(ry | ta (1)) (1.23)
P(r|s=0) e P(r, |t,(0))’
each factor %ﬁzgé;i equals (l;f) if r, =1 and rfj) if r,, = 0. The ratio
v = % is greater than 1, since f < 0.5, so the winning hypothesis is the

one with the most ‘votes’, each vote counting for a factor of 7 in the likelihood
ratio.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

1.2: Error-correcting codes for the binary symmetric channel

Thus the majority-vote decoder shown in algorithm 1.9 is the optimal decoder
if we assume that the channel is a binary symmetric channel and that the two
possible source messages 0 and 1 have equal prior probability.

We now apply the majority vote decoder to the received vector of figure 1.8.
The first three received bits are all 0, so we decode this triplet as a 0. In the
second triplet of figure 1.8, there are two Os and one 1, so we decode this triplet
as a 0 — which in this case corrects the error. Not all errors are corrected,
however. If we are unlucky and two errors fall in a single block, as in the fifth
triplet of figure 1.8, then the decoding rule gets the wrong answer, as shown
in figure 1.10.

S 0 0 1 0 1 1 0
A ANt B ANt B N

t 000 000 111 000 111 1 000

n 000 001 000 000 101 000

r 000 001 111 000 010 1 000
M T SN N

S 0 1 0 1 0

corrected errors *
undetected errors *

ﬁ% Exercise 1.2.1% P-16] Show that the error probability is reduced by the use of
R3 by computing the error probability of this code for a binary symmetric
channel with noise level f.

The error probability is dominated by the probability that two bits in
a block of three are flipped, which scales as f2. In the case of the binary
symmetric channel with f = 0.1, the R3 code has a probability of error, after
decoding, of py, >~ 0.03 per bit. Figure 1.11 shows the result of transmitting a
binary image over a binary symmetric channel using the repetition code.

S ENCODER t CHANNEL r DECODER
f=10%
REDUNDAR REDUNDAN :
—_—

Figure 1.10. Decoding the received
vector from figure 1.8.

The exercise’s rating, e.g.‘[2]’,
indicates its difficulty: ‘1’
exercises are the easiest. Exercises
that are accompanied by a
marginal rat are especially
recommended. If a solution or
partial solution is provided, the
page is indicated after the
difficulty rating; for example, this
exercise’s solution is on page 16.

Figure 1.11. Transmitting 10 000
source bits over a binary
symmetric channel with f = 10%
using a repetition code and the
majority vote decoding algorithm.
The probability of decoded bit
error has fallen to about 3%; the
rate has fallen to 1/3.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

1 — Introduction to Information Theory

8
01 4 = Figure 1.12. Error probability py,
01 - RID 001 - 2/55/ - R1 versus rate for‘repetltlc.)n codes
- over a binary symmetric channel
4 with f = 0.1. The right-hand
0.08 1 1e05 4 O figure shows pp, on a logarithmic
€ g more useful codes g Py o1 g
Pv 13 scale. We would like the rate to
0.06 '%J be large and py, to be small.
16
i
le-10 O
T
B
0
-
R61
T le-15 =4 T T T T T
1 o 02 04 06 08 1

Rate

The repetition code R3 has therefore reduced the probability of error, as
desired. Yet we have lost something: our rate of information transfer has
fallen by a factor of three. So if we use a repetition code to communicate data
over a telephone line, it will reduce the error frequency, but it will also reduce
our communication rate. We will have to pay three times as much for each
phone call. Similarly, we would need three of the original noisy gigabyte disk

drives in order to create a one-gigabyte disk drive with py, = 0.03.
Can we push the error probability lower, to the values required for a sell-
able disk drive — 107157 We could achieve lower error probabilities by using

repetition codes with more repetitions.

ﬁ% Exercise 1.3.1% P-16] (a) Show that the probability of error of Ry, the repe-
tition code with N repetitions, is

n= 3 (M)rma-pr (129

n=(N+1)/2

for odd N.

(b) Assuming f = 0.1, which of the terms in this sum is the biggest?
How much bigger is it than the second-biggest term?

(c) Use Stirling’s approximation (p.2) to approximate the (]Z) in the
largest term, and find, approximately, the probability of error of
the repetition code with N repetitions.

(d) Assuming f = 0.1, find how many repetitions are required to get
the probability of error down to 10717, [Answer: about 60.]

So to build a single gigabyte disk drive with the required reliability from noisy
gigabyte drives with f = 0.1, we would need sizty of the noisy disk drives.
The tradeoff between error probability and rate for repetition codes is shown

in figure 1.12.

Block codes — the (7,4) Hamming code

We would like to communicate with tiny probability of error and at a substan-
tial rate. Can we improve on repetition codes? What if we add redundancy to
blocks of data instead of encoding one bit at a time? We now study a simple

block code.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

1.2: Error-correcting codes for the binary symmetric channel 9

A block code is a rule for converting a sequence of source bits s, of length
K, say, into a transmitted sequence t of length N bits. To add redundancy,
we make N greater than K. In a linear block code, the extra N — K bits are
linear functions of the original K bits; these extra bits are called parity-check
bits. An example of a linear block code is the (7,4) Hamming code, which
transmits N = 7 bits for every K = 4 source bits.

Figure 1.13. Pictorial
representation of encoding for the

W &

(a) (b)

The encoding operation for the code is shown pictorially in figure 1.13. We
arrange the seven transmitted bits in three intersecting circles. The first four
transmitted bits, t1tststy, are set equal to the four source bits, s15253s4. The
parity-check bits tstgt7 are set so that the parity within each circle is even:
the first parity-check bit is the parity of the first three source bits (that is, it
is 0 if the sum of those bits is even, and 1 if the sum is odd); the second is
the parity of the last three; and the third parity bit is the parity of source bits
one, three and four.

As an example, figure 1.13b shows the transmitted codeword for the case
s = 1000. Table 1.14 shows the codewords generated by each of the 2% =
sixteen settings of the four source bits. These codewords have the special
property that any pair differ from each other in at least three bits.

s t s t S t s t Table 1.14. The sixteen codewords
{t} of the (7,4) Hamming code.

0000 0000000 0100 0100110 1000 1000101 1100 1100011 Any pair of codewords differ from
0001 0001011 0101 0101101 1001 1001110 1101 1101000 each other in at least three bits.

0010 0010111 0110 0110001 1010 1010010 1110 1110100
0011 0011100 0111 0111010 1011 1011001 1111 1111111

Because the Hamming code is a linear code, it can be written compactly in
terms of matrices as follows. The transmitted codeword t is obtained from the
source sequence s by a linear operation,

t=GTs, (1.25)

where G is the generator matrix of the code,

1 000
0100
0010

G'=|0 00 1], (1.26)
1110
01 11
|1 0 1 1|

and the encoding operation (1.25) uses modulo-2 arithmetic (1+1=10,04+1 =
1, ete.).

In the encoding operation (1.25) I have assumed that s and t are column vectors.
If instead they are row vectors, then this equation is replaced by

t =sG, (1.27)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

10 1 — Introduction to Information Theory
where
1 0 0 01 0 1
01 0 0 1 1 O
G= 001 01 11 (1.28)
00 01 0 11

I find it easier to relate to the right-multiplication (1.25) than the left-multiplica-
tion (1.27). Many coding theory texts use the left-multiplying conventions
(1.27-1.28), however.

The rows of the generator matrix (1.28) can be viewed as defining four basis
vectors lying in a seven-dimensional binary space. The sixteen codewords are
obtained by making all possible linear combinations of these vectors.

Decoding the (7,4) Hamming code

When we invent a more complex encoder s — t, the task of decoding the
received vector r becomes less straightforward. Remember that any of the
bits may have been flipped, including the parity bits.

If we assume that the channel is a binary symmetric channel and that all
source vectors are equiprobable, then the optimal decoder identifies the source
vector s whose encoding t(s) differs from the received vector r in the fewest
bits. [Refer to the likelihood function (1.23) to see why this is so.] We could
solve the decoding problem by measuring how far r is from each of the sixteen
codewords in table 1.14, then picking the closest. Is there a more efficient way
of finding the most probable source vector?

Syndrome decoding for the Hamming code

For the (7,4) Hamming code there is a pictorial solution to the decoding
problem, based on the encoding picture, figure 1.13.

As a first example, let’s assume the transmission was t = 1000101 and the
noise flips the second bit, so the received vector is r = 1000101 & 0100000 =
1100101. We write the received vector into the three circles as shown in
figure 1.15a, and look at each of the three circles to see whether its parity
is even. The circles whose parity is not even are shown by dashed lines in
figure 1.15b. The decoding task is to find the smallest set of flipped bits that
can account for these violations of the parity rules. [The pattern of violations
of the parity checks is called the syndrome, and can be written as a binary
vector — for example, in figure 1.15b, the syndrome is z = (1, 1,0), because
the first two circles are ‘unhappy’ (parity 1) and the third circle is ‘happy’
(parity 0).]

To solve the decoding task, we ask the question: can we find a unique bit
that lies inside all the ‘unhappy’ circles and outside all the ‘happy’ circles? If
so, the flipping of that bit would account for the observed syndrome. In the
case shown in figure 1.15b, the bit ry lies inside the two unhappy circles and
outside the happy circle; no other single bit has this property, so r5 is the only
single bit capable of explaining the syndrome.

Let’s work through a couple more examples. Figure 1.15c¢c shows what
happens if one of the parity bits, ¢5, is flipped by the noise. Just one of the
checks is violated. Only rj5 lies inside this unhappy circle and outside the other
two happy circles, so r5 is identified as the only single bit capable of explaining
the syndrome.

If the central bit r3 is received flipped, figure 1.15d shows that all three
checks are violated; only 73 lies inside all three circles, so r3 is identified as
the suspect bit.

1.2: Error-correcting codes for the binary symmetric channel

~ - ~
~ /' N
\ \
\ ! 1 \
==~ ==~
=T raTT oy
V1 \ 1\
N f [N
1 N 4/ I
\ |
\ \ 1 1
\1 \0 0 ’

()

Syndrome z 000 001
Unflip this bit

010 011 100 101 110 111

none T7 T6 T4 s T] r3

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case — seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f, the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15¢
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit ry; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15¢/. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1rar3ry, purport to be the four source bits; and the
received bits rs5rgry purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1rar3ry, and see whether they match the three received bits, r5rgr7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero — if all three parity checks are happy
— then the received vector is a codeword, and the most probable decoding is

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

11

Figure 1.15. Pictorial
representation of decoding of the
Hamming (7,4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by * were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.

In examples (b), (c¢), and (d), the
most probable suspect is the one
bit that was flipped.

In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is 73, marked by
a circle in (¢’), which shows the
output of the decoding algorithm.

Algorithm 1.16. Actions taken by
the optimal decoder for the (7,4)
Hamming code, assuming a
binary symmetric channel with
small noise level f. The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, rg, and r7.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

12 1 — Introduction to Information Theory

S ENCODER t CHANNEL r DECODER
f=10%
REDUNDAN REGUNDAN
—_—

given by reading out its first four bits. If the syndrome is non-zero, then the
noise sequence for this block was non-zero, and the syndrome is our pointer to
the most probable error pattern.

The computation of the syndrome vector is a linear operation. If we define the
3 x 4 matrix P such that the matrix of equation (1.26) is

I
T _ 4
G = { P } , (1.29)
where I, is the 4 x 4 identity matrix, then the syndrome vector is z = Hr,
where the parity-check matrix H is given by H = [-P I3]; in modulo 2
arithmetic, —1 =1, so

1 11 0 1 0 O
H=[P I3 |]=|0 1110 10 (1.30)
1 01 1 0 0 1
All the codewords t = G's of the code satisfy
0
Ht=| 0 |. (1.31)
0

> Exercise 1.4.[1] Prove that this is so by evaluating the 3 x 4 matrix HGT.

Since the received vector r is given by r = GTs + n, the syndrome-decoding
problem is to find the most probable noise vector n satisfying the equation

Hn =z (1.32)

A decoding algorithm that solves this problem is called a maximum-likelihood
decoder. We will discuss decoding problems like this in later chapters.

Summary of the (7,4) Hamming code’s properties

Every possible received vector of length 7 bits is either a codeword, or it’s one
flip away from a codeword.

Since there are three parity constraints, each of which might or might not
be violated, there are 2 x 2 x 2 = 8 distinct syndromes. They can be divided
into seven non-zero syndromes — one for each of the one-bit error patterns —
and the all-zero syndrome, corresponding to the zero-noise case.

The optimal decoder takes no action if the syndrome is zero, otherwise it
uses this mapping of non-zero syndromes onto one-bit error patterns to unflip
the suspect bit.

S

Figure 1.17. Transmitting 10 000
source bits over a binary
symmetric channel with f = 10%
using a (7,4) Hamming code. The
probability of decoded bit error is
about 7%.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

1.2: Error-correcting codes for the binary symmetric channel

There is a decoding error if the four decoded bits §1, 9, §3, 354 do not all
match the source bits s1, s2,s3,54. The probability of block error py is the
probability that one or more of the decoded bits in one block fail to match the
corresponding source bits,

pp = P(8 #8). (1.33)
The probability of bit error py, is the average probability that a decoded bit
fails to match the corresponding source bit,

| K
P == > P(3k # sk). (1.34)
k=1

In the case of the Hamming code, a decoding error will occur whenever
the noise has flipped more than one bit in a block of seven. The probability
of block error is thus the probability that two or more bits are flipped in a
block. This probability scales as O(f?), as did the probability of error for the
repetition code R3. But notice that the Hamming code communicates at a
greater rate, R = 4/7.

Figure 1.17 shows a binary image transmitted over a binary symmetric
channel using the (7,4) Hamming code. About 7% of the decoded bits are
in error. Notice that the errors are correlated: often two or three successive
decoded bits are flipped.

ﬁ% Exercise 1.5.17] This exercise and the next three refer to the (7,4) Hamming
code. Decode the received strings:

(a) r = 1101011
(b) r = 0110110
(c) r = 0100111
(d) r=1111111.

ﬁ% Exercise 1.6.1% P-17] (a) Calculate the probability of block error pp of the
(7,4) Hamming code as a function of the noise level f and show
that to leading order it goes as 21f2.

(b) [Show that to leading order the probability of bit error py, goes
as 9f2.

ﬁ% Exercise 1.7.[% P19 Find some noise vectors that give the all-zero syndrome
(that is, noise vectors that leave all the parity checks unviolated). How
many such noise vectors are there?

> Exercise 1.8.12] T asserted above that a block decoding error will result when-
ever two or more bits are flipped in a single block. Show that this is
indeed so. [In principle, there might be error patterns that, after de-
coding, led only to the corruption of the parity bits, with no source bits
incorrectly decoded.]

Summary of codes’ performances

Figure 1.18 shows the performance of repetition codes and the Hamming code.
It also shows the performance of a family of linear block codes that are gen-
eralizations of Hamming codes, called BCH codes.

This figure shows that we can, using linear block codes, achieve better
performance than repetition codes; but the asymptotic situation still looks
grim.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

1 — Introduction to Information Theory

14
0.1 A ;ﬁ#rﬁ ERa RlD
0.1 - R1o 0.01 - H(7,4)
1 [}
1 g%
0.08 P 1 o
+ o, o4+t e-05 1 B .+ more useful codes
+ H(7,4) Db i % +
[m]
0.06 - roF o+ -E% ++BCH(511,76)
18 .
N + 18 =
+ +BCH(31,16) le-10 -%:
_% .
+BCH(15,7) g i
-5 +BCH(1023,101)
more useful codes]
-
, : . le-15 Ft . - - -
04 06 08 1 0 02 04 06 08 1
Rate Rate

g
g

g

>

Exercise 1.9.[4 P-19] Design an error-correcting code and a decoding algorithm
for it, estimate its probability of error, and add it to figure 1.18. [Don’t
worry if you find it difficult to make a code better than the Hamming
code, or if you find it difficult to find a good decoder for your code; that’s

the point of this exercise.]

Exercise 1.10.[% P-20] A (7,4) Hamming code can correct any one error; might
there be a (14,8) code that can correct any two errors?
Optional extra: Does the answer to this question depend on whether the

code is linear or nonlinear?

Exercise 1.11.[4 P-21] Design an error-correcting code, other than a repetition
code, that can correct any two errors in a block of size .

1.3 What performance can the best codes achieve?

There seems to be a trade-off between the decoded bit-error probability py,
(which we would like to reduce) and the rate R (which we would like to keep
large). How can this trade-off be characterized? What points in the (R, py,)
plane are achievable? This question was addressed by Claude Shannon in his
pioneering paper of 1948, in which he both created the field of information
theory and solved most of its fundamental problems.

At that time there was a widespread belief that the boundary between
achievable and nonachievable points in the (R, py) plane was a curve passing
through the origin (R, pp) = (0,0); if this were so, then, in order to achieve
a vanishingly small error probability py, one would have to reduce the rate
correspondingly close to zero. ‘No pain, no gain.’

However, Shannon proved the remarkable result that the boundary be-
tween achievable and nonachievable points meets the R axis at a mon-zero
value R = C, as shown in figure 1.19. For any channel, there exist codes that
make it possible to communicate with arbitrarily small probability of error py,
at non-zero rates. The first half of this book (Parts I-11I) will be devoted to
understanding this remarkable result, which is called the noisy-channel coding

theorem.

Example: f=0.1

The maximum rate at which communication is possible with arbitrarily small
pp is called the capacity of the channel. The formula for the capacity of a

Figure 1.18. Error probability py
versus rate R for repetition codes,
the (7,4) Hamming code and
BCH codes with blocklengths up
to 1023 over a binary symmetric
channel with f = 0.1. The
righthand figure shows py, on a
logarithmic scale.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

1.4: Summary 15

Figure 1.19. Shannon’s

O%i 1 rs f*#f* P R1 noisy-channel coding theorem.
1 & o ’ The solid curve shows the
J +++ Shannon limit on achievable
1e-05 o iﬁ values of (R, py,) for the binary
Pb q18 symmetric channel with f = 0.1.
7 §+ N Rates up to R = C are achievable
18 .+ with arbitrarily small py. The
1610 18 N points show the performance of
e10 98,)) some textbook codes, as in
1 achievable | not achievable
x] + figure 1.18.
i The equation defining the
B Shannon limit (the solid curve) is
le1s ot : : : : R=C/(1— Hy(py)), where C and
o 02 04 o6 08 1 Hj are defined in equation (1.35).
Rate
binary symmetric channel with noise level f is
1 1
C(f)=1-Ha(f)=1- f10g2}+(1_f)10g2ﬁ ; (1.35)

the channel we were discussing earlier with noise level f = 0.1 has capacity
C ~ 0.53. Let us consider what this means in terms of noisy disk drives. The
repetition code R3 could communicate over this channel with p, = 0.03 at a
rate R = 1/3. Thus we know how to build a single gigabyte disk drive with
pp = 0.03 from three noisy gigabyte disk drives. We also know how to make a
single gigabyte disk drive with pj, ~ 1071 from sixty noisy one-gigabyte drives
(exercise 1.3, p.8). And now Shannon passes by, notices us juggling with disk
drives and codes and says:

‘What performance are you trying to achieve? 107!5? You don’t
need sixrty disk drives — you can get that performance with just
two disk drives (since 1/2 is less than 0.53). And if you want
pp = 107 or 10724 or anything, you can get there with two disk

drives too!’

[Strictly, the above statements might not be quite right, since, as we shall see,
Shannon proved his noisy-channel coding theorem by studying sequences of
block codes with ever-increasing blocklengths, and the required blocklength
might be bigger than a gigabyte (the size of our disk drive), in which case,
Shannon might say ‘well, you can’t do it with those tiny disk drives, but if you
had two noisy terabyte drives, you could make a single high-quality terabyte

drive from them’.]

» 1.4 Summary

The (7,4) Hamming Code

By including three parity-check bits in a block of 7 bits it is possible to detect
and correct any single bit error in each block.

Shannon’s noisy-channel coding theorem

Information can be communicated over a mnoisy channel at a non-zero rate with

arbitrarily small error probability.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

16 1 — Introduction to Information Theory

Information theory addresses both the limitations and the possibilities of
communication. The noisy-channel coding theorem, which we will prove in
Chapter 10, asserts both that reliable communication at any rate beyond the
capacity is impossible, and that reliable communication at all rates up to
capacity is possible.

The next few chapters lay the foundations for this result by discussing
how to measure information content and the intimately related topic of data
compression.

» 1.5 Further exercises

> Exercise 1.12.[% P21 Consider the repetition code Rg. One way of viewing
this code is as a concatenation of R3 with R3. We first encode the
source stream with Rg, then encode the resulting output with Rz. We
could call this code ‘R%’. This idea motivates an alternative decoding
algorithm, in which we decode the bits three at a time using the decoder
for R3; then decode the decoded bits from that first decoder using the
decoder for Rg.

Evaluate the probability of error for this decoder and compare it with
the probability of error for the optimal decoder for Ryg.

Do the concatenated encoder and decoder for R3 have advantages over
those for Rg?

» 1.6 Solutions

Solution to exercise 1.2 (p.7). An error is made by Rs if two or more bits are
flipped in a block of three. So the error probability of R3 is a sum of two
terms: the probability that all three bits are flipped, f3; and the probability
that exactly two bits are flipped, 3f2(1 — f). [If these expressions are not
obvious, see example 1.1 (p.1): the expressions are P(r=3|f,N=3) and
P(r=2|f,N=3).]

po=pB =3f(1—f)+ f>=3f—2f> (1.36)

This probability is dominated for small f by the term 3f2.
See exercise 2.38 (p.39) for further discussion of this problem.

Solution to exercise 1.3 (p.8). The probability of error for the repetition code
Ry is dominated by the probability that [N/2] bits are flipped, which goes

(for odd N) as Notation: [N/2]| denotes the
N N+1)/2 N—1)/2 smallest integer greater than or
(fN/Q])f(e (1_f)(2. (1.37) equal to N/2.

The term (%) can be approximated using the binary entropy function:

1 N N
oNHs(K/N) < 9NHz(K/N) ~ 9NHz(K/N) 1
N+1 T\K/) ™ K ’ (1.38)

where this approximation introduces an error of order v /N — as shown in
equation (1.17). So

po=pB = 2N (f(1—)N = (4f(1 -)N (1.39)

. . . —15 o log10715
Setting this equal to the required value of 10" we find N ~ 2710g - = 68.

This answer is a little out because the approximation we used overestimated
() and we did not distinguish between [N/2] and N/2.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

1.6: Solutions

A slightly more careful answer (short of explicit computation) goes as follows.
Taking the approximation for (%) to the next order, we find:

(NA/;) ~ 2N #1\’/4' (1.40)

This approximation can be proved from an accurate version of Stirling’s ap-
proximation (1.12), or by considering the binomial distribution with p = 1/2
and noting

N/2

1=y <£>2—N ~ 2—N(N]\/72> | S et N <N]\/72> V2ro, (1.41)

K =—N/2

where 0 = /N /4, from which equation (1.40) follows. The distinction between

[N/2] ;md N/2 is not important in this term since (%) has a maximum at
K = N/2.

Then the probability of error (for odd N) is to leading order

" ((Nfl)/Z)f(N“)/Z(l—f)“v’“” (1.42)

R

N L p(p(1— L2 o

V7TN/2

The equation pp, = 10715 can be written

1 _(N=1)/2
N/8f[4f(1 1)) -(1.43)

log 1071% + log Y22 TrN/S
log4f(1— f)

which may be solved for N iteratively, the first iteration starting from N, = 68:

(N-1)/2 ~

(1.44)

N —15+ 1.7 -
(No—1)/2~ —27 0 _ 999 = N, ~6009. (1.45)
—0.44
This answer is found to be stable, so N =~ 61 is the blocklength at which
Pp = 10715.

Solution to exercise 1.6 (p.13).

(a)

The probability of block error of the Hamming code is a sum of six terms
— the probabilities that 2, 3, 4, 5, 6, or 7 errors occur in one block.

i()f’l £ (1.46)

To leading order, this goes as
7
PB ~ <2> 2 =21/ (1.47)

The probability of bit error of the Hamming code is smaller than the
probability of block error because a block error rarely corrupts all bits in
the decoded block. The leading-order behaviour is found by considering
the outcome in the most probable case where the noise vector has weight
two. The decoder will erroneously flip a third bit, so that the modified
received vector (of length 7) differs in three bits from the transmitted
vector. That means, if we average over all seven bits, the probability that
a randomly chosen bit is flipped is 3/7 times the block error probability,
to leading order. Now, what we really care about is the probability that

17

In equation (1.44), the logarithms
can be taken to any base, as long
as it’s the same base throughout.
In equation (1.45), I use base 10.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

18 1 — Introduction to Information Theory

a source bit is flipped. Are parity bits or source bits more likely to be
among these three flipped bits, or are all seven bits equally likely to be
corrupted when the noise vector has weight two? The Hamming code
is in fact completely symmetric in the protection it affords to the seven
bits (assuming a binary symmetric channel). [This symmetry can be
proved by showing that the role of a parity bit can be exchanged with
a source bit and the resulting code is still a (7,4) Hamming code; see
below.] The probability that any one bit ends up corrupted is the same
for all seven bits. So the probability of bit error (for the source bits) is
simply three sevenths of the probability of block error.

3
Db~ ZpB = 9f2. (1.48)

Symmetry of the Hamming (7,4) code

To prove that the (7,4) code protects all bits equally, we start from the parity-
check matrix

1110100
H=|0111010]. (1.49)

1 01 1 0 0 1
The symmetry among the seven transmitted bits will be easiest to see if we

reorder the seven bits using the permutation (t1tatstststety) — (tstatstatitety).
Then we can rewrite H thus:

11
H=|0 1 (1.50)
00

= e
e
= O
o = O
= O O

Now, if we take any two parity constraints that t satisfies and add them
together, we get another parity constraint. For example, row 1 asserts t5 +
to + t3 +t1 = even, and row 2 asserts to + t3 + t4 + tg = even, and the sum of
these two constraints is

ts + 2ty + 2t3 + 11 + t4 + tg = even; (1.51)

we can drop the terms 2t and 2t3, since they are even whatever t9 and t3 are;
thus we have derived the parity constraint t5 + t; + t4 + tg = even, which we
can if we wish add into the parity-check matrix as a fourth row. [The set of
vectors satisfying Ht = 0 will not be changed.] We thus define

H — (1.52)

= O O
O O = =
O - -
= = = O
B O
= O = O
O r OO

The fourth row is the sum (modulo two) of the top two rows. Notice that the
second, third, and fourth rows are all cyclic shifts of the top row. If, having
added the fourth redundant constraint, we drop the first constraint, we obtain
a new parity-check matrix H”,

0111010
H=|001110 1], (1.53)
1001110

which still satisfies H’t = 0 for all codewords, and which looks just like
the starting H in (1.50), except that all the columns have shifted along one

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

1.6: Solutions 19

to the right, and the rightmost column has reappeared at the left (a cyclic
permutation of the columns).

This establishes the symmetry among the seven bits. Iterating the above
procedure five more times, we can make a total of seven different H matrices
for the same original code, each of which assigns each bit to a different role.

We may also construct the super-redundant seven-row parity-check matrix
for the code,

1110100
0111010
001110 1
H"=|1001110 (1.54)
0100111
1010011
110100 1]

This matrix is ‘redundant’ in the sense that the space spanned by its rows is
only three-dimensional, not seven.

This matrix is also a cyclic matrix. Every row is a cyclic permutation of
the top row.

Cyclic codes: if there is an ordering of the bits ¢1 ...ty such that a linear
code has a cyclic parity-check matrix, then the code is called a cyclic
code.

The codewords of such a code also have cyclic properties: any cyclic
permutation of a codeword is a codeword.

For example, the Hamming (7,4) code, with its bits ordered as above,
consists of all seven cyclic shifts of the codewords 1110100 and 1011000,
and the codewords 0000000 and 1111111.

Cyclic codes are a cornerstone of the algebraic approach to error-correcting
codes. We won’t use them again in this book, however, as they have been
superceded by sparse-graph codes (Part VI).

Solution to exercise 1.7 (p.13). There are fifteen non-zero noise vectors which
give the all-zero syndrome; these are precisely the fifteen non-zero codewords
of the Hamming code. Notice that because the Hamming code is linear, the
sum of any two codewords is a codeword.

Graphs corresponding to codes

Solution to exercise 1.9 (p.14). When answering this question, you will prob-
ably find that it is easier to invent new codes than to find optimal decoders
for them. There are many ways to design codes, and what follows is just one
possible train of thought. We make a linear block code that is similar to the
(7,4) Hamming code, but bigger.

Many codes can be conveniently expressed in terms of graphs. In fig-
ure 1.13, we introduced a pictorial representation of the (7,4) Hamming code.
If we rep}ace tha.t ﬁgure’s big circles,. each of which show§ that the parity of circles are the bit nodes and the 3
four particular bits is even, by a ‘parity-check node’ that is connected to the squares are the parity-check
four bits, then we obtain the representation of the (7,4) Hamming code by a nodes.
bipartite graph as shown in figure 1.20. The 7 circles are the 7 transmitted
bits. The 3 squares are the parity-check nodes (not to be confused with the
3 parity-check bits, which are the three most peripheral circles). The graph
is a ‘bipartite’ graph because its nodes fall into two classes — bits and checks

Figure 1.20. The graph of the
(7,4) Hamming code. The 7

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

20 1 — Introduction to Information Theory

— and there are edges only between nodes in different classes. The graph and
the code’s parity-check matrix (1.30) are simply related to each other: each
parity-check node corresponds to a row of H and each bit node corresponds to
a column of H; for every 1 in H, there is an edge between the corresponding
pair of nodes.

Having noticed this connection between linear codes and graphs, one way
to invent linear codes is simply to think of a bipartite graph. For example,
a pretty bipartite graph can be obtained from a dodecahedron by calling the
vertices of the dodecahedron the parity-check nodes, and putting a transmitted
bit on each edge in the dodecahedron. This construction defines a parity-
check matrix in which every column has weight 2 and every row has weight 3.
[The weight of a binary vector is the number of 1s it contains.]

This code has N = 30 bits, and it appears to have M,pparent = 20 parity-
check constraints. Actually, there are only M = 19 independent constraints;
the 20th constraint is redundant (that is, if 19 constraints are satisfied, then
the 20th is automatically satisfied); so the number of source bits is K =
N — M = 11. The code is a (30,11) code.

It is hard to find a decoding algorithm for this code, but we can estimate
its probability of error by finding its lowest-weight codewords. If we flip all
the bits surrounding one face of the original dodecahedron, then all the parity
checks will be satisfied; so the code has 12 codewords of weight 5, one for each
face. Since the lowest-weight codewords have weight 5, we say that the code
has distance d = 5; the (7,4) Hamming code had distance 3 and could correct
all single bit-flip errors. A code with distance 5 can correct all double bit-flip
errors, but there are some triple bit-flip errors that it cannot correct. So the
error probability of this code, assuming a binary symmetric channel, will be
dominated, at least for low noise levels f, by a term of order f3, perhaps
something like

12 (g) 3=

Of course, there is no obligation to make codes whose graphs can be rep-
resented on a plane, as this one can; the best linear codes, which have simple
graphical descriptions, have graphs that are more tangled, as illustrated by
the tiny (16,4) code of figure 1.22.

Furthermore, there is no reason for sticking to linear codes; indeed some
nonlinear codes — codes whose codewords cannot be defined by a linear equa-
tion like Ht = 0 — have very good properties. But the encoding and decoding
of a nonlinear code are even trickier tasks.

(1.55)

Solution to exercise 1.10 (p.14). First let’s assume we are making a linear
code and decoding it with syndrome decoding. If there are N transmitted
bits, then the number of possible error patterns of weight up to two is

)+ (1))

For N = 14, that’s 91 4+ 14 4 1 = 106 patterns. Now, every distinguishable
error pattern must give rise to a distinct syndrome; and the syndrome is a
list of M bits, so the maximum possible number of syndromes is 2M. For a
(14,8) code, M = 6, so there are at most 2° = 64 syndromes. The number of
possible error patterns of weight up to two, 106, is bigger than the number of
syndromes, 64, so we can immediately rule out the possibility that there is a
(14,8) code that is 2-error-correcting.

(1.56)

Figure 1.21. The graph defining
the (30, 11) dodecahedron code.
The circles are the 30 transmitted
bits and the triangles are the 20
parity checks. One parity check is
redundant.

Figure 1.22. Graph of a rate-1/4
low-density parity-check code
(Gallager code) with blocklength
N =16, and M = 12 parity-check
constraints. Each white circle
represents a transmitted bit. Each
bit participates in j = 3
constraints, represented by
squares. The edges between nodes
were placed at random. (See
Chapter 47 for more.)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

1.6: Solutions

The same counting argument works fine for nonlinear codes too. When
the decoder receives r = t + n, his aim is to deduce both t and n from r. If
it is the case that the sender can select any transmission t from a code of size
St, and the channel can select any noise vector from a set of size Sy, and those
two selections can be recovered from the received bit string r, which is one of
at most 2V possible strings, then it must be the case that

S¢Sy < 2V, (1.57)

So, for a (N, K) two-error-correcting code, whether linear or nonlinear,

D) o

Solution to exercise 1.11 (p.14). There are various strategies for making codes
that can correct multiple errors, and I strongly recommend you think out one
or two of them for yourself.

If your approach uses a linear code, e.g., one with a collection of M parity
checks, it is helpful to bear in mind the counting argument given in the previous
exercise, in order to anticipate how many parity checks, M, you might need.

Examples of codes that can correct any two errors are the (30, 11) dodeca-
hedron code on page 20, and the (15, 6) pentagonful code to be introduced on
p-221. Further simple ideas for making codes that can correct multiple errors
from codes that can correct only one error are discussed in section 13.7.

Solution to exercise 1.12 (p.16). The probability of error of R3 is, to leading

order,

Po(RE) = 3[pu(Rs)]” = 3(3f%)° + - = 27f 1 + -+ (1.59)
whereas the probability of error of Rg is dominated by the probability of five
flips,

9
o) = (1) 750~ 1)1 = 1260 (1.60)

The R% decoding procedure is therefore suboptimal, since there are noise vec-
tors of weight four that cause it to make a decoding error.

It has the advantage, however, of requiring smaller computational re-
sources: only memorization of three bits, and counting up to three, rather
than counting up to nine.

This simple code illustrates an important concept. Concatenated codes
are widely used in practice because concatenation allows large codes to be
implemented using simple encoding and decoding hardware. Some of the best
known practical codes are concatenated codes.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Probability, Entropy, and Inference

This chapter, and its sibling, Chapter 8, devote some time to notation. Just
as the White Knight distinguished between the song, the name of the song,
and what the name of the song was called (Carroll, 1998), we will sometimes
need to be careful to distinguish between a random variable, the value of the

v G bi
random variable, and the proposition that asserts that the random variable
has a particular value. In any particular chapter, however, I will use the most ; 2 88?;2 a
simple and friendly notation possible, at the risk of upsetting pure-minded 3 . 0.0263 :
readers. For example, if something is ‘true with probability 1’, T will usually 4 4 0.0285 q
simply say that it is ‘true’. 5 e 0.0913 e
6 £ 0.0173 f
» 2.1 Probabilities and ensembles Tog 00133 e
8 h 0.0313 h
An ensemble X is a triple (x, Ax,Px), where the outcome z is the value 9 1 0.0599 i
. .) 10 j 0.0006 j
of a random variable, which takes on one of a set of possible values, 1 k00084 o
.A'X ={a1,as,...,ai,...,ar}, having probabilities Px = {p1,p2,--.,01}, 1 1 0:0335 1
with P(x:ai) = Pi, Pi Z 0 and ZaiGAx P(x:al) =1. 13 m 0.0235 m
14 n 0.0596 n
The name A is mnemonic for ‘alphabet’. One example of an ensemble is a 15 o 0.0689 o
letter that is randomly selected from an English document. This ensemble is 16 p 0.0192 p
shown in figure 2.1. There are twenty-seven possible letters: a—z, and a space 17 q 0.0008 a
character ‘-’ 18 r 0.0508 T
19 s 0.0567 s
Abbreviations. Briefer notation will sometimes be used. For example, 20t 0.0706 t
P(z=a;) may be written as P(a;) or P(z). 2L uw 0.0334 Y
v ¢ 22 v 0.0069 A
Probability of a subset. If T is a subset of Ax then: 23w 0.0119 v
24 x 0.0073 X
_ _ _ 25 y 0.0164 y
P(T)=P(eT)= Y Plx=a). (2.1) % 2 0oo0r .
€T 27— 0.1928 -
For example, if we define V to be vowels from figure 2.1, V =
{a,e,i,0,u}, then Figure 2.1. Probability
distribution over the 27 outcomes
P(V)=0.06 +0.09 + 0.06 + 0.07 + 0.03 = 0.31. (2.2) for a randomly selected letter in

an English language document

A joint ensemble XY is an ensemble in which each outcome is an ordered (estimated frp m The Freqyently
Asked Questions Manual for

pair z,y with © € Ax = {a1,...,ar} and y € Ay = {b1,...,bs}. Linuz). The picture shows the
We call P(z,y) the joint probability of z and y. probabilities by the areas of white

. . i squares.
Commas are optional when writing ordered pairs, so zy < x,y.

N.B. In a joint ensemble XY the two variables are not necessarily inde-
pendent.

22

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

2.1: Probabilities and ensembles 23

Figure 2.2. The probability
distribution over the 27x27
possible bigrams zy in an English
language document, The
Frequently Asked Questions
Manual for Linuz.

INKKES<EednR0TOo BEHKRCRHSRHOROT Y 8
-EE=

.lllil-l-- 3 I EF P ONT | LIEN EN B
abcdefghijklmnopqrstuvwxyz— y

Marginal probability. We can obtain the marginal probability P(x) from
the joint probability P(z,y) by summation:

Plz=a;) = Z P(z=a;,y). (2.3)

yEAy

Similarly, using briefer notation, the marginal probability of y is:

Py = Z P(z,y). (2.4)

rEAx
Conditional probability
Plx=a;,y=0b;) .
Pla=aly=b) = W50 i Pty 0. @29
=0j

[If P(y="0;) =0 then P(zx=aqa;|y=">;) is undefined.]

We pronounce P(x=a;|y=>;) ‘the probability that equals a;, given
y equals b;’.

Example 2.1. An example of a joint ensemble is the ordered pair XY consisting
of two successive letters in an English document. The possible outcomes
are ordered pairs such as aa, ab, ac, and zz; of these, we might expect
ab and ac to be more probable than aa and zz. An estimate of the
joint probability distribution for two neighbouring characters is shown
graphically in figure 2.2.

This joint ensemble has the special property that its two marginal dis-
tributions, P(z) and P(y), are identical. They are both equal to the
monogram distribution shown in figure 2.1.

From this joint ensemble P(z,y) we can obtain conditional distributions,
P(y|x) and P(z|y), by normalizing the rows and columns, respectively
(figure 2.3). The probability P(y|x=q) is the probability distribution
of the second letter given that the first letter is a q. As you can see in
figure 2.3a, the two most probable values for the second letter y given

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

N
S

2 — Probability, Entropy, and Inference

RN Figure 2.3. Conditional
probability distributions. (a)
P(y|x): Each row shows the
conditional distribution of the
....... R second letter, ¥, given the first
letter, x, in a bigram xy. (b)
P(z|y): Each column shows the
conditional distribution of the

B first letter, x, given the second
"""" PR letter, y.

R il LR ERD I
N<ME < g ctnR,Q00 B BHNHDmHOAOT'Y 8

| N<X = < e ROT0BEHRUHERHOQOTY &

......:.; - . —~EILIEN LRI PR N | N RRY RN O]
abcdefghijklmnopqrstuvwxyz— y abcdefghijklmnopqrstuvwxyz— y

(a) P(y|z) (b) P(z]y)

that the first letter x is q are u and -. (The space is common after q
because the source document makes heavy use of the word FAQ.)

The probability P(z|y=u) is the probability distribution of the first
letter x given that the second letter y is a u. As you can see in figure 2.3b
the two most probable values for x given y=u are n and o.

Rather than writing down the joint probability directly, we often define an
ensemble in terms of a collection of conditional probabilities. The following
rules of probability theory will be useful. (H denotes assumptions on which
the probabilities are based.)

Product rule — obtained from the definition of conditional probability:
P(z,y|H) = P(x |y, H)P(y | ") = Py |z, H) P(z| H). (2.6)
This rule is also known as the chain rule.

Sum rule — a rewriting of the marginal probability definition:

P(e|H) = > Play|H) (27)

S Pl |y, H)Py| H). (2.8)

Bayes’ theorem — obtained from the product rule:

Plylory = DLW 2.9)

Py, H)PY|H)
= S, Pl H)Ply [H) (2.10)

Independence. Two random variables X and Y are independent (sometimes
written X 1Y) if and only if

P(z,y) = P(«)P(y). (2.11)

% Exercise 2.2.[% P41 Ave the random variables X and Y in the joint ensemble
of figure 2.2 independent?

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

2.2: The meaning of probability

I said that we often define an ensemble in terms of a collection of condi-
tional probabilities. The following example illustrates this idea.

Example 2.3. Jo has a test for a nasty disease. We denote Jo’s state of health
by the variable a and the test result by b.

a=1 Jo has the disease

a=0 Jo does not have the disease. (2.12)

The result of the test is either ‘positive’ (b = 1) or ‘negative’ (b = 0);
the test is 95% reliable: in 95% of cases of people who really have the
disease, a positive result is returned, and in 95% of cases of people who
do not have the disease, a negative result is obtained. The final piece of
background information is that 1% of people of Jo’s age and background
have the disease.

OK — Jo has the test, and the result is positive. What is the probability
that Jo has the disease?

Solution. We write down all the provided probabilities. The test reliability
specifies the conditional probability of b given a:

P(b=1]a=1) =095 P(b=1|a=0) = 0.05

P(b=0]a=1) = 0.05 P(b=0|a=0) = 0.95; (2.13)
and the disease prevalence tells us about the marginal probability of a:
P(a=1) =0.01 P(a=0) = 0.99. (2.14)

From the marginal P(a) and the conditional probability P(b|a) we can deduce
the joint probability P(a,b) = P(a)P(b|a) and any other probabilities we are
interested in. For example, by the sum rule, the marginal probability of b=1
— the probability of getting a positive result — is

P(b=1)=P(b=1|a=1)Pla=1)+ P(b=1]|a=0)P(a=0). (2.15)

Jo has received a positive result b=1 and is interested in how plausible it is
that she has the disease (i.e., that a=1). The man in the street might be
duped by the statement ‘the test is 95% reliable, so Jo’s positive result implies
that there is a 95% chance that Jo has the disease’, but this is incorrect. The
correct solution to an inference problem is found using Bayes’ theorem.

Pb=1|la=1)P(a=1)

Pla=11b=1) = 5 e Pa=n £ POo=1la=0)Pa=0) >'%
_ 0.95 x 0.01 o

0.95 x 0.01 + 0.05 x 0.99
— 0.16. (2.18)

So in spite of the positive result, the probability that Jo has the disease is only
16%. O

» 2.2 The meaning of probability

Probabilities can be used in two ways.

Probabilities can describe frequencies of outcomes in random experiments,
but giving noncircular definitions of the terms ‘frequency’ and ‘random’ is a
challenge — what does it mean to say that the frequency of a tossed coin’s

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

26 2 — Probability, Entropy, and Inference

Box 2.4. The Cox axioms.

Notation. Let ‘the degree of belief in proposition 2’ be denoted by B(z). The If a set of beliefs satisfy these
negation of z (NOT-x) is written T. The degree of belief in a condi- axioms then they can be mapped
tional proposition, ‘@, assuming proposition y to be true’, is represented onto probabilities satisfying
by B(z |y). P(FALSE) = 0, P(TRUE) = 1,

0 < P(z) <1, and the rules of

Axiom 1. Degrees of belief can be ordered; if B(x) is ‘greater’ than B(y), and
B(y) is ‘greater’ than B(z), then B(z) is ‘greater’ than B(z).

[Consequence: beliefs can be mapped onto real numbers.| and

probability:

. . iy : - P(z,y) = P(z]y)P(y).

Axiom 2. The degree of belief in a proposition and its negation T are related.
There is a function f such that

Axiom 3. The degree of belief in a conjunction of propositions x,y (x AND y) is
related to the degree of belief in the conditional proposition z |y and the
degree of belief in the proposition y. There is a function g such that

B(z,y) = g[B(z|y), B(y)] -

coming up heads is /2? If we say that this frequency is the average fraction of
heads in long sequences, we have to define ‘average’; and it is hard to define
‘average’ without using a word synonymous to probability! T will not attempt
to cut this philosophical knot.

Probabilities can also be used, more generally, to describe degrees of be-
lief in propositions that do not involve random variables — for example ‘the
probability that Mr. S. was the murderer of Mrs. S., given the evidence’ (he
either was or wasn’t, and it’s the jury’s job to assess how probable it is that he
was); ‘the probability that Thomas Jefferson had a child by one of his slaves’;
‘the probability that Shakespeare’s plays were written by Francis Bacon’; or,
to pick a modern-day example, ‘the probability that a particular signature on
a particular cheque is genuine’.

The man in the street is happy to use probabilities in both these ways, but
some books on probability restrict probabilities to refer only to frequencies of
outcomes in repeatable random experiments.

Nevertheless, degrees of belief can be mapped onto probabilities if they sat-
isfy simple consistency rules known as the Cox axioms (Cox, 1946) (figure 2.4).
Thus probabilities can be used to describe assumptions, and to describe in-
ferences given those assumptions. The rules of probability ensure that if two
people make the same assumptions and receive the same data then they will
draw identical conclusions. This more general use of probability to quantify
beliefs is known as the Bayesian viewpoint. It is also known as the subjective
interpretation of probability, since the probabilities depend on assumptions.
Advocates of a Bayesian approach to data modelling and pattern recognition
do not view this subjectivity as a defect, since in their view,

you cannot do inference without making assumptions. I

In this book it will from time to time be taken for granted that a Bayesian
approach makes sense, but the reader is warned that this is not yet a globally
held view — the field of statistics was dominated for most of the 20th century
by non-Bayesian methods in which probabilities are allowed to describe only
random variables. The big difference between the two approaches is that

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

2.3: Forward probabilities and inverse probabilities
Bayesians also use probabilities to describe inferences.

» 2.3 Forward probabilities and inverse probabilities

Probability calculations often fall into one of two categories: forward prob-
ability and inverse probability. Here is an example of a forward probability
problem:

ﬁ% Exercise 2.4.1% P401 Ay urn contains K balls, of which B are black and W =
K — B are white. Fred draws a ball at random from the urn and replaces
it, IV times.

(a) What is the probability distribution of the number of times a black
ball is drawn, ng?
(b) What is the expectation of ng? What is the variance of ng? What

is the standard deviation of np? Give numerical answers for the
cases N =5 and N = 400, when B = 2 and K = 10.

Forward probability problems involve a generative model that describes a pro-
cess that is assumed to give rise to some data; the task is to compute the
probability distribution or expectation of some quantity that depends on the
data. Here is another example of a forward probability problem:

ﬁ% Exercise 2.5.[% P41 An wrn contains K balls, of which B are black and W =
K — B are white. We define the fraction fp = B/K. Fred draws N
times from the urn, exactly as in exercise 2.4, obtaining n g blacks, and
computes the quantity

2
,_ (ns— fBN)" (2.19)

Nfs(1— fB)
What is the expectation of 2? In the case N =5 and fp = 1/5, what
is the probability distribution of 27 What is the probability that z < 17
[Hint: compare z with the quantities computed in the previous exercise.

Like forward probability problems, inverse probability problems involve a
generative model of a process, but instead of computing the probability distri-
bution of some quantity produced by the process, we compute the conditional
probability of one or more of the unobserved variables in the process, given
the observed variables. This invariably requires the use of Bayes’ theorem.

Example 2.6. There are eleven urns labelled by u € {0,1,2,...,10}, each con-
taining ten balls. Urn u contains w black balls and 10 — u white balls.
Fred selects an urn v at random and draws N times with replacement
from that urn, obtaining np blacks and N — np whites. Fred’s friend,
Bill, looks on. If after N = 10 draws np = 3 blacks have been drawn,
what is the probability that the urn Fred is using is urn u, from Bill’s
point of view? (Bill doesn’t know the value of u.)

Solution. The joint probability distribution of the random variables v and n g
can be written
P(u,ng|N) = P(np|u, N)P(u). (2.20)
From the joint probability of v and np, we can obtain the conditional
distribution of u given np:
P(u,np|N)
P(u|ng,N) = ——————= 2.21
(ulnp N) = et (221)
P(np|u, N)P(u)

= Pna V) (2.22)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

28 2 — Probability, Entropy, and Inference

S

Figure 2.5. Joint probability of u

0 and np for Bill and Fred’s urn
1 problem, after N = 10 draws.
2
3
4
5
6
7
8
9
10

012345678910 ng

The marginal probability of u is P(u) = ﬁ for all u. You wrote down the

probability of np given u and N, P(np|u, N), when you solved exercise 2.4 03 4
(p-27). [You are doing the highly recommended exercises, aren’t you?] If we 025
define f,, = u/10 then 0012 i
0.1
N 0.05
P(nplu,N) = <) " (1 — f,)N"e. (2.23) o

np T

What about the denominator, P(np | N)? This is the marginal probability of

np, which we can obtain using the sum rule: w P(u|ng=3,N)
0 0
P(np|N)=> P(ung|N)=>_ P(u)P(ng|u,N). (2.24) 1 0.063
" “ 2022
. - . . 3 0.29
So the conditional probability of u given np is 4 024
5 0.13
P(u)P N
P(u|ng,N) = (w)P(np|u, N) (2.25) 6 0.047
P(np|N) 7 0.0099
1 1 /N N— 8 0.00086
P(np|N) 11 (nB) Ja? (L=)7 (2.26) 190 8.0000096

This conditional distribution can be found by normalizing column 3 of

figure 2.5 and is shown in figure 2.6. The normalizing constant, the marginal ~ Figure 26 Condit'ional
probability of npg, is P(ng=3| N =10) = 0.083. The posterior probability %(i)?glhty of u given np =3 and
(2.26) is correct for all u, including the end-points v =0 and w=10, where o

fu = 0 and f, = 1 respectively. The posterior probability that u=0 given

np =3 is equal to zero, because if Fred were drawing from urn 0 it would be

impossible for any black balls to be drawn. The posterior probability that

u =10 is also zero, because there are no white balls in that urn. The other

hypotheses u=1, u=2, ... u=9 all have non-zero posterior probability. O

Terminology of inverse probability

In inverse probability problems it is convenient to give names to the proba-
bilities appearing in Bayes’ theorem. In equation (2.25), we call the marginal
probability P(u) the prior probability of u, and P(npg|u, N) is called the like-
lihood of u. It is important to note that the terms likelihood and probability
are not synonyms. The quantity P(np|u,N) is a function of both np and
u. For fixed u, P(ng|u,N) defines a probability over ng. For fixed np,
P(np|u,N) defines the likelihood of u.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

2.3: Forward probabilities and inverse probabilities

Never say ‘the likelihood of the data’. Always say ‘the likelihood
of the parameters’. The likelihood function is not a probability

distribution.

(If you want to mention the data that a likelihood function is associated with,
you may say ‘the likelihood of the parameters given the data’.)

The conditional probability P(u|npg, N) is called the posterior probability
of u given ng. The normalizing constant P(npg | N) has no u-dependence so its
value is not important if we simply wish to evaluate the relative probabilities
of the alternative hypotheses u. However, in most data-modelling problems
of any complexity, this quantity becomes important, and it is given various
names: P(np|N) is known as the evidence or the marginal likelihood.

If 8 denotes the unknown parameters, D denotes the data, and H denotes
the overall hypothesis space, the general equation:

P(D|6,H)P(0|H)
P(D|H)

P(O|D,H) = (2.27)

is written:

likelihood x prior . (2.28)

posterior = -
evidence

Inverse probability and prediction

Example 2.6 (continued). Assuming again that Bill has observed np = 3 blacks
in N = 10 draws, let Fred draw another ball from the same urn. What
is the probability that the next drawn ball is a black? [You should make
use of the posterior probabilities in figure 2.6.]

Solution. By the sum rule,

P(ballyy is black |np, N) = Z P(ballyy is black |u,npg, N)P(u|ng, N).

(2.29)

Since the balls are drawn with replacement from the chosen urn, the proba-

bility P(ballyy is black |u,np, N) is just f, = u/10, whatever np and N are.
So

P(ballyyy is black |np, N) = > fuP(u|ng, N). (2.30)

Using the values of P(u|np,N) given in figure 2.6 we obtain

P(ballpy is black [np=3,N=10) =0.333. O (2.31)

Comment. Notice the difference between this prediction obtained using prob-
ability theory, and the widespread practice in statistics of making predictions
by first selecting the most plausible hypothesis (which here would be that the
urn is urn w = 3) and then making the predictions assuming that hypothesis
to be true (which would give a probability of 0.3 that the next ball is black).
The correct prediction is the one that takes into account the uncertainty by
marginalizing over the possible values of the hypothesis u. Marginalization
here leads to slightly more moderate, less extreme predictions.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

30 2 — Probability, Entropy, and Inference

Inference as inverse probability

Now consider the following exercise, which has the character of a simple sci-
entific investigation.

Example 2.7. Bill tosses a bent coin N times, obtaining a sequence of heads
and tails. We assume that the coin has a probability fz of coming up
heads; we do not know fg. If ny heads have occurred in N tosses, what
is the probability distribution of fr? (For example, N might be 10, and
ng might be 3; or, after a lot more tossing, we might have N = 300 and
ng = 29.) What is the probability that the N+ 1th outcome will be a
head, given ny heads in N tosses?

Unlike example 2.6 (p.27), this problem has a subjective element. Given a
restricted definition of probability that says ‘probabilities are the frequencies
of random variables’, this example is different from the eleven-urns example.
Whereas the urn v was a random variable, the bias fz of the coin would not
normally be called a random variable. It is just a fixed but unknown parameter
that we are interested in. Yet don’t the two examples 2.6 and 2.7 seem to have
an essential similarity? [Especially when N = 10 and ny = 3!]
To solve example 2.7, we have to make an assumption about what the bias
of the coin fr might be. This prior probability distribution over fr, P(fr), Here P(f) denotes a probability
corresponds to the prior over u in the eleven-urns problem. In that example, density, rather than a probability
the helpful problem definition specified P(u). In real life, we have to make distribution.
assumptions in order to assign priors; these assumptions will be subjective,
and our answers will depend on them. Exactly the same can be said for the
other probabilities in our generative model too. We are assuming, for example,
that the balls are drawn from an urn independently; but could there not be
correlations in the sequence because Fred’s ball-drawing action is not perfectly
random? Indeed there could be, so the likelihood function that we use depends
on assumptions too. In real data modelling problems, priors are subjective and
so are likelihoods.

We are now using P() to denote probability densities over continuous vari-
ables as well as probabilities over discrete variables and probabilities of logical
propositions. The probability that a continuous variable v lies between values
a and b (where b > a) is defined to be fabdv P(v). P(v)dv is dimensionless.
The density P(v) is a dimensional quantity, having dimensions inverse to the
dimensions of v — in contrast to discrete probabilities, which are dimensionless.
Don’t be surprised to see probability densities greater than 1. This is normal,

and nothing is wrong, as long as ffdv P(v) <1 for any interval (a, b).

Conditional and joint probability densities are defined in just the same way as
conditional and joint probabilities.

> Exercise 2.8.[%] Assuming a uniform prior on fg, P(fr) = 1, solve the problem
posed in example 2.7 (p.30). Sketch the posterior distribution of fz and
compute the probability that the N+41th outcome will be a head, for

(a) N =3and ng = 0;
(b

) N=3and ng =2;
(¢) N=10 and nyg = 3;
) N

(d =300 and ny = 29.
You will find the beta integral useful:
1
D(F,+ 1)I'(Fp+ 1) FFy!
dpg pEe(1 — pa)tt = —=2 = . (232
/0 Papa’ (L= Pa) TE+h+2 Frm+nr 232

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

2.3: Forward probabilities and inverse probabilities 31

You may also find it instructive to look back at example 2.6 (p.27) and
equation (2.31).

People sometimes confuse assigning a prior distribution to an unknown pa-
rameter such as fx with making an initial guess of the value of the parameter.
But the prior over fg, P(fm), is not a simple statement like ‘initially, I would
guess fi = 1/2’. The prior is a probability density over fz which specifies the
prior degree of belief that fy lies in any interval (f, f + df). It may well be
the case that our prior for fg is symmetric about 1/2, so that the mean of fg
under the prior is 1/2. In this case, the predictive distribution for the first toss
x1 would indeed be

P(z1=head) = /de P(fr)P(z1=head | fg) = /de P(fu)fu = Y.
(2.33)
But the prediction for subsequent tosses will depend on the whole prior dis-
tribution, not just its mean.

Data compression and inverse probability

Consider the following task.

Example 2.9. Write a computer program capable of compressing binary files
like this one:
0000000000000000000010010001000000100000010000000000000000000000000000000000001010000000000000110000

1000000000010000100000000010000000000000000000000100000000000000000100000000011000001000000011000100
0000000001001000000000010001000000000000000011000000000000000000000000000010000000000000000100000000

The string shown contains n; = 29 1s and ng = 271 0s.

Intuitively, compression works by taking advantage of the predictability of a
file. In this case, the source of the file appears more likely to emit Os than
1s. A data compression program that compresses this file must, implicitly or
explicitly, be addressing the question ‘What is the probability that the next
character in this file is a 17’

Do you think this problem is similar in character to example 2.7 (p.30)?
I do. One of the themes of this book is that data compression and data
modelling are one and the same, and that they should both be addressed, like
the urn of example 2.6, using inverse probability. Example 2.9 is solved in

Chapter 6.

The likelihood principle

Please solve the following two exercises. A

Example 2.10. Urn A contains three balls: one black, and two white; urn B
contains three balls: two black, and one white. One of the urns is @OO
selected at random and one ball is drawn. The ball is black. What is
the probability that the selected urn is urn A? Figure 2.7. Urns for example 2.10.

Example 2.11. Urn A contains five balls: one black, two white, one green and
one pink; urn B contains five hundred balls: two hundred black, one
hundred white, 50 yellow, 40 cyan, 30 sienna, 25 green, 25 silver, 20
gold, and 10 purple. [One fifth of A’s balls are black; two-fifths of B’s @00 @ @
are black.] One of the urns is selected at random and one ball is drawn.
The ball is black. What is the probability that the urn is urn A? Figure 2.8. Urns for example 2.11.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

32 2 — Probability, Entropy, and Inference
What do you notice about your solutions? Does each answer depend on the ioa; pi h(p;)
detailed contents of each urn? 1 a 0575 41
The details of the other possible outcomes and their probabilities are ir- 2 b .0128 6.3
relevant. All that matters is the probability of the outcome that actually 3 ¢ .0263 5.2
happened (here, that the ball drawn was black) given the different hypothe- 4 4 .0285 5.1
ses. We need only to know the likelihood, i.e., how the probability of the data 5 e .0913 3.5
that happened varies with the hypothesis. This simple rule about inference is 6 £ .0173 5.9
known as the likelihood principle. 7 g 0133 6.2
8 h .0313 5.0
9 i .0599 4.1
The likelihood principle: given a generative model for data d given 10 j .0006 10.7
parameters 0, P(d|6), and having observed a particular outcome 11 k .0084 6.9
dy, all inferences and predictions should depend only on the function 121 .0335 4.9
P(dy|9). 13 m .0235 5.4
14 n .0596 4.1
15 o .0689 3.9
In spite of the simplicity of this principle, many classical statistical methods 16 p .0192 5.7
violate it. 17 q .0008 10.3
18 r .0508 4.3
. ee . 19 s .0567 4.1
» 2.4 Definition of entropy and related functions %0 t 0706 38
The Shannon information content of an outcome z is defined to be 2L w0334 4.9
22 v .0069 7.2
1 23 w .0119 6.4
W) =logz - (2:34) 24 x 0073 7.1
25 y .0164 5.9
It is measured in bits. [The word ‘bit’ is also used to denote a variable 26 =z .0007 104
whose value is 0 or 1; T hope context will always make clear which of the 27 - 1928 2.4

two meanings is intended.] 1

In the next few chapters, we will establish that the Shannon information XI:I?L log, pi 41

content h(a;) is indeed a natural measure of the information content
of the event x = a;. At that point, we will shorten the name of this Taple 2.9. Shannon information
quantity to ‘the information content’. contents of the outcomes a—z.

The fourth column in table 2.9 shows the Shannon information content
of the 27 possible outcomes when a random character is picked from
an English document. The outcome x = z has a Shannon information
content of 10.4 bits, and x = e has an information content of 3.5 bits.

The entropy of an ensemble X is defined to be the average Shannon in-
formation content of an outcome:

1
H(X) = P(z)log —, (2.35)
2 s g

with the convention for P(x)=0 that 0xlogl/0=0, since
limg_,q+ Olog1/6 = 0.

Like the information content, entropy is measured in bits.

When it is convenient, we may also write H(X) as H(p), where p is
the vector (p1,p2,...,pr). Another name for the entropy of X is the
uncertainty of X.

Example 2.12. The entropy of a randomly selected letter in an English docu-
ment is about 4.11 bits, assuming its probability is as given in table 2.9.
We obtain this number by averaging log 1/p; (shown in the fourth col-
umn) under the probability distribution p; (shown in the third column).

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

2.5: Decomposability of the entropy

We now note some properties of the entropy function.
e H(X) > 0 with equality iff p; = 1 for one . [‘iff” means ‘if and only if’.]
e Entropy is maximized if p is uniform:

H(X) <log(|Ax]|) with equality iff p; = 1/]Ax| for all i. (2.36)

Notation: the vertical bars ‘| - |” have two meanings. If Ax is a set, |Ax]|
denotes the number of elements in Ax; if = is a number, then |z| is the
absolute value of x.

The redundancy measures the fractional difference between H(X) and its max-
imum possible value, log(|Ax]|).

The redundancy of X is:
H(X)
log |Ax]|

We won’t make use of ‘redundancy’ in this book, so I have not assigned
a symbol to it.

(2.37)

The joint entropy of X,Y is:

1
H(X,Y) = zyeAZXAY P(z,y)log o) (2.38)

Entropy is additive for independent random variables:

H(X,Y)=H(X)+ H(Y) iff P(z,y) = P(z)P(y). (2.39)

Our definitions for information content so far apply only to discrete probability
distributions over finite sets Ax. The definitions can be extended to infinite
sets, though the entropy may then be infinite. The case of a probability
density over a continuous set is addressed in section 11.3. Further important
definitions and exercises to do with entropy will come along in section 8.1.

» 2.5 Decomposability of the entropy

The entropy function satisfies a recursive property that can be very useful
when computing entropies. For convenience, we’ll stretch our notation so that
we can write H(X) as H(p), where p is the probability vector associated with
the ensemble X.

Let’s illustrate the property by an example first. Imagine that a random
variable z € {0, 1,2} is created by first flipping a fair coin to determine whether
x = 0; then, if x is not 0, flipping a fair coin a second time to determine whether
2 is 1 or 2. The probability distribution of x is

1 1 1

=5 P(le):Z; P(x:2):1. (2.40)

P(z=0)
What is the entropy of X? We can either compute it by brute force:
H(X) = 1Y2log?2+ Yalog4 + 1/1log4 = 1.5; (2.41)

or we can use the following decomposition, in which the value of x is revealed
gradually. Imagine first learning whether =0, and then, if x is not 0, learning
which non-zero value is the case. The revelation of whether =0 or not entails

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

34 2 — Probability, Entropy, and Inference

revealing a binary variable whose probability distribution is {1/2,%/2}. This
revelation has an entropy H(%/2,12) = 2log2 + $log?2 = 1bit. If z is not 0,
we learn the value of the second coin flip. This too is a binary variable whose
probability distribution is {1/2, 1/2}, and whose entropy is 1bit. We only get
to experience the second revelation half the time, however, so the entropy can
be written:

H(X) = H(Y2,Y2) + Y2 H(1/2,1/2). (2.42)

Generalizing, the observation we are making about the entropy of any
probability distribution p = {p1,ps,...,ps} is that

P2 P3 Pr
H(p)=H(p1,1—p1)+(1—p1 H(, ey > 2.43
(0) = Hipr1=p1) + (1=pot ({2 2))
When it’s written as a formula, this property looks regrettably ugly; nev-
ertheless it is a simple property and one that you should make use of.
Generalizing further, the entropy has the property for any m that

H(p) = H[(p1+p2+"'+pm)a(pm+l+pm+2+"'+p[)]
D1 Pm
+(p1 4+ pm)H e
P Pm) ((p1+---+pm) (p1+---+pm)>
Pm+1 br
+ ++pn)H s .
(P 1) ((pm+1+---+p1> (pm+1+---+p1>)
(2.44)

Example 2.13. A source produces a character = from the alphabet A =
{0,1,...,9,a,b,...,z}; with probability 1/3, 2 is a numeral (0,...,9);
with probability 1/3, z is a vowel (a, e, i,o0,u); and with probability 1/3
it’s one of the 21 consonants. All numerals are equiprobable, and the
same goes for vowels and consonants. Estimate the entropy of X.

Solution. log3 + %(log 10 +log 5 + log 21) = log 3 + % log 1050 =~ log 30 bits. O

» 2.6 Gibbs’ inequality . L

The ‘ei’ in Leibler is pronounced

The relative entropy or Kullback-Leibler divergence between two the same as in heist.
probability distributions P(z) and Q(x) that are defined over the same

alphabet Ax is

x)

P(
Dk (P||Q) = P(z)log . 2.45
(PllQ) Ez (z) Q) (2.45)
The relative entropy satisfies Gibbs’ inequality
DxL(P||Q) =0 (2.46)

with equality only if P =). Note that in general the relative entropy
is not symmetric under interchange of the distributions P and @: in
general Dk, (P||Q) # DkiL(Q||P), so Dki, although it is sometimes
called the ‘KL distance’, is not strictly a distance. The relative entropy
is important in pattern recognition and neural networks, as well as in
information theory.

Gibbs’ inequality is probably the most important inequality in this book. It,
and many other inequalities, can be proved using the concept of convexity.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

2.7: Jensen’s inequality for convex functions

» 2.7 Jensen’s inequality for convex functions

The words ‘convex —’ and ‘concave —~’ may be pronounced ‘convex-smile’ and
‘concave-frown’. This terminology has useful redundancy: while one may forget
which way up ‘convex’ and ‘concave’ are, it is harder to confuse a smile with a
frown.

Convex — functions. A function f(x) is convex— over (a,b) if every chord
of the function lies above the function, as shown in figure 2.10; that is,
for all x1,x2 € (a,b) and 0 < A <1,

fr+ (1= Na2) < Af(21) + (1= A)f(w2). (2.47)

A function f is strictly convex— if, for all x1, 29 € (a,b), the equality
holds only for A =0 and A = 1.

Similar definitions apply to concave ~ and strictly concave ~ functions.

Some strictly convex— functions are

e 22, ¢® and e for all x;

e log(1/x) and zlog z for = > 0.

22 \Q Llog% zlogx
0 1 2 3 1 0 1 H 30 1 2 30

Jensen’s inequality. If f is a convex — function and z is a random variable
then:

-T

Ef(@)] = f(€lx]), (2.48)

where € denotes expectation. If f is strictly convex— and & [f(x)] =
f(&[z]), then the random variable z is a constant.

Jensen’s inequality can also be rewritten for a concave ~ function, with
the direction of the inequality reversed.

A physical version of Jensen’s inequality runs as follows.

If a collection of masses p; are placed on a convex — curve f(z)
at locations (z;, f(x;)), then the centre of gravity of those masses,
which is at (€[z], € [f(2)]), lies above the curve.

If this fails to convince you, then feel free to do the following exercise.

Exercise 2.14.1% P41l Prove Jensen’s inequality.

Example 2.15. Three squares have average area A = 100m?. The average of

the lengths of their sides is [= 10m. What can be said about the size
of the largest of the three squares? [Use Jensen’s inequality.]

Solution. Let = be the length of the side of a square, and let the probability
of be 1/3,1/3,1/3 over the three lengths I1,l,1l35. Then the information that
we have is that € [z] = 10 and € [f(z)] = 100, where f(x) = 22 is the function
mapping lengths to areas. This is a strictly convex— function. We notice
that the equality &€ [f(z)] = f(£[z]) holds, therefore z is a constant, and the
three lengths must all be equal. The area of the largest square is 100m?. O

35

1 ¢ €2
¥ =dx1+ (1 — N)z2

Figure 2.10. Definition of
convexity.

Figure 2.11. Convex — functions.

Centre of gravity

H

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

36 2 — Probability, Entropy, and Inference

Convexity and concavity also relate to mazximization

If f(x) is concave ~ and there exists a point at which

g—a{k =0 for all k, (2.49)
then f(x) has its maximum value at that point.

The converse does not hold: if a concave ~ f(x) is maximized at some x
it is not necessarily true that the gradient V f(x) is equal to zero there. For
example, f(z) = —|z| is maximized at x = 0 where its derivative is undefined;
and f(p) = log(p), for a probability p € (0,1), is maximized on the boundary
of the range, at p = 1, where the gradient df(p)/dp = 1.

» 2.8 Exercises

Sums of random variables

ﬁ% Exercise 2.16.1% P-41] (a) Two ordinary dice with faces labelled 1,...,6 are
thrown. What is the probability distribution of the sum of the val-
ues? What is the probability distribution of the absolute difference

between the values?

(b) One hundred ordinary dice are thrown. What, roughly, is the prob- This exercise is intended to help
ability distribution of the sum of the values? Sketch the probability ~ you think about the central-limit

distribution and estimate its mean and standard deviation. theorem, which says that if
independent random variables

(c) How can two cubical dice be labelled using the numbers ;. ., .,y have means i, and
{0,1,2,3,4,5,6} so that when the two dice are thrown the sum finite variances o2, then, in the
has a uniform probability distribution over the integers 1-127 limit of large N, the sum 3, xp

. 1. s distribution that tends t
(d) Is there any way that one hundred dice could be labelled with inte- 1as & EiibILon LAt Toncs 1o @
normal (Gaussian) distribution

gers such that the probability distribution of the sum is uniform? with mean ¥, 11, and variance
Zn 0-721’

Inference problems

ﬁ% Exercise 2.17.[% P-41] 1 g=1—pand a=1Inp/q, show that

1

Sl et (2.50)

p
Sketch this function and find its relationship to the hyperbolic tangent

. U__,—u
function tanh(u) = S

It will be useful to be fluent in base-2 logarithms also. If b = logy p/q,
what is p as a function of b?

> Exercise 2.18.1% P42 Lot 2 and y be dependent random variables with = a
binary variable taking values in Ax = {0,1}. Use Bayes’ theorem to
show that the log posterior probability ratio for x given y is

Pla=1ly) _, Plylz=1) Plz=1)
IOgP(:E:0|y) _IOgP(y|x:0) +logp(m:0). (2.51)
(2, p.42]

> Exercise 2.19. Let z, di and do be random variables such that d; and

dy are conditionally independent given a binary variable x. Use Bayes’

theorem to show that the posterior probability ratio for = given {d;} is
P(x=1|{d;}) P(di|x=1)P(dy|x=1) P(x=1)

Ple=0/{d}) ~ P(d|2=0) P(d|z=0) Ple=0)" >

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

2.8: Exercises

Life in high-dimensional spaces

Probability distributions and volumes have some unexpected properties in
high-dimensional spaces.

ﬁ% Exercise 2.20.1% P42 Congider a sphere of radius r in an N-dimensional real
space. Show that the fraction of the volume of the sphere that is in the
surface shell lying at values of the radius between r — ¢ and r, where

O<e<r,is:
6 N
f:l—(l—;) . (2.53)
Evaluate f for the cases N =2, N =10 and N =1000, with (a) ¢/r =0.01;
(b) ¢/r=0.5.

Implication: points that are uniformly distributed in a sphere in N di-
mensions, where NV is large, are very likely to be in a thin shell near the
surface.

Ezxpectations and entropies

You are probably familiar with the idea of computing the expectation of a
function of z,

E[f(@)] = (f(2)) =Y Pla)f(x). (2.54)

Maybe you are not so comfortable with computing this expectation in cases
where the function f(z) depends on the probability P(z). The next few ex-
amples address this concern.

Exercise 2.21.10 P43 Lot p.=0.1, p,=0.2, and p.=0.7. Let f(a)=10,
f(b)=5, and f(c)=10/7. What is £ [f(x)]? What is £ [1/P(x)]?

ﬁ% Exercise 2.22.1% P43 For an arbitrary ensemble, what is € [1/P(x)]?

b Exercise 2.23.[1 P-43] [64 pa=0.1,p,=0.2, and p.=0.7. Let g(a) =0, g(b) =1,
and g(c) =0. What is € [g(x)]?

> Exercise 2.24.11 D431 6t pe=0.1, pp=0.2, and p.=0.7. What is the proba-
bility that P(z) € [0.15,0.5]7 What is

P <'10g %’ > 0.05) ?

ﬁ% Exercise 2.25.1% P43 Prove the assertion that H(X) <log(|Ax|) with equal-
ity iff p; = 1/|Ax]| for all i. (JAx| denotes the number of elements in
the set Ax.) [Hint: use Jensen’s inequality (2.48); if your first attempt
to use Jensen does not succeed, remember that Jensen involves both a
random variable and a function, and you have quite a lot of freedom in
choosing these; think about whether your chosen function f should be
convex or concave.|

> Exercise 2.26.1% P*4 Prove that the relative entropy (equation (2.45)) satisfies
Dx1(P||Q) > 0 (Gibbs’ inequality) with equality only if P = Q.

b Exercise 2.27.[2] Prove that the entropy is indeed decomposable as described
in equations (2.43-2.44).

37

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

38 2 — Probability, Entropy, and Inference

> Exercise 2.28.[% P45 A random variable o € {0,1,2,3} is selected by flipping
a bent coin with bias f to determine whether the outcome is in {0,1} or 94 0
{2,3}; then either flipping a second bent coin with bias g or a third bent
coin with bias h respectively. Write down the probability distribution f 1—g
of z. Use the decomposability of the entropy (2.44) to find the entropy
of X. [Notice how compact an expression is obtained if you make use
of the binary entropy function Hs(x), compared with writing out the 1-f hx 2
four-term entropy explicitly.] Find the derivative of H(X) with respect
to f. [Hint: dHs(x)/dz =log((1 — z)/x).]

> Exercise 2.29.[% P4 Ap ynbiased coin is flipped until one head is thrown.
What is the entropy of the random variable z € {1,2,3,...}, the num-
ber of flips? Repeat the calculation for the case of a biased coin with
probability f of coming up heads. [Hint: solve the problem both directly
and by using the decomposability of the entropy (2.43).]

» 2.9 Further exercises

Forward probability

> Exercise 2.30.12) An urn contains w white balls and b black balls. Two balls
are drawn, one after the other, without replacement. Prove that the
probability that the first ball is white is equal to the probability that the
second is white.

> Exercise 2.31.1% A circular coin of diameter a is thrown onto a square grid
whose squares are b x b. (a < b) What is the probability that the coin
will lie entirely within one square? [Ans: (1 —a/b)?]

> Exercise 2.32.1%] Buffon's needle. A needle of length a is thrown onto a plane
covered with equally spaced parallel lines with separation b. What is
the probability that the needle will cross a line? [Ans, if a < b: 24/zp]
[Generalization — Buffon's noodle: on average, a random curve of length
A is expected to intersect the lines 24/xb times.]

Exercise 2.33.1%] Two points are selected at random on a straight line segment
of length 1. What is the probability that a triangle can be constructed
out of the three resulting segments?

Exercise 2.34.1% P4 An unbiased coin is flipped until one head is thrown.
What is the expected number of tails and the expected number of heads?

Fred, who doesn’t know that the coin is unbiased, estimates the bias
using f = h/(h +t), where h and t are the numbers of heads and tails
tossed. Compute and sketch the probability distribution of f.

N.B., this is a forward probability problem, a sampling theory problem,
not an inference problem. Don’t use Bayes’ theorem.

ﬁ% Exercise 2.35.1% P-%5] Fyred rolls an unbiased six-sided die once per second, not-
ing the occasions when the outcome is a six.
(a) What is the mean number of rolls from one six to the next six?

(b) Between two rolls, the clock strikes one. What is the mean number
of rolls until the next six?

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

2.9: Further exercises 39

(¢) Now think back before the clock struck. What is the mean number
of rolls, going back in time, until the most recent six?

(d) What is the mean number of rolls from the six before the clock
struck to the next six?

(e) Is your answer to (d) different from your answer to (a)? Explain.

Another version of this exercise refers to Fred waiting for a bus at a
bus-stop in Poissonville where buses arrive independently at random (a
Poisson process), with, on average, one bus every six minutes. What is
the average wait for a bus, after Fred arrives at the stop? [6 minutes.] So
what is the time between the two buses, the one that Fred just missed,
and the one that he catches? [12 minutes.] Explain the apparent para-
dox. Note the contrast with the situation in Clockville, where the buses
are spaced exactly 6 minutes apart. There, as you can confirm, the mean
wait at a bus-stop is 3 minutes, and the time between the missed bus
and the next one is 6 minutes.

Conditional probability

> Exercise 2.36.1%] You meet Fred. Fred tells you he has two brothers, Alf and
Bob.

What is the probability that Fred is older than Bob?

Fred tells you that he is older than Alf. Now, what is the probability

that Fred is older than Bob? (That is, what is the conditional probability

that F' > B given that F' > A?)

b Exercise 2.37.[2] The inhabitants of an island tell the truth one third of the
time. They lie with probability 2/3.

On an occasion, after one of them made a statement, you ask another
‘was that statement true?’ and he says ‘yes’.

What is the probability that the statement was indeed true?

> Exercise 2.38.[% P-46] Compare two ways of computing the probability of error
of the repetition code Rg, assuming a binary symmetric channel (you
did this once for exercise 1.2 (p.7)) and confirm that they give the same
answer.

Binomial distribution method. Add the probability that all three
bits are flipped to the probability that exactly two bits are flipped.

Sum rule method. Using the sum rule, compute the marginal prob-
ability that r takes on each of the eight possible values, P(r).
[P(r) = >, P(s)P(r|s).] Then compute the posterior probabil-
ity of s for each of the eight values of r. [In fact, by symmetry,
only two example cases r = (000) and r = (001) need be consid-
ered.] Notice that some of the inferred bits are better determined Equation (1.18) gives the
than others. From the posterior probability P(s|r) you can read posterior probability of the input
out the case-by-case error probability, the probability that the more $: given the received vector r.
probable hypothesis is not correct, P(error |r). Find the average
error probability using the sum rule,

P(error) = Z P(r)P(error|r). (2.55)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

40 2 — Probability, Entropy, and Inference

b Exercise 2.39.[3C: P-46] ¢ frequency p, of the nth most frequent word in

English is roughly approximated by

{ %1 fornel,...,12367
Pn =

0 n>12367. (2.56)

[This remarkable 1/n law is known as Zipf’s law, and applies to the word
frequencies of many languages (Zipf, 1949).] If we assume that English
is generated by picking words at random according to this distribution,
what is the entropy of English (per word)? [This calculation can be found
in ‘Prediction and entropy of printed English’, C.E. Shannon, Bell Syst.
Tech. J. 30, pp.50-64 (1950), but, inexplicably, the great man made
numerical errors in it.]

» 2.10 Solutions

Solution to exercise 2.2 (p.24). No, they are not independent. If they were
then all the conditional distributions P(y |x) would be identical functions of
y, regardless of z (cf. figure 2.3).

Solution to exercise 2.4 (p.27). We define the fraction fp = B/K.

(a) The number of black balls has a binomial distribution.
— N np N—-np
P(ng|fs,N) = ng) 1B (1- /) . (2.57)

(b) The mean and variance of this distribution are:
Elnp]l =Nfp (2.58)

var[ng] = N fg(1 — fg). (2.59)
These results were derived in example 1.1 (p.1). The standard deviation
of np is \/var[nB] = \/NfB(l — fB)-

When B/K =1/5 and N = 5, the expectation and variance of np are 1
and 4/5. The standard deviation is 0.89.

When B/K =1/5 and N = 400, the expectation and variance of np are
80 and 64. The standard deviation is 8.

Solution to exercise 2.5 (p.27). The numerator of the quantity

L, (s~ fBN)?
Nfs(1— fp)

can be recognized as (np — £[np])?; the denominator is equal to the variance
of np (2.59), which is by definition the expectation of the numerator. So the
expectation of z is 1. [A random variable like z, which measures the deviation
of data from the expected value, is sometimes called x? (chi-squared).]

In the case N = 5 and fp = 1/5, Nfp is 1, and var[ng] is 4/5. The
numerator has five possible values, only one of which is smaller than 1: (np —
fBN)? = 0 has probability P(np=1) = 0.4096; so the probability that z < 1
is 0.4096.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

2.10: Solutions

Solution to exercise 2.14 (p.35). We wish to prove, given the property

fAzr+ (1= Nzz) < Af(z1) + (1= A)f(22), (2.60)

that, if > p; = 1 and p; > 0,

I I
S pefan) > f (zp) | 61
=1 i=1

We proceed by recursion, working from the right-hand side. (This proof does
not handle cases where some p; = 0; such details are left to the pedantic
reader.) At the first line we use the definition of convexity (2.60) with A =

PL__ — pq; at the second line, A = =22
Ef:l pi b ’ Z zpt

I I
f (ZM%) =f <p1£61 + Zpﬂ%)
i1

=2

I I
< pif(e) sz] f(Zpﬁ:i Zm)] (2.62)
I
< plf -'L'l sz‘| [Iif($2) z 3191 (szxz Z z)]a
i—2 Pi i= 2pZ i=3 i=3
and so forth. O

Solution to exercise 2.16 (p.36).

(a) For the outcomes {2,3,4,5,6,7,8,9,10,11,12}, the probabilities are P =
1 2 3 4 5 6 5 4 3 2 1

367 367 367 362 367 367 367 367 367 367 36 °

(b) The value of one die has mean 3.5 and variance 35/12. So the sum of
one hundred has mean 350 and variance 3500/12 ~ 292, and by the
central-limit theorem the probability distribution is roughly Gaussian
(but confined to the integers), with this mean and variance.

(¢) In order to obtain a sum that has a uniform distribution we have to start
from random variables some of which have a spiky distribution with the
probability mass concentrated at the extremes. The unique solution is
to have one ordinary die and one with faces 6, 6, 6, 0, 0, 0.

(d) Yes, a uniform distribution can be created in several ways, for example
by labelling the rth die with the numbers {0,1,2,3,4,5} x 6".

Solution to exercise 2.17 (p.36).

a=m? = L_ (2.63)
q q
and g =1 — p gives
p
— = ¢€° 2.64
- e (2.64)
a
1
= p = — = . (2.65)

et +1 14 exp(—a)
The hyperbolic tangent is

a__ ,—a
tanh(a) = % (2.66)

41

To think about: does this uniform
distribution contradict the
central-limit theorem?

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

42 2 — Probability, Entropy, and Inference
SO
1 1 /1—e?
= - - 1
/(@) 1+exp(—a) 2 (1 +e @ *)
1 ea/? _ efa/2 1
= = (m + 1) = §(tanh(a/2) + 1). (267)
In the case b = log, p/q, we can repeat steps (2.63-2.65), replacing e by 2,
to obtain
1
= 2-
P=17370 (2.68)
Solution to exercise 2.18 (p.36).
Ply|z)P(x)
Plx|y) = ————= 2.69
ap P (2.69)
Pa=1ly) _ Plylz=1)Pr=1) -
P(z=0]y) P(y|z=0) P(x=0)
Plx=1]y) Plylz=1) Plz=1)
= log —~ = log + log . 2.71
P(=0[y) Pylz=0) " FPa=s) T

Solution to exercise 2.19 (p.36). The conditional independence of d; and dg
given r means

P(x,dy,ds) = P(z)P(dy | x)P(da |). (2.72)

This gives a separation of the posterior probability ratio into a series of factors,
one for each data point, times the prior probability ratio.

Pa=1|{d}) _ P({d}|z=1) P(x=1)
P(x=0|{d;}) =~ P{d;}|z=0) P(x=0) (2.73)
_ Pldi|z=1)P(dz|z=1) P(z=1)
= P(di[2=0) P(dy]z=0) Pa=0) 7Y

Life in high-dimensional spaces

Solution to exercise 2.20 (p.37). The volume of a hypersphere of radius r in
N dimensions is in fact
N2
V(ir,N) = —— 2.75
M) = Gy (2.75)

but you don’t need to know this. For this question all that we need is the
r-dependence, V (r, N) oc rV. So the fractional volume in (r — ¢, r) is
N —(r—e)N

- —1- (1—5)N. (2.76)

T T

The fractional volumes in the shells for the required cases are:

N 2 10 1000

e/r=0.01 0.02 0.096 0.99996
e/r=05 075 0.999 127100

Notice that no matter how small € is, for large enough N essentially all the
probability mass is in the surface shell of thickness e.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

2.10: Solutions

Solution to exercise 2.21 (p.37). pa=0.1, p,=0.2, p.=0.7. f(a)=10,
f(b)=>5, and f(c)=10/7.

E[f(x)] =0.1 x 10+ 0.2 x 5+ 0.7 x 10/7 = 3. (2.77)
For each z, f(z) =1/P(x), so
E[1/P@) = € [f(2)] = 3. (2.78)
Solution to exercise 2.22 (p.37). For general X,
EN/P()] = > P(x)1/Px)= > 1=|Ax|. (2.79)
zEAx rE€EAx
Solution to exercise 2.23 (p.37). pa=0.1, pp=0.2, p.=0.7. g(a)=0, g(b)=1,
and g(c)=0.
Elg(x)] =pp=0.2. (2.80)
Solution to exercise 2.24 (p.37).
P (P(z)€[0.15,0.5]) = py = 0.2. (2.81)
P < log 12(;0) ‘ > 0.05> — Do+ pe = 0.8. (2.82)

Solution to exercise 2.25 (p.37). This type of question can be approached in
two ways: either by differentiating the function to be maximized, finding the
maximum, and proving it is a global maximum; this strategy is somewhat
risky since it is possible for the maximum of a function to be at the boundary
of the space, at a place where the derivative is not zero. Alternatively, a
carefully chosen inequality can establish the answer. The second method is
much neater.

Proof by differentiation (not the recommended method). Since it is slightly
easier to differentiate In1/p than logy 1/p, we temporarily define H(X) to be
measured using natural logarithms, thus scaling it down by a factor of logy e.

1
H(X) = i ln — 2.83
%) = Lpiny (2:83)
0H(X) 1
= In—-1 2.84
Op; Di ()

we maximize subject to the constraint), p; = 1 which can be enforced with
a Lagrange multiplier:

Gip) = H(X)+A (Z pi — 1) (2.85)
0G(p) 1
= In——1+A\ 2.86
Ipi bi ()
At a maximum,

1
In——14+X = 0 (2.87)

pi
= In - 1= (2.88)

b

so all the p; are equal. That this extremum is indeed a maximum is established

by finding the curvature:
9°G(p) 1
= 5, 2.89
9piOp; pi (2.89)

which is negative definite. O

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

44 2 — Probability, Entropy, and Inference
Proof using Jensen's inequality (recommended method). First a reminder of
the inequality.
If f is a convex — function and z is a random variable then:
Elf(@)] = f(El=]).

If f is strictly convex— and & [f(x)] = f (£]z]), then the random
variable x is a constant (with probability 1).

The secret of a proof using Jensen’s inequality is to choose the right func-
tion and the right random variable. We could define

flu) = log% = —logu (2.90)

(which is a convex function) and think of H(X) = 3_ p;log 2 ,; as the mean of
f(u) where u = P(z), but this would not get us there — it would give us an
inequality in the wrong direction. If instead we define

u=1/P(x) (2.91)
then we find:
H(X)=-€[f(1/P(x))] < —f(E[1/P(2)]); (2.92)
now we know from exercise 2.2 (p.37) that £[1/P(x)] = |Ax], so
H(X) < —f (JAx]) = log | Ax]|. (2.93)

Equality holds only if the random variable u = 1/P(z) is a constant, which
means P(z) is a constant for all . O

Solution to exercise 2.26 (p.37).

Dra(PQ) = 3 Pl P(xg (2.94)

We prove Gibbs’ inequality using Jensen’s inequality. Let f(u) = log1/u and

u= ggg Then
Dxu(PllQ) = E[f(Qz)/P(x))] (2.95)
Qlx)\ _ 1 _
> f <; P(z)m> = log (W) =0, (2.96)
with equality only if u = ggi; is a constant, that is, if Q(z) = P(z). O

Second solution. In the above proof the expectations were with respect to
the probability distribution P(x). A second solution method uses Jensen’s
inequality with Q(z) instead. We define f(u) = ulogu and let u = Plz)

Then o
DauPlQ) = a6 o os g - Y aw (””3) (2.97)
> f(ZQm)Q(j)):f(l):o, (2.98)

P(z)

with equality only if u = is a constant, that is, if Q(z) = P(z). a

O

(z

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

2.10: Solutions 45

Solution to exercise 2.28 (p.38).
H(X) = Hy(f) + fHa(g) + (1 = [)Ha(h). (2.99)

Solution to exercise 2.29 (p.38). The probability that there are z — 1 tails and
then one head (so we get the first head on the xth toss) is

P(x) = (1— f)*1f. (2.100)

If the first toss is a tail, the probability distribution for the future looks just
like it did before we made the first toss. Thus we have a recursive expression
for the entropy:

H(X)=H(f)+ (1 - f)H(X). (2.101)

Rearranging,
H(X) = Ha(f)/ [(2.102)

Solution to exercise 2.34 (p.38). The probability of the number of tails ¢ is
1\'1

The expected number of heads is 1, by definition of the problem. The expected
number of tails is

o0 t 05 - A
1\'1 P(f)
EM =Yt (§> oL (2.104) 04 -
t=0 03 -
which may be shown to be 1 in a variety of ways. For example, since the 02 -
situation after one tail is thrown is equivalent to the opening situation, we can 01 -
write down the recurrence relation 0~ il ‘
1 1 o 02 04 06 o8 1
Elt] = 5(1 + &) + 50 = £t =1. (2.105) f
The probability distribution of the ‘estimator’ f = 1/(1 +t), given that Figure 2.12. The probability
f =1/2,is plotted in figure 2.12. The probability of f is simply the probability distribution of the estimator
of the corresponding value of ¢. f=1/(1+1), given that f =1/2.

Solution to exercise 2.35 (p.38).

(a) The mean number of rolls from one six to the next six is six (assuming
we start counting rolls after the first of the two sixes). The probability
that the next six occurs on the rth roll is the probability of not getting
a six for r — 1 rolls multiplied by the probability of then getting a six:

5

r—1
1
P(ri=r) = (6) 5 for r € {1,2,3,...}. (2.106)

This probability distribution of the number of rolls, r, may be called an
exponential distribution, since

P(ri=r)=¢/Z, (2.107)
where o« = In(6/5), and Z is a normalizing constant.
(b) The mean number of rolls from the clock until the next six is six.

(¢) The mean number of rolls, going back in time, until the most recent six
is six.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

46

(d)

(e)

2 — Probability, Entropy, and Inference

The mean number of rolls from the six before the clock struck to the six
after the clock struck is the sum of the answers to (b) and (c), less one,
that is, eleven.

Rather than explaining the difference between (a) and (d), let me give
another hint. Imagine that the buses in Poissonville arrive indepen-
dently at random (a Poisson process), with, on average, one bus every
six minutes. Imagine that passengers turn up at bus-stops at a uniform
rate, and are scooped up by the bus without delay, so the interval be-
tween two buses remains constant. Buses that follow gaps bigger than
six minutes become overcrowded. The passengers’ representative com-
plains that two-thirds of all passengers found themselves on overcrowded
buses. The bus operator claims, ‘no, no — only one third of our buses
are overcrowded’. Can both these claims be true?

Solution to exercise 2.38 (p.39).

Binomial distribution method. From the solution to exercise 1.2, pp =

321 =)+ f2.

Sum rule method. The marginal probabilities of the eight values of r are

Solution to exercise 2.39 (p.40).

illustrated by:

P(r=000) = Y2(1 — £)® + 1/2f3, (2.108)
P(r=001) = Yof(1 —) + Yo f?(1 — f) = Yof(1— f). (2.109)
The posterior probabilities are represented by
3
P(s=1|r=000) = A=+ /3 (2.110)
e (-
P(5:1|r:001):f(l—f)2+f2(1—f):f’ (2.111)
The probabilities of error in these representative cases are thus
3
P(error |r=000) = (YT (2.112)
and
P(error |r=001) = f. (2.113)

Notice that while the average probability of error of R3 is about 3f2, the
probability (given r) that any particular bit is wrong is either about f3

or f.

The average error probability, using the sum rule, is

P(error) = ZP(I‘)P(error|r)

f3

= 2[2(1 —)3 + V2 fﬂm

+6[Y2f(1 = IS
So

P(error) = f34+3f%(1— f).

The entropy is 9.7 bits per word.

0.15 o
0.1 4

005 4 o

0

Figure 2.13. The probability
distribution of the number of rolls
r1 from one 6 to the next (falling
solid line),

Pl =r) = (g)r_l

and the probability distribution
(dashed line) of the number of
rolls from the 6 before 1pm to the
next 6, Tiot,

Plroy=1) =1 (2)1 <é)2

The probability P(r; > 6) is
about 1/3; the probability
P(rio > 6) is about 2/3. The
mean of r; is 6, and the mean of
Ttot is 11.

The first two terms are for the
cases r = 000 and 111; the
remaining 6 are for the other
outcomes, which share the same
probability of occurring and
identical error probability, f.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

About Chapter 3

If you are eager to get on to information theory, data compression, and noisy
channels, you can skip to Chapter 4. Data compression and data modelling
are intimately connected, however, so you’ll probably want to come back to
this chapter by the time you get to Chapter 6. Before reading Chapter 3, it
might be good to look at the following exercises.

> Exercise 3.1.[% P59 A die is selected at random from two twenty-faced dice

on which the symbols 1-10 are written with nonuniform frequency as

follows.
Symbol 1 2 3 4 5 6 7 8 9 10
Number of facesof dieA 6 4 3 2 1 1 1 1 1 0
Number of facesof dieB 3 3 2 2 2 2 2 2 1 1

The randomly chosen die is rolled 7 times, with the following outcomes:
5 3,9,3,8,4,7.

What is the probability that the die is die A?
> Exercise 3.2.[% P99 Agsume that there is a third twenty-faced die, die C, on
which the symbols 1-20 are written once each. As above, one of the
three dice is selected at random and rolled 7 times, giving the outcomes:
3,5,4,8,3,9,7.
What is the probability that the die is (a) die A, (b) die B, (c) die C?

ﬁ% Exercise 3.3.1% P-48] Inferring a decay constant
Unstable particles are emitted from a source and decay at a distance
z, a real number that has an exponential probability distribution with
characteristic length A\. Decay events can be observed only if they occur
in a window extending from z = lcm to z = 20cm. N decays are

observed at locations {z1,...,zy}. What is \?
i * * % * * * * * *
X
[3, p.-55]

> Exercise 3.4. Forensic evidence

Two people have left traces of their own blood at the scene of a crime. A
suspect, Oliver, is tested and found to have type ‘O’ blood. The blood
groups of the two traces are found to be of type ‘O’ (a common type
in the local population, having frequency 60%) and of type ‘AB’ (a rare
type, with frequency 1%). Do these data (type ‘O’ and ‘AB’ blood were
found at scene) give evidence in favour of the proposition that Oliver
was one of the two people present at the crime?

47

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

More about Inference

It is not a controversial statement that Bayes’ theorem provides the correct
language for describing the inference of a message communicated over a noisy
channel, as we used it in Chapter 1 (p.6). But strangely, when it comes to
other inference problems, the use of Bayes’ theorem is not so widespread.

» 3.1 A first inference problem

When I was an undergraduate in Cambridge, I was privileged to receive su-
pervisions from Steve Gull. Sitting at his desk in a dishevelled office in St.
John’s College, I asked him how one ought to answer an old Tripos question
(exercise 3.3):

Unstable particles are emitted from a source and decay at a
distance z, a real number that has an exponential probability dis-
tribution with characteristic length A\. Decay events can be ob-
served only if they occur in a window extending from z = 1cm

to x = 20cm. N decays are observed at locations {z1,...,zn}.
What is A?
i * k% % * % * * * %
X

I had scratched my head over this for some time. My education had provided
me with a couple of approaches to solving such inference problems: construct-
ing ‘estimators’ of the unknown parameters; or ‘fitting’ the model to the data,
or to a processed version of the data.

Since the mean of an unconstrained exponential distribution is J, it seemed
reasonable to examine the sample mean z =) x,/N and see if an estimator
A could be obtained from it. It was evident that the estimator A = Z— 1 would
be appropriate for A < 20 cm, but not for cases where the truncation of the
distribution at the right-hand side is significant; with a little ingenuity and
the introduction of ad hoc bins, promising estimators for A > 20 cm could be
constructed. But there was no obvious estimator that would work under all
conditions.

Nor could I find a satisfactory approach based on fitting the density P(x|\)
to a histogram derived from the data. I was stuck.

What is the general solution to this problem and others like it? Is it
always necessary, when confronted by a new inference problem, to grope in the
dark for appropriate ‘estimators’ and worry about finding the ‘best’ estimator
(whatever that means)?

48

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

3.1: A first inference problem 49
025 P(x|lambda=?) —— Figure 3.1. The probability
0.2 Pf}ﬁﬁ;“gggiigg —_— density P(x|)) as a function of .

0.15
0.1 -

0.05

P(x=3|lambda) Figure 3.2. The probability
o5 p'(jx(ﬁg“gmgggg density P(:v | A) as a function of A,
(o for three different values of x.
When plotted this way round, the
0.1 function is known as the likelihood
of A\. The marks indicate the
0.05 three values of A\, A = 25,10, that
were used in the preceding figure.
0

1 10 100 A

Steve wrote down the probability of one data point, given A:

1 _—a/)
Plz|) = NG /Z(N) 1<1'<.20 (3.1)
0 otherwise
where
0 —z/A —1/x _ _—20/x
Z()\):/1 dz ye :(e —e) (3.2)
This seemed obvious enough. Then he wrote Bayes’ theorem:
P{z} [N P(N)
P {zy,...,zN _— 3.3
I) e (33)
+ €Xp (— fo xn/)\) P(N). (3.4)

-
(AZ(N)

Suddenly, the straightforward distribution P({x1,...,2nx}|A), defining the
probability of the data given the hypothesis A, was being turned on its head
so as to define the probability of a hypothesis given the data. A simple figure
showed the probability of a single data point P(x | \) as a familiar function of z,
for different values of A (figure 3.1). Each curve was an innocent exponential,
normalized to have area 1. Plotting the same function as a function of A for a donsi i !

. ensity P(z|\) as a function of z
fixed value of x, something remarkable happens: a peak emerges (figure 3.2). 4\’ Figures 3.1 and 3.2 are
To help understand these two points of view of the one function, figure 3.3 vertical sections through this
shows a surface plot of P(z|\) as a function of z and A. surface.

For a dataset consisting of several points, e.g., the six points {z}N_, =
{1.5,2,3,4,5,12}, the likelihood function P({z}|A) is the product of the N
functions of A, P(x, |\) (figure 3.4).

Figure 3.3. The probability

1.4e-06 Figure 3.4. The likelihood function
1.2¢-06 in the case of a six-point dataset,
1e-06 P({z} ={1.5,2,3,4,5,12} | A), as
8e-07 a function of A.
6e-07
4e-07
2e-07
0

1 10 100

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

50 3 — More about Inference

Steve summarized Bayes’ theorem as embodying the fact that

what you know about A after the data arrive is what you knew

before [P())], and what the data told you [P({z}|)\)].

Probabilities are used here to quantify degrees of belief. To nip possible
confusion in the bud, it must be emphasized that the hypothesis A that cor-
rectly describes the situation is not a stochastic variable, and the fact that the
Bayesian uses a probability distribution P does not mean that he thinks of
the world as stochastically changing its nature between the states described
by the different hypotheses. He uses the notation of probabilities to represent
his beliefs about the mutually exclusive micro-hypotheses (here, values of \),
of which only one is actually true. That probabilities can denote degrees of
belief, given assumptions, seemed reasonable to me.

The posterior probability distribution (3.4) represents the unique and com-
plete solution to the problem. There is no need to invent ‘estimators’; nor do
we need to invent criteria for comparing alternative estimators with each other.
Whereas orthodox statisticians offer twenty ways of solving a problem, and an-
other twenty different criteria for deciding which of these solutions is the best,

Bayesian statistics only offers one answer to a well-posed problem. If you have any difficulty
understanding this chapter I
Assumptions in inference flecomme.nd ensuring you are
appy with exercises 3.1 and 3.2
Our inference is conditional on our assumptions [for example, the prior P(X)]. (P-47) then noting their similarity
Critics view such priors as a difficulty because they are ‘subjective’, but I don’t fo exercise 3.3.
see how it could be otherwise. How can one perform inference without making
assumptions? I believe that it is of great value that Bayesian methods force
one to make these tacit assumptions explicit.
First, once assumptions are made, the inferences are objective and unique,
reproducible with complete agreement by anyone who has the same informa-
tion and makes the same assumptions. For example, given the assumptions
listed above, H, and the data D, everyone will agree about the posterior prob-
ability of the decay length A:

P(D|\H)P(A|H)

PAIDH) = ==Fs

(3.5)

Second, when the assumptions are explicit, they are easier to criticize, and
easier to modify — indeed, we can quantify the sensitivity of our inferences to
the details of the assumptions. For example, we can note from the likelihood
curves in figure 3.2 that in the case of a single data point at x = 5, the
likelihood function is less strongly peaked than in the case x = 3; the details
of the prior P(\) become increasingly important as the sample mean Z gets
closer to the middle of the window, 10.5. In the case x = 12, the likelihood
function doesn’t have a peak at all — such data merely rule out small values
of A\, and don’t give any information about the relative probabilities of large
values of A. So in this case, the details of the prior at the small-) end of things
are not important, but at the large-\ end, the prior is important.

Third, when we are not sure which of various alternative assumptions is
the most appropriate for a problem, we can treat this question as another
inference task. Thus, given data D, we can compare alternative assumptions
‘H using Bayes’ theorem:

P(D|H,I)P(H|I)
P(D|I) ’

P(H|D,I) = (3.6)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

3.2: The bent coin

where I denotes the highest assumptions, which we are not questioning.

Fourth, we can take into account our uncertainty regarding such assump-
tions when we make subsequent predictions. Rather than choosing one partic-
ular assumption H*, and working out our predictions about some quantity t,
P(t|D,H*,I), we obtain predictions that take into account our uncertainty
about H by using the sum rule:

P(t|D,I) = P(t|D,H,I)P(H|D,]I). (3.7)
H

This is another contrast with orthodox statistics, in which it is conventional
to ‘test’ a default model, and then, if the test ‘accepts the model’ at some
‘significance level’, to use exclusively that model to make predictions.

Steve thus persuaded me that

probability theory reaches parts that ad hoc methods cannot reach. I

Let’s look at a few more examples of simple inference problems.

» 3.2 The bent coin

A bent coin is tossed F' times; we observe a sequence s of heads and tails
(which we’ll denote by the symbols a and b). We wish to know the bias of
the coin, and predict the probability that the next toss will result in a head.
We first encountered this task in example 2.7 (p.30), and we will encounter it
again in Chapter 6, when we discuss adaptive data compression. It is also the
original inference problem studied by Thomas Bayes in his essay published in
1763.

As in exercise 2.8 (p.30), we will assume a uniform prior distribution and
obtain a posterior distribution by multiplying by the likelihood. A critic might
object, ‘where did this prior come from?’ I will not claim that the uniform
prior is in any way fundamental; indeed we’ll give examples of nonuniform
priors later. The prior is a subjective assumption. One of the themes of this
book is:

you can’t do inference — or data compression — without making
assumptions.

We give the name H; to our assumptions. [We’ll be introducing an al-
ternative set of assumptions in a moment.] The probability, given p,, that F
tosses result in a sequence s that contains {F,, F,} counts of the two outcomes
is

P(s|pa, F,Hi) = pi*(1 — pa) ™. (3.8)

[For example, P(s=aaba|pa,, F'=4,H1) = papa(l — pa)pa.] Our first model
assumes a uniform prior distribution for p,,

P(pa|H1) =1, pa€]0,1] (3.9)
and pp =1 — p,.

Inferring unknown parameters

Given a string of length F of which F, are as and F;, are bs, we are interested
in (a) inferring what p, might be; (b) predicting whether the next character is

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

g

52

an a or a b. [Predictions are always expressed as probabilities. So ‘predicting
whether the next character is an a’ is the same as computing the probability
that the next character is an a.]

Assuming H; to be true, the posterior probability of p,, given a string s
of length F' that has counts {F,, Fy,}, is, by Bayes’ theorem,
P(s|pa, F,H1)P(pa | H1)

P(s|F, ") '
The factor P(s|pa, F,H1), which, as a function of p,, is known as the likeli-

hood function, was given in equation (3.8); the prior P(p,|H1) was given in
equation (3.9). Our inference of p, is thus:

pE(1—pa)™

P(pa‘staHl)

(3.10)

P(pals, F,'H : 3.11
(p |S 1) P(S|F,H1) ()
The normalizing constant is given by the beta integral
! D(Fa+1)I(F+1) F,\R!
P(s|F,H1) = [dpapl(1 —pa)ft = —2 = 2)
(sIFH) /0 Papa’(l=pa) T(Fat Fot2) (FatFo+1)
(3.12)

Exercise 3.5.1% P99 Sketch the posterior probability P(p,|s=aba, F=3).
What is the most probable value of p, (i.e., the value that maximizes
the posterior probability density)? What is the mean value of p, under
this distribution?

Answer the same questions for the posterior probability
P(pa|s=Dbbb, F =3).
From inferences to predictions

Our prediction about the next toss, the probability that the next toss is an a,
is obtained by integrating over p,. This has the effect of taking into account
our uncertainty about p, when making predictions. By the sum rule,

Hmf>:/@wmmmmw» (3.13)

The probability of an a given p, is simply pa, so

_ pga(l_pa)Fb
P(a|S>F) _/dpapaW (314)
P (1= po)"
/d;oa P(sF) (3.15)
_ (Fa+ 1D R F) . F.+1
- |:(Fa+Fb+2)!]/{(Fa+Fb+1)!:| R+ R +2 (3.16)

which is known as Laplace’s rule.

3.3 The bent coin and model comparison

Imagine that a scientist introduces another theory for our data. He asserts
that the source is not really a bent coin but is really a perfectly formed die with
one face painted heads (‘a’) and the other five painted tails (‘b’). Thus the
parameter p,, which in the original model, H1, could take any value between
0 and 1, is according to the new hypothesis, Hg, not a free parameter at all;
rather, it is equal to 1/6. [This hypothesis is termed Hg so that the suffix of
each model indicates its number of free parameters.]

How can we compare these two models in the light of data? We wish to
infer how probable H; is relative to Hy.

3 — More about Inference

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

3.3: The bent coin and model comparison

Model comparison as inference

In order to perform model comparison, we write down Bayes’ theorem again,
but this time with a different argument on the left-hand side. We wish to
know how probable H; is given the data. By Bayes’ theorem,

P(S‘FaHl)P(Hl).

P(Hy|s, F) = P F) (3.17)
Similarly, the posterior probability of H is
P(s| F. p
P(Hy |5, F) = LELE o) P(Tto) (3.18)

P(s|F)

The normalizing constant in both cases is P(s| F'), which is the total proba-
bility of getting the observed data. If H; and Hy are the only models under
consideration, this probability is given by the sum rule:

P(s| F) = P(s| F,H1)P(H1) + P(s | F, Ho)P(Hy). (3.19)

To evaluate the posterior probabilities of the hypotheses we need to assign
values to the prior probabilities P(H1) and P(Hp); in this case, we might
set these to 1/2 each. And we need to evaluate the data-dependent terms
P(s|F,H1) and P(s|F,Hy). We can give names to these quantities. The
quantity P(s|F,H;) is a measure of how much the data favour H;, and we
call it the evidence for model H;. We already encountered this quantity in
equation (3.10) where it appeared as the normalizing constant of the first
inference we made — the inference of p, given the data.

How model comparison works: The evidence for a model is

usually the normalizing constant of an earlier Bayesian inference.

We evaluated the normalizing constant for model H; in (3.12). The evi-
dence for model Hj is very simple because this model has no parameters to
infer. Defining pg to be 1/6, we have

P(s|F,Hy) = poFa(l —PO)F"- (3.20)

Thus the posterior probability ratio of model H; to model H is

P(H1 |S,F) _ P(S|F,H1)P(H1) (3 21)
P(Ho s, F) P(s| F,Ho)P(Ho) '
= Eih D fa;:bjr 1)!/195"‘ 1 —po)™. (3.22)

Some values of this posterior probability ratio are illustrated in table 3.5. The
first five lines illustrate that some outcomes favour one model, and some favour
the other. No outcome is completely incompatible with either model. With
small amounts of data (six tosses, say) it is typically not the case that one of
the two models is overwhelmingly more probable than the other. But with
more data, the evidence against Hg given by any data set with the ratio Fy: Fy,
differing from 1:5 mounts up. You can’t predict in advance how much data
are needed to be pretty sure which theory is true. It depends what p, is.

The simpler model, Hy, since it has no adjustable parameters, is able to
lose out by the biggest margin. The odds may be hundreds to one against it.
The more complex model can never lose out by a large margin; there’s no data
set that is actually wnlikely given model H;.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

54
P(H1 | S F)
F Data (Fy, F,) ———"1——~
P(HO | S, F)
6 (5,1) 222.2
6 (3,3) 2.67
6 (2,4) 0.71 =1/14
6 (1,5) 0.356 =1/2.8
6 (0,6) 0.427 =1/23
20 (10,10) 96.5
20 (3,17) 0.2 =1/5
20 (0,20) 1.83
‘Hy is true ‘H; is true
8 Pa=1/6 8 pa = 0.25 8 pa=0.5
6 10001 ¢ 100011 ¢ 1000/1
4 10071 4 1001 4 100/1
2 M 10/1 2 10/1 2 10/1
0 ha 11 0 M UL 0w 11
-2 1/10 -2 110 -2 1/10
-4 1/100 -4 1/100 4 1/100
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
2 1000/1 2 1000/1 2 \ 1000/1
4 10071 4 1001 4 100/1
2 10/1 2 10/1 2 10/1
0 1/1 0 W 1/1 0 1/1
-2 k&ﬁlllo -2 110 -2 1/10
-4 1/100 -4 1/100 4 1/100
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
2 1000/1 2 1000/1 g 1000/1
4 100/1 4 1001 4 100/1
2 10/1 2) 101 2 10/1
0 1/1 0 11 0 1/1
-2 W 1/10 -2 110 -2 1/10
-4 1/100 -4 1/100 -4 1/100
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

> Exercise 3.6.1%] Show that after F tosses have taken place, the biggest value
that the log evidence ratio

P(s|F, Ha)
1
o8 5

7(5 7, Ho) (3.23)

can have scales linearly with F if H; is more probable, but the log

evidence in favour of Hy can grow at most as log F'.

> Exercise 3.7.1% P-00] Putting your sampling theory hat on, assuming F, has
not yet been measured, compute a plausible range that the log evidence
ratio might lie in, as a function of F' and the true value of p,, and sketch
it as a function of F' for p, = pg = 1/6, p. = 0.25, and p, = 1/2. [Hint:
sketch the log evidence as a function of the random variable F, and work
out the mean and standard deviation of Fj.|

Typical behaviour of the evidence

Figure 3.6 shows the log evidence ratio as a function of the number of tosses,
F, in a number of simulated experiments. In the left-hand experiments, H
was true. In the right-hand ones, H; was true, and the value of p, was either
0.25 or 0.5.

We will discuss model comparison more in a later chapter.

3 — More about Inference

Table 3.5. Outcome of model
comparison between models H1
and Hp for the ‘bent coin’. Model
Ho states that p, = 1/6, p, = 5/6.

Figure 3.6. Typical behaviour of
the evidence in favour of H; as
bent coin tosses accumulate under
three different conditions
(columns 1, 2, 3). Horizontal axis
is the number of tosses, F. The
vertical axis on the left is

In %; the right-hand

vertical axis shows the values of
P(s|F,H1)

P(s|F,Ho)"

The three rows show independent
simulated experiments.

(See also figure 3.8, p.60.)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

3.4: An example of legal evidence

» 3.4 An example of legal evidence

The following example illustrates that there is more to Bayesian inference than
the priors.

Two people have left traces of their own blood at the scene of a
crime. A suspect, Oliver, is tested and found to have type ‘O’
blood. The blood groups of the two traces are found to be of type
‘O’ (a common type in the local population, having frequency 60%)
and of type ‘AB’ (a rare type, with frequency 1%). Do these data
(type ‘O’ and ‘AB’ blood were found at scene) give evidence in
favour of the proposition that Oliver was one of the two people
present at the crime?

A careless lawyer might claim that the fact that the suspect’s blood type was
found at the scene is positive evidence for the theory that he was present. But
this is not so.

Denote the proposition ‘the suspect and one unknown person were present’
by S. The alternative, S, states ‘two unknown people from the population were
present’. The prior in this problem is the prior probability ratio between the
propositions S and S. This quantity is important to the final verdict and
would be based on all other available information in the case. Our task here is
just to evaluate the contribution made by the data D, that is, the likelihood
ratio, P(D | S,H)/P(D|S,H). In my view, a jury’s task should generally be to
multiply together carefully evaluated likelihood ratios from each independent
piece of admissible evidence with an equally carefully reasoned prior proba-
bility. [This view is shared by many statisticians but learned British appeal
judges recently disagreed and actually overturned the verdict of a trial because
the jurors had been taught to use Bayes’ theorem to handle complicated DNA
evidence.]

The probability of the data given S is the probability that one unknown
person drawn from the population has blood type AB:

P(D|S,’H) = paB (3.24)

(since given S, we already know that one trace will be of type O). The prob-
ability of the data given S is the probability that two unknown people drawn
from the population have types O and AB:

P(D|S,H) = 2po pas- (3.25)

In these equations H denotes the assumptions that two people were present

and left blood there, and that the probability distribution of the blood groups

of unknown people in an explanation is the same as the population frequencies.
Dividing, we obtain the likelihood ratio:

P(D|S,H) 1 1

DPDISHY 9pm = 0.83. 92
P(DIS,H) 200 2x06 9 (3.26)

Thus the data in fact provide weak evidence against the supposition that
Oliver was present.

This result may be found surprising, so let us examine it from various
points of view. First consider the case of another suspect, Alberto, who has
type AB. Intuitively, the data do provide evidence in favour of the theory S’

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

56 3 — More about Inference

that this suspect was present, relative to the null hypothesis S. And indeed

the likelihood ratio in this case is:
PD|S'H) 1
P(D | Sa H) 2pAB

— 50. (3.27)

Now let us change the situation slightly; imagine that 99% of people are of
blood type O, and the rest are of type AB. Only these two blood types exist
in the population. The data at the scene are the same as before. Consider
again how these data influence our beliefs about Oliver, a suspect of type
O, and Alberto, a suspect of type AB. Intuitively, we still believe that the
presence of the rare AB blood provides positive evidence that Alberto was
there. But does the fact that type O blood was detected at the scene favour
the hypothesis that Oliver was present? If this were the case, that would mean
that regardless of who the suspect is, the data make it more probable they were
present; everyone in the population would be under greater suspicion, which
would be absurd. The data may be compatible with any suspect of either
blood type being present, but if they provide evidence for some theories, they
must also provide evidence against other theories.

Here is another way of thinking about this: imagine that instead of two
people’s blood stains there are ten, and that in the entire local population
of one hundred, there are ninety type O suspects and ten type AB suspects.
Consider a particular type O suspect, Oliver: without any other information,
and before the blood test results come in, there is a one in 10 chance that he
was at the scene, since we know that 10 out of the 100 suspects were present.
We now get the results of blood tests, and find that nine of the ten stains are
of type AB, and one of the stains is of type O. Does this make it more likely
that Oliver was there? No, there is now only a one in ninety chance that he
was there, since we know that only one person present was of type O.

Maybe the intuition is aided finally by writing down the formulae for the
general case where no blood stains of individuals of type O are found, and
nap of type AB, a total of NV individuals in all, and unknown people come
from a large population with fractions po,pap. (There may be other blood
types too.) The task is to evaluate the likelihood ratio for the two hypotheses:
S, ‘the type O suspect (Oliver) and N —1 unknown others left N stains’; and
S, ‘N unknowns left N stains’. The probability of the data under hypothesis
S is just the probability of getting no,nap individuals of the two types when
N individuals are drawn at random from the population:

P(no,nap|S) = DO DAY - (3.28)

no! NAB-
In the case of hypothesis S, we need the distribution of the N —1 other indi-
viduals: (V1)1
P S)= —— 1 _prolpnas 3.29

(no’nAB|) (nO — l)lnAB!pO pAB ()

The likelihood ratio is:

P(no,nas|S) no/N

L = 3.30
P(no,nag|S) PO (8:30)

This is an instructive result. The likelihood ratio, i.e. the contribution of
these data to the question of whether Oliver was present, depends simply on
a comparison of the frequency of his blood type in the observed data with the
background frequency in the population. There is no dependence on the counts
of the other types found at the scene, or their frequencies in the population.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

3.5: Exercises

If there are more type O stains than the average number expected under
hypothesis S, then the data give evidence in favour of the presence of Oliver.
Conversely, if there are fewer type O stains than the expected number under
S, then the data reduce the probability of the hypothesis that he was there.
In the special case no/N = po, the data contribute no evidence either way,
regardless of the fact that the data are compatible with the hypothesis S.

» 3.5 Exercises

ﬁ% Exercise 3.8.[2’ p-60] The three doors, normal rules.

On a game show, a contestant is told the rules as follows:

There are three doors, labelled 1, 2, 3. A single prize has
been hidden behind one of them. You get to select one door.
Initially your chosen door will not be opened. Instead, the
gameshow host will open one of the other two doors, and he
will do so in such a way as not to reveal the prize. For example,
if you first choose door 1, he will then open one of doors 2 and
3, and it is guaranteed that he will choose which one to open
so that the prize will not be revealed.

At this point, you will be given a fresh choice of door: you
can either stick with your first choice, or you can switch to the
other closed door. All the doors will then be opened and you
will receive whatever is behind your final choice of door.

Imagine that the contestant chooses door 1 first; then the gameshow host
opens door 3, revealing nothing behind the door, as promised. Should
the contestant (a) stick with door 1, or (b) switch to door 2, or (c¢) does
it make no difference?

ﬁ% Exercise 3.9.[2’ p-61] The three doors, earthquake scenario.

Imagine that the game happens again and just as the gameshow host is
about to open one of the doors a violent earthquake rattles the building
and one of the three doors flies open. It happens to be door 3, and it
happens not to have the prize behind it. The contestant had initially
chosen door 1.

Repositioning his toupée, the host suggests, ‘OK, since you chose door
1 initially, door 3 is a valid door for me to open, according to the rules
of the game; T’ll let door 3 stay open. Let’s carry on as if nothing
happened.’

Should the contestant stick with door 1, or switch to door 2, or does it
make no difference? Assume that the prize was placed randomly, that
the gameshow host does not know where it is, and that the door flew
open because its latch was broken by the earthquake.

[A similar alternative scenario is a gameshow whose confused host for-
gets the rules, and where the prize is, and opens one of the unchosen
doors at random. He opens door 3, and the prize is not revealed. Should
the contestant choose what’s behind door 1 or door 27 Does the opti-
mal decision for the contestant depend on the contestant’s beliefs about
whether the gameshow host is confused or not?]
> Exercise 3.10.[2] Another example in which the emphasis is not on priors. You
visit a family whose three children are all at the local school. You don’t

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

58

know anything about the sexes of the children. While walking clum-
sily round the home, you stumble through one of the three unlabelled
bedroom doors that you know belong, one each, to the three children,
and find that the bedroom contains girlie stuff in sufficient quantities to
convince you that the child who lives in that bedroom is a girl. Later,
you sneak a look at a letter addressed to the parents, which reads ‘From
the Headmaster: we are sending this letter to all parents who have male
children at the school to inform them about the following boyish mat-
ters. .. .

These two sources of evidence establish that at least one of the three

children is a girl, and that at least one of the children is a boy. What

are the probabilities that there are (a) two girls and one boy; (b) two

boys and one girl?

> Exercise 3.11.1% P61 Mg S is found stabbed in her family garden. Mr S
behaves strangely after her death and is considered as a suspect. On
investigation of police and social records it is found that Mr S had beaten
up his wife on at least nine previous occasions. The prosecution advances
this data as evidence in favour of the hypothesis that Mr S is guilty of the
murder. ‘Ah no,” says Mr S’s highly paid lawyer, ‘statistically, only one
in a thousand wife-beaters actually goes on to murder his wife.! So the
wife-beating is not strong evidence at all. In fact, given the wife-beating
evidence alone, it’s extremely unlikely that he would be the murderer of
his wife — only a 1/1000 chance. You should therefore find him innocent.’

Is the lawyer right to imply that the history of wife-beating does not
point to Mr S’s being the murderer? Or is the lawyer a slimy trickster?
If the latter, what is wrong with his argument?

[Having received an indignant letter from a lawyer about the preceding
paragraph, I’d like to add an extra inference exercise at this point: Does
my suggestion that Mr. S.’s lawyer may have been a slimy trickster imply
that I believe all lawyers are slimy tricksters? (Answer: No.)]

b Exercise 3.12.[%] A bag contains one counter, known to be either white or
black. A white counter is put in, the bag is shaken, and a counter
is drawn out, which proves to be white. What is now the chance of
drawing a white counter? [Notice that the state of the bag, after the
operations, is exactly identical to its state before.]

> Exercise 3.13.[% P62 vou move into a new house; the phone is connected, and
you're pretty sure that the phone number is 740511, but not as sure as
you would like to be. As an experiment, you pick up the phone and
dial 740511; you obtain a ‘busy’ signal. Are you now more sure of your
phone number? If so, how much?

> Exercise 3.14.11) Tn a game, two coins are tossed. If either of the coins comes
up heads, you have won a prize. To claim the prize, you must point to
one of your coins that is a head and say ‘look, that coin’s a head, I've
won’. You watch Fred play the game. He tosses the two coins, and he

n the U.S.A., it is estimated that 2 million women are abused each year by their partners.
In 1994, 4739 women were victims of homicide; of those, 1326 women (28%) were slain by
husbands and boyfriends.
(Sources: http://www.umn.edu/mincava/papers/factoid.htm,
http://www.gunfree.inter.net/vpc/womenfs.htm)

3 — More about Inference

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

3.6: Solutions

points to a coin and says ‘look, that coin’s a head, I've won’. What is
the probability that the other coin is a head?

> Exercise 3.15.1% P03 A gtatistical statement appeared in The Guardian on
Friday January 4, 2002:

When spun on edge 250 times, a Belgian one-euro coin came
up heads 140 times and tails 110. ‘It looks very suspicious
to me’, said Barry Blight, a statistics lecturer at the London
School of Economics. ‘If the coin were unbiased the chance of
getting a result as extreme as that would be less than 7%’.

But do these data give evidence that the coin is biased rather than fair?
[Hint: see equation (3.22).]

» 3.6 Solutions

Solution to exercise 3.1 (p.47). Let the data be D. Assuming equal prior

probabilities,
P(A|D)
P(B|D)

1313121 9
=35213222 " 3 (3.31)

and P(A|D) =9/41.
The probability of the data given each hy-

Solution to exercise 3.2 (p.47).

pothesis is:
3121311 18
A=——————— = —; 3.32
) 20202020202020 207’ (3:32)

2222212 64

P(D|

P(D|B)= - 222 = = . .
(D] 20202020202020 207’ (3.33)
1111111 1
PD|C) = = 34
(DlC) 20202020202020 207 (3.34)
So
18 18 64 1
P(A|D) = ——— = —: P(B|D)=—; P(C|D)=—.
(4] D) 184+64+1 83’ (B|D) 83’ (©1D) 83
(3.35)
(a) 0 02 04 06 08 1 (b) 0 02 04 06 08 1

P(pa|s=aba, F=3) x p2(1 — pa) P(pa|s=bbb, F=3) (1 —pa)?

Solution to exercise 3.5 (p.52).

(a) P(pa|s=aba, F=3) p2(1 — pa). The most probable value of p, (i.e.,
the value that maximizes the posterior probability density) is 2/3. The
mean value of p, is 3/5.

See figure 3.7a.

59

Figure 3.7. Posterior probability
for the bias p, of a bent coin
given two different data sets.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

60 3 — More about Inference

(b) P(pa|s=bbb, F=3) « (1 — pa)®. The most probable value of p, (i.e.,
the value that maximizes the posterior probability density) is 0. The
mean value of p, is 1/5.

See figure 3.7b.

Hp is true H; is true Figure 3.8. Range of plausible

. Pa=1/6] Do = 0.25 . Pa = 0.5 }zalues off t;lle log e;zlden'ce mf -
6 10001 100011 ¢ 2 1000/1 avour of H; as a function of .
4 100/1 4 100/1 4 100/1 TheP\(,se‘rg%-?’l) axis OI‘I the left is
2 10/1 2 - 101 2 | 10/1 log WF’H;); the right-hand
0 S U o—— n 0 n vertical axis shows the values of
-2 1/10 2 o110 -2 1/10 P(s|FH1)
-4 1100 4 1/100 4 1/100 P(s| F,Ho)"

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 The solid line shows the log

evidence if the random variable

F, takes on its mean value,
Solution to exercise 3.7 (p.54). The curves in figure 3.8 were found by finding F, = poF. The dotteg lines show

the mean and standard deviation of Fy, then setting F;, to the mean &+ two (approximately) the log evidence
standard deviations to get a 95% plausible range for F,, and computing the if F, is at its 2.5th or 97.5th

three corresponding values of the log evidence ratio. percentile.
(See also figure 3.6, p.54.)

Solution to exercise 3.8 (p.57). Let H; denote the hypothesis that the prize is
behind door i. We make the following assumptions: the three hypotheses Hj,
‘Ho and Hj3 are equiprobable a priori, i.e.,

P(My) = P(H;) = P(Hs) = 5. (3.36)

The datum we receive, after choosing door 1, is one of D=3 and D =2 (mean-
ing door 3 or 2 is opened, respectively). We assume that these two possible
outcomes have the following probabilities. If the prize is behind door 1 then
the host has a free choice; in this case we assume that the host selects at
random between D=2 and D =3. Otherwise the choice of the host is forced
and the probabilities are 0 and 1.

P(D=2|H;)=1 (3.37)

P(D=3|Hi)=1

P(D=2|H2)=0| P(D=2|H3)=1
P(D=3|Ha)=1| P(D=3|H3)=0

Now, using Bayes’ theorem, we evaluate the posterior probabilities of the

hypotheses:
P(D=3|H;)P(H;
P(Hi|D=3) = (P(1|72’>)<) (3.38)
1/2)(1/3 1)(1/3 0)(1/3
| P(Hy | D=3)= G205 | P(Hy | D=3)=EI0LL | P(Hy| D=3)= Q0L |
(3.39)

The denominator P(D =3) is (1/2) because it is the normalizing constant for
this posterior distribution. So

| P(H1|D=3) = 3| P(Hy|D=3) = %3|P(H3|D=3) = 0.|
(3.40)
So the contestant should switch to door 2 in order to have the biggest chance
of getting the prize.

Many people find this outcome surprising. There are two ways to make it
more intuitive. One is to play the game thirty times with a friend and keep
track of the frequency with which switching gets the prize. Alternatively, you
can perform a thought experiment in which the game is played with a million
doors. The rules are now that the contestant chooses one door, then the game

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

3.6: Solutions 61

show host opens 999,998 doors in such a way as not to reveal the prize, leaving
the contestant’s selected door and one other door closed. The contestant may
now stick or switch. Imagine the contestant confronted by a million doors,
of which doors 1 and 234,598 have not been opened, door 1 having been the
contestant’s initial guess. Where do you think the prize is?

Solution to exercise 3.9 (p.57). If door 3 is opened by an earthquake, the
inference comes out differently — even though visually the scene looks the
same. The nature of the data, and the probability of the data, are both
now different. The possible data outcomes are, firstly, that any number of
the doors might have opened. We could label the eight possible outcomes
d = (0,0,0),(0,0,1),(0,1,0),(1,0,0),(0,1,1),...,(1,1,1). Secondly, it might
be that the prize is visible after the earthquake has opened one or more doors.
So the data D consists of the value of d, and a statement of whether the prize
was revealed. It is hard to say what the probabilities of these outcomes are,
since they depend on our beliefs about the reliability of the door latches and
the properties of earthquakes, but it is possible to extract the desired posterior
probability without naming the values of P(d|H;) for each d. All that matters
are the relative values of the quantities P(D|H1), P(D|Hz), P(D|Hs), for
the value of D that actually occurred. [This is the likelihood principle, which
we met in section 2.3.] The value of D that actually occurred is ‘d = (0,0, 1),
and no prize visible’. First, it is clear that P(D|Hs) = 0, since the datum
that no prize is visible is incompatible with H3. Now, assuming that the Where the prize is
contestant selected door 1, how does the probability P(D|H;) compare with
P(D|Hz2)? Assuming that earthquakes are not sensitive to decisions of game
show contestants, these two quantities have to be equal, by symmetry. We none | Prone | Pnone | Prone
don’t know how likely it is that door 3 falls off its hinges, but however likely 3 3 3
it is, it’s just as likely to do so whether the prize is behind door 1 or door 2.
So, if P(D|H1) and P(D |Hz) are equal, we obtain:

door door door
1 2 3

<
£
P(H,|D) = ZERUER) | p(ry|) = ZLDCR) | p(yy| D) = PELGR) 5
=1/ =1/ =0. N]
(3.41) 3 3 3 3
The two possible hypotheses are now equally likely. ‘E Lo
If we assume that the host knows where the prize is and might be acting ; '
deceptively, then the answer might be further modified, because we have to _§ L3
view the host’s words as part of the data. s ’
Confused? It’s well worth making sure you understand these two gameshow g‘ -

problems. Don’t worry, I slipped up on the second problem, the first time I
met it.

There is a general rule which helps immensely when you have a confusing
probability problem:

P23 | PL23 | PL2s

1,2
23 3 3 3

Figure 3.9. The probability of
Always write down the probability of everything. everything, for the second
(Steve Gull) three-door problem, assuming an
earthquake has just occurred.
Here, ps is the probability that
From this joint probability, any desired inference can be mechanically ob- door 3 alone is opened by an

tained (figure 3.9). earthquake.

Solution to exercise 3.11 (p.58). The statistic quoted by the lawyer indicates
the probability that a randomly selected wife-beater will also murder his wife.
The probability that the husband was the murderer, given that the wife has
been murdered, is a completely different quantity.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

62 3 — More about Inference

To deduce the latter, we need to make further assumptions about the
probability that the wife is murdered by someone else. If she lives in a neigh-
bourhood with frequent random murders, then this probability is large and
the posterior probability that the husband did it (in the absence of other ev-
idence) may not be very large. But in more peaceful regions, it may well be
that the most likely person to have murdered you, if you are found murdered,
is one of your closest relatives.

Let’s work out some illustrative numbers with the help of the statistics
on page 58. Let m =1 denote the proposition that a woman has been mur-
dered; h=1, the proposition that the husband did it; and b=1, the propo-
sition that he beat her in the year preceding the murder. The statement
‘someone else did it’ is denoted by h=0. We need to define P(h|m=1),
Pb|h=1,m=1), and P(b=1|h=0,m=1) in order to compute the pos-
terior probability P(h=1|b=1,m=1). From the statistics, we can read
out P(h=1|m=1) = 0.28. And if two million women out of 100 million
are beaten, then P(b=1|h=0,m=1) = 0.02. Finally, we need a value for
P(b|h=1,m=1): if a man murders his wife, how likely is it that this is the
first time he laid a finger on her? I expect it’s pretty unlikely; so maybe
P(b=1|h=1,m=1) is 0.9 or larger.

By Bayes’ theorem, then,

9 x .28

Plh=1]b=1,m=1) = 5o —— ~ 95%. (3.42)

One way to make obvious the sliminess of the lawyer on p.58 is to construct
arguments, with the same logical structure as his, that are clearly wrong.
For example, the lawyer could say ‘Not only was Mrs. S murdered, she was
murdered between 4.02pm and 4.03pm. Statistically, only one in a maillion
wife-beaters actually goes on to murder his wife between 4.02pm and 4.03pm.
So the wife-beating is not strong evidence at all. In fact, given the wife-beating
evidence alone, it’s extremely unlikely that he would murder his wife in this
way — only a 1/1,000,000 chance.’

Solution to exercise 3.13 (p.58). There are two hypotheses. Hg: your number
is 740511; H;y: it is another number. The data, D, are ‘when I dialed 740511,
I got a busy signal’. What is the probability of D, given each hypothesis? If
your number is 740511, then we expect a busy signal with certainty:

P(D|Hy) =1.

On the other hand, if H; is true, then the probability that the number dialled
returns a busy signal is smaller than 1, since various other outcomes were also
possible (a ringing tone, or a number-unobtainable signal, for example). The
value of this probability P(D|H;) will depend on the probability a that a
random phone number similar to your own phone number would be a valid
phone number, and on the probability § that you get a busy signal when you
dial a valid phone number.

I estimate from the size of my phone book that Cambridge has about
75000 valid phone numbers, all of length six digits. The probability that a
random six-digit number is valid is therefore about 75000/10% = 0.075. If
we exclude numbers beginning with 0, 1, and 9 from the random choice, the
probability « is about 75000/700000 ~ 0.1. If we assume that telephone
numbers are clustered then a misremembered number might be more likely
to be valid than a randomly chosen number; so the probability, a, that our
guessed number would be valid, assuming H; is true, might be bigger than

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

3.6: Solutions 63

0.1. Anyway, a must be somewhere between 0.1 and 1. We can carry forward
this uncertainty in the probability and see how much it matters at the end.

The probability 3 that you get a busy signal when you dial a valid phone
number is equal to the fraction of phones you think are in use or off-the-hook
when you make your tentative call. This fraction varies from town to town
and with the time of day. In Cambridge, during the day, I would guess that
about 1% of phones are in use. At 4am, maybe 0.1%, or fewer.

The probability P(D|H;1) is the product of a and 3, that is, about 0.1 x
0.01 = 1073, According to our estimates, there’s about a one-in-a-thousand
chance of getting a busy signal when you dial a random number; or one-in-a-
hundred, if valid numbers are strongly clustered; or one-in-10%, if you dial in
the wee hours.

How do the data affect your beliefs about your phone number? The pos-
terior probability ratio is the likelihood ratio times the prior probability ratio:

P(Ho|D) _ P(D|Ho) P(Ho)

P(H, D)~ P(D|Hy) P(Hy) (3.43)

The likelihood ratio is about 100-to-1 or 1000-to-1, so the posterior probability
ratio is swung by a factor of 100 or 1000 in favour of Hy. If the prior probability
of Hy was 0.5 then the posterior probability is

1

)
P(Ho | D)

Solution to exercise 3.15 (p.59). We compare the models Ho — the coin is fair
— and H; — the coin is biased, with the prior on its bias set to the uniform
distribution P(p|H1) = 1. [The use of a uniform prior seems reasonable
to me, since I know that some coins, such as American pennies, have severe
biases when spun on edge; so the situations p = 0.01 or p = 0.1 or p = 0.95 004

0.05

would not surprise me.] 0.03
0.02

When I mention Hy — the coin is fair — a pedant would say, ‘how absurd to even
0.01

consider that the coin is fair — any coin is surely biased to some extent’. And
of course I would agree. So will pedants kindly understand H, as meaning ‘the
coin is fair to within one part in a thousand, i.e., p € 0.5 £ 0.001".

0
0 50 100 150 200 250
Figure 3.10. The probability

The likelihood ratio is: distribu.tion of the number of
heads given the two hypotheses,
140!110! that the coin is fair, and that it is
P(D[H1) = 25550 — 0.48. (3.45) biased, with the prior distribution
P(DIHo) 1/2 of the bias being uniform. The

. outcome (D = 140 heads) gives
Thus the data give scarcely any evidence either way; in fact they give weak ok evidence in favour of Ho. the

evidence (two to one) in favour of Hj! hypothesis that the coin is fair.
‘No, no’, objects the believer in bias, ‘your silly uniform prior doesn’t

represent my prior beliefs about the bias of biased coins — I was expecting only

a small bias’. To be as generous as possible to the H1, let’s see how well it

could fare if the prior were presciently set. Let us allow a prior of the form

1
P(piHs.0) = 5sp™ (=)™, where Z(a) = T(@)?/T(20) (3460
!
(a Beta distribution, with the original uniform prior reproduced by setting
a =1). By tweaking «, the likelihood ratio for H; over Hy,

P(D/Hi,a) T'(1404+a) T(110+a) T'(2a)2%59

P(DIHo) T(250+20) [(a)?) (3.47)

64

can be increased a little. It is shown for several values of a in figure 3.11.
Even the most favourable choice of o (o =~ 50) can yield a likelihood ratio of
only two to one in favour of H;.

In conclusion, the data are not ‘very suspicious’. They can be construed
as giving at most two-to-one evidence in favour of one or other of the two
hypotheses.

Are these wimpy likelihood ratios the fault of over-restrictive priors? Is there
any way of producing a ‘very suspicious’ conclusion? The prior that is best-
matched to the data, in terms of likelihood, is the prior that sets p to f =
140/250 with probability one. Let’s call this model H,. The likelihood ratio is
P(D|H.)/P(D|Ho) = 2220 f140(1 — £)110 = 6.1. So the strongest evidence that
these data can possibly muster against the hypothesis that there is no bias is
six-to-one.

While we are noticing the absurdly misleading answers that ‘sampling the-
ory’ statistics produces, such as the p-value of 7% in the exercise we just solved,
let’s stick the boot in. If we make a tiny change to the data set, increasing
the number of heads in 250 tosses from 140 to 141, we find that the p-value
goes below the mystical value of 0.05 (the p-value is 0.0497). The sampling
theory statistician would happily squeak ‘the probability of getting a result as
extreme as 141 heads is smaller than 0.05 — we thus reject the null hypothesis
at a significance level of 5%’. The correct answer is shown for several values
of v in figure 3.12. The values worth highlighting from this table are, first,
the likelihood ratio when H; uses the standard uniform prior, which is 1:0.61
in favour of the null hypothesis Hy. Second, the most favourable choice of «,
from the point of view of H;, can only yield a likelihood ratio of about 2.3:1
in favour of Hj.

Be warned! A p-value of 0.05 is often interpreted as implying that the odds
are stacked about twenty-to-one against the null hypothesis. But the truth
in this case is that the evidence either slightly favours the null hypothesis, or
disfavours it by at most 2.3 to one, depending on the choice of prior.

The p-values and ‘significance levels’ of classical statistics should be treated
with eztreme caution. Shun them! Here ends the sermon.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

3 — More about Inference

a P(D\Hl,a)
P(D[Ho)

37 .25

1.0 .48

2.7 .82
7.4 1.3
20 1.8
55 1.9
148 1.7
403 1.3
1096 1.1

Figure 3.11. Likelihood ratio for
various choices of the prior
distribution’s hyperparameter a.

_ PDPt0)
P(D'[Ho)

37 32

1.0 61
2.7 1.0
7.4 1.6
20 2.2
55 2.3
148 1.9
403 1.4
1096 1.2

Figure 3.12. Likelihood ratio for
various choices of the prior
distribution’s hyperparameter «,
when the data are D’ = 141 heads
in 250 trials.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Part 1

Data Compression

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

g

About Chapter 4

In this chapter we discuss how to measure the information content of the
outcome of a random experiment.

This chapter has some tough bits. If you find the mathematical details
hard, skim through them and keep going — you’ll be able to enjoy Chapters 5
and 6 without this chapter’s tools.

Before reading Chapter 4, you should have read Chapter 2 and worked on
exercises 2.21-2.25 and 2.16 (pp.36-37), and exercise 4.1 below.

The following exercise is intended to help you think about how to measure
information content.

(2, p.69]

Exercise 4.1. — Please work on this problem before reading Chapter 4.

You are given 12 balls, all equal in weight except for one that is either
heavier or lighter. You are also given a two-pan balance to use. In each
use of the balance you may put any number of the 12 balls on the left
pan, and the same number on the right pan, and push a button to initiate
the weighing; there are three possible outcomes: either the weights are
equal, or the balls on the left are heavier, or the balls on the left are
lighter. Your task is to design a strategy to determine which is the odd
ball and whether it is heavier or lighter than the others in as few uses
of the balance as possible.

While thinking about this problem, you may find it helpful to consider
the following questions:

(a) How can one measure information?

(b) When you have identified the odd ball and whether it is heavy or
light, how much information have you gained?

(¢) Once you have designed a strategy, draw a tree showing, for each
of the possible outcomes of a weighing, what weighing you perform
next. At each node in the tree, how much information have the
outcomes so far given you, and how much information remains to
be gained?

(d) How much information is gained when you learn (i) the state of a
flipped coin; (ii) the states of two flipped coins; (iii) the outcome
when a four-sided die is rolled?

(e) How much information is gained on the first step of the weighing
problem if 6 balls are weighed against the other 67 How much is
gained if 4 are weighed against 4 on the first step, leaving out 4
balls?

66

Notation

zeA
SCcA
SCA
V=BUA
V=BnA

Al

x is a member of the
set A

S is a subset of the
set A

S is a subset of, or
equal to, the set A
V is the union of the
sets B and A

V is the intersection
of the sets B and A
number of elements
in set A

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

The Source Coding Theorem

» 4.1 How to measure the information content of a random variable?

In the next few chapters, we’ll be talking about probability distributions and
random variables. Most of the time we can get by with sloppy notation,
but occasionally, we will need precise notation. Here is the notation that we
established in Chapter 2.

An ensemble X is a triple (z, Ax,Px), where the outcome z is the value
of a random variable, which takes on one of a set of possible values,
Ax ={a1,a9,...,4a;,...,ar}, having probabilities Px = {p1,p2,--.,pr},
with P(x=a;) = p;, pi > 0and 3, 4, Plx=a;) =1.

How can we measure the information content of an outcome x = a; from such
an ensemble? In this chapter we examine the assertions

1. that the Shannon information content,

h(z=a;) = log, i, (4.1)

(]
is a sensible measure of the information content of the outcome z = a;,
and

2. that the entropy of the ensemble,
1
H(X) = pilog, . (4.2)

is a sensible measure of the ensemble’s average information content.

1 _ .
w04 h(p) = log, — p h(p) Ha(p) 1 Hy(p) F|gure 41 The Shannon)
o P 08- information content h(p) = log,
o 0.001 10.0 0.011 06- and the binary entropy function
T i
47 : : : ' plogy 5 + (1 —p)logy 7= as a
= 0.2 2.3 0.2 0z function of p.
0 0.5 1.0 1.0 .
6 04‘2 04‘4 0‘,5 04‘8 ‘1 p 6 0}2 0‘,4 04‘6 0‘,8 1‘ p

Figure 4.1 shows the Shannon information content of an outcome with prob-
ability p, as a function of p. The less probable an outcome is, the greater
its Shannon information content. Figure 4.1 also shows the binary entropy
function,

Hy(p) = H(p,1-p) = plogzé + (1 —p)log, ﬁ, (4.3)

which is the entropy of the ensemble X whose alphabet and probability dis-
tribution are Ax = {a,b},Px = {p,(1 —p)}.

67

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

68 4 — The Source Coding Theorem

Information content of independent random variables

Why should log 1/p; have anything to do with the information content? Why
not some other function of p;? We’ll explore this question in detail shortly,
but first, notice a nice property of this particular function h(x) = log1/p(z).
Imagine learning the value of two independent random variables, x and y.
The definition of independence is that the probability distribution is separable

into a product:
P(z,y) = P(z)P(y). (4.4)

Intuitively, we might want any measure of the ‘amount of information gained’
to have the property of additivity — that is, for independent random variables
x and y, the information gained when we learn x and y should equal the sum
of the information gained if alone were learned and the information gained
if y alone were learned.

The Shannon information content of the outcome x,y is

1 1 1 1
h(z,y) = log = log = log + log 4.5
e e 2T b e b 2 B
so it does indeed satisfy
h(z,y) = h(z) + h(y), if z and y are independent. (4.6)

ﬁ% Exercise 4.2.177 P-86] Qo that, if x and y are independent, the entropy of the
outcome x,y satisfies

H(X,)Y)=H(X)+ H(Y). (4.7
In words, entropy is additive for independent variables.

We now explore these ideas with some examples; then, in section 4.4 and
in Chapters 5 and 6, we prove that the Shannon information content and the
entropy are related to the number of bits needed to describe the outcome of
an experiment.

The weighing problem: designing informative experiments

Have you solved the weighing problem (exercise 4.1, p.66) yet? Are you sure?
Notice that in three uses of the balance — which reads either ‘left heavier’,
‘right heavier’, or ‘balanced’ — the number of conceivable outcomes is 33 = 27,
whereas the number of possible states of the world is 24: the odd ball could
be any of twelve balls, and it could be heavy or light. So in principle, the
problem might be solvable in three weighings — but not in two, since 32 < 24.

If you know how you can determine the odd weight and whether it is
heavy or light in three weighings, then you may read on. If you haven’t found
a strategy that always gets there in three weighings, I encourage you to think
about exercise 4.1 some more.

Why is your strategy optimal? What is it about your series of weighings
that allows useful information to be gained as quickly as possible? The answer
is that at each step of an optimal procedure, the three outcomes (‘left heavier’,
‘right heavier’, and ‘balance’) are as close as possible to equiprobable. An
optimal solution is shown in figure 4.2.

Suboptimal strategies, such as weighing balls 1-6 against 7-12 on the first
step, do not achieve all outcomes with equal probability: these two sets of balls
can never balance, so the only possible outcomes are ‘left heavy’ and ‘right
heavy’. Such a binary outcome rules out only half of the possible hypotheses,

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

4.1: How to measure the information content of a random variable?

1+ 1+2+5~ %
2+
3+ weigh
4+ 126 3
— 3T476~ =
11 57 345 4
2 6~
3t 7
4+ 8~ 1
78" =
5% 7
6+
as
8 I 3
9+ 1- 67374 1
10*) 2~)
11+ weigh 3- weigh
12+ 1234 4= 126 okt 1
1- 5+ - 17275 —
5678 345 2
2= 6"
3- 7t
4” 8* 78t z
57 1
6-
7
8~ +10+11+ 9
9- g+ 9+t10711)
10~ 10* .
11- 11+ weigh
- +
12 127 91011 9-10-11- 9
9 123 10 =
10-
11-
12~ 1o 12 —
12+12 -

Figure 4.2. An optimal solution to the weighing problem. At each step there are two boxes: the left
box shows which hypotheses are still possible; the right box shows the balls involved in the
next weighing. The 24 hypotheses are written 1%,... 127, with, e.g., 17 denoting that
1 is the odd ball and it is heavy. Weighings are written by listing the names of the balls
on the two pans, separated by a line; for example, in the first weighing, balls 1, 2, 3, and
4 are put on the left-hand side and 5, 6, 7, and 8 on the right. In each triplet of arrows
the upper arrow leads to the situation when the left side is heavier, the middle arrow to
the situation when the right side is heavier, and the lower arrow to the situation when the
outcome is balanced. The three points labelled x correspond to impossible outcomes.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

70 4 — The Source Coding Theorem

so a strategy that uses such outcomes must sometimes take longer to find the
right answer.

The insight that the outcomes should be as near as possible to equiprobable
makes it easier to search for an optimal strategy. The first weighing must
divide the 24 possible hypotheses into three groups of eight. Then the second
weighing must be chosen so that there is a 3:3:2 split of the hypotheses.

Thus we might conclude:

the outcome of a random experiment is guaranteed to be most in-

formative if the probability distribution over outcomes is uniform.

This conclusion agrees with the property of the entropy that you proved
when you solved exercise 2.25 (p.37): the entropy of an ensemble X is biggest
if all the outcomes have equal probability p; =1/|Ax]|.

Guessing games

In the game of twenty questions, one player thinks of an object, and the
other player attempts to guess what the object is by asking questions that
have yes/no answers, for example, ‘is it alive?’; or ‘is it human?’ The aim
is to identify the object with as few questions as possible. What is the best
strategy for playing this game? For simplicity, imagine that we are playing
the rather dull version of twenty questions called ‘sixty-three’.

Example 4.3. The game ‘sixty-three’. What’s the smallest number of yes/no
questions needed to identify an integer = between 0 and 637

Intuitively, the best questions successively divide the 64 possibilities into equal
sized sets. Six questions suffice. One reasonable strategy asks the following
questions:

is x > 327

is rmod 32 > 16?
is rmod 16 > 87
is zmod 8 > 47
is xmod4 > 27
is zmod2 =17

SR

[The notation xmod 32, pronounced ‘z modulo 32’; denotes the remainder
when z is divided by 32; for example, 35 mod 32 = 3 and 32mod 32 = 0.

The answers to these questions, if translated from {yes, no} to {1,0}, give
the binary expansion of z, for example 35 = 100011. O

What are the Shannon information contents of the outcomes in this ex-
ample? If we assume that all values of z are equally likely, then the answers
to the questions are independent and each has Shannon information content
log,(1/0.5) = 1Dbit; the total Shannon information gained is always six bits.
Furthermore, the number x that we learn from these questions is a six-bit bi-
nary number. Our questioning strategy defines a way of encoding the random
variable x as a binary file.

So far, the Shannon information content makes sense: it measures the
length of a binary file that encodes z. However, we have not yet studied
ensembles where the outcomes have unequal probabilities. Does the Shannon
information content make sense there too?

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

4.1: How to measure the information content of a random variable? 71
A XXX XIXIXIXIKIY XIXIXIXIXIX
B X X XXX X IXIXIXIXIXIX X IXIXIXIXIXIX
c IXIXIX IXIXIXIXIX IXIXIXIXIX
D XXX XIXIXIXIXIX XIXIXIXIXIX
E XIXIXIX XIXIXIXIX XIXIXIXIXIX
F XIXIX XIRXXIXIX XIXIXIXIXIX
e X X X IXIXIXIX XIXIXIXIX XIXIXIXIX
H XIXIXIX XIXIXIXIX SIXIXIXIXIX
123456738
move # 1 2 32 48 49
question G3 B1 E5 F3 H3
outcome xr=n x=n xr=n x=n x=y
63 62 32 16 1
P(z) — — — — —
64 63 33 17 16
h(x) 0.0227 0.0230 0.0443 0.0874 4.0
Total info. 0.0227 0.0458 1.0 2.0 6.0
Figure 4.3. A game of submarine.
The game of submarine: how many bits can one bit convey? The submarine is hit on the 49th
attempt.

In the game of battleships, each player hides a fleet of ships in a sea represented
by a square grid. On each turn, one player attempts to hit the other’s ships by
firing at one square in the opponent’s sea. The response to a selected square
such as ‘G3’ is either ‘miss’, ‘hit’, or ‘hit and destroyed’.

In a boring version of battleships called submarine, each player hides just
one submarine in one square of an eight-by-eight grid. Figure 4.3 shows a few
pictures of this game in progress: the circle represents the square that is being
fired at, and the xs show squares in which the outcome was a miss, x = n; the
submarine is hit (outcome z = y shown by the symbol s) on the 49th attempt.

Each shot made by a player defines an ensemble. The two possible out-
comes are {y,n}, corresponding to a hit and a miss, and their probabili-
ties depend on the state of the board. At the beginning, P(y) = 1/64 and
P(n) = 63/64. At the second shot, if the first shot missed, P(y) = 1/63 and
P(n) = 62/63. At the third shot, if the first two shots missed, P(y) = 1/62
and P(n) = 61/62.

The Shannon information gained from an outcome z is h(z) = log(1/P(z)).
If we are lucky, and hit the submarine on the first shot, then

h(z) = h)(y) = log, 64 = 6 bits. (4.8)

Now, it might seem a little strange that one binary outcome can convey six
bits. But we have learnt the hiding place, which could have been any of 64
squares; so we have, by one lucky binary question, indeed learnt six bits.

What if the first shot misses? The Shannon information that we gain from
this outcome is

64 .
h(x) = h()(n) = logy 63 = 0.0227 bits. (4.9)

Does this make sense? It is not so obvious. Let’s keep going. If our second
shot also misses, the Shannon information content of the second outcome is

63
h(o)(n) = logy i 0.0230 bits. (4.10)

If we miss thirty-two times (firing at a new square each time), the total Shan-
non information gained is

lo % + lo @ + + lo E
22 63 22 62 22 39
= 0.0227 +0.0230 + - -- + 0.0430 = 1.0bits. (4.11)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

72 4 — The Source Coding Theorem

Why this round number? Well, what have we learnt? We now know that the
submarine is not in any of the 32 squares we fired at; learning that fact is just
like playing a game of sixty-three (p.70), asking as our first question ‘is x
one of the thirty-two numbers corresponding to these squares I fired at?’, and
receiving the answer ‘no’. This answer rules out half of the hypotheses, so it
gives us one bit.

After 48 unsuccessful shots, the information gained is 2 bits: the unknown
location has been narrowed down to one quarter of the original hypothesis
space.

What if we hit the submarine on the 49th shot, when there were 16 squares
left? The Shannon information content of this outcome is

h(49)(y) = logy 16 = 4.0 bits. (4.12)

The total Shannon information content of all the outcomes is

1 64 +1 63 + +1 17 +1 16
) 63 089 62 089 16 089 1
= 0.0227 +0.0230 + - - - + 0.0874 + 4.0 = 6.0bits. (4.13)

So once we know where the submarine is, the total Shannon information con-
tent gained is 6 bits.

This result holds regardless of when we hit the submarine. If we hit it
when there are n squares left to choose from — n was 16 in equation (4.13) —

then the total information gained is: 1 aaail
2 aaaiu
64 63 n+1 n

log, a3t log, at T log, —+ logy 7 3 aaéld

63 n+1 n 64 . :
logsy 3 X & X o X p 7| = logy T = 6 bits. (4.14) 129 abati
What have we learned from the examples so far? I think the submarine 2047 azi)an
example makes quite a convincing case for the claim that the Shannon infor- 2048 aztdn

mation content is a sensible measure of information content. And the game of

sixty-three shows that the Shannon information content can be intimately

connected to the size of a file that encodes the outcomes of a random experi- :

ment, thus suggesting a possible connection to data compression. 16384 odrcr
In case you’re not convinced, let’s look at one more example. :

The Wenglish language 32737 zatnt

Wenglish is a language similar to English. Wenglish sentences consist of words :
drawn at random from the Wenglish dictionary, which contains 25 = 32,768 32768 zxast
words, all of length 5 characters. Each word in the Wenglish dictionary was -
constructed at random by picking five letters from the probability distribution Figure 4.4. The Wenglish
over a...z depicted in figure 2.1. dictionary.

Some entries from the dictionary are shown in alphabetical order in fig-
ure 4.4. Notice that the number of words in the dictionary (32,768) is
much smaller than the total number of possible words of length 5 letters,
26° ~ 12,000,000.

Because the probability of the letter z is about 1/1000, only 32 of the
words in the dictionary begin with the letter z. In contrast, the probability
of the letter a is about 0.0625, and 2048 of the words begin with the letter a.
Of those 2048 words, two start az, and 128 start aa.

Let’s imagine that we are reading a Wenglish document, and let’s discuss
the Shannon information content of the characters as we acquire them. If we

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

4.2: Data compression 73

are given the text one word at a time, the Shannon information content of
each five-character word is log 32,768 = 15 bits, since Wenglish uses all its
words with equal probability. The average information content per character
is therefore 3 bits.

Now let’s look at the information content if we read the document one
character at a time. If, say, the first letter of a word is a, the Shannon
information content is log 1/0.0625 ~ 4 bits. If the first letter is z, the Shannon
information content is log 1/0.001 ~ 10 bits. The information content is thus
highly variable at the first character. The total information content of the 5
characters in a word, however, is exactly 15 bits; so the letters that follow an
initial z have lower average information content per character than the letters
that follow an initial a. A rare initial letter such as z indeed conveys more
information about what the word is than a common initial letter.

Similarly, in English, if rare characters occur at the start of the word (e.g.
xyl...), then often we can identify the whole word immediately; whereas
words that start with common characters (e.g. pro...) require more charac-
ters before we can identify them.

» 4.2 Data compression

The preceding examples justify the idea that the Shannon information content
of an outcome is a natural measure of its information content. Improbable out-
comes do convey more information than probable outcomes. We now discuss
the information content of a source by considering how many bits are needed
to describe the outcome of an experiment.

If we can show that we can compress data from a particular source into
a file of L bits per source symbol and recover the data reliably, then we will
say that the average information content of that source is at most L bits per
symbol.

Example: compression of text files

A file is composed of a sequence of bytes. A byte is composed of 8 bits and Here we use the word ‘bit’ with its
can have a decimal value between 0 and 255. A typical text file is composed — meaning, ‘a symbol with two.
of the ASCII character set (decimal values 0 to 127). This character set uses values’, not to be Co.nfused with
. o the unit of information content.
only seven of the eight bits in a byte.
> Exercise 4.4.[1 P-86] By how much could the size of a file be reduced given
that it is an ASCII file? How would you achieve this reduction?

Intuitively, it seems reasonable to assert that an ASCII file contains 7/8 as
much information as an arbitrary file of the same size, since we already know
one out of every eight bits before we even look at the file. This is a simple ex-
ample of redundancy. Most sources of data have further redundancy: English
text files use the ASCII characters with non-equal frequency; certain pairs of
letters are more probable than others; and entire words can be predicted given
the context and a semantic understanding of the text.

Some simple data compression methods that define measures of informa-
tion content

One way of measuring the information content of a random variable is simply
to count the number of possible outcomes, |Ax|. (The number of elements in
a set A is denoted by |A|.) If we gave a binary name to each outcome, the

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

74 4 — The Source Coding Theorem

length of each name would be log, |Ax| bits, if | Ax| happened to be a power
of 2. We thus make the following definition.

The raw bit content of X is

Ho(X) = logy [Ax|. (4.15)

Hy(X) is a lower bound for the number of binary questions that are always
guaranteed to identify an outcome from the ensemble X. It is an additive
quantity: the raw bit content of an ordered pair z,y, having | A x||Ay | possible
outcomes, satisfies

Hy(X,Y) = Ho(X)+ Ho(Y). (4.16)

This measure of information content does not include any probabilistic
element, and the encoding rule it corresponds to does not ‘compress’ the source
data, it simply maps each outcome to a constant-length binary string.

ﬁ% Exercise 4.5.[% P-86] Could there be a compressor that maps an outcome x to
a binary code c¢(z), and a decompressor that maps ¢ back to z, such
that every possible outcome is compressed into a binary code of length

shorter than Hy(X) bits?

Even though a simple counting argument shows that it is impossible to make
a reversible compression program that reduces the size of all files, ama-
teur compression enthusiasts frequently announce that they have invented
a program that can do this — indeed that they can further compress com-
pressed files by putting them through their compressor several times. Stranger
yet, patents have been granted to these modern-day alchemists. See the
comp . compression frequently asked questions for further reading.’

There are only two ways in which a ‘compressor’ can actually compress

files:

1. A lossy compressor compresses some files, but maps some files to the
same encoding. We’ll assume that the user requires perfect recovery of
the source file, so the occurrence of one of these confusable files leads
to a failure (though in applications such as image compression, lossy
compression is viewed as satisfactory). We’ll denote by § the probability
that the source string is one of the confusable files, so a lossy compressor
has a probability § of failure. If § can be made very small then a lossy
compressor may be practically useful.

2. A lossless compressor maps all files to different encodings; if it shortens
some files, it necessarily makes others longer. We try to design the
compressor so that the probability that a file is lengthened is very small,
and the probability that it is shortened is large.

In this chapter we discuss a simple lossy compressor. In subsequent chapters
we discuss lossless compression methods.

» 4.3 Information content defined in terms of lossy compression

Whichever type of compressor we construct, we need somehow to take into
account the probabilities of the different outcomes. Imagine comparing the
information contents of two text files — one in which all 128 ASCII characters

http://sunsite.org.uk/public/usenet/news-faqs/comp.compression/

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

4.3: Information content defined in terms of lossy compression

are used with equal probability, and one in which the characters are used with
their frequencies in English text. Can we define a measure of information
content that distinguishes between these two files? Intuitively, the latter file
contains less information per character because it is more predictable.

One simple way to use our knowledge that some symbols have a smaller
probability is to imagine recoding the observations into a smaller alphabet
— thus losing the ability to encode some of the more improbable symbols —
and then measuring the raw bit content of the new alphabet. For example,
we might take a risk when compressing English text, guessing that the most
infrequent characters won’t occur, and make a reduced ASCII code that omits
the characters { !, @, #, %, =, *, ~, <, > /,\, ., {, }, [, 1, | }, thereby reducing
the size of the alphabet by seventeen. The larger the risk we are willing to
take, the smaller our final alphabet becomes.

We introduce a parameter § that describes the risk we are taking when 6=0 0=1/16
using this compression method: ¢ is the probability that there will be no

z () x c(x)
name for an outcome z.

000 00

Example 4.6. Let ‘2 001 2 o1

AX:{avba c, d: e, f7 gv h }7

d P 7111 3 1 1 1 1 (417) C 010 C 10

and Px ={3,1,7: 16> 61 51> 60 51 }- 4 o114 11

The raw bit content of this ensemble is 3 bits, corresponding to 8 binary e 100 e _
names. But notice that P(x € {a,b,c,d}) = 15/16. So if we are willing £ 101 :

to run a risk of 6 = 1/16 of not having a name for z, then we can get g 110 g _

by with four names — half as many names as are needed if every x € Ax h 111 h _

has a name.

Table 4.5 shows binary names that could be given to the different out- Taple 4.5. Binary names for the
comes in the cases 6 = 0 and § = 1/16. When ¢ = 0 we need 3 bits to outcomes, for two failure
encode the outcome; when § = 1/16 we need only 2 bits. probabilities 4.

Let us now formalize this idea. To make a compression strategy with risk
0, we make the smallest possible subset Sg such that the probability that x is
not in Sy is less than or equal to §, i.e., P(x € Ss) < §. For each value of §
we can then define a new measure of information content — the log of the size
of this smallest subset Ss5. [In ensembles in which several elements have the
same probability, there may be several smallest subsets that contain different
elements, but all that matters is their sizes (which are equal), so we will not
dwell on this ambiguity.]

The smallest §-sufficient subset Sj is the smallest subset of A x satisfying
P(x e Ss) >1-4. (4.18)

The subset S5 can be constructed by ranking the elements of Ax in order of
decreasing probability and adding successive elements starting from the most
probable elements until the total probability is > (1—9).

We can make a data compression code by assigning a binary name to each
element of the smallest sufficient subset. This compression scheme motivates
the following measure of information content:

The essential bit content of X is:

H(X) = logy |S5]. (4.19)

Note that Hy(X) is the special case of Hs(X) with § = 0 (if P(z) > 0 for all
x € Ax). [Caution: do not confuse Ho(X) and Hs(X) with the function Ha(p)
displayed in figure 4.1.]

Figure 4.6 shows Hs(X) for the ensemble of example 4.6 as a function of
J.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

76 4 — The Source Coding Theorem

-6 —4 24 —2 logaP(2)

Figure 4.6. (a) The outcomes of X
(from example 4.6 (p.75)), ranked
by their probability. (b) The
So S essential bit content Hs(X). The
m labels on the graph show the

A smallest sufficient set as a
function of 4. Note Hy(X) =3
bits and Hl/lG(X) = 2 bits.

&

e,f,gh d ab,c

T T T T T T T T T
3 h=—— {ab,c.defgh} q
<— {abcdefg}
25 L =— {abcdef} 4
—=—— {a,b,cde
2+ =—— {a,b,c,d} e
15 <— f{abc} 4
1 —f{ab}
0.5 B
{a}
0 1 1 1 1 1 1 1 !/ 1

0O 01 02 03 04 05 06 07 08 09

(b)

Extended ensembles

Is this compression method any more useful if we compress blocks of symbols
from a source?

We now turn to examples where the outcome x = (z1,z2,...,2xN) IS a
string of NV independent identically distributed random variables from a single
ensemble X. We will denote by X ¥ the ensemble (X1, X,..., Xy). Remem-
ber that entropy is additive for independent variables (exercise 4.2 (p.68)), so
H(XN)=NH(X).

Example 4.7. Consider a string of N flips of a bent coin, x = (21,29, ...,zN),
where z,, € {0, 1}, with probabilities pg=0.9, p; =0.1. The most prob-
able strings x are those with most 0s. If r(x) is the number of 1s in x

then N

Px) =py " p}™. (4.20)
To evaluate Hs(X ") we must find the smallest sufficient subset Ss. This
subset will contain all x with r(x) =0,1,2,..., up to some rpax(d) — 1,

and some of the x with 7(x) = rmax(0). Figures 4.7 and 4.8 show graphs
of Hs(X™) against ¢ for the cases N = 4 and N = 10. The steps are the
values of ¢ at which |Ss| changes by 1, and the cusps where the slope of
the staircase changes are the points where 7. changes by 1.

Exercise 4.8.1% P-86] What are the mathematical shapes of the curves between
the cusps?

For the examples shown in figures 4.6-4.8, Hs(X") depends strongly on
the value of J, so it might not seem a fundamental or useful definition of
information content. But we will consider what happens as N, the number
of independent variables in X, increases. We will find the remarkable result
that Hs(X™) becomes almost independent of § — and for all § it is very close
to NH(X), where H(X) is the entropy of one of the random variables.

Figure 4.9 illustrates this asymptotic tendency for the binary ensemble of
example 4.7. As N increases, %H(;(X N becomes an increasingly flat function,

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

4.3: Information content defined in terms of lossy compression 77

log, P(x)
14 _12 ~10 -8 -6 4) 0 Figure 4.7. (a) The sixteen
outcomes of the ensemble X4 with

s s p1 = 0.1, ranked by probability.
0.01 01 (b) The essential bit content
”” HHH Hs(X*). The upper schematic
| diagram indicates the strings’
} t 1 1] probabilities by the vertical lines’
lengths (not to scale).
1111 1101,1011,... 0110,1010,... 0010,0001,... 0000
(a)
4 T T T T T T T
N=4 —
35 J
Hg(X4) 3 4
25 | J
2 - -
15 | B
1k J
05 B
(b) %0 005 01 015 02 025 03 035 04 6
1 ‘ ‘ T e Figure 4.8. Hs(XN) for N = 10
| binary variables with p; = 0.1.
ofs 14

Figure 4.9. + Hs(X™) for
N =10,210,...,1010 binary
variables with p; = 0.1.

78

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

4 — The Source Coding Theorem

X logy (P(x))

Figure 4.10. The top 15 strings

sl 1..... 100110 1oo.o.... oot 1o 1o...... 11... —501
...................... T . 737.3
........ e B e I L P L L IS I 765.9
O L e P 1..... 1..1.11..... _564
R B 1...1..... 1.1...... oo, 1.1 Tooooiis Lo _532
.............. T L ST 743.7
..... e e s e P _46.8
AAAAA e s e s e P _564
......... e e N [P _373
...... e e e P I _437
1o b B B 1..11..1.1. .1 —564
........... L 737.3
D e N 1....... b 5 R R S 756.4

...... e I e s A e s _59.5

AAAAAAAAAAAA g P ISP SO _468

are samples from X1°° where

p1 = 0.1 and pg = 0.9. The
bottom two are the most and
least probable strings in this
ensemble. The final column shows
the log-probabilities of the
random strings, which may be
compared with the entropy
H(X190) = 46.9 bits.

AA —15.2

11111111114144111111124424121111144244111111444411111142442111111144241111114441111111111111111111111 _332 1

except for tails close to § = 0 and 1. As long as we are allowed a tiny
probability of error §, compression down to NH bits is possible. Even if we
are allowed a large probability of error, we still can compress only down to
N H bits. This is the source coding theorem.

Theorem 4.1 Shannon’s source coding theorem. Let X be an ensemble with
entropy H(X) = H bits. Given € > 0 and 0 < § < 1, there exists a positive
integer Ny such that for N > Ny,

’%Hé(XN) — H‘ <e (4.21)

4.4 Typicality

Why does increasing N help? Let’s examine long strings from X V. Table 4.10
shows fifteen samples from X~ for N = 100 and p; = 0.1. The probability
of a string x that contains r 1s and N —r 0s is

P(x) = pi(1—p)N ", (4.22)

The number of strings that contain r 1s is

n(r) = <N> (4.23)

r

So the number of 1s, 7, has a binomial distribution:

P = ())i = (129

These functions are shown in figure 4.11. The mean of r is Np1, and its
standard deviation is \/Npi(1 —p1) (p.1). If N is 100 then

7~ Np1++/Npi(l—p;)~10+3. (4.25)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

4.4: Typicality

1.2e+29 3e+299
le+29 -2.5e+299 - q
n(T) = (N) 8e+28 [- 2e+209 | B
T
6e+28 - -1.5e+299 - q
4e+28 - 1e+299 - q
2e+28 - 5e+298 - A
0 P S S ST N S R 0 PR SR SR 0 A G S R
0 10 20 30 40 50 60 70 80 90 100 0 100 200 300 400 500 600 700 800 9001000
T T
2005
— T _ N—r 2e05 | 4
P(x) =pi(1—p1)
1e-05 |- T

I T R S R B
0 10 20 30 40 50 60 70 80 90 100

0 0
-50 -500 =
R — 4 . L < i
logy P(x) @7 1000 | <

-150 B -1500 A
-200 B -2000 B
-250 B -2500 A
-300 B -3000 B

350 L 3500 A R R ST RO N

0 10 20 30 40 50 60 70 80 90 100 0 100 200 300 400 500 600 700 800 9001000

0.14 T T T T T T T 0.045 T T T T T T T
012 | 4 004ar 1
0.035 |- 1

— (N, N—r 01 e

n(r)P(x) = (T)pl(l — 1) s | i 0%22 s]
0.06 - e 0.02 | 4
o004 b 1 o015t —
0.01 - A
0.02 - b 0.005 [7

0 L P S R R T R 0 A

0 10 20 30 40 50 60 70 80 90 100 0 100 200 300 400 500 600 700 800 9001000
r T

Figure 4.11. Anatomy of the typical set 7. For p; = 0.1 and N = 100 and N = 1000, these graphs
show n(r), the number of strings containing r 1s; the probability P(x) of a single string
that contains r 1s; the same probability on a log scale; and the total probability n(r)P(x) of
all strings that contain r 1s. The number r is on the horizontal axis. The plot of logy P(x)
also shows by a dotted line the mean value of logy, P(x) = —N Ha(p1), which equals —46.9
when N = 100 and —469 when N = 1000. The typical set includes only the strings that
have log, P(x) close to this value. The range marked T shows the set Tyg (as defined in
section 4.4) for N = 100 and = 0.29 (left) and N = 1000, 8 = 0.09 (right).

79

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

80 4 — The Source Coding Theorem

If N =1000 then
r ~ 100 £ 10. (4.26)

Notice that as N gets bigger, the probability distribution of r becomes more
concentrated, in the sense that while the range of possible values of r grows
as N, the standard deviation of 7 grows only as v/N. That r is most likely to
fall in a small range of values implies that the outcome x is also most likely to
fall in a corresponding small subset of outcomes that we will call the typical
set.

Definition of the typical set

Let us define typicality for an arbitrary ensemble X with alphabet Ax. Our
definition of a typical string will involve the string’s probability. A long string
of N symbols will usually contain about p; N occurrences of the first symbol,
p2N occurrences of the second, etc. Hence the probability of this string is
roughly

P(X)iyp = P(21)P(x2)P(xs) ... P(xy) ~ p{P*Vpe) perV) (4 97)

so that the information content of a typical string is

1 1
log, e = N; pilog, o NH. (4.28)
So the random variable log,!/P(x), which is the information content of x, is
very likely to be close in value to NH. We build our definition of typicality
on this observation.

We define the typical elements of A% to be those elements that have prob-
ability close to 27NVH . (Note that the typical set, unlike the smallest sufficient
subset, does not include the most probable elements of A% , but we will show
that these most probable elements contribute negligible probability.)

We introduce a parameter § that defines how close the probability has to
be to 27VH for an element to be ‘typical’. We call the set of typical elements
the typical set, Tg:

1 1
TNﬂE{xeA%:‘NlogQW—H‘ <ﬂ}. (4.29)

We will show that whatever value of 3 we choose, the typical set contains
almost all the probability as N increases.

This important result is sometimes called the ‘asymptotic equipartition’
principle.

‘Asymptotic equipartition’ principle. For an ensemble of N independent
identically distributed (i.i.d.) random variables XV = (X1, Xo,..., Xx),
with N sufficiently large, the outcome x = (x1,x2,...,2xy) is almost
certain to belong to a subset of AY having only oNVH(X)
having probability ‘close to’ 2~ NH(X)

Notice that if H(X) < Ho(X) then 2VH(X) is a tiny fraction of the number
of possible outcomes [AY| = [Ax |V = 9NHo(X)

members, each

The term equipartition is chosen to describe the idea that the members of
the typical set have roughly equal probability. [This should not be taken too
literally, hence my use of quotes around ‘asymptotic equipartition’; see page
83.]

A second meaning for equipartition, in thermal physics, is the idea that each
degree of freedom of a classical system has equal average energy, %kT. This
second meaning is not intended here.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

4.5: Proofs 81

log, P(x)
~NH(X)

|
jvvg
R————— T

T

1111111111110...11111110111

0000100000010. .. 00001000010
0100000001000. .. 00010000000

0001000000000. .. 00000000000
0000000000000. .. 00000000000

Figure 4.12. Schematic diagram

The ‘asymptotic equipartition’ principle is equivalent to: showing all strings in the ensemble
ymp P P P d X" ranked by their probability,
Shannon’s source coding theorem (verbal statement). N iid. ran- and the typical set Tivg.

dom variables each with entropy H(X) can be compressed into more
than NH(X) bits with negligible risk of information loss, as N — oc;
conversely if they are compressed into fewer than NH(X) bits it is vir-
tually certain that information will be lost.

These two theorems are equivalent because we can define a compression algo-
rithm that gives a distinct name of length N H (X)) bits to each x in the typical
set.

» 4.5 Proofs

This section may be skipped if found tough going.

The law of large numbers
Our proof of the source coding theorem uses the law of large numbers.

Mean and variance of a real random variable are E[u] = @ =), P(u)u

and var(u) = 02 = E[(u — w)?] =Y, P(u)(u — u)?.

Technical note: strictly I am assuming here that u is a function u(zx)
of a sample z from a finite discrete ensemble X. Then the summations
> u P(u) f(u) should be written) P(x)f(u(x)). This means that P(u)
is a finite sum of delta functions. This restriction guarantees that the
mean and variance of u do exist, which is not necessarily the case for
general P(u).

Chebyshev’s inequality 1. Let ¢ be a non-negative real random variable,
and let a be a positive real number. Then

P(t>a) < (4.30)

Q|+

Proof: P(t > a) = 3,5, P(t). We multiply each term by ¢/a > 1 and
obtain: P(t > a) < -, P(t)t/a. We add the (non-negative) missing
terms and obtain: P(t > a) < >, P(t)t/a =t/a. O

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

82 4 — The Source Coding Theorem

Chebyshev’s inequality 2. Let x be a random variable, and let « be a
positive real number. Then

P((z— 7)?>a) < o2/a. (4.31)
Proof: Take t = (x — z)? and apply the previous proposition. a
Weak law of large numbers. Take z to be the average of N independent
random variables A1, ..., hy, having common mean h and common vari-

ance 03: T = + ZnN:1 hy,. Then
P((z — h)> > a) <oi/aN. (4.32)
Proof: obtained by showing that #Z = h and that o2 = o7 /N. O

We are interested in x being very close to the mean (« very small). No matter
how large J}QL is, and no matter how small the required « is, and no matter
how small the desired probability that (z — k)% > a, we can always achieve it
by taking N large enough.

Proof of theorem 4.1 (p.78)

We apply the law of large numbers to the random variable % log,, % defined

for x drawn from the ensemble XV, This random variable can be written as
the average of N information contents h,, = logy(1/P(x,)), each of which is a
random variable with mean H = H(X) and variance 02 = var[logy(1/P(x,))].
(Each term h,, is the Shannon information content of the nth outcome.)
We again define the typical set with parameters N and [thus:
Tag=dxe AV : | 210 L—H2<52 (4.33)
NG = XN P ' '
For all x € Tig, the probability of x satisfies
2~ NUH+P) o p(x) < 2~ NH=F), (4.34)

And by the law of large numbers,

2
PN’
We have thus proved the ‘asymptotic equipartition’ principle. As IV increases,
the probability that x falls in T3 approaches 1, for any 3. How does this
result relate to source coding?

We must relate Tg to Hs(XY). We will show that for any given & there

P(x € Tyg) >1— (4.35)

is a sufficiently big N such that Hs(XN) ~ NH. ~Hs(x™)

Part 1: £Hs(XN) < H +e. Ho(X)

The set Tiyg is not the best subset for compression. So the size of T'vg gives JHe

an upper bound on Hs. We show how small H(;(XN) must be by calculating g

how big Tvg could possibly be. We are free to set 3 to any convenient value. N

The smallest possible probability that a member of T3 can have is 2 N(HAB)

and the total probability contained by T'x3 can’t be any bigger than 1. So 0 1 35
Tyg| 2 NED) <1, (4.36)

Figure 4.13. Schematic illustration
of the two parts of the theorem.
|Tng| < oN(H+B) (4.37) Given any § and ¢, we show that
2 for large enough N, %Hg(XN)
If we set § = € and No such that 75— <4, then P(Tng) > 1—6, and the set lies (1) below the line H + € and
Tnp becomes a witness to the fact that Hs(X™) < log, |Tng| < N(H + e). (2) above the line I — e.

that is, the size of the typical set is bounded by

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

4.6: Comments

Part 2: £Hs(XN) > H —e.

Imagine that someone claims this second part is not so — that, for any N,
the smallest d-sufficient subset Ss is smaller than the above inequality would
allow. We can make use of our typical set to show that they must be mistaken.
Remember that we are free to set § to any value we choose. We will set
8 = €/2, so that our task is to prove that a subset S’ having || < 2N(H-26)
and achieving P(x € §') > 1 — ¢ cannot exist (for N greater than an Ny that
we will specify).
So, let us consider the probability of falling in this rival smaller subset S’. Tng s
The probability of the subset S’ is
S'"NTng

P(xeS') = P(xe S'NTng) + P(x € S'NTyp), (4.38) SN Twg

where Tg denotes the complement {x ¢ Txs}. The maximum value of
the first term is found if S’ N T contains oN(H=25) gutcomes all with the
maximum probability, 2~V =5 The maximum value the second term can
have is P(x € Tng). So:

2 2
ag _ 59—NgB g
R

P(x e S') < oN(H=26) 9—N(H—5) 4

We can now set 3 = €/2 and Ny such that P(x € S’) < 1 — §, which shows

that S” cannot satisfy the definition of a sufficient subset Ss. Thus any subset

S’ with size |S’| < 2NV(H=¢) has probability less than 1 —d, so by the definition
of Hs, Hs(XN) > N(H — ¢).

Thus for large enough N, the function & Hjs(X ") is essentially a constant

function of 4, for 0 < § < 1, as illustrated in figures 4.9 and 4.13. O

» 4.6 Comments

The source coding theorem (p.78) has two parts, %H(;(XN) < H + ¢, and
%H(;(XN) > H — e. Both results are interesting.

The first part tells us that even if the probability of error § is extremely
small, the number of bits per symbol %H(;(XN) needed to specify a long
N-symbol string x with vanishingly small error probability does not have to
exceed H + € bits. We need to have only a tiny tolerance for error, and the
number of bits required drops significantly from Hg(X) to (H + €).

What happens if we are yet more tolerant to compression errors? Part 2
tells us that even if § is very close to 1, so that errors are made most of the
time, the average number of bits per symbol needed to specify x must still be
at least H — € bits. These two extremes tell us that regardless of our specific
allowance for error, the number of bits per symbol needed to specify x is H
bits; no more and no less.

Caveat regarding ‘asymptotic equipartition’

I put the words ‘asymptotic equipartition’ in quotes because it is important
not to think that the elements of the typical set Tyg really do have roughly
the same probability as each other. They are similar in probability only in
the sense that their values of log, ﬁ are within 2N 3 of each other. Now, as
[is decreased, how does N have to increase, if we are to keep our bound on
the mass of the typical set, P(x € Tg) > 1 — ﬁ‘;—QN, constant? N must grow
as 1/32, so, if we write 3 in terms of N as a/v/N, for some constant «, then

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

84 4 — The Source Coding Theorem

the most probable string in the typical set will be of order 20N times greater
than the least probable string in the typical set. As 3 decreases, N increases,
and this ratio 20VN grows exponentially. Thus we have ‘equipartition’ only in
a weak sense!

Why did we introduce the typical set?

The best choice of subset for block compression is (by definition) S5, not a
typical set. So why did we bother introducing the typical set? The answer is,
we can count the typical set. We know that all its elements have ‘almost iden-
tical’ probability (27VH), and we know the whole set has probability almost
1, so the typical set must have roughly 2V elements. Without the help of
the typical set (which is very similar to Sj) it would have been hard to count
how many elements there are in Ss.

» 4.7 Exercises

Weighing problems

> Exercise 4.9.11] While some people, when they first encounter the weighing
problem with 12 balls and the three-outcome balance (exercise 4.1
(p.66)), think that weighing six balls against six balls is a good first
weighing, others say ‘no, weighing six against six conveys no informa-
tion at all’. Explain to the second group why they are both right and
wrong. Compute the information gained about which is the odd ball,
and the information gained about which is the odd ball and whether it is
heavy or light.

> Exercise 4.10.[%] Solve the weighing problem for the case where there are 39
balls of which one is known to be odd.

> Exercise 4.11.1%] You are given 16 balls, all of which are equal in weight except
for one that is either heavier or lighter. You are also given a bizarre two-
pan balance that can report only two outcomes: ‘the two sides balance’
or ‘the two sides do not balance’. Design a strategy to determine which
is the odd ball in as few uses of the balance as possible.

> Exercise 4.12.1%] You have a two-pan balance; your job is to weigh out bags of
flour with integer weights 1 to 40 pounds inclusive. How many weights
do you need? [You are allowed to put weights on either pan. You're only
allowed to put one flour bag on the balance at a time.]

Exercise 4.13.14 P-80] (a) Is it possible to solve exercise 4.1 (p.66) (the weigh-
ing problem with 12 balls and the three-outcome balance) using a
sequence of three fized weighings, such that the balls chosen for the
second weighing do not depend on the outcome of the first, and the
third weighing does not depend on the first or second?

(b) Find a solution to the general N-ball weighing problem in which
exactly one of N balls is odd. Show that in W weighings, an odd
ball can be identified from among N = (3" — 3)/2 balls.

Exercise 4.14.1%] You are given 12 balls and the three-outcome balance of exer-
cise 4.1; this time, two of the balls are odd; each odd ball may be heavy
or light, and we don’t know which. We want to identify the odd balls
and in which direction they are odd.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

4.7: Exercises

(a) Estimate how many weighings are required by the optimal strategy.
And what if there are three odd balls?

(b) How do your answers change if it is known that all the regular balls
weigh 100 g, that light balls weigh 99 g, and heavy ones weigh 110 g?

Source coding with a lossy compressor, with loss §

> Exercise 4.15.0% P87 Lot Py — {0.2,0.8}. Sketch 4 Hs(X™) as a function of
0 for N = 1,2 and 1000.

> Exercise 4.16.1%] Let Py = {0.5,0.5}. Sketch +Hs(Y™) as a function of § for
N =1,2,3 and 100.

> Exercise 4.17.[% P-87] (For physics students.) Discuss the relationship between
the proof of the ‘asymptotic equipartition’ principle and the equivalence
(for large systems) of the Boltzmann entropy and the Gibbs entropy.

Distributions that don’t obey the law of large numbers

The law of large numbers, which we used in this chapter, shows that the mean
of a set of IV i.i.d. random variables has a probability distribution that becomes
narrower, with width o 1/ V/N, as N increases. However, we have proved
this property only for discrete random variables, that is, for real numbers
taking on a finite set of possible values. While many random variables with
continuous probability distributions also satisfy the law of large numbers, there
are important distributions that do not. Some continuous distributions do not
have a mean or variance.

> Exercise 4.18.1% P88 Sletch the Cauchy distribution

1 1

P =z

x € (—o0,00). (4.40)
What is its normalizing constant Z7 Can you evaluate its mean or
variance?

Consider the sum z = x1 + x9, where x1 and x5 are independent random
variables from a Cauchy distribution. What is P(z)? What is the prob-
ability distribution of the mean of z1 and 2, T = (21 + x2)/2? What is
the probability distribution of the mean of N samples from this Cauchy
distribution?

Other asymptotic properties

Exercise 4.19.1%] Chernoff bound. We derived the weak law of large numbers
from Chebyshev’s inequality (4.30) by letting the random variable ¢ in
the inequality P(t > a) < t/a be a function, t = (x —Z)?, of the random
variable x we were interested in.

Other useful inequalities can be obtained by using other functions. The

Chernoff bound, which is useful for bounding the tails of a distribution,
is obtained by letting ¢ = exp(sx).
Show that

P(z > a) <e ®g(s), foranys>0 (4.41)

and
P(x <a) <e *g(s), foranys<0 (4.42)

85

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

86 4 — The Source Coding Theorem

where g(s) is the moment-generating function of z,
s) = ZP(.’I}) e’ (4.43)
xT

Curious functions related to plog1/p

Exercise 4.20.14 P89 This exercise has no purpose at all; it’s included for the
enjoyment of those who like mathematical curiosities.

Sketch the function

flz) = 2= (4.44)

for z > 0. Hint: Work out the inverse function to f — that is, the function
g(y) such that if x = ¢g(y) then y = f(z) — it’s closely related to plog1/p.

» 4.8 Solutions

Solution to exercise 4.2 (p.68). Let P(x,y) = P(z)P(y). Then

H(X,)Y) = ZP y) log #P() (4.45)
1

— Zp logp +ZP logp() (4.46)

= ZP)log —— P —l—ZP(y log P(l 3 (4.47)

= H(X)+H(Y). (4.48)

Solution to exercise 4.4 (p.73). An ASCII file can be reduced in size by a
factor of 7/8. This reduction could be achieved by a block code that maps
8-byte blocks into 7-byte blocks by copying the 56 information-carrying bits
into 7 bytes, and ignoring the last bit of every character.

Solution to exercise 4.5 (p.74). The pigeon-hole principle states: you can’t
put 16 pigeons into 15 holes without using one of the holes twice.

Similarly, you can’t give A x outcomes unique binary names of some length
[shorter than logs |Ax| bits, because there are only 2! such binary names,
and [< log, | Ax| implies 2! < |Ax|, so at least two different inputs to the
compressor would compress to the same output file.

Solution to exercise 4.8 (p.76). Between the cusps, all the changes in proba-
bility are equal, and the number of elements in T changes by one at each step.
So Hs varies logarithmically with (—4).

Solution to exercise 4.13 (p.84). This solution was found by Dyson and Lyness
in 1946 and presented in the following elegant form by John Conway in 1999.
Be warned: the symbols A, B, and C are used to name the balls, to name the
pans of the balance, to name the outcomes, and to name the possible states
of the odd ball!

(a) Label the 12 balls by the sequences
AAB ABA ABB ABC BBC BCA BCB BCC CAA CAB CAC CCA

and in the

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

4.8: Solutions

1st AAB ABA ABB ABC BBC BCA BCB BCC

2nd weighings put AAB CAA CAB CAC in pan A, ABA ABB ABC BBC in pan B.

3rd ABA BCA CAA CCA AAB ABB BCB CAB

Now in a given weighing, a pan will either end up in the

e Canonical position (C) that it assumes when the pans are balanced,
or

e Above that position (A), or
e Below it (B),

so the three weighings determine for each pan a sequence of three of
these letters.

If both sequences are CCC, then there’s no odd ball. Otherwise, for just
one of the two pans, the sequence is among the 12 above, and names
the odd ball, whose weight is Above or Below the proper one according
as the pan is A or B.

(b) In W weighings the odd ball can be identified from among
N = 3% -3)/2 (4.49)

balls in the same way, by labelling them with all the non-constant se-
quences of W letters from A, B, C whose first change is A-to-B or B-to-C
or C-to-A, and at the wth weighing putting those whose wth letter is A
in pan A and those whose wth letter is B in pan B.

Solution to exercise 4.15 (p.85). The curves + Hs(X ™) as a function of § for
N = 1,2 and 1000 are shown in figure 4.14. Note that H2(0.2) = 0.72 bits.

— N=1 N =2
| N=1000 --------
o8 b - 5§ LHsX) 2MX) b FHs(X) 2M:X)
06 I 0-0.2 1 2 0-0.04 1 4
| 0.2-1 0 1 0.04-0.2 0.79 3
04 0.2-0.36 0.5 2
0.36-1 0 1
0.2
% 02 0.4 06 08 1 Figure 4.14. %H@(X) (vertical

Solution to exercise 4.17 (p.85). The Gibbs entropy is kg >, p; In p%" where @
runs over all states of the system. This entropy is equivalent (apart from the
factor of kp) to the Shannon entropy of the ensemble.

Whereas the Gibbs entropy can be defined for any ensemble, the Boltz-
mann entropy is only defined for microcanonical ensembles, which have a
probability distribution that is uniform over a set of accessible states. The
Boltzmann entropy is defined to be Sp = kp In Q where € is the number of ac-
cessible states of the microcanonical ensemble. This is equivalent (apart from
the factor of kg) to the perfect information content Hy of that constrained
ensemble. The Gibbs entropy of a microcanonical ensemble is trivially equal
to the Boltzmann entropy.

axis) against § (horizontal), for
N =1,2,100 binary variables
with p; = 0.4.

87

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

88 4 — The Source Coding Theorem

We now consider a thermal distribution (the canonical ensemble), where
the probability of a state x is

P(x) = %exp (f}i’?) . (4.50)

With this canonical ensemble we can associate a corresponding microcanonical
ensemble, an ensemble with total energy fixed to the mean energy of the
canonical ensemble (fixed to within some precision €). Now, fixing the total
energy to a precision e is equivalent to fixing the value of In I/P(x) to within
ekgT'. Our definition of the typical set T'vg was precisely that it consisted
of all elements that have a value of log P(x) very close to the mean value of
log P(x) under the canonical ensemble, —N H(X). Thus the microcanonical
ensemble is equivalent to a uniform distribution over the typical set of the
canonical ensemble.

Our proof of the ‘asymptotic equipartition’ principle thus proves — for the
case of a system whose energy is separable into a sum of independent terms
— that the Boltzmann entropy of the microcanonical ensemble is very close
(for large N) to the Gibbs entropy of the canonical ensemble, if the energy of
the microcanonical ensemble is constrained to equal the mean energy of the
canonical ensemble.

Solution to exercise 4.18 (p.85). The normalizing constant of the Cauchy dis-

tribution {1
Pla)= =——
(z) Zx2+1
is o 1
_ _ -1, _ T T _

The mean and variance of this distribution are both undefined. (The distribu-
tion is symmetrical about zero, but this does not imply that its mean is zero.
The mean is the value of a divergent integral.) The sum z = x1 + 3, where
z1 and xg both have Cauchy distributions, has probability density given by
the convolution

P(z) = i/oo dz ! ! (4.52)
R A 1%‘%4—1(2—%1)24—17 '

which after a considerable labour using standard methods gives

1 T 2 1

P = —
(2) w2722 44 w2422

(4.53)

which we recognize as a Cauchy distribution with width parameter 2 (where
the original distribution has width parameter 1). This implies that the mean
of the two points, & = (z; + x2)/2 = z/2, has a Cauchy distribution with
width parameter 1. Generalizing, the mean of N samples from a Cauchy
distribution is Cauchy-distributed with the same parameters as the individual
samples. The probability distribution of the mean does not become narrower
as 1/v/N.

The central-limit theorem does not apply to the Cauchy distribution, be-
cause it does not have a finite variance.

An alternative neat method for getting to equation (4.53) makes use of the
Fourier transform of the Cauchy distribution, which is a biexponential e~*!.
Convolution in real space corresponds to multiplication in Fourier space, so
the Fourier transform of z is simply e ~12“l. Reversing the transform, we obtain
equation (4.53).

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

4.8: Solutions 89

Solution to exercise 4.20 (p.86). The function f(z) has inverse function

9(y) =y, (4.54) -
Note 20 -
log g(y) = 1/ylogy. (4.55) -
I obtained a tentative graph of f(z) by plotting g(y) with y along the vertical T 02 04 o5 o8 1 12 14
axis and g(y) along the horizontal axis. The resulting graph suggests that 5 -
f(z) is single valued for = € (0,1), and looks surprisingly well-behaved and ad
ordinary; for = € (1,e/¢), f(x) is two-valued. f(1/2) is equal both to 2 and as
4. For z > e'/¢ (which is about 1.44), f(z) is infinite. However, it might be 2
argued that this approach to sketching f(x) is only partly valid, if we define f 14
as the limit of the sequence of functions z, =%, ®", .. .; this sequence does not 0
have a limit for 0 < z < (1/e)® ~ 0.07 on account of a pitchfork bifurcation 002 0408 0E o nE
at 2 = (1/e)%; and for z € (1,e'/¢), the sequence’s limit is single-valued — the 05
lower of the two values sketched in the figure. 04

Figure 4.15. f(z) = :U’LI shown
at three different scales.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

About Chapter 5

In the last chapter, we saw a proof of the fundamental status of the entropy
as a measure of average information content. We defined a data compression
scheme using fized length block codes, and proved that as IV increases, it is
possible to encode N i.i.d. variables x = (x1,...,zy) into a block of N(H (X)+
€) bits with vanishing probability of error, whereas if we attempt to encode
XN into N(H(X) — ¢) bits, the probability of error is virtually 1.

We thus verified the possibility of data compression, but the block coding
defined in the proof did not give a practical algorithm. In this chapter and
the next, we study practical data compression algorithms. Whereas the last
chapter’s compression scheme used large blocks of fized size and was lossy,
in the next chapter we discuss variable-length compression schemes that are
practical for small block sizes and that are not lossy.

Imagine a rubber glove filled with water. If we compress two fingers of the
glove, some other part of the glove has to expand, because the total volume
of water is constant. (Water is essentially incompressible.) Similarly, when
we shorten the codewords for some outcomes, there must be other codewords
that get longer, if the scheme is not lossy. In this chapter we will discover the
information-theoretic equivalent of water volume.

Before reading Chapter 5, you should have worked on exercise 2.26 (p.37).
We will use the following notation for intervals:

z €[1,2) means that > 1 and = < 2;
z € (1,2] means that z > 1 and z < 2.

90

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Symbol Codes

In this chapter, we discuss variable-length symbol codes, which encode one
source symbol at a time, instead of encoding huge strings of N source sym-
bols. These codes are lossless: unlike the last chapter’s block codes, they are
guaranteed to compress and decompress without any errors; but there is a
chance that the codes may sometimes produce encoded strings longer than
the original source string.

The idea is that we can achieve compression, on average, by assigning
shorter encodings to the more probable outcomes and longer encodings to the
less probable.

The key issues are:

What are the implications if a symbol code is lossless? If some code-
words are shortened, by how much do other codewords have to be length-
ened?

Making compression practical. How can we ensure that a symbol code is
easy to decode?

Optimal symbol codes. How should we assign codelengths to achieve the
best compression, and what is the best achievable compression?

We again verify the fundamental status of the Shannon information content
and the entropy, proving:

Source coding theorem (symbol codes). There exists a variable-length
encoding C of an ensemble X such that the average length of an en-
coded symbol, L(C, X), satisfies L(C,X) € [H(X),H(X) +1).

The average length is equal to the entropy H(X) only if the codelength
for each outcome is equal to its Shannon information content.

We will also define a constructive procedure, the Huffman coding algorithm,
that produces optimal symbol codes.

Notation for alphabets. A" denotes the set of ordered N-tuples of ele-
ments from the set A, i.e., all strings of length N. The symbol A™ will
denote the set of all strings of finite length composed of elements from
the set A.

Example 5.1. {0,1}® = {000,001,010,011,100,101,110,111}.

Example 5.2. {0,1}" = {0,1,00,01,10,11,000,001,...}.

91

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

92 5 — Symbol Codes

» 5.1 Symbol codes

A (binary) symbol code C for an ensemble X is a mapping from the range
of z, Ax={a1,..., ar}, to {0,1}*. ¢(z) will denote the codeword cor-
responding to z, and I(z) will denote its length, with I; = I(a;).

The extended code C* is a mapping from A% to {0,1}* obtained by
concatenation, without punctuation, of the corresponding codewords:

ct(

1T ... N) = c(x1)c(xe) ... c(TN). (5.1)

[The term ‘mapping’ here is a synonym for ‘function’.]

Example 5.3. A symbol code for the ensemble X defined by

Ax = {a, b, c, d}
b ’ 2 a; cla;) I
Py = {Val/a Vs Vs, (5:2) o cla) L
a 1000 4
is Cy, shown in the margin. Co: b 0100 4
Using the extended code, we may encode acdbac as c 0010 4
d 0001 4

c"(acdbac) = 100000100001010010000010. (5.3)

There are basic requirements for a useful symbol code. First, any encoded
string must have a unique decoding. Second, the symbol code must be easy to
decode. And third, the code should achieve as much compression as possible.

Any encoded string must have a unique decoding

A code C(X) is uniquely decodeable if, under the extended code C*, no
two distinct strings have the same encoding, i.e.,

VX,yGA}, x#£y = c"(x)#c(y). (5.4)
The code Cy defined above is an example of a uniquely decodeable code.

The symbol code must be easy to decode

A symbol code is easiest to decode if it is possible to identify the end of a
codeword as soon as it arrives, which means that no codeword can be a prefix
of another codeword. [A word ¢ is a prefix of another word d if there exists a
tail string ¢ such that the concatenation ct is identical to d. For example, 1 is
a prefix of 101, and so is 10.]

We will show later that we don’t lose any performance if we constrain our
symbol code to be a prefix code.

A symbol code is called a prefix code if no codeword is a prefix of any
other codeword.

A prefix code is also known as an instantaneous or self-punctuating code,
because an encoded string can be decoded from left to right without
looking ahead to subsequent codewords. The end of a codeword is im-
mediately recognizable. A prefix code is uniquely decodeable.

Prefix codes are also known as ‘prefix-free codes’ or ‘prefix condition codes’.

Prefix codes correspond to trees, as illustrated in the margin of the next page.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

5.1: Symbol codes 93

0
Example 5.4. The code C; = {0,101} is a prefix code because 0 is not a prefix 9
of 101, nor is 101 a prefix of 0. 1 0
C1 1~101

Example 5.5. Let Cy = {1,101}. This code is not a prefix code because 1 is a
prefix of 101.

Example 5.6. The code C3 = {0,10,110,111} is a prefix code.

0
Example 5.7. The code Cy = {00,01,10,11} is a prefix code. 9
010
, [1, p.104] O 1 0
ﬁ% Exercise 5.8.147 P Is C5 uniquely decodeable? 1 110
1~N111

Example 5.9. Consider exercise 4.1 (p.66) and figure 4.2 (p.69). Any weighing
strategy that identifies the odd ball and whether it is heavy or light can 00

0
be viewed as assigning a ternary code to each of the 24 possible states. 0 T~01
This code is a prefix code. 010

1~ 11

Ci

The code should achieve as much compression as possible
Prefix codes can be represented

The expected length L(C, X) of a symbol code C for ensemble X is on binary trees. Complete prefix
codes correspond to binary trees
L(C,X) = Z P(z)l(x). (5.5) with no unused branches. C is an

i 1 .
oy incomplete code

We may also write this quantity as

I
L(C,X) = pils (5.6)
i=1
where I = | Ax|. .
3
Example 5.10. Let
Ax = {a b, c, d}, . ai cla;) pi h(pi) L
and Px = {V2,1/1,1/s,1s}, (5.7) 0 o 1.0

Yy 20
110 18 3.0
111 18 3.0

and consider the code C's. The entropy of X is 1.75 bits, and the expected
length L(C3, X)) of this code is also 1.75 bits. The sequence of symbols
x = (acdbac) is encoded as ¢*(x) = 0110111100110. Cj is a prefix code
and is therefore uniquely decodeable. Notice that the codeword lengths
satisfy I; = logy(1/p;), or equivalently, p; =275,

Q0 T W
=
o
W W N =

Cy Cs
Example 5.11. Consider the fixed length code for the same ensemble X, Cjy. a 00
The expected length L(Cy, X) is 2 bits. b 01 1
c 10 00
Example 5.12. Consider C5. The expected length L(C5, X) is 1.25 bits, which 4 11 11
is less than H(X). But the code is not uniquely decodeable. The se-
quence x = (acdbac) encodes as 000111000, which can also be decoded Ci:

as (cabdca).

a; cla;) pi hpi) 1

<.

Example 5.13. Consider the code Cs. The expected length L(Cg, X) of this
code is 1.75 bits. The sequence of symbols x = (acdbac) is encoded as Y 2'
c*(x) = 0011111010011. ol 420

o118 3.0

111 18 3.0

Q0 T e
W W N =

Is Cg a prefix code? It is not, because c(a) = 0 is a prefix of both ¢(b)
and ¢(c).

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

94 5 — Symbol Codes

Is Cg uniquely decodeable? This is not so obvious. If you think that it
might not be uniquely decodeable, try to prove it so by finding a pair of
strings x and y that have the same encoding. [The definition of unique
decodeability is given in equation (5.4).]

Cg certainly isn’t easy to decode. When we receive ‘00, it is possible
that x could start ‘aa’, ‘ab’ or ‘ac’. Once we have received ‘001111’
the second symbol is still ambiguous, as x could be ‘abd...’ or ‘acd...’.
But eventually a unique decoding crystallizes, once the next 0 appears
in the encoded stream.

Cg is in fact uniquely decodeable. Comparing with the prefix code Cj,
we see that the codewords of Cg are the reverse of C3’s. That Cj is
uniquely decodeable proves that Cg is too, since any string from Cjy is
identical to a string from Cj5 read backwards.

» 5.2 What limit is imposed by unique decodeability?

We now ask, given a list of positive integers {l;}, does there exist a uniquely
decodeable code with those integers as its codeword lengths? At this stage, we
ignore the probabilities of the different symbols; once we understand unique
decodeability better, we’ll reintroduce the probabilities and discuss how to
make an optimal uniquely decodeable symbol code.

In the examples above, we have observed that if we take a code such as
{00,01,10,11}, and shorten one of its codewords, for example 00 — 0, then
we can retain unique decodeability only if we lengthen other codewords. Thus
there seems to be a constrained budget that we can spend on codewords, with
shorter codewords being more expensive.

Let us explore the nature of this budget. If we build a code purely from
codewords of length [equal to three, how many codewords can we have and
retain unique decodeability? The answer is 2! = 8. Once we have chosen all
eight of these codewords, is there any way we could add to the code another
codeword of some other length and retain unique decodeability? It would
seem not.

What if we make a code that includes a length-one codeword, ‘0’; with the
other codewords being of length three? How many length-three codewords can
we have? If we restrict attention to prefix codes, then we can have only four
codewords of length three, namely {100,101,110,111}. What about other
codes? Is there any other way of choosing codewords of length 3 that can give
more codewords? Intuitively, we think this unlikely. A codeword of length 3
appears to have a cost that is 22 times smaller than a codeword of length 1.

Let’s define a total budget of size 1, which we can spend on codewords. If
we set the cost of a codeword whose length is [to 27!, then we have a pricing
system that fits the examples discussed above. Codewords of length 3 cost
1/8 each; codewords of length 1 cost 1/2 each. We can spend our budget on
any codewords. If we go over our budget then the code will certainly not be
uniquely decodeable. If, on the other hand,

doothi<, (5.8)
i

then the code may be uniquely decodeable. This inequality is the Kraft in-
equality.

Kraft inequality. For any uniquely decodeable code C(X) over the binary

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

5.2: What limit is imposed by unique decodeability?

alphabet {0, 1}, the codeword lengths must satisfy:

I
doothi<, (5.9)
=1

where I = |Ax]|.

Completeness. If a uniquely decodeable code satisfies the Kraft inequality
with equality then it is called a complete code.

We want codes that are uniquely decodeable; prefix codes are uniquely de-
codeable, and are easy to decode. So life would be simpler for us if we could
restrict attention to prefix codes. Fortunately, for any source there is an op-
timal symbol code that is also a prefix code.

Kraft inequality and prefix codes. Given a set of codeword lengths that
satisfy the Kraft inequality, there exists a uniquely decodeable prefix
code with these codeword lengths.

The Kraft inequality might be more accurately referred to as the Kraft—
McMillan inequality: Kraft proved that if the inequality is satisfied, then a
prefix code exists with the given lengths. McMillan (1956) proved the con-
verse, that unique decodeability implies that the inequality holds.

Proof of the Kraft inequality. Define S =3, 27l Consider the quantity

N I I I

i1=lip=1 iy=1

The quantity in the exponent, (I;, +l;, + -+ +1;,), is the length of the
encoding of the string x = a;,a;, ... a;,. For every string x of length IV,
there is one term in the above sum. Introduce an array A; that counts
how many strings x have encoded length [. Then, defining [,,;, = min; [;

and lpax = max; l;:
Nlmax

SN=3" 274, (5.11)
[=Nlnin

Now assume C is uniquely decodeable, so that for all x # y, ¢t (x) #
¢ (y). Concentrate on the x that have encoded length [. There are a
total of 2! distinct bit strings of length I, so it must be the case that

Al < 2l. So
Nlmax Nlmax
SV="3" 2774 < > 1 < Nigax (5.12)
I=Nlnin [=Nlnin

Thus SV < laxN for all N. Now if S were greater than 1, then as N
increases, S™ would be an exponentially growing function, and for large
enough N, an exponential always exceeds a polynomial such as lyax V.
But our result (SY < laxN) is true for any N. Therefore S < 1. O

b Exercise 5.14.[% P-104] prove the result stated above, that for any set of code-
word lengths {l;} satisfying the Kraft inequality, there is a prefix code
having those lengths.

95

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

96

0000
000 0001
00
0010
001
0011
0
0100
010 0101
01
0110
011
0111
1000
100 1001
10
1010
101
1011
1
1100
110
1 1101
1110
111
1111

Thetotal symbol code budget

01

5 — Symbol Codes

Figure 5.1. The symbol coding
budget. The ‘cost’ 2~ of each
codeword (with length [) is
indicated by the size of the box it
is written in. The total budget
available when making a uniquely
decodeable code is 1.

You can think of this diagram as
showing a codeword supermarket,
with the codewords arranged in
aisles by their length, and the cost
of each codeword indicated by the
size of its box on the shelf. If the
cost of the codewords that you
take exceeds the budget then your
code will not be uniquely
decodeable.

Figure 5.2. Selections of
codewords made by codes

Cy, C3,Cy and Cg from section
5.1.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

5.3: What’s the most compression that we can hope for?

A pictorial view of the Kraft inequality may help you solve this exercise.
Imagine that we are choosing the codewords to make a symbol code. We can
draw the set of all candidate codewords in a supermarket that displays the
‘cost’ of the codeword by the area of a box (figure 5.1). The total budget
available — the ‘1’ on the right-hand side of the Kraft inequality — is shown at
one side. Some of the codes discussed in section 5.1 are illustrated in figure
5.2. Notice that the codes that are prefix codes, Cy, C3, and Cy, have the
property that to the right of any selected codeword, there are no other selected
codewords — because prefix codes correspond to trees. Notice that a complete
prefix code corresponds to a complete tree having no unused branches.

We are now ready to put back the symbols’ probabilities {p;}. Given a
set of symbol probabilities (the English language probabilities of figure 2.1,
for example), how do we make the best symbol code — one with the smallest
possible expected length L(C, X)? And what is that smallest possible expected
length? It’s not obvious how to assign the codeword lengths. If we give short
codewords to the more probable symbols then the expected length might be
reduced; on the other hand, shortening some codewords necessarily causes
others to lengthen, by the Kraft inequality.

» 5.3 What’s the most compression that we can hope for?

We wish to minimize the expected length of a code,
L(C,X) = > pili (5.13)

As you might have guessed, the entropy appears as the lower bound on the
expected length of a code.

Lower bound on expected length. The expected length L(C,X) of a
uniquely decodeable code is bounded below by H(X).

Proof. We define the implicit probabilities ¢; = 2% /z, where z = Do 27l 5o
that I; = log 1/¢; —log z. We then use Gibbs’ inequality, >, p;log1/q; >
> pilog 1/p;, with equality if ¢; =p;, and the Kraft inequality z < 1:

L(C,X) = Y pli=)Y pilogl/g —logz (5.14)
> Y pilogl/p; —logz (5.15)
i
> H(X). (5.16)
The equality L(C, X)= H(X) is achieved only if the Kraft equality z=1
is satisfied, and if the codelengths satisfy I; = log(1/p;). O

This is an important result so let’s say it again:
Optimal source codelengths. The expected length is minimized and is

equal to H(X) only if the codelengths are equal to the Shannon in-
formation contents:

li =logy(1/pi). (5.17)

Implicit probabilities defined by codelengths. Conversely, any choice
of codelengths {l;} implicitly defines a probability distribution {¢;},

a=2""/z (5.18)

for which those codelengths would be the optimal codelengths. If the

code is complete then z = 1 and the implicit probabilities are given by
qi =271,

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

98 5 — Symbol Codes

» 5.4 How much can we compress?

So, we can’t compress below the entropy. How close can we expect to get to
the entropy?

Theorem 5.1 Source coding theorem for symbol codes. For an ensemble X
there exists a prefix code C with expected length satisfying

H(X) < L(C,X) < H(X) + 1. (5.19)

Proof. We set the codelengths to integers slightly larger than the optimum
lengths:

l; = [logy(1/pi)] (5.20)
where [I*] denotes the smallest integer greater than or equal to [*. [We
are not asserting that the optimal code necessarily uses these lengths,
we are simply choosing these lengths because we can use them to prove
the theorem.]

We check that there is a prefix code with these lengths by confirming
that the Kraft inequality is satisfied.

227& — 227(10g2(1/pi)] S Z 2*108;2(1/171') — Zpi =1. (521)
i i i g

Then we confirm

L(C.X) = sz- Mog(1/p)] < Zpi(log(l/pi)ﬂ) =H(X)+1. (5.22)

P(x)

0.0575
0.0128
0.0263
0.0285
0.0913
0.0173
0.0133
0.0313
0.0599
0.0006
0.0084
0.0335
0.0235
0.0596
0.0689
0.0192
0.0008
0.0508
0.0567
0.0706
0.0334
0.0069
0.0119
0.0073
0.0164
0.0007
0.1928

O

The cost of using the wrong codelengths

If we use a code whose lengths are not equal to the optimal codelengths, the
average message length will be larger than the entropy.

If the true probabilities are {p;} and we use a complete code with lengths
l;, we can view those lengths as defining implicit probabilities ¢; = 27%. Con-
tinuing from equation (5.14), the average length is

L(C,X)=H(X)+ sz‘ log pi/qi, (5.23)

i.e., it exceeds the entropy by the relative entropy Dkr(p|lq) (as defined on
p.-34).

INKKE<Edtn R QODOBEHRRORERHOALOT P B

» 5.5 Optimal source coding with symbol codes: Huffman coding

Given a set of probabilities P, how can we design an optimal prefix code?

For example, what is the best symbol code for the English language ensemble Figure 5.3. An ensemble in need of
shown in figure 5.37 When we say ‘optimal’, let’s assume our aim is to a symbol code.

minimize the expected length L(C, X).

How not to do it

One might try to roughly split the set Ax in two, and continue bisecting the
subsets so as to define a binary tree from the root. This construction has the
right spirit, as in the weighing problem, but it is not necessarily optimal; it
achieves L(C, X) < H(X) + 2.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

5.5: Optimal source coding with symbol codes: Huffman coding

The Huffman coding algorithm

We now present a beautifully simple algorithm for finding an optimal prefix
code. The trick is to construct the code backwards starting from the tails of
the codewords; we build the binary tree from its leaves.

Algorithm 5.4. Huffman coding
1. Take the two least probable symbols in the alphabet. These two algorithm.
symbols will be given the longest codewords, which will have equal
length, and differ only in the last digit.

2. Combine these two symbols into a single symbol, and repeat.

Since each step reduces the size of the alphabet by one, this algorithm will
have assigned strings to all the symbols after |Ax| — 1 steps.

Example 5.15. Let Ax={a, b, ¢ d, e }
and Py ={0.25,0.25,0.2,0.15,0.15 }.

99

T stepl step2 step3d step4

o 0 a; p; h(pi) Ui c(aq)
a 0.25 0.25 o 0.25 0.557 1.0 2 0.25 50 2 00
b 025— 0.257 0.45 0.4571 b 025 20 2 10
c 02 7—/702"71 c 0.2 23 2 11
d 0.15% 03 —o03 /1 d 015 27 3 010
e 01571 e 0.15 27 3 o011

The codewords are then obtained by concatenating the binary digits in =~ Table 5.5. Code created by the
reverse order: C' = {00,10,11,010,011}. The codelengths selected ~ Huffman algorithm.

by the Huffman algorithm (column 4 of table 5.5) are in some cases

longer and in some cases shorter than the ideal codelengths, the Shannon

information contents logs 1/p; (column 3). The expected length of the

code is L = 2.30 bits, whereas the entropy is H = 2.2855 bits. O

If at any point there is more than one way of selecting the two least probable
symbols then the choice may be made in any manner — the expected length of
the code will not depend on the choice.

Exercise 5.16.1% P-105] Prove that there is no better symbol code for a source
than the Huffman code.

Example 5.17. We can make a Huffman code for the probability distribution
over the alphabet introduced in figure 2.1. The result is shown in fig-
ure 5.6. This code has an expected length of 4.15 bits; the entropy of
the ensemble is 4.11 bits. Observe the disparities between the assigned
codelengths and the ideal codelengths log, 1/p;.

Constructing a binary tree top-down is suboptimal

In previous chapters we studied weighing problems in which we built ternary
or binary trees. We noticed that balanced trees — ones in which, at every step,
the two possible outcomes were as close as possible to equiprobable — appeared
to describe the most efficient experiments. This gave an intuitive motivation
for entropy as a measure of information content.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

100
ai P logy o= Ui ca;)
a 0.0575 4.1 4 0000
b 0.0128 6.3 6 001000
c 0.0263 5.2 5 00101
d 0.0285 5.1 5 10000
e 0.0913 3.5 4 1100
£ 0.0173 5.9 6 111000
g 0.0133 6.2 6 001001
h 0.0313 5.0 5 10001
i 0.0599 4.1 4 1001
j 0.0006 10.7 10 1101000000
k 0.0084 6.9 7 1010000
1 0.0335 49 5 11101
m 0.0235 5.4 6 110101
n 0.0596 4.1 4 0001
o 0.0689 39 4 1011
p 0.0192 5.7 6 111001
q 0.0008 10.3 9 110100001
r 0.0508 4.3 5 11011
s 0.0567 4.1 4 0011
t 0.0706 3.8 4 1111
u 0.0334 49 5 10101
v 0.0069 7.2 8 11010001
w 0.0119 6.4 7 1101001
x 0.0073 7.1 7 1010001
y 0.0164 5.9 6 101001
z 0.0007 10.4 10 1101000001
- 0.1928 2.4 2 01

It is not the case, however, that optimal codes can always be constructed
by a greedy top-down method in which the alphabet is successively divided
into subsets that are as near as possible to equiprobable.

Example 5.18. Find the optimal binary symbol code for the ensemble:

AX :{ a, ba <, da e, f7 g }

Px = {0.01,0.24,0.05,0.20,0.47,0.01, 0.02 } ~ (5.24)

Notice that a greedy top-down method can split this set into two sub-
sets {a,b,c,d} and {e, £, g} which both have probability 1/2, and that
{a, b, c,d} can be divided into subsets {a, b} and {c,d}, which have prob-
ability 1/4; so a greedy top-down method gives the code shown in the
third column of table 5.7, which has expected length 2.53. The Huffman
coding algorithm yields the code shown in the fourth column, which has
expected length 1.97. O

» 5.6 Disadvantages of the Huffman code

The Huffman algorithm produces an optimal symbol code for an ensemble,
but this is not the end of the story. Both the word ‘ensemble’ and the phrase
‘symbol code’ need careful attention.

Changing ensemble

If we wish to communicate a sequence of outcomes from one unchanging en-
semble, then a Huffman code may be convenient. But often the appropriate

5 — Symbol Codes

Figure 5.6. Huffman code for the
English language ensemble

(monogram statistics).

a; p; Greedy Huffman
a .01 o000 000000
b .24 001 01

c .05 o010 0001

d .20 o011 001

e 47 10 1

f .01 110 000001
g .02 111 00001

Table 5.7. A greedily-constructed
code compared with the Huffman

code.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

5.6: Disadvantages of the Huffman code 101

ensemble changes. If for example we are compressing text, then the symbol
frequencies will vary with context: in English the letter u is much more prob-
able after a q than after an e (figure 2.3). And furthermore, our knowledge of
these context-dependent symbol frequencies will also change as we learn the
statistical properties of the text source.

Huffman codes do not handle changing ensemble probabilities with any
elegance. One brute-force approach would be to recompute the Huffman code
every time the probability over symbols changes. Another attitude is to deny
the option of adaptation, and instead run through the entire file in advance
and compute a good probability distribution, which will then remain fixed
throughout transmission. The code itself must also be communicated in this
scenario. Such a technique is not only cumbersome and restrictive, it is also
suboptimal, since the initial message specifying the code and the document
itself are partially redundant. This technique therefore wastes bits.

The extra bit

An equally serious problem with Huffman codes is the innocuous-looking ‘ex-
tra bit’ relative to the ideal average length of H(X) — a Huffman code achieves
a length that satisfies H(X) < L(C, X) < H(X)+1, as proved in theorem 5.1.
A Huffman code thus incurs an overhead of between 0 and 1 bits per symbol.
If H(X) were large, then this overhead would be an unimportant fractional
increase. But for many applications, the entropy may be as low as one bit
per symbol, or even smaller, so the overhead L(C,X) — H(X) may domi-
nate the encoded file length. Consider English text: in some contexts, long
strings of characters may be highly predictable. For example, in the context
‘strings_of_ch’, one might predict the next nine symbols to be ‘aracters_’
with a probability of 0.99 each. A traditional Huffman code would be obliged
to use at least one bit per character, making a total cost of nine bits where
virtually no information is being conveyed (0.13 bits in total, to be precise).
The entropy of English, given a good model, is about one bit per character
(Shannon, 1948), so a Huffman code is likely to be highly inefficient.

A traditional patch-up of Huffman codes uses them to compress blocks of
symbols, for example the ‘extended sources’ XV we discussed in Chapter 4.
The overhead per block is at most 1 bit so the overhead per symbol is at most
1/N bits. For sufficiently large blocks, the problem of the extra bit may be
removed — but only at the expenses of (a) losing the elegant instantaneous
decodeability of simple Huffman coding; and (b) having to compute the prob-
abilities of all relevant strings and build the associated Huffman tree. One will
end up explicitly computing the probabilities and codes for a huge number of
strings, most of which will never actually occur. (See exercise 5.29 (p.103).)

Beyond symbol codes

Huffman codes, therefore, although widely trumpeted as ‘optimal’, have many
defects for practical purposes. They are optimal symbol codes, but for practi-
cal purposes we don’t want a symbol code.

The defects of Huffman codes are rectified by arithmetic coding, which
dispenses with the restriction that each symbol must translate into an integer
number of bits. Arithmetic coding is the main topic of the next chapter.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

102

» 5.7 Summary
Kraft inequality. If a code is uniquely decodeable its lengths must satisfy
dooh<n (5.25)
i
For any lengths satisfying the Kraft inequality, there exists a prefix code
with those lengths.

Optimal source codelengths for an ensemble are equal to the Shannon
information contents

1
l; = logy —, 5.26
i 25 (5.26)
and conversely, any choice of codelengths defines implicit probabilities
27k

The relative entropy Dxr,(p||q) measures how many bits per symbol are
wasted by using a code whose implicit probabilities are q, when the
ensemble’s true probability distribution is p.

Source coding theorem for symbol codes. For an ensemble X, there ex-
ists a prefix code whose expected length satisfies

H(X) < L(C,X) < H(X) + 1. (5.28)

The Huffman coding algorithm generates an optimal symbol code itera-
tively. At each iteration, the two least probable symbols are combined.

» 5.8 Exercises

> Exercise 5.19.[2] Ts the code {00,11,0101,111,1010,100100,0110} uniquely
decodeable?

> Exercise 5.20.1%! Is the ternary code {00,012,0110,0112, 100,201,212, 22}
uniquely decodeable?

ﬁ% Exercise 5.21.1% P-106] \ake Huffman codes for X2, X3 and X* where Ax =
{0,1} and Px = {0.9,0.1}. Compute their expected lengths and com-
pare them with the entropies H(X?), H(X?3) and H(X*).

Repeat this exercise for X2 and X* where Px = {0.6,0.4}.

ﬁ% Exercise 5.22.1% P-106] pind a probability distribution {p1, pa2, p3, p4} such that
there are two optimal codes that assign different lengths {l;} to the four
symbols.

Exercise 5.23.[7] (Continuation of exercise 5.22.) Assume that the four proba-
bilities {p1, p2, ps, p4} are ordered such that p; > ps > ps > py > 0. Let
Q be the set of all probability vectors p such that there are two optimal
codes with different lengths. Give a complete description of Q. Find
three probability vectors qV, 9@, ®, which are the convex hull of Q,
i.e., such that any p € Q can be written as

p = a4+ p2q® + p3q®, (5.29)

where {u;} are positive.

5 — Symbol Codes

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

5.8: Exercises 103

b Exercise 5.24.[1] Write a short essay discussing how to play the game of twenty
questions optimally. [In twenty questions, one player thinks of an object,
and the other player has to guess the object using as few binary questions
as possible, preferably fewer than twenty.]

> Exercise 5.25.[2] Show that, if each probability p; is equal to an integer power
of 2 then there exists a source code whose expected length equals the
entropy.

> Exercise 5.26.[% P106] Make ensembles for which the difference between the
entropy and the expected length of the Huffman code is as big as possible.

> Exercise 5.27.[% P106] A source X has an alphabet of eleven characters
{a,b,c,d,e,f,g,h, i,j,k},

all of which have equal probability, 1/11.

Find an optimal uniquely decodeable symbol code for this source. How
much greater is the expected length of this optimal code than the entropy
of X7

> Exercise 5.28.1%] Consider the optimal symbol code for an ensemble X with
alphabet size I from which all symbols have identical probability p =
1/1. I is not a power of 2.

Show that the fraction fT of the I symbols that are assigned codelengths

equal to
I™ = [logy I (5.30)
satisfies
2kt
ff=2- - (5.31)

and that the expected length of the optimal symbol code is
L=1"—-1+f". (5.32)

By differentiating the excess length AL = L — H(X) with respect to I,
show that the excess length is bounded by
In(In 2) 1

L5~ g = 0.086. (5.33)

AL<1-

ﬁ% Exercise 5.29.12] Consider a sparse binary source with Px = {0.99,0.01}. Dis-
cuss how Huffman codes could be used to compress this source efficiently.
Estimate how many codewords your proposed solutions require.

> Exercise 5.30.[%] Scientific American carried the following puzzle in 1975.

The poisoned glass. ‘Mathematicians are curious birds’, the police
commissioner said to his wife. ‘You see, we had all those partly
filled glasses lined up in rows on a table in the hotel kitchen. Only
one contained poison, and we wanted to know which one before
searching that glass for fingerprints. Our lab could test the liquid
in each glass, but the tests take time and money, so we wanted to
make as few of them as possible by simultaneously testing mixtures
of small samples from groups of glasses. The university sent over a

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

104 5 — Symbol Codes

mathematics professor to help us. He counted the glasses, smiled
and said:

¢ “Pick any glass you want, Commissioner. We'll test it first.”

‘ “But won’t that waste a test?” I asked.

¢ “No,” he said, “it’s part of the best procedure. We can test one
glass first. It doesn’t matter which one.”’

‘How many glasses were there to start with?’ the commissioner’s
wife asked.

‘I don’t remember. Somewhere between 100 and 200.’

What was the exact number of glasses?

Solve this puzzle and then explain why the professor was in fact wrong
and the commissioner was right. What is in fact the optimal procedure
for identifying the one poisoned glass? What is the expected waste
relative to this optimum if one followed the professor’s strategy? Explain
the relationship to symbol coding.

ﬁ% Exercise 5.31.1% P-106] Agsume that a sequence of symbols from the ensemble
X introduced at the beginning of this chapter is compressed using the
code C3. Imagine picking one bit at random from the binary encoded
sequence ¢ = c(z1)c(r2)c(xs) What is the probability that this bit

isal?

03:

a; cla;) pi h(ps) 1
0 o 1.0
10 Yy 20
110 18 3.0
111 18 3.0

<.

> Exercise 5.32.[% P107] fiow should the binary Huffman encoding scheme be
modified to make optimal symbol codes in an encoding alphabet with ¢
symbols? (Also known as ‘radix ¢’.)

Q0 o p
W W N =

Mizture codes

It is a tempting idea to construct a ‘metacode’ from several symbol codes that
assign different-length codewords to the alternative symbols, then switch from
one code to another, choosing whichever assigns the shortest codeword to the
current symbol. Clearly we cannot do this for free. If one wishes to choose
between two codes, then it is necessary to lengthen the message in a way that
indicates which of the two codes is being used. If we indicate this choice by
a single leading bit, it will be found that the resulting code is suboptimal
because it is incomplete (that is, it fails the Kraft equality).

ﬁ%Exercise 5.33.[3 P-108] prove that this metacode is incomplete, and explain
why this combined code is suboptimal.

» 5.9 Solutions

Solution to exercise 5.8 (p.93). Yes, Co = {1,101} is uniquely decodeable,
even though it is not a prefix code, because no two different strings can map
onto the same string; only the codeword ¢(as) = 101 contains the symbol 0.

Solution to exercise 5.14 (p.95). We wish to prove that for any set of codeword
lengths {I;} satisfying the Kraft inequality, there is a prefix code having those
lengths. This is readily proved by thinking of the codewords illustrated in
figure 5.8 as being in a ‘codeword supermarket’, with size indicating cost.
We imagine purchasing codewords one at a time, starting from the shortest
codewords (i.e., the biggest purchases), using the budget shown at the right
of figure 5.8. We start at one side of the codeword supermarket, say the

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

5.9: Solutions 105
0000 Figure 5.8. The codeword
000 0001 supermarket and the symbol
00 o} coding budget. The ‘cost’ 27! of
0010 S
001 o011 S each codeword (with length 1) is
0 _8 indicated by the size of the box it
010 0100 [is written in. The total budget
ol 0101 -8 available when making a uniquely
011 0110 o decodeable code is 1.
0111]
o)
1000
100 1001 %
10 =
101
101 010 "5
1011 S
! 1100 Q
110 |f
1 1101
1110
111
1111
symbol probability Huffman Rival code’s Modified rival Figure 5.9. Proof that Huffman
codewords codewords code coding makes an optimal symbol
code. We assume that the rival
a cula crla cr(c code, which is said to be optimal,
Pa ‘ u(a) ‘ ‘ R()‘ r(O) assigns unequal length codewords
b e (b cr(b cr (b to the two symbols with smallest
moa et] [@wb] [wo] probability, a and b. By
c Pe cu(c) ‘ er(c) ‘ ‘CR(G)‘ interchanging codewords a and ¢

of the rival code, where c is a
symbol with rival codelength as
long as b’s, we can make a code

top, and purchase the first codeword of the required length. We advance better than the rival code. This
down the supermarket a distance 2, and purchase the next codeword of the ~ Shows that the rival code was not
next required length, and so forth. Because the codeword lengths are getting optimal.

longer, and the corresponding intervals are getting shorter, we can always

buy an adjacent codeword to the latest purchase, so there is no wasting of

the budget. Thus at the Ith codeword we have advanced a distance Zle 2k

down the supermarket; if > 2=k < 1, we will have purchased all the codewords

without running out of budget.

Solution to exercise 5.16 (p.99). The proof that Huffman coding is optimal
depends on proving that the key step in the algorithm — the decision to give
the two symbols with smallest probability equal encoded lengths — cannot
lead to a larger expected length than any other code. We can prove this by
contradiction.

Assume that the two symbols with smallest probability, called a and b,
to which the Huffman algorithm would assign equal length codewords, do not
have equal lengths in any optimal symbol code. The optimal symbol code
is some other rival code in which these two codewords have unequal lengths
l, and I, with I, < l,. Without loss of generality we can assume that this
other code is a complete prefix code, because any codelengths of a uniquely
decodeable code can be realized by a prefix code.

In this rival code, there must be some other symbol ¢ whose probability
pc is greater than p, and whose length in the rival code is greater than or
equal to [, because the code for b must have an adjacent codeword of equal
or greater length — a complete prefix code never has a solo codeword of the
maximum length.

Consider exchanging the codewords of a and ¢ (figure 5.9), so that a is

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

106 5 — Symbol Codes

encoded with the longer codeword that was ¢’s, and ¢, which is more probable
than a, gets the shorter codeword. Clearly this reduces the expected length
of the code. The change in expected length is (p, — pc)(lc — l4). Thus we have
contradicted the assumption that the rival code is optimal. Therefore it is
valid to give the two symbols with smallest probability equal encoded lengths.

Huffman coding produces optimal symbol codes. O w I c(a)

Solution to exercise 5.21 (p.102). A Huffman code for X2 where Ay = {0, 1} 0000 0.1296 3 000
and Py = {0.9,0.1} is {00,01,10,11} — {1,01,000,001}. This code has ggfé 88223 i 81(1)8
L(C, X?) = 1.29, whereas gh.e entropy H(X?) is 0.938. 0100 00864 4 0111

A Huffman code for X° is 1000 0.0864 3 100
{000, 100,010,001,101,011,110, 111} — 1(1)(1’8 88;;2 j 1‘;(1)8
{1,011,010,001,00000,00001,00010,00011}. 1001 0.0576 4 1101

. . 0110 0.0576 4 1110
This has expected length L(C,X?) = 1.598 whereas the entropy H(X?) is 0101 00576 4 1111
1.4069. 0011 0.0576 4 0010
A Huffman code for X* maps the sixteen source strings to the following 1110 0.0384 5 00110
codelengths: 1101 0.0384 5 01010
1011 0.0384 5 01011

{0000, 1000, 0100,0010,0001,1100,0110,0011,0101,1010,1001, 1110, 1101, 0111 0.0384 4 1011
1011,0111, 1111} — {1,3,3,3,4,6,7,7,7,7,7,9,9,9,10,10}. 1111 0.0256 5 oo111

This has expected length L(C, X*) = 1.9702 whereas the entropy H(X?*) is Table 5.10. Huffman code for X4
1.876. when pg = 0.6. Column 3 shows
When Px = {0.6,0.4}, the Huffman code for X2 has lengths {2,2,2,2}; the assigned codelengths and
the expected length is 2 bits, and the entropy is 1.94 bits. A Huffman code for =~ column 4 the codewords. Some

X* is shown in table 5.10. The expected length is 3.92 bits, and the entropy ~ Sttings whose probabilities are
is 3.88 bits identical, e.g., the fourth and

fifth, receive different codelengths.

Solution to exercise 5.22 (p.102). The set of probabilities {p1,p2,ps,pa} =
{1/6,1/6,1/3,1/3} gives rise to two different optimal sets of codelengths, because
at the second step of the Huffman coding algorithm we can choose any of the
three possible pairings. We may either put them in a constant length code
{00,01, 10,11} or the code {000,001,01, 1}. Both codes have expected length
2.

Another solution is {p1, p2,p3,pa} = {1/5,1/5,1/5,%/5}.

And a third is {p1, p2, ps, pa} = {1/3,1/3,1/3,0}.

Solution to exercise 5.26 (p.103). Let pmax be the largest probability in
P1,P2,---,pr- The difference between the expected length L and the entropy
H can be no bigger than max(pmax,0.086) (Gallager, 1978).

See exercises 5.27-5.28 to understand where the curious 0.086 comes from.

Solution to exercise 5.27 (p.103). Length — entropy = 0.086.

Solution to exercise 5.31 (p.104). There are two ways to answer this problem
correctly, and one popular way to answer it incorrectly. Let’s give the incorrect
answer first:

Erroneous answer. “We can pick a random bit by first picking a random

source symbol x; with probability p;, then picking a random bit from ai cla;) pi i
c(x;). If we define f; to be the fraction of the bits of ¢(z;) that are 1s, a 0 1y 1
we find Cs: b 10 Y 2
o c 110 Y8 3
Pbitis 1) = Zpifi (5:34) a4 111 18 3

= YVox0+Vaxlo+1-8x23418x1=13" (535)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

5.9: Solutions 107

This answer is wrong because it falls for the bus-stop fallacy, which was intro-
duced in exercise 2.35 (p.38): if buses arrive at random, and we are interested
in ‘the average time from one bus until the next’, we must distinguish two
possible averages: (a) the average time from a randomly chosen bus until the
next; (b) the average time between the bus you just missed and the next bus.
The second ‘average’ is twice as big as the first because, by waiting for a bus
at a random time, you bias your selection of a bus in favour of buses that
follow a large gap. You're unlikely to catch a bus that comes 10 seconds after
a preceding bus! Similarly, the symbols ¢ and d get encoded into longer-length
binary strings than a, so when we pick a bit from the compressed string at
random, we are more likely to land in a bit belonging to a ¢ or a d than would
be given by the probabilities p; in the expectation (5.34). All the probabilities
need to be scaled up by [;, and renormalized.

Correct answer in the same style. Every time symbol x; is encoded, I;
bits are added to the binary string, of which f;l; are 1s. The expected
number of 1s added per symbol is

> pifilis (5.36)
i
and the expected total number of bits added per symbol is

sz'li- (5.37)

So the fraction of 1s in the transmitted string is

i Di fil;
P(bitis 1) = %Lfl (5.38)
i Pili
B 1/2><O+1/4><1+1/8><2+1/8><377/7871/2
B /s /7

For a general symbol code and a general ensemble, the expectation (5.38) is
the correct answer. But in this case, we can use a more powerful argument.

Information-theoretic answer. The encoded string c is the output of an
optimal compressor that compresses samples from X down to an ex-
pected length of H(X) bits. We can’t expect to compress this data any
further. But if the probability P(bit is 1) were not equal to /2 then it
would be possible to compress the binary string further (using a block
compression code, say). Therefore P(bit is 1) must be equal to /2; in-
deed the probability of any sequence of [bits in the compressed stream
taking on any particular value must be 27!, The output of a perfect
compressor is always perfectly random bits.

To put it another way, if the probability P(bit is 1) were not equal to
1/2, then the information content per bit of the compressed string would
be at most H(P(1)), which would be less than 1; but this contradicts
the fact that we can recover the original data from c, so the information
content per bit of the compressed string must be H(X)/L(C,X) = 1.

Solution to exercise 5.32 (p.104). The general Huffman coding algorithm for
an encoding alphabet with ¢ symbols has one difference from the binary case.
The process of combining ¢ symbols into 1 symbol reduces the number of
symbols by ¢—1. So if we start with A symbols, we’ll only end up with a

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

108 5 — Symbol Codes

complete g-ary tree if Amod (¢—1) is equal to 1. Otherwise, we know that
whatever prefix code we make, it must be an incomplete tree with a number
of missing leaves equal, modulo (¢—1), to Amod (¢—1) — 1. For example, if
a ternary tree is built for eight symbols, then there will unavoidably be one
missing leaf in the tree.

The optimal g-ary code is made by putting these extra leaves in the longest
branch of the tree. This can be achieved by adding the appropriate number
of symbols to the original source symbol set, all of these extra symbols having
probability zero. The total number of leaves is then equal to r(¢—1) + 1, for
some integer . The symbols are then repeatedly combined by taking the ¢
symbols with smallest probability and replacing them by a single symbol, as
in the binary Huffman coding algorithm.

Solution to exercise 5.33 (p.104). We wish to show that a greedy metacode,
which picks the code which gives the shortest encoding, is actually suboptimal,
because it violates the Kraft inequality.

We'll assume that each symbol z is assigned lengths [(x) by each of the
candidate codes Cj. Let us assume there are K alternative codes and that we
can encode which code is being used with a header of length log K bits. Then
the metacode assigns lengths I'(x) that are given by

I'(x) = logy K + mkin li(z). (5.39)

We compute the Kraft sum:
/ 1 .
_ —U'(z) _ — ming I (z)
S—EIQ ——EzQ kST (5.40)

Let’s divide the set Ax into non-overlapping subsets {A;}/X_| such that subset
Ay, contains all the symbols x that the metacode sends via code k. Then

S = %Z > 2k, (5.41)

k xeA

Now if one sub-code k satisfies the Kraft equality ZzeAX 270(*) =1, then it

must be the case that
> oh@ <, (5.42)
ZEE.Ak

with equality only if all the symbols = are in Ay, which would mean that we
are only using one of the K codes. So

1 K
S < ?];1=1, (5.43)

with equality only if equation (5.42) is an equality for all codes k. But it’s
impossible for all the symbols to be in all the non-overlapping subsets {.A k}kK:N
so we can’t have equality (5.42) holding for all k. So S < 1.

Another way of seeing that a mixture code is suboptimal is to consider
the binary tree that it defines. Think of the special case of two codes. The
first bit we send identifies which code we are using. Now, in a complete code,
any subsequent binary string is a valid string. But once we know that we
are using, say, code A, we know that what follows can only be a codeword
corresponding to a symbol z whose encoding is shorter under code A than
code B. So some strings are invalid continuations, and the mixture code is
incomplete and suboptimal.

For further discussion of this issue and its relationship to probabilistic
modelling read about ‘bits back coding’ in section 28.3 and in Frey (1998).

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

About Chapter 6

Before reading Chapter 6, you should have read the previous chapter and
worked on most of the exercises in it.

We'll also make use of some Bayesian modelling ideas that arrived in the
vicinity of exercise 2.8 (p.30).

109

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Stream Codes

In this chapter we discuss two data compression schemes.

Arithmetic coding is a beautiful method that goes hand in hand with the
philosophy that compression of data from a source entails probabilistic mod-
elling of that source. As of 1999, the best compression methods for text files
use arithmetic coding, and several state-of-the-art image compression systems
use it too.

Lempel-Ziv coding is a ‘universal’ method, designed under the philosophy
that we would like a single compression algorithm that will do a reasonable job
for any source. In fact, for many real life sources, this algorithm’s universal
properties hold only in the limit of unfeasibly large amounts of data, but, all
the same, Lempel-Ziv compression is widely used and often effective.

» 6.1 The guessing game

As a motivation for these two compression methods, consider the redundancy
in a typical English text file. Such files have redundancy at several levels: for
example, they contain the ASCII characters with non-equal frequency; certain
consecutive pairs of letters are more probable than others; and entire words
can be predicted given the context and a semantic understanding of the text.

To illustrate the redundancy of English, and a curious way in which it
could be compressed, we can imagine a guessing game in which an English
speaker repeatedly attempts to predict the next character in a text file.

For simplicity, let us assume that the allowed alphabet consists of the 26
upper case letters A,B,C,..., Z and a space ‘=’. The game involves asking
the subject to guess the next character repeatedly, the only feedback being
whether the guess is correct or not, until the character is correctly guessed.
After a correct guess, we note the number of guesses that were made when
the character was identified, and ask the subject to guess the next character
in the same way.

One sentence gave the following result when a human was asked to guess
a sentence. The numbers of guesses are listed below each character.

THERE-IS-NO-REVERSE-ON-A-MOTORCYCLE -
1115112112111 117111213212271111411111

Notice that in many cases, the next letter is guessed immediately, in one
guess. In other cases, particularly at the start of syllables, more guesses are
needed.

What do this game and these results offer us? First, they demonstrate the
redundancy of English from the point of view of an English speaker. Second,
this game might be used in a data compression scheme, as follows.

110

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6.2: Arithmetic codes 111

The string of numbers ‘1, 1, 1, 5, 1, ...’, listed above, was obtained by
presenting the text to the subject. The maximum number of guesses that the
subject will make for a given letter is twenty-seven, so what the subject is
doing for us is performing a time-varying mapping of the twenty-seven letters
{A,B,C,...,Z,—} onto the twenty-seven numbers {1,2,3,...,27}, which we
can view as symbols in a new alphabet. The total number of symbols has not
been reduced, but since he uses some of these symbols much more frequently
than others — for example, 1 and 2 — it should be easy to compress this new
string of symbols.

How would the uncompression of the sequence of numbers ‘1,1, 1,5, 1, ...’
work? At uncompression time, we do not have the original string ‘THERE...’,
we have only the encoded sequence. Imagine that our subject has an absolutely
identical twin who also plays the guessing game with us, as if we knew the
source text. If we stop him whenever he has made a number of guesses equal to
the given number, then he will have just guessed the correct letter, and we can
then say ‘yes, that’s right’, and move to the next character. Alternatively, if
the identical twin is not available, we could design a compression system with
the help of just one human as follows. We choose a window length L, that is,
a number of characters of context to show the human. For every one of the
271 possible strings of length L, we ask them, ‘What would you predict is the
next character?’, and ‘If that prediction were wrong, what would your next
guesses be?’. After tabulating their answers to these 26 x 27 questions, we
could use two copies of these enormous tables at the encoder and the decoder
in place of the two human twins. Such a language model is called an Lth order
Markov model.

These systems are clearly unrealistic for practical compression, but they
illustrate several principles that we will make use of now.

» 6.2 Arithmetic codes

When we discussed variable-length symbol codes, and the optimal Huffman
algorithm for constructing them, we concluded by pointing out two practical
and theoretical problems with Huffman codes (section 5.6).

These defects are rectified by arithmetic codes, which were invented by
Elias, by Rissanen and by Pasco, and subsequently made practical by Witten
et al. (1987). In an arithmetic code, the probabilistic modelling is clearly
separated from the encoding operation. The system is rather similar to the
guessing game. The human predictor is replaced by a probabilistic model of
the source. As each symbol is produced by the source, the probabilistic model
supplies a predictive distribution over all possible values of the next symbol,
that is, a list of positive numbers {p;} that sum to one. If we choose to model
the source as producing i.i.d. symbols with some known distribution, then the
predictive distribution is the same every time; but arithmetic coding can with
equal ease handle complex adaptive models that produce context-dependent
predictive distributions. The predictive model is usually implemented in a
computer program.

The encoder makes use of the model’s predictions to create a binary string.
The decoder makes use of an identical twin of the model (just as in the guessing
game) to interpret the binary string.

Let the source alphabet be Ax = {a1,...,ar}, and let the Ith symbol a;
have the special meaning ‘end of transmission’. The source spits out a sequence
T1,%9,...,&p,.... Lhe source does not necessarily produce i.i.d. symbols. We
will assume that a computer program is provided to the encoder that assigns a

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

112 6 — Stream Codes

predictive probability distribution over a; given the sequence that has occurred

thus far, P(z,=a;|1,...,2n—1). The receiver has an identical program that
produces the same predictive probability distribution P(x, =a; | z1,...,ZTn-1).
0.00 Figure 6.1. Binary strings define
real intervals within the real line
025 — 0 [0,1). We first encountered a
—_— 01 picture like this when we
_= 01101 di
0.50 iscussed the symbol-code
supermarket in Chapter 5.
0.7 —— 1
1.00

Concepts for understanding arithmetic coding

Notation for intervals. The interval [0.01,0.10) is all numbers between 0.01 and
0.10, including 0.010 = 0.01000. . . but not 0.100 = 0.10000. . ..

A binary transmission defines an interval within the real line from 0 to 1.
For example, the string 01 is interpreted as a binary real number 0.01. .., which
corresponds to the interval [0.01,0.10) in binary, i.e., the interval [0.25,0.50)
in base ten.

The longer string 01101 corresponds to a smaller interval [0.01101,
0.01110). Because 01101 has the first string, 01, as a prefix, the new in-
terval is a sub-interval of the interval [0.01,0.10). A one-megabyte binary file
(223 bits) is thus viewed as specifying a number between 0 and 1 to a precision
of about two million decimal places — two million decimal digits, because each
byte translates into a little more than two decimal digits.

Now, we can also divide the real line [0,1) into I intervals of lengths equal
to the probabilities P(z; =a;), as shown in figure 6.2.

0.00 t aj Figure 6.2. A probabilistic model
P(ry1=ay) asay defines real intervals within the
- real line [0,1).
_ az
_ a20as5
P((El = al) + P(.’le :CLQ)
P(x1:a1)+.u+P(1'1:a1,1) ta]

1.0

We may then take each interval a; and subdivide it into intervals de-
noted a;ai,a;as,...,a;ar, such that the length of a;a; is proportional to
P(zg=a;|x1=a;). Indeed the length of the interval a;a; will be precisely
the joint probability

P(!L‘l =Q;, T Zaj) = P(.Tl Iai)P(l'Q Zaj | I :ai). (61)

Tterating this procedure, the interval [0,1) can be divided into a sequence
of intervals corresponding to all possible finite length strings x1zs ...z, such
that the length of an interval is equal to the probability of the string given
our model.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6.2: Arithmetic codes 113

Algorithm 6.3. Arithmetic coding.

w = 0.0 Iterative procedure to find the
v o= 1.0 interval [u,v) for the string
P := U.—U r1X2...TN.

forn =1 to N {
Compute the cumulative probabilities @,, and R,, (6.2,6.3)

v = u+tpRy(zy |21, .., Zp-1)
u = U‘I’an(fl'n"Tl,...,In,l)
pi=v—u

Formulae describing arithmetic coding

The process depicted in figure 6.2 can be written explicitly as follows. The
intervals are defined in terms of the lower and upper cumulative probabilities

i—1
Qnlai|z1, ..., xn-1) = ZP(zn:ai/Ml,...,xn,l), (6.2)
=1
R,(a;|z1,...,2p—1) = ZP(zn:ai/ml,...,xn,l). (6.3)

=1

As the nth symbol arrives, we subdivide the n—1th interval at the points defined
by @, and R,. For example, starting with the first symbol, the intervals ‘a;’,
‘ag’, and ‘a;’ are

a1 < [Q1(a1), Ri(a1)) = [0, P(z1=a1)), (6.4)
az < [Q1(az), Ri(az)) = [P(x=a1), P(x=a1) + Pz =a2)), (6.5)

and
ar < [Q1(ar), Ri(ar)) = [P(z1=a1) + ...+ P(xz1=as1),1.0). (6.6)

Algorithm 6.3 describes the general procedure.

To encode a string x1x2...xN, we locate the interval corresponding to
r1Z2...xN, and send a binary string whose interval lies within that interval.
This encoding can be performed on the fly, as we now illustrate.

Example: compressing the tosses of a bent coin

Imagine that we watch as a bent coin is tossed some number of times (cf.
example 2.7 (p.30) and section 3.2 (p.51)). The two outcomes when the coin
is tossed are denoted a and b. A third possibility is that the experiment is
halted, an event denoted by the ‘end of file’ symbol, ‘0’. Because the coin is
bent, we expect that the probabilities of the outcomes a and b are not equal,
though beforehand we don’t know which is the more probable outcome.

Encoding

Let the source string be ‘bbbald’. We pass along the string one symbol at a
time and use our model to compute the probability distribution of the next

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

114 6 — Stream Codes

symbol given the string thus far. Let these probabilities be:

Context
(sequence thus far) Probability of next symbol

P(a)=0.425 P(b)=0.425 P(0)=0.15
b P(a|b)=0.28 P(b|b)=0.57 P(@|b)=0.15
bb P(a|bb)=0.21 P(b|bb)=0.64 P(0|bb)=0.15
)=)=
)=)=

bbb P(a|bbb)=0.17 P(b|bbb)=0.68 P(O|bbb)=0.15
bbba P(a|bbba)=0.28 P(b|bbba)=0.57 P(O|bbba)=0.15

Figure 6.4 shows the corresponding intervals. The interval b is the middle
0.425 of [0,1). The interval bb is the middle 0.567 of b, and so forth.

00000 0000 Figure 6.4. Illustration of the

% 000 arithmetic coding process as the
= 00010 0001 sequence bbbal is transmitted.
00011

00100
0101 0010

0
001100011001
00111 o
= 01000
01001 2100
= 01001~ 75,
= 01010 ..
01011 o1
01100
011010110011
= 01110,
01111 - 10010111
10000 ~10011000

0001 1000 bbbaa - 10011001

1 - 10011001
oo 100 -~ Z710011010
188121001 bbb 10011011
10 2 pbbab = 10011100
181821010 10011101
———————2-10011110
10110 101 bbball 10011111

10111 011 110100000

11000

1100 100111101
11001

ool 4y,

S 1010,

11011

11100

1101 1110

11110

11111 1111

INUE
o
o

ba

bba
bbba ——

10011

b

bbb bbbb

bbb
bbO

\|| |||
[y

bO

11

111

When the first symbol ‘b’ is observed, the encoder knows that the encoded
string will start ‘01’, ‘10’, or ‘11’, but does not know which. The encoder
writes nothing for the time being, and examines the next symbol, which is ‘b’
The interval ‘bb’ lies wholly within interval ‘1’, so the encoder can write the
first bit: ‘1’. The third symbol ‘b’ narrows down the interval a little, but not
quite enough for it to lie wholly within interval ‘10’. Only when the next ‘a’
is read from the source can we transmit some more bits. Interval ‘bbba’ lies
wholly within the interval ‘1001’, so the encoder adds ‘001’ to the ‘1’ it has
written. Finally when the ‘0O’ arrives, we need a procedure for terminating the
encoding. Magnifying the interval ‘bbbal’ (figure 6.4, right) we note that the
marked interval ‘100111101’ is wholly contained by bbbaO, so the encoding
can be completed by appending ‘11101,

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6.2: Arithmetic codes 115

ﬁ% Exercise 6.1.1% P127] Show that the overhead required to terminate a message
is never more than 2 bits, relative to the ideal message length given the

probabilistic model H, h(x | H) = log[l/P(x|H)].

This is an important result. Arithmetic coding is very nearly optimal. The
message length is always within two bits of the Shannon information content
of the entire source string, so the expected message length is within two bits
of the entropy of the entire message.

Decoding

The decoder receives the string ‘100111101’ and passes along it one symbol
at a time. First, the probabilities P(a), P(b), P(O) are computed using the
identical program that the encoder used and the intervals ‘a’, ‘b’ and ‘0O’ are
deduced. Once the first two bits ‘10’ have been examined, it is certain that
the original string must have been started with a ‘b’, since the interval ‘10’ lies
wholly within interval ‘b’. The decoder can then use the model to compute
P(a|b),P(b|b), P(O]|b) and deduce the boundaries of the intervals ‘ba’, ‘bb’
and ‘D0’. Continuing, we decode the second b once we reach ‘1001’°, the third
b once we reach ‘100111’, and so forth, with the unambiguous identification
of ‘bbball’ once the whole binary string has been read. With the convention
that ‘0’ denotes the end of the message, the decoder knows to stop decoding.

Transmission of multiple files

How might one use arithmetic coding to communicate several distinct files over
the binary channel? Once the O character has been transmitted, we imagine
that the decoder is reset into its initial state. There is no transfer of the learnt
statistics of the first file to the second file. If, however, we did believe that
there is a relationship among the files that we are going to compress, we could
define our alphabet differently, introducing a second end-of-file character that
marks the end of the file but instructs the encoder and decoder to continue
using the same probabilistic model.

The big picture

Notice that to communicate a string of N letters both the encoder and the
decoder needed to compute only N|.A| conditional probabilities — the proba-
bilities of each possible letter in each context actually encountered — just as in
the guessing game. This cost can be contrasted with the alternative of using
a Huffman code with a large block size (in order to reduce the possible one-
bit-per-symbol overhead discussed in section 5.6), where all block sequences
that could occur must be considered and their probabilities evaluated.

Notice how flexible arithmetic coding is: it can be used with any source
alphabet and any encoded alphabet. The size of the source alphabet and the
encoded alphabet can change with time. Arithmetic coding can be used with
any probability distribution, which can change utterly from context to context.

Furthermore, if we would like the symbols of the encoding alphabet (say,
0 and 1) to be used with unequal frequency, that can easily be arranged by
subdividing the right-hand interval in proportion to the required frequencies.

How the probabilistic model might make its predictions

The technique of arithmetic coding does not force one to produce the predic-
tive probability in any particular way, but the predictive distributions might

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

116 6 — Stream Codes

— 00000 Figure 6.5. Illustration of the

aaaa = 00001 0000 intervals defined by a simple
=0

0010 000 Bayesian probabilistic model. The

= 00011 0001 size of an intervals is proportional
= 00 to the probability of the string.

Z 0010 This model anticipates that the
001 source is likely to be biased

: 0011 towards one of a and b, so

= 00111 0 sequences having lots of as or lots
— 01000 0100 of bs have larger intervals than

01001 sequences of the same length that

; 01010 010 are 50:50 as and bs.

aaa

aa aaab

aaba

aab

aald

aba abaa

ab —
abb abbb ——
abld

ald — 01100

0101

01

0110

baaa — .~ 011
baa — =

aab ——— 01110 ..,
ba baba ——=— 01111

Pab babb —— 15000

ball — 10001 1000

bba pbab :
bbba

|

100

1001

|
[N
o
o
=
=

10

- 1010
bb bbb bbbb =~ 10101

1011

101

bbO — 11000

: 1100
b0 e 110
: 1101

11

S 1110
111
1111

naturally be produced by a Bayesian model.

Figure 6.4 was generated using a simple model that always assigns a prob-
ability of 0.15 to O, and assigns the remaining 0.85 to a and b, divided in
proportion to probabilities given by Laplace’s rule,

F,+1
P ..)= 6.7
L(a |2, y Tn—1) Fat Fot2 (6.7)
where F,(21,...,Z,—1) is the number of times that a has occurred so far, and

I3, is the count of bs. These predictions correspond to a simple Bayesian model
that expects and adapts to a non-equal frequency of use of the source symbols
a and b within a file.

Figure 6.5 displays the intervals corresponding to a number of strings of
length up to five. Note that if the string so far has contained a large number of
bs then the probability of b relative to a is increased, and conversely if many
as occur then as are made more probable. Larger intervals, remember, require
fewer bits to encode.

Details of the Bayesian model

Having emphasized that any model could be used — arithmetic coding is not
wedded to any particular set of probabilities — let me explain the simple adaptive

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6.2: Arithmetic codes 117

probabilistic model used in the preceding example; we first encountered this
model in exercise 2.8 (p.30).

Assumptions

The model will be described using parameters po, p, and py, defined below,
which should not be confused with the predictive probabilities in a particular
context, for example, P(a|s=baa). A bent coin labelled a and b is tossed some
number of times [, which we don’t know beforehand. The coin’s probability of
coming up a when tossed is p,, and p, = 1 — p,; the parameters p,, p, are not
known beforehand. The source string s = baabal indicates that [was 5 and
the sequence of outcomes was baaba.

1. It is assumed that the length of the string [has an exponential probability
distribution
P(l) = (1 - po)'po. (6.8)

This distribution corresponds to assuming a constant probability pg for
the termination symbol ‘0" at each character.

2. It is assumed that the non-terminal characters in the string are selected in-
dependently at random from an ensemble with probabilities P = {pa, pv};
the probability p, is fixed throughout the string to some unknown value
that could be anywhere between 0 and 1. The probability of an a occur-
ring as the next symbol, given p, (if only we knew it), is (1 — pg)pa. The
probability, given p,, that an unterminated string of length F' is a given
string s that contains { Fy, Fy, } counts of the two outcomes is the Bernoulli
distribution

P(s|pa, F) = p=(1 — pa) ™. (6.9)

3. We assume a uniform prior distribution for p,,
P(pa) =1, pa€l0,1], (6.10)

and define p, = 1 — p,. It would be easy to assume other priors on p,,
with beta distributions being the most convenient to handle.

This model was studied in section 3.2. The key result we require is the predictive
distribution for the next symbol, given the string so far, s. This probability
that the next character is a or b (assuming that it is not ‘0’) was derived in
equation (3.16) and is precisely Laplace’s rule (6.7).

> Exercise 6.2.1%] Compare the expected message length when an ASCII file is
compressed by the following three methods.

Huffman-with-header. Read the whole file, find the empirical fre-
quency of each symbol, construct a Huffman code for those frequen-
cies, transmit the code by transmitting the lengths of the Huffman
codewords, then transmit the file using the Huffman code. (The
actual codewords don’t need to be transmitted, since we can use a
deterministic method for building the tree given the codelengths.)

Arithmetic code using the Laplace model.

F,+1

) = 5 (6.11)

.P]_J(all‘l7 ..

Arithmetic code using a Dirichlet model. This model’s predic-

tions are:
F, +«

PD(a|5171;-~~,96n—1) = m’
a’\L'a’/

(6.12)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

118 6 — Stream Codes

where « is fixed to a number such as 0.01. A small value of «
corresponds to a more responsive version of the Laplace model;
the probability over characters is expected to be more nonuniform;
a = 1 reproduces the Laplace model.

Take care that the header of your Huffman message is self-delimiting.
Special cases worth considering are (a) short files with just a few hundred
characters; (b) large files in which some characters are never used.

» 6.3 Further applications of arithmetic coding

Efficient generation of random samples

Arithmetic coding not only offers a way to compress strings believed to come
from a given model; it also offers a way to generate random strings from a
model. Imagine sticking a pin into the unit interval at random, that line
having been divided into subintervals in proportion to probabilities p;; the
probability that your pin will lie in interval 7 is p;.

So to generate a sample from a model, all we need to do is feed ordinary
random bits into an arithmetic decoder for that model. An infinite random
bit sequence corresponds to the selection of a point at random from the line
[0,1), so the decoder will then select a string at random from the assumed
distribution. This arithmetic method is guaranteed to use very nearly the
smallest number of random bits possible to make the selection — an important
point in communities where random numbers are expensive! [This is not a joke.
Large amounts of money are spent on generating random bits in software and
hardware. Random numbers are valuable.]

A simple example of the use of this technique is in the generation of random
bits with a nonuniform distribution {pg, p1}.

ﬁ%Exercise 6.3.1% p-128] Compare the following two techniques for generating
random symbols from a nonuniform distribution {pg,p1} = {0.99,0.01}:

(a) The standard method: use a standard random number generator
to generate an integer between 1 and 232. Rescale the integer to
(0,1). Test whether this uniformly distributed random variable is
less than 0.99, and emit a 0 or 1 accordingly.

(b) Arithmetic coding using the correct model, fed with standard ran-
dom bits.

Roughly how many random bits will each method use to generate a
thousand samples from this sparse distribution?

Efficient data-entry devices

Compression:
When we enter text into a computer, we make gestures of some sort — maybe text — bits
we tap a keyboard, or scribble with a pointer, or click with a mouse; an
efficient text entry system is one where the number of gestures required to Writing:

enter a given text string is small. text — gestures

Writing can be viewed as an inverse process to data compression. In data
compression, the aim is to map a given text string into a small number of bits.
In text entry, we want a small sequence of gestures to produce our intended
text.

By inverting an arithmetic coder, we can obtain an information-efficient
text entry device that is driven by continuous pointing gestures (Ward et al.,

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6.4: Lempel-Ziv coding 119

2000). In this system, called Dasher, the user zooms in on the unit interval to
locate the interval corresponding to their intended string, in the same style as
figure 6.4. A language model (exactly as used in text compression) controls
the sizes of the intervals such that probable strings are quick and easy to
identify. After an hour’s practice, a novice user can write with one finger
driving Dasher at about 25 words per minute — that’s about half their normal
ten-finger typing speed on a regular keyboard. It’s even possible to write at 25
words per minute, hands-free, using gaze direction to drive Dasher (Ward and
MacKay, 2002). Dasher is available as free software for various platforms. !

» 6.4 Lempel-Ziv coding

The Lempel-Ziv algorithms, which are widely used for data compression (e.g.,
the compress and gzip commands), are different in philosophy to arithmetic
coding. There is no separation between modelling and coding, and no oppor-
tunity for explicit modelling.

Basic Lempel-Ziv algorithm

The method of compression is to replace a substring with a pointer to
an earlier occurrence of the same substring. For example if the string is
1011010100010..., we parse it into an ordered dictionary of substrings that
have not appeared before as follows: A, 1, 0, 11, 01, 010, 00, 10, We in-
clude the empty substring A as the first substring in the dictionary and order
the substrings in the dictionary by the order in which they emerged from the
source. After every comma, we look along the next part of the input sequence
until we have read a substring that has not been marked off before. A mo-
ment’s reflection will confirm that this substring is longer by one bit than a
substring that has occurred earlier in the dictionary. This means that we can
encode each substring by giving a pointer to the earlier occurrence of that pre-
fix and then sending the extra bit by which the new substring in the dictionary
differs from the earlier substring. If, at the nth bit, we have enumerated s(n)
substrings, then we can give the value of the pointer in [log, s(n)] bits. The
code for the above sequence is then as shown in the fourth line of the following
table (with punctuation included for clarity), the upper lines indicating the
source string and the value of s(n):

source substrings | A 1 0 11 01 010 00 10

s(n) 0 1 2 3 4 5 6 7
5(1)binary 000 001 010 011 100 101 110 111
(pointer, bit) (,1) (0,0) (01,1) (10,1) (100,0) (010,0) (001,0)

Notice that the first pointer we send is empty, because, given that there is
only one substring in the dictionary — the string A — no bits are needed to
convey the ‘choice’ of that substring as the prefix. The encoded string is
100011101100001000010. The encoding, in this simple case, is actually a
longer string than the source string, because there was no obvious redundancy
in the source string.

> Exercise 6.4.1%] Prove that any uniquely decodeable code from {0,1}T to
{0,1}" necessarily makes some strings longer if it makes some strings
shorter.

http://www.inference.phy.cam.ac.uk/dasher/

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

120 6 — Stream Codes

One reason why the algorithm described above lengthens a lot of strings is
because it is inefficient — it transmits unnecessary bits; to put it another way,
its code is not complete. Once a substring in the dictionary has been joined
there by both of its children, then we can be sure that it will not be needed
(except possibly as part of our protocol for terminating a message); so at that
point we could drop it from our dictionary of substrings and shuffle them
all along one, thereby reducing the length of subsequent pointer messages.
Equivalently, we could write the second prefix into the dictionary at the point
previously occupied by the parent. A second unnecessary overhead is the
transmission of the new bit in these cases — the second time a prefix is used,
we can be sure of the identity of the next bit.

Decoding

The decoder again involves an identical twin at the decoding end who con-
structs the dictionary of substrings as the data are decoded.

> Exercise 6.5.1% P128] Encode the string 000000000000100000000000 using
the basic Lempel-Ziv algorithm described above.

[2, p.125]

> Exercise 6.6. Decode the string

00101011101100100100011010101000011

that was encoded using the basic Lempel-Ziv algorithm.

Practicalities

In this description I have not discussed the method for terminating a string.

There are many variations on the Lempel-Ziv algorithm, all exploiting the
same idea but using different procedures for dictionary management, etc. The
resulting programs are fast, but their performance on compression of English
text, although useful, does not match the standards set in the arithmetic
coding literature.

Theoretical properties

In contrast to the block code, Huffman code, and arithmetic coding methods
we discussed in the last three chapters, the Lempel-Ziv algorithm is defined
without making any mention of a probabilistic model for the source. Yet, given
any ergodic source (i.e., one that is memoryless on sufficiently long timescales),
the Lempel-Ziv algorithm can be proven asymptotically to compress down to
the entropy of the source. This is why it is called a ‘universal’ compression
algorithm. For a proof of this property, see Cover and Thomas (1991).

It achieves its compression, however, only by memorizing substrings that
have happened so that it has a short name for them the next time they occur.
The asymptotic timescale on which this universal performance is achieved may,
for many sources, be unfeasibly long, because the number of typical substrings
that need memorizing may be enormous. The useful performance of the al-
gorithm in practice is a reflection of the fact that many files contain multiple
repetitions of particular short sequences of characters, a form of redundancy
to which the algorithm is well suited.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6.5: Demonstration 121

Common ground

I have emphasized the difference in philosophy behind arithmetic coding and
Lempel-Ziv coding. There is common ground between them, though: in prin-
ciple, one can design adaptive probabilistic models, and thence arithmetic
codes, that are ‘universal’, that is, models that will asymptotically compress
any source in some class to within some factor (preferably 1) of its entropy.
However, for practical purposes, I think such universal models can only be
constructed if the class of sources is severely restricted. A general purpose
compressor that can discover the probability distribution of any source would
be a general purpose artificial intelligence! A general purpose artificial intelli-
gence does not yet exist.

» 6.5 Demonstration

An interactive aid for exploring arithmetic coding, dasher.tcl, is available.?

A demonstration arithmetic-coding software package written by Radford
Neal? consists of encoding and decoding modules to which the user adds a
module defining the probabilistic model. It should be emphasized that there
is no single general-purpose arithmetic-coding compressor; a new model has to
be written for each type of source. Radford Neal’s package includes a simple
adaptive model similar to the Bayesian model demonstrated in section 6.2.
The results using this Laplace model should be viewed as a basic benchmark
since it is the simplest possible probabilistic model — it simply assumes the
characters in the file come independently from a fixed ensemble. The counts
{F;} of the symbols {a;} are rescaled and rounded as the file is read such that
all the counts lie between 1 and 256.

A state-of-the-art compressor for documents containing text and images,
DjVu, uses arithmetic coding.* It uses a carefully designed approximate arith-
metic coder for binary alphabets called the Z-coder (Bottou et al., 1998), which
is much faster than the arithmetic coding software described above. One of
the neat tricks the Z-coder uses is this: the adaptive model adapts only occa-
sionally (to save on computer time), with the decision about when to adapt
being pseudo-randomly controlled by whether the arithmetic encoder emitted
a bit.

The JBIG image compression standard for binary images uses arithmetic
coding with a context-dependent model, which adapts using a rule similar to
Laplace’s rule. PPM (Teahan, 1995) is a leading method for text compression,
and it uses arithmetic coding.

There are many Lempel-Ziv-based programs. gzip is based on a version
of Lempel-Ziv called ‘LZ77’ (Ziv and Lempel, 1977). compress is based on
‘LZW’ (Welch, 1984). In my experience the best is gzip, with compress being
inferior on most files.

bzip is a block-sorting file compressor, which makes use of a neat hack
called the Burrows—Wheeler transform (Burrows and Wheeler, 1994). This
method is not based on an explicit probabilistic model, and it only works well
for files larger than several thousand characters; but in practice it is a very
effective compressor for files in which the context of a character is a good
predictor for that character.®

*http://www.inference.phy.cam.ac.uk/mackay/itpron/softwarel .html

3ftp://ftp.cs.toronto.edu/pub/radford/www/ac.software.html

‘http://www.djvuzone.org/

5There is a lot of information about the Burrows-Wheeler transform on the net.
http://dogma.net/DataCompression/BWT.shtml

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

122 6 — Stream Codes

Compression of a text file

Table 6.6 gives the computer time in seconds taken and the compression
achieved when these programs are applied to the IXTEX file containing the
text of this chapter, of size 20,942 bytes.

Table 6.6. Comparison of

Method Compression Compressed size Uncompression , ivorith liod %
. . compression algoritnms a 1€ o
time /sec (%age of 20,942) time / sec a teft fle. & bp

Laplace model 0.28 12974 (61%) 0.32

gzip 0.10 8177 (39%) 0.01

compress 0.05 10816 (51%) 0.05

bzip 7495 (36%)

bzip2 7640 (36%)

ppmz 6800 (32%)

Compression of a sparse file

Interestingly, gzip does not always do so well. Table 6.7 gives the compres-
sion achieved when these programs are applied to a text file containing 109
characters, each of which is either 0 and 1 with probabilities 0.99 and 0.01.
The Laplace model is quite well matched to this source, and the benchmark
arithmetic coder gives good performance, followed closely by compress; gzip
is worst. An ideal model for this source would compress the file into about
10%H5(0.01)/8 ~ 10100 bytes. The Laplace-model compressor falls short of
this performance because it is implemented using only eight-bit precision. The
ppmz compressor compresses the best of all, but takes much more computer

time.
Method Compression Compressed size Uncompression Table 6'7; Compaﬁson of]
time / sec / bytes time / sec compression algorltﬁhms applied to
a random file of 10° characters,

Laplace model 0.45 14143 (1.4%) 0.57 99% 0s and 1% 1s.

gzip 0.22 20646 (2.1%) 0.04

gzip --best+ 1.63 15553 (1.6%) 0.05

compress 0.13 14785 (1.5%) 0.03

bzip 0.30 10903 (1.09%) 0.17

bzip2 0.19 11260 (1.12%) 0.05

ppmz 533 10447 (1.04%) 535

» 6.6 Summary

In the last three chapters we have studied three classes of data compression
codes.

Fixed-length block codes (Chapter 4). These are mappings from a fixed
number of source symbols to a fixed-length binary message. Only a tiny
fraction of the source strings are given an encoding. These codes were
fun for identifying the entropy as the measure of compressibility but they
are of little practical use.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6.7: Exercises on stream codes

Symbol codes (Chapter 5). Symbol codes employ a variable-length code for
each symbol in the source alphabet, the codelengths being integer lengths
determined by the probabilities of the symbols. Huffman’s algorithm
constructs an optimal symbol code for a given set of symbol probabilities.

Every source string has a uniquely decodeable encoding, and if the source
symbols come from the assumed distribution then the symbol code will
compress to an expected length per character L lying in the interval
[H,H+1). Statistical fluctuations in the source may make the actual
length longer or shorter than this mean length.

If the source is not well matched to the assumed distribution then the
mean length is increased by the relative entropy Dky, between the source
distribution and the code’s implicit distribution. For sources with small
entropy, the symbol has to emit at least one bit per source symbol;
compression below one bit per source symbol can be achieved only by
the cumbersome procedure of putting the source data into blocks.

Stream codes. The distinctive property of stream codes, compared with
symbol codes, is that they are not constrained to emit at least one bit for
every symbol read from the source stream. So large numbers of source
symbols may be coded into a smaller number of bits. This property
could be obtained using a symbol code only if the source stream were
somehow chopped into blocks.

e Arithmetic codes combine a probabilistic model with an encoding
algorithm that identifies each string with a sub-interval of [0, 1) of
size equal to the probability of that string under the model. This
code is almost optimal in the sense that the compressed length of a
string x closely matches the Shannon information content of x given
the probabilistic model. Arithmetic codes fit with the philosophy
that good compression requires data modelling, in the form of an
adaptive Bayesian model.

e Lempel-Ziv codes are adaptive in the sense that they memorize
strings that have already occurred. They are built on the philoso-
phy that we don’t know anything at all about what the probability
distribution of the source will be, and we want a compression algo-
rithm that will perform reasonably well whatever that distribution
is.

Both arithmetic codes and Lempel-Ziv codes will fail to decode correctly
if any of the bits of the compressed file are altered. So if compressed files are
to be stored or transmitted over noisy media, error-correcting codes will be

essential. Reliable communication over unreliable channels is the topic of Part
IT.

» 6.7 Exercises on stream codes

ﬁ% Exercise 6.7.12] Describe an arithmetic coding algorithm to encode random bit
strings of length N and weight K (i.e., K ones and N — K zeroes) where
N and K are given.

For the case N =5, K =2, show in detail the intervals corresponding to
all source substrings of lengths 1-5.

> Exercise 6.8.1% P128] oy many bits are needed to specify a selection of K

objects from N objects? (N and K are assumed to be known and the

123

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

124

selection of K objects is unordered.) How might such a selection be
made at random without being wasteful of random bits?

> Exercise 6.9.12] A binary source X emits independent identically distributed
symbols with probability distribution {fo, f1}, where f; = 0.01. Find
an optimal uniquely-decodeable symbol code for a string x = x1x2x3 of
three successive samples from this source.

Estimate (to one decimal place) the factor by which the expected length
of this optimal code is greater than the entropy of the three-bit string x.

[H2(0.01) ~ 0.08, where Hy(z) = xlogy(1/x) + (1 — x)logy(1/(1 — x)).]
An arithmetic code is used to compress a string of 1000 samples from

the source X. Estimate the mean and standard deviation of the length
of the compressed file.

> Exercise 6.10.[2] Describe an arithmetic coding algorithm to generate random
bit strings of length N with density f (i.e., each bit has probability f of
being a one) where N is given.

Exercise 6.11.[2] Use a modified Lempel-Ziv algorithm in which, as discussed
on p.120, the dictionary of prefixes is pruned by writing new prefixes
into the space occupied by prefixes that will not be needed again.
Such prefixes can be identified when both their children have been
added to the dictionary of prefixes. (You may neglect the issue of
termination of encoding.) Use this algorithm to encode the string
0100001000100010101000001. Highlight the bits that follow a prefix
on the second occasion that that prefix is used. (As discussed earlier,
these bits could be omitted.)

Exercise 6.12.1% P128] Show that this modified Lempel-Ziv code is still not
‘complete’; that is, there are binary strings that are not encodings of
any string.

> Exercise 6.13.[% P128] (iye examples of simple sources that have low entropy
but would not be compressed well by the Lempel-Ziv algorithm.

» 6.8 Further exercises on data compression

The following exercises may be skipped by the reader who is eager to learn
about noisy channels.

ﬁ% Exercise 6.14.[3’ p-130] Consider a Gaussian distribution in /N dimensions,

M) . (6.13)

Plx) = (2ro2)N/2 P (202

Define the radius of a point x to be r = (Z x2)1/2. Estimate the mean

non
and variance of the square of the radius, r? = (Zn 1’%)

You may find helpful the integral

1 4 x? 4

though you should be able to estimate the required quantities without it.

6 — Stream Codes

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6.8: Further exercises on data compression 125

probability density
Assuming that N is large, show that nearly all the probability of a is maximized here
Gaussian is contained in a thin shell of radius v/ No. Find the thickness /

of the shell.

Evaluate the probability density (6.13) at a point in that thin shell and Vo

at the origin x = 0 and compare. Use the case N = 1000 as an example. almost all
probability mass is here

Notice that nearly all the probability mass is located in a different part

of the space from the region of highest probability density. Figure 6.8. Schematic
representation of the typical set of
. [2] : . . . an N-dimensional Gaussian
ﬁ% Exercise 6.15.17! Explain what is meant by an optimal binary symbol code. distribution.

Find an optimal binary symbol code for the ensemble:
'A = {a7b7 C7d’ e7f’g7h7 i?j}’

L2 45 68 9 1025 30

P= {100’ 100’ 100 100" 100" 100" 100 100’ 100’ 100}’
and compute the expected length of the code.

ﬁ% Exercise 6.16.12] A string y = x1x2 consists of two independent samples from
an ensemble

1 3 6
X: = ; =< —,—,— r.
AX {a,b,C},PX {107 107 10}
What is the entropy of y? Construct an optimal binary symbol code for
the string y, and find its expected length.

ﬁ%Exercise 6.17.12] Strings of N independent samples from an ensemble with

P = {0.1,0.9} are compressed using an arithmetic code that is matched

to that ensemble. Estimate the mean and standard deviation of the
compressed strings’ lengths for the case N = 1000. [H2(0.1) ~ 0.47]

Exercise 6.18.1%] Source coding with variable-length symbols.

In the chapters on source coding, we assumed that we were
encoding into a binary alphabet {0, 1} in which both symbols
should be used with equal frequency. In this question we ex-
plore how the encoding alphabet should be used if the symbols
take different times to transmit.

A poverty-stricken student communicates for free with a friend using a
telephone by selecting an integer n € {1,2,3...}, making the friend’s
phone ring n times, then hanging up in the middle of the nth ring. This
process is repeated so that a string of symbols ninong... is received.
What is the optimal way to communicate? If large integers n are selected
then the message takes longer to communicate. If only small integers n
are used then the information content per symbol is small. We aim to
maximize the rate of information transfer, per unit time.

Assume that the time taken to transmit a number of rings n and to
redial is [,, seconds. Consider a probability distribution over n, {p,}.
Defining the average duration per symbol to be

L(p) =Y puln (6.15)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

126

and the entropy per symbol to be
1
H(p) = pnlog, o (6.16)
n n

show that for the average information rate per second to be maximized,
the symbols must be used with probabilities of the form

1
Pn = Erﬂln (6.17)

where Z =), 2-Pln and 3 satisfies the implicit equation

g=" (6.18)

that is, § is the rate of communication. Show that these two equations
(6.17, 6.18) imply that 8 must be set such that

log Z = 0. (6.19)

Assuming that the channel has the property
I, = n seconds, (6.20)
find the optimal distribution p and show that the maximal information

rate is 1 bit per second.

How does this compare with the information rate per second achieved if
p is set to (1/2,1/2,0,0,0,0,...) — that is, only the symbols n = 1 and
n = 2 are selected, and they have equal probability?

Discuss the relationship between the results (6.17, 6.19) derived above,
and the Kraft inequality from source coding theory.

How might a random binary source be efficiently encoded into a se-
quence of symbols nineong ... for transmission over the channel defined
in equation (6.20)?

> Exercise 6.19.[7] How many bits does it take to shuffle a pack of cards?

> Exercise 6.20.[2] Tn the card game Bridge, the four players receive 13 cards

each from the deck of 52 and start each game by looking at their own
hand and bidding. The legal bids are, in ascending order 1, 1,10, 1,
INT, 2&, 2, ... 7O, 74, 7TNT, and successive bids must follow this
order; a bid of, say, 20 may only be followed by higher bids such as 2
or 3d or 7TNT. (Let us neglect the ‘double’ bid.)

The players have several aims when bidding. One of the aims is for two
partners to communicate to each other as much as possible about what
cards are in their hands.

Let us concentrate on this task.

(a) After the cards have been dealt, how many bits are needed for North
to convey to South what her hand is?

(b) Assuming that E and W do not bid at all, what is the maximum
total information that N and S can convey to each other while
bidding? Assume that N starts the bidding, and that once either
N or S stops bidding, the bidding stops.

6 — Stream Codes

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6.9: Solutions

> Exercise 6.21.[%] My old ‘arabic’ microwave oven had 11 buttons for entering
cooking times, and my new ‘roman’ microwave has just five. The but-
tons of the roman microwave are labelled ‘10 minutes’, ‘1 minute’, ‘10
seconds’, ‘1 second’, and ‘Start’; I’ll abbreviate these five strings to the
symbols M, C, X, I, O. To enter one minute and twenty-three seconds
(1:23), the arabic sequence is

1230, (6.21)
and the roman sequence is
CXXIIIO. (6.22)

FEach of these keypads defines a code mapping the 3599 cooking times
from 0:01 to 59:59 into a string of symbols.

(a) Which times can be produced with two or three symbols? (For
example, 0:20 can be produced by three symbols in either code:
XXO and 200.)

(b) Are the two codes complete? Give a detailed answer.

(c) For each code, name a cooking time that it can produce in four
symbols that the other code cannot.

(d) Discuss the implicit probability distributions over times to which
each of these codes is best matched.

(e) Concoct a plausible probability distribution over times that a real
user might use, and evaluate roughly the expected number of sym-
bols, and maximum number of symbols, that each code requires.
Discuss the ways in which each code is inefficient or efficient.

(f) Invent a more efficient cooking-time-encoding system for a mi-
crowave oven.

Exercise 6.22.[% P-132] 1 {16 standard binary representation for positive inte-
gers (e.g. cp(5) = 101) a uniquely decodeable code?

Design a binary code for the positive integers, i.e., a mapping from
n € {1,2,3,...} to ¢(n) € {0,1}T, that is uniquely decodeable. Try
to design codes that are prefix codes and that satisfy the Kraft equality

S 27 =1,

Motivations: any data file terminated by a special end of file character
can be mapped onto an integer, so a prefix code for integers can be used
as a self-delimiting encoding of files too. Large files correspond to large
integers. Also, one of the building blocks of a ‘universal’ coding scheme —
that is, a coding scheme that will work OK for a large variety of sources
— is the ability to encode integers. Finally, in microwave ovens, cooking
times are positive integers!

Discuss criteria by which one might compare alternative codes for inte-
gers (or, equivalently, alternative self-delimiting codes for files).

» 6.9 Solutions

Solution to exercise 6.1 (p.115). The worst-case situation is when the interval
to be represented lies just inside a binary interval. In this case, we may choose
either of two binary intervals as shown in figure 6.10. These binary intervals

127

Arabic Roman

45l [6] [IEE
7] [8] [9]
o] @

Figure 6.9. Alternative keypads
for microwave ovens.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

128 6 — Stream Codes

Figure 6.10. Termination of
Source string’s interval ~ Binary intervals arithmetic coding in the worst
case, where there is a two bit
overhead. Either of the two
— binary intervals marked on the
right-hand side may be chosen.
These binary intervals are no
PxH) smaller than P(x|H)/4.

are no smaller than P(x|H)/4, so the binary encoding has a length no greater
than log, 1/P(x|H) + logy 4, which is two bits more than the ideal message
length.

Solution to exercise 6.3 (p.118). The standard method uses 32 random bits
per generated symbol and so requires 32000 bits to generate one thousand
samples.

Arithmetic coding uses on average about H5(0.01) = 0.081 bits per gener-
ated symbol, and so requires about 83 bits to generate one thousand samples
(assuming an overhead of roughly two bits associated with termination).

Fluctuations in the number of 1s would produce variations around this
mean with standard deviation 21.

Solution to exercise 6.5 (p.120). The encoding is 010100110010110001100,
which comes from the parsing

0,00, 000, 0000, 001, 00000, 000000 (6.23)
which is encoded thus:
(,0),(1,0),(10,0),(11,0),(010,1),(100,0), (110,0). (6.24)

Solution to exercise 6.6 (p.120). The decoding is
0100001000100010101000001.

Solution to exercise 6.8 (p.123). This problem is equivalent to exercise 6.7
(p.123).

The selection of K objects from N objects requires [logg (%)1 bits ~
NHy(K/N) bits. This selection could be made using arithmetic coding. The
selection corresponds to a binary string of length /N in which the 1 bits rep-
resent which objects are selected. Initially the probability of a 1 is K/N and
the probability of a 0 is (N—K)/N. Thereafter, given that the emitted string
thus far, of length n, contains k 1s, the probability of a 1 is (K —k)/(N—n)
and the probability of a 0 is 1 — (K —k)/(IN—n).

Solution to exercise 6.12 (p.124). This modified Lempel-Ziv code is still not
‘complete’, because, for example, after five prefixes have been collected, the
pointer could be any of the strings 000, 001, 010, 011, 100, but it cannot be
101, 110 or 111. Thus there are some binary strings that cannot be produced
as encodings.

Solution to exercise 6.13 (p.124). Sources with low entropy that are not well
compressed by Lempel-Ziv include:

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6.9: Solutions

(a) Sources with some symbols that have long range correlations and inter-

L]

Figure 6.11. A source with low entropy that is not well compressed by Lempel-Ziv. The bit sequence
is read from left to right. Each line differs from the line above in f = 5% of its bits. The

b
|

vening random junk. An ideal model should capture what’s correlated
and compress it. Lempel-Ziv can compress the correlated features only
by memorizing all cases of the intervening junk. As a simple example,
consider a telephone book in which every line contains an (old number,
new number) pair:

285-3820:572-58920

258-8302:593-20100
The number of characters per line is 18, drawn from the 13-character
alphabet {0,1,...,9,—,:,0}. The characters ‘-’, “:” and ‘0’ occur in a
predictable sequence, so the true information content per line, assuming
all the phone numbers are seven digits long, and assuming that they are
random sequences, is about 14 bans. (A ban is the information content of
a random integer between 0 and 9.) A finite state language model could
easily capture the regularities in these data. A Lempel-Ziv algorithm
will take a long time before it compresses such a file down to 14 bans
per line, however, because in order for it to ‘learn’ that the string :ddd
is always followed by -, for any three digits ddd, it will have to see all
those strings. So near-optimal compression will only be achieved after

thousands of lines of the file have been read.
e
I

ir| I' Hlu. ‘] | y I'.

A

]
i

image width is 400 pixels.

(b) Sources with long range correlations, for example two-dimensional im-

ages that are represented by a sequence of pixels, row by row, so that
vertically adjacent pixels are a distance w apart in the source stream,
where w is the image width. Consider, for example, a fax transmission in
which each line is very similar to the previous line (figure 6.11). The true
entropy is only Hs(f) per pixel, where f is the probability that a pixel
differs from its parent. Lempel-Ziv algorithms will only compress down
to the entropy once all strings of length 2% = 2490 have occurred and
their successors have been memorized. There are only about 23%° par-
ticles in the universe, so we can confidently say that Lempel-Ziv codes
will never capture the redundancy of such an image.

Another highly redundant texture is shown in figure 6.12. The image was
made by dropping horizontal and vertical pins randomly on the plane. It
contains both long-range vertical correlations and long-range horizontal
correlations. There is no practical way that Lempel-Ziv, fed with a
pixel-by-pixel scan of this image, could capture both these correlations.

Biological computational systems can readily identify the redundancy in
these images and in images that are much more complex; thus we might
anticipate that the best data compression algorithms will result from the
development of artificial intelligence methods.

N i

129

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

130

6 — Stream Codes

I HlM:E .—i__ L |i|l:--l

|_ — _
" ' T ' | !
] . T i "lﬁhia'ag

L

Figure 6.12. A texture consisting of horizontal and vertical pins dropped at random on the plane.

(c)

(d)

Soluti

ance
comp

Sources with intricate redundancy, such as files generated by computers.
For example, a IXTEX file followed by its encoding into a PostScript
file. The information content of this pair of files is roughly equal to the
information content of the IXTEX file alone.

A picture of the Mandelbrot set. The picture has an information content
equal to the number of bits required to specify the range of the complex
plane studied, the pixel sizes, and the colouring rule used.

A picture of a ground state of a frustrated antiferromagnetic Ising model
(figure 6.13), which we will discuss in Chapter 31. Like figure 6.12, this
binary image has interesting correlations in two directions.

Cellular automata — figure 6.14 shows the state history of 100 steps of
a cellular automaton with 400 cells. The update rule, in which each
cell’s new state depends on the state of five preceding cells, was selected
at random. The information content is equal to the information in the
boundary (400 bits), and the propagation rule, which here can be de-
scribed in 32 bits. An optimal compressor will thus give a compressed file
length which is essentially constant, independent of the vertical height of
the image. Lempel-Ziv would only give this zero-cost compression once
the cellular automaton has entered a periodic limit cycle, which could
easily take about 2'%° iterations.

In contrast, the JBIG compression method, which models the probability
of a pixel given its local context and uses arithmetic coding, would do a
good job on these images.

on to exercise 6.14 (p.124). For a one-dimensional Gaussian, the vari-
of , £[x?], is 0. So the mean value of r? in N dimensions, since the

onents of x are independent random variables, is

E[r?Y] = No?. (6.25)

Figure 6.13. Frustrated triangular
Ising model in one of its ground
states.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

6.9: Solutions 131

Figure 6.14. The 100-step time-history of a cellular automaton with 400 cells.

The variance of 72, similarly, is N times the variance of z2, where z is a
one-dimensional Gaussian variable.

1 x?
VaI‘(.’L‘Z) = /dl’ W$4 exp <_ﬁ) — 0'4. (626)

The integral is found to be 30* (equation (6.14)), so var(z?) = 2¢*. Thus the
variance of 72 is 2N¢o*.

For large N, the central-limit theorem indicates that r? has a Gaussian
distribution with mean No? and standard deviation v2N¢?2, so the probability
density of r must similarly be concentrated about r ~ v/No.

The thickness of this shell is given by turning the standard deviation
of r? into a standard deviation on r: for small or/r, dlogr = or/r =
(Y2)81ogr? = (12)6(r?)/r?, so setting 5(r?) = v2No?, r has standard de-
viation 6r = (Y2)ré(r?)/r? = o /V/2.

The probability density of the Gaussian at a point Xgne Where r = VNo
is

1 No? 1 N
P(Xshel]) = WGXP (202) = (27TO—2)N/2 exp (2> . (627)

Whereas the probability density at the origin is

1

P(x=0) = (2ro?)V2

(6.28)
Thus P(Xshen)/P(x=0) = exp (—N/2) . The probability density at the typical
radius is e V/2 times smaller than the density at the origin. If N = 1000, then
the probability density at the origin is %0 times greater.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Codes for Integers

This chapter is an aside, which may safely be skipped.

Solution to exercise 6.22 (p.127)

To discuss the coding of integers we need some definitions.

The standard binary representation of a positive integer n will be
denoted by cn(n), e.g., cp(5) = 101, ¢p(45) = 101101.

The standard binary length of a positive integer n,

lp(n), is the
length of the string ¢p(n). For example, 1,,(5) = 3, 1,,(45) =

6.

The standard binary representation cp(n) is not a uniquely decodeable code
for integers since there is no way of knowing when an integer has ended. For
example, cp(5)cp,(5) is identical to ¢p(45). It would be uniquely decodeable if
we knew the standard binary length of each integer before it was received.

Noticing that all positive integers have a standard binary representation
that starts with a 1, we might define another representation:

The headless binary representation of a positive integer n will be de-
noted by cg(n), e.g., cg(5) = 01, c¢g(45) = 01101 and ¢g(l) = A (where
A denotes the null string).

This representation would be uniquely decodeable if we knew the length [y, (n)
of the integer.

So, how can we make a uniquely decodeable code for integers? Two strate-
gies can be distinguished.

1. Self-delimiting codes. We first communicate somehow the length of
the integer, {},(n), which is also a positive integer; then communicate the
original integer n itself using cg(n).

2. Codes with ‘end of file’ characters. We code the integer into blocks
of length b bits, and reserve one of the 2° symbols to have the special
meaning ‘end of file’. The coding of integers into blocks is arranged so
that this reserved symbol is not needed for any other purpose.

The simplest uniquely decodeable code for integers is the unary code, which
can be viewed as a code with an end of file character.

132

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

7 — Codes for Integers 133

Unary code. An integer n is encoded by sending a string of n—1 0s followed
by a 1.

cu(n)
1

01
001
0001
00001

Uk w3

45 001

The unary code has length ly(n) = n.

The unary code is the optimal code for integers if the probability distri-
bution over n is py(n) = 27™.

n cv(n) lb(n) ca(n)
1 1 1 1
Self-delimiting codes 2 10 2 010
. . 3 11 2 011
We can use the unary code to encode the length of the binary encoding of n 4 100 3 00100
and make a self-delimiting code: 5 101 3 00101
. 6 110 3 00110
Code C,. We send the unary code for I, (n), followed by the headless binary
representation of n. 4‘5 6
101101 00000101101
ca(n) = cullp(n)]es(n). (7.1)
Table 7.1 shows the codes for some integers. The overlining indicates
the division of each string into the parts cy[lp(n)] and cg(n). We might Table 7.1. C.
equivalently view cq(n) as consisting of a string of (I,(n) — 1) zeroes
followed by the standard binary representation of n, cp(n).
The codeword c,(n) has length I, (n) = 2l,(n) — 1.
The implicit probability distribution over n for the code C,, is separable
into the product of a probability distribution over the length I,
P(l) = 27[7 (72) n Cg(n) (,.Y(n)
and a uniform distribution over integers having that length, 11 1
2 0100 01000
27 Iy(n) =1 3 0101 01001
P(n|l) = { 0 otherwise. (7.3) 4 01100 010100
5 01101 010101
6 01110 010110

Now, for the above code, the header that communicates the length always
occupies the same number of bits as the standard binary representation of
the integer (give or take one). If we are expecting to encounter large integers 45 0011001101 0111001101
(large files) then this representation seems suboptimal, since it leads to all files
occupying a size that is double their original uncoded size. Instead of using
the unary code to encode the length I (n), we could use C,,. Table 7.2. C and C.

Code Cg. We send the length l},(n) using C,, followed by the headless binary
representation of n.

cg(n) = callp(n)]es(n). (7.4)
Tterating this procedure, we can define a sequence of codes.
Code C,.

& (n) = cgllb(n)]es(n). (7.5)
Code Cs.

cs(n) = ¢y[lp(n)]es(n). (7.6)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

134

Codes with end-of-file symbols

We can also make byte-based representations. (Let’s use the term byte flexibly
here, to denote any fixed-length string of bits, not just a string of length 8
bits.) If we encode the number in some base, for example decimal, then we
can represent each digit in a byte. In order to represent a digit from 0 to 9 in a
byte we need four bits. Because 2% = 16, this leaves 6 extra four-bit symbols,
{1010, 1011, 1100, 1101, 1110, 1111}, that correspond to no decimal digit.
We can use these as end-of-file symbols to indicate the end of our positive
integer.

Clearly it is redundant to have more than one end-of-file symbol, so a more

efficient code would encode the integer into base 15, and use just the sixteenth
symbol, 1111, as the punctuation character. Generalizing this idea, we can
make similar byte-based codes for integers in bases 3 and 7, and in any base
of the form 2™ — 1.

These codes are almost complete. (Recall that a code is ‘complete’ if it

satisfies the Kraft inequality with equality.) The codes’ remaining inefficiency
is that they provide the ability to encode the integer zero and the empty string,
neither of which was required.

> Exercise 7.1.1% P-136] Consider the implicit probability distribution over inte-

gers corresponding to the code with an end-of-file character.

(a) If the code has eight-bit blocks (i.e., the integer is coded in base
255), what is the mean length in bits of the integer, under the
implicit distribution?

(b) If one wishes to encode binary files of expected size about one hun-
dred kilobytes using a code with an end-of-file character, what is
the optimal block size?

Encoding a tiny file

To illustrate the codes we have discussed, we now use each code to encode a
small file consisting of just 14 characters,

[Claude Shannon |

e If we map the ASCII characters onto seven-bit symbols (e.g., in decimal,

C =67, 1 =108, etc.), this 14 character file corresponds to the integer

n = 167987786 364 950 891 085 602 469 870 (decimal).

The unary code for n consists of this many (less one) zeroes, followed by
a one. If all the oceans were turned into ink, and if we wrote a hundred
bits with every cubic millimeter, there might be enough ink to write

cu(n).

The standard binary representation of n is this length-98 sequence of
bits:

¢p(n) = 1000011110110011000011110101110010011001010100000
1010011110100011000011101110110111011011111101110.

> Exercise 7.2.1%] Write down or describe the following self-delimiting represen-

tations of the above number n: co(n), cg(n), c,(n), cs(n), cs(n), c7(n),
and c15(n). Which of these encodings is the shortest? [Answer: ¢i5.]

7 — Codes for Integers

n c3(n) cr(n)

1 0111 001111
2 1011 010111
3 010011 011111

45 0110000011 110011111

Table 7.3. Two codes with
end-of-file symbols, C'5 and C7.
Spaces have been included to
show the byte boundaries.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

7 — Codes for Integers 135

Comparing the codes

One could answer the question ‘which of two codes is superior?’ by a sentence
of the form ‘For n > k, code 1 is superior, for n < k, code 2 is superior’ but I
contend that such an answer misses the point: any complete code corresponds
to a prior for which it is optimal; you should not say that any other code is
superior to it. Other codes are optimal for other priors. These implicit priors
should be thought about so as to achieve the best code for one’s application.

Notice that one cannot, for free, switch from one code to another, choosing
whichever is shorter. If one were to do this, then it would be necessary to
lengthen the message in some way that indicates which of the two codes is
being used. If this is done by a single leading bit, it will be found that the
resulting code is suboptimal because it fails the Kraft equality, as was discussed
in exercise 5.33 (p.104).

Another way to compare codes for integers is to consider a sequence of
probability distributions, such as monotonic probability distributions over n >
1, and rank the codes as to how well they encode any of these distributions.
A code is called a ‘universal’ code if for any distribution in a given class, it
encodes into an average length that is within some factor of the ideal average
length.

Let me say this again. We are meeting an alternative world view — rather
than figuring out a good prior over integers, as advocated above, many the-
orists have studied the problem of creating codes that are reasonably good
codes for any priors in a broad class. Here the class of priors convention-
ally considered is the set of priors that (a) assign a monotonically decreasing
probability over integers and (b) have finite entropy.

Several of the codes we have discussed above are universal. Another code
which elegantly transcends the sequence of self-delimiting codes is Elias’s ‘uni-
versal code for integers’ (Elias, 1975), which effectively chooses from all the
codes Cy,Clg,.... It works by sending a sequence of messages each of which
encodes the length of the next message, and indicates by a single bit whether
or not that message is the final integer (in its standard binary representation).
Because a length is a positive integer and all positive integers begin with ‘1’,
all the leading 1s can be omitted.

. Algorithm 7.4. Elias’s encoder for
Write ‘0’ an integer n.
Loop {
If [logn| =0 halt
Prepend ¢, (n) to the written string
n:=|logn]|

}

The encoder of C,, is shown in algorithm 7.4. The encoding is generated
from right to left. Table 7.5 shows the resulting codewords.

> Exercise 7.3.1%] Show that the Elias code is not actually the best code for a
prior distribution that expects very large integers. (Do this by construct-
ing another code and specifying how large n must be for your code to
give a shorter length than Elias’s.)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

136 7 — Codes for Integers

n cy(n) n c,(n) n cw(n) n cw(n)

1 0 1110010 31 10100111110 256 1110001000000000

2 100 10 1110100 32 101011000000 365 1110001011011010

3 110 11 1110110 45 101011011010 511 1110001111111110

4 101000 12 1111000 63 101011111110 512 11100110000000000

5 101010 13 1111010 64 1011010000000 719 11100110110011110

6 101100 14 1111100 127 1011011111110 1023 11100111111111110

7 101110 15 1111110 128 10111100000000 1024 111010100000000000

8 1110000 16 10100100000 255 10111111111110 1025 111010100000000010

Table 7.5. Elias’s ‘universal’ code

Solutions for integers. Examples from 1 to

Solution to exercise 7.1 (p.134).

The use of the end-of-file symbol in a code

that represents the integer in some base ¢ corresponds to a belief that there is
a probability of (1/(¢ + 1)) that the current character is the last character of
the number. Thus the prior to which this code is matched puts an exponential
prior distribution over the length of the integer.

(a) The expected number of characters is ¢+ 1 = 256, so the expected length

of the integer is 256 x 8 ~ 2000 bits.

(b) We wish to find ¢ such that glog g ~ 800000 bits. A value of ¢ between
215 and 2'6 satisfies this constraint, so 16-bit blocks are roughly the
optimal size, assuming there is one end-of-file character.

1025.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Part 11

Noisy-Channel Coding

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Dependent Random Variables

In the last three chapters on data compression we concentrated on random
vectors x coming from an extremely simple probability distribution, namely
the separable distribution in which each component x,, is independent of the
others.

In this chapter, we consider joint ensembles in which the random variables
are dependent. This material has two motivations. First, data from the real
world have interesting correlations, so to do data compression well, we need
to know how to work with models that include dependences. Second, a noisy
channel with input z and output y defines a joint ensemble in which z and y are
dependent — if they were independent, it would be impossible to communicate
over the channel — so communication over noisy channels (the topic of chapters
9-11) is described in terms of the entropy of joint ensembles.

» 8.1 More about entropy

This section gives definitions and exercises to do with entropy, carrying on
from section 2.4.

The joint entropy of X,Y is:

1
HX,)Y)= P(z,y)log ———. 8.1
(XV)= ¥ Pl g (s.)
yEAx Ay
Entropy is additive for independent random variables:
HX,)Y)=H(X)+ H(®Y) iff P(z,y) = P(x)P(y). (8.2)

The conditional entropy of X given y=b; is the entropy of the proba-
bility distribution P(z |y =bg).

H(X |y=by)= Y P(z|y=b)log
rxeAx

1
Paly=b) Y

The conditional entropy of X given Y is the average, over y, of the con-
ditional entropy of X given .

_ 2| y) log ———
HX|Y) = yEEAYP(y) xGEAXP([v)log 5T
1
= xyeAEXAY P(x,y)log m (84)

This measures the average uncertainty that remains about when y is
known.

138

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

8.1: More about entropy

The marginal entropy of X is another name for the entropy of X, H(X),
used to contrast it with the conditional entropies listed above.

Chain rule for information content. From the product rule for probabil-
ities, equation (2.6), we obtain:

1 1 1
log—— = log—— +log ——— 8.5
® P(a,y) 5P Pyl (8.5)

h(z,y) = h(z) + h(y|z). (8.6)

In words, this says that the information content of x and y is the infor-
mation content of z plus the information content of y given x.

Chain rule for entropy. The joint entropy, conditional entropy and
marginal entropy are related by:

HX,Y)=HX)+HY|X)=HY)+HX|Y). (8.7)

In words, this says that the uncertainty of X and Y is the uncertainty
of X plus the uncertainty of ¥ given X.

The mutual information between X and Y is
I(X;Y) = HX)-HX|Y), (8.8)

and satisfies I(X;Y) = I(Y;X), and I(X;Y) > 0. It measures the
average reduction in uncertainty about x that results from learning the
value of y; or vice versa, the average amount of information that x
conveys about .

The conditional mutual information between X and Y given z=c;
is the mutual information between the random variables X and Y in
the joint ensemble P(x,y|z=cg),

I(X;Y |z=c,)=H(X|z=c¢;) — HX|Y, z=¢y). (8.9)

The conditional mutual information between X and Y given 7 is
the average over z of the above conditional mutual information.

I(X;Y | 2) = H(X|Z) - H(X|Y, 2). (8.10)

No other ‘three-term entropies’ will be defined. For example, expres-
sions such as I(X;Y;Z) and I(X |Y;Z) are illegal. But you may put
conjunctions of arbitrary numbers of variables in each of the three spots
in the expression I(X;Y | Z) — for example, I(A, B;C,D | E, F) is fine:
it measures how much information on average ¢ and d convey about a
and b, assuming e and f are known.

Figure 8.1 shows how the total entropy H(X,Y') of a joint ensemble can be
broken down. This figure is important.

139

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

140 8 — Dependent Random Variables
‘ H(X,Y) | Figure 8.1. The relationship
between joint information,
‘ H(X) | marginal entropy, conditional
entropy and mutual entropy.
| H(Y) |
| H(X|Y) [I(X;Y)]| HY[X) |

» 8.2 Exercises

> Exercise 8.1.[2] Consider three independent random variables u, v, w with en-
tropies H,,, Hy, Hy. Let X = (U,V)and Y = (V,W). What is H(X,Y)?
What is H(X |Y)? What is I(X;Y)?

> Exercise 8.2.[% P-142] Referring to the definitions of conditional entropy (8.3—
8.4), confirm (with an example) that it is possible for H(X |y=by) to
exceed H(X), but that the average, H(X |Y), is less than H(X). So
data are helpful — they do not increase uncertainty, on average.

> Exercise 8.3.1% P143] Prove the chain rule for entropy, equation (8.7).
[H(X,Y)=H(X)+HY[X)].

ﬁ% Exercise 8.4.[% P11 Prove that the mutual information I(X;Y)=H(X) -
H(X|Y) satisfies I(X;Y) =1(Y; X) and I(X;Y) > 0.

[Hint: see exercise 2.26 (p.37) and note that

I(X;Y) = DgL(P(z,y)||P(z) P(y)).] (8.11)

Exercise 8.5.14] The ‘entropy distance’ between two random variables can be
defined to be the difference between their joint entropy and their mutual
information:

Dy(X,Y)=H(X,Y) - I(X;Y). (8.12)

Prove that the entropy distance satisfies the axioms for a distance —
Dy(X,Y)>0,Du(X,X)=0,Dy(X,Y)=Dy(¥,X), and Dy(X,Z) <
Dy (X,Y)+ Dy (Y, Z). [Incidentally, we are unlikely to see Dy (X,Y)
again but it is a good function on which to practise inequality-proving.]

ﬁ% Exercise 8.6.1% 1471 A joint ensemble XY has the following joint distribution.

P(z,y) r 1234
1 2 3 4

1| Y8 Yie Ys2 132 % ::: :
y 2 |Yie Yz sz 1/32 3 EEEE

3 | Y Yie e Ve 4 |

4

Yy 0 0 0

What is the joint entropy H(X,Y)? What are the marginal entropies
H(X) and H(Y)? For each value of y, what is the conditional entropy
H(X |y)? What is the conditional entropy H(X |Y)? What is the
conditional entropy of Y given X7 What is the mutual information
between X and Y?

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

8.3: Further exercises

ﬁ%Exercise 8.7.[% P19l Congider the ensemble XYZ in which Ax = Ay =
Az = {0,1}, = and y are independent with Px = {p,1—p} and

Py ={q,1—q} and
z = (x4 y)mod 2. (8.13)

(a) If ¢ = 1/2, what is Pz? What is 1(Z; X)?

(b) For general p and ¢, what is Pz? What is I(Z; X)? Notice that
this ensemble is related to the binary symmetric channel, with z =
input, y = noise, and z = output.

—H)

H(X) >

Three term entropies

Exercise 8.8.1% P-143] Many texts draw figure 8.1 in the form of a Venn diagram
(figure 8.2). Discuss why this diagram is a misleading representation
of entropies. Hint: consider the three-variable ensemble XY Z in which
z € {0,1} and y € {0, 1} are independent binary variables and z € {0, 1}
is defined to be z = x + y mod 2.

» 8.3 Further exercises

The data-processing theorem

The data processing theorem states that data processing can only destroy
information.

ﬁ% Exercise 8.9.1% P14 prove this theorem by considering an ensemble W DR
in which w is the state of the world, d is data gathered, and r is the
processed data, so that these three variables form a Markov chain

w—d—r, (8.14)
that is, the probability P(w,d,r) can be written as
P(w,d,r) = P(w)P(d|w)P(r|d). (8.15)

Show that the average information that R conveys about W, I(W; R), is
less than or equal to the average information that D conveys about W,

I(W; D).

This theorem is as much a caution about our definition of ‘information’ as it
is a caution about data processing!

Figure 8.2. A misleading
representation of entropies
(contrast with figure 8.1).

141

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

142

Inference and information measures

g% Exercise 8.10.[2] The three cards.

(a)

(b)

One card is white on both faces; one is black on both faces; and one
is white on one side and black on the other. The three cards are
shuffled and their orientations randomized. One card is drawn and
placed on the table. The upper face is black. What is the colour of
its lower face? (Solve the inference problem.)

Does seeing the top face convey information about the colour of
the bottom face? Discuss the information contents and entropies
in this situation. Let the value of the upper face’s colour be u and
the value of the lower face’s colour be [. Imagine that we draw
a random card and learn both v and [. What is the entropy of
u, H(U)? What is the entropy of [, H(L)? What is the mutual
information between U and L, I(U; L)?

Entropies of Markov processes

> Exercise 8.11.1%] Tn the guessing game, we imagined predicting the next letter
in a document starting from the beginning and working towards the end.
Consider the task of predicting the reversed text, that is, predicting the
letter that precedes those already known. Most people find this a harder
task. Assuming that we model the language using an N-gram model
(which says the probability of the next character depends only on the
N — 1 preceding characters), is there any difference between the average
information contents of the reversed language and the forward language?

» 8.4 Solutions

Solution to exercise 8.2 (p.140). See exercise 8.6 (p.140) for an example where
H(X |y) exceeds H(X) (set y=3).

We can prove the inequality H(X |Y) < H(X) by turning the expression
into a relative entropy (using Bayes’ theorem) and invoking Gibbs’ inequality
(exercise 2.26 (p.37)):

H(X|Y)

1

= y;;y P(y) ng P(x|y)log Paly)
1
- zyeAZxAy Pltos m (8.16)
_ P(y)
= %: P(@)P(y|2)log 5o s (8.17)

B 1 Py)
= ;P(x) log) + zm:P(ac) zy: P(y|x)log Pyla) (8.18)

The last expression is a sum of relative entropies between the distributions
P(y|z) and P(y). So

H(X|Y) < H(X) +0, (8.19)

with equality only if P(y|x) = P(y) for all z and y (that is, only if X and Y
are independent).

8 — Dependent Random Variables

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

8.4: Solutions 143

Solution to exercise 8.3 (p.140). The chain rule for entropy follows from the
decomposition of a joint probability:

H(X,)Y) = ZPmy)logP(l " (8.20)
Ty
1 1
= ZP P(y|x) {log) + log P(ym} (8.21)
= ZP()log 5 +me)ZP (y|z)log 0 |)(82)
= H(X)+H(Y|X). (8.23)

Solution to exercise 8.4 (p.140). Symmetry of mutual information:
I(X;Y) = H(X)-HX|Y) (8.24)
1
= P(x)log —— P(x,y)log =——— (8.25)
Z P(z) Z P(z | y)

= Znylog ((|§/) (8.26)

- ZP z,y) log ((;3 Zé) (8.27)

y)
This expression is symmetric in z and y so
I(X;Y)=H(X)-H(X|Y)=HY)-H(Y|X). (8.28)

We can prove that mutual information is positive in two ways. One is to
continue from

V)= P(a,y)log]% (8.29)

which is a relative entropy and use Gibbs’ inequality (proved on p.44), which
asserts that this relative entropy is > 0, with equality only if P(z,y) =

P(z)P(y), that is, if X and Y are independent.
The other is to use Jensen’s inequality on

~3" P(a,y)log }W > —log) P@.Y) by py) = log 1 = 0. (8.30)

Solution to exercise 8.7 (p.141). z = + ymod2.
(a) If g =12, Py = {12, 2} and I(Z; X) = H(Z) - H(Z|X)=1-1=0.

(b) For general q and p, Pz = {pq+(1-p)(1—q), p(1—q)+q(1—p)}. The mutual
information is I(Z; X) = H(Z)—H(Z | X) = Ha(pg+(1-p)(1—q))—H2(q).

Three term entropies

Solution to exercise 8.8 (p.141). The depiction of entropies in terms of Venn
diagrams is misleading for at least two reasons.

First, one is used to thinking of Venn diagrams as depicting sets; but what
are the ‘sets’ H(X) and H(Y") depicted in figure 8.2, and what are the objects
that are members of those sets? I think this diagram encourages the novice
student to make inappropriate analogies. For example, some students imagine

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

144 8 — Dependent Random Variables

Figure 8.3. A misleading
representation of entropies,
continued.

that the random outcome (x,y) might correspond to a point in the diagram,
and thus confuse entropies with probabilities.

Secondly, the depiction in terms of Venn diagrams encourages one to be-
lieve that all the areas correspond to positive quantities. In the special case of
two random variables it is indeed true that H(X |Y), I(X;Y) and H(Y | X)
are positive quantities. But as soon as we progress to three-variable ensembles,
we obtain a diagram with positive-looking areas that may actually correspond
to negative quantities. Figure 8.3 correctly shows relationships such as

HX)+H(Z|X)+H(Y |X,Z)=H(X,Y,Z). (8.31)

But it gives the misleading impression that the conditional mutual information
I(X;Y | Z) is less than the mutual information I(X;Y). In fact the area
labelled A can correspond to a negative quantity. Consider the joint ensemble
(X,Y,Z) in which z € {0,1} and y € {0,1} are independent binary variables
and z € {0,1} is defined to be z = = + ymod2. Then clearly H(X) =
H(Y) =1 bit. Also H(Z) =1 bit. And H(Y | X) = H(Y) = 1 since the two
variables are independent. So the mutual information between X and Y is
zero. I[(X;Y) = 0. However, if z is observed, X and Y become dependent —
knowing z, given z, tells you what y is: y = z —zmod 2. So I(X;Y |Z) =1
bit. Thus the area labelled A must correspond to —1 bits for the figure to give
the correct answers.

The above example is not at all a capricious or exceptional illustration. The
binary symmetric channel with input X, noise Y, and output Z is a situation
in which I(X;Y) = 0 (input and noise are independent) but I(X;Y |Z) > 0
(once you see the output, the unknown input and the unknown noise are
intimately related!).

The Venn diagram representation is therefore valid only if one is aware
that positive areas may represent negative quantities. With this proviso kept
in mind, the interpretation of entropies in terms of sets can be helpful (Yeung,

1991).

Solution to exercise 8.9 (p.141). For any joint ensemble XY Z, the following
chain rule for mutual information holds.

I(X;Y,2)=1(X;Y)+ I(X;Z]Y). (8.32)
Now, in the case w — d — r, w and r are independent given d, so
I(W;R|D) = 0. Using the chain rule twice, we have:
I(W;D,R) =I(W;D) (8.33)
and
I(W;D,R)=I(W;R)+ I(W;D|R), (8.34)
SO

I(W;R) — I(W;D) <0. (8.35)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

About Chapter 9

Before reading Chapter 9, you should have read Chapter 1 and worked on
exercise 2.26 (p.37), and exercises 8.2-8.7 (pp.140-141).

145

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Communication over a Noisy Channel

» 9.1 The big picture Source

| T

SOURCE
Compressor Decompressor
CODING
CHANNEL
Encoder Decoder
CODING
Noisy
channel

In Chapters 4-6, we discussed source coding with block codes, symbol codes
and stream codes. We implicitly assumed that the channel from the compres-
sor to the decompressor was noise-free. Real channels are noisy. We will now
spend two chapters on the subject of noisy-channel coding — the fundamen-
tal possibilities and limitations of error-free communication through a noisy
channel. The aim of channel coding is to make the noisy channel behave like
a noiseless channel. We will assume that the data to be transmitted has been
through a good compressor, so the bit stream has no obvious redundancy. The
channel code, which makes the transmission, will put back redundancy of a
special sort, designed to make the noisy received signal decodeable.

Suppose we transmit 1000 bits per second with pg = p1 = /2 over a
noisy channel that flips bits with probability f = 0.1. What is the rate of
transmission of information? We might guess that the rate is 900 bits per
second by subtracting the expected number of errors per second. But this is
not correct, because the recipient does not know where the errors occurred.
Consider the case where the noise is so great that the received symbols are
independent of the transmitted symbols. This corresponds to a noise level of
f = 0.5, since half of the received symbols are correct due to chance alone.
But when f = 0.5, no information is transmitted at all.

Given what we have learnt about entropy, it seems reasonable that a mea-
sure of the information transmitted is given by the mutual information between
the source and the received signal, that is, the entropy of the source minus the
conditional entropy of the source given the received signal.

We will now review the definition of conditional entropy and mutual in-
formation. Then we will examine whether it is possible to use such a noisy
channel to communicate reliably. We will show that for any channel @ there
is a non-zero rate, the capacity C(Q), up to which information can be sent

146

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

9.2: Review of probability and information 147
with arbitrarily small probability of error.

» 9.2 Review of probability and information

As an example, we take the joint distribution XY from exercise 8.6 (p.140).
The marginal distributions P(z) and P(y) are shown in the margins.

P(x,y) T P(y)
1 2 3 4

1 | Y8 Yie sz /32| V4

y 2 |lhe Ys 132 sz | 1

3 | Ve Ve Ve 16| Ya

4 | Y4 0o 0 0 | Y4
P(x) | Y2 Ya Yg

The joint entropy is H(X,Y) = 27/8 bits. The marginal entropies are H(X) =
7/4 bits and H(Y') = 2 bits.

We can compute the conditional distribution of x for each value of y, and
the entropy of each of those conditional distributions:

P(z|y) x H(X |y)/bits
1 2 3 4
1 | Y2 Ya Y 1 /4
y 2 |Y4 Y2 s 1 /4
3 | V4 Ya Vi Y 2
4 1 0 0 O 0
H(X|Y)=1}

Note that whereas H(X |y=4) = 0 is less than H(X), H(X |y=3) is greater
than H(X). So in some cases, learning y can increase our uncertainty about
x. Note also that although P(x|y=2) is a different distribution from P(z),
the conditional entropy H(X |y=2) is equal to H(X). So learning that y
is 2 changes our knowledge about x but does not reduce the uncertainty of
x, as measured by the entropy. On average though, learning y does convey
information about z, since H(X |Y) < H(X).

One may also evaluate H(Y|X) = 13/8 bits. The mutual information is
I(X;Y)=H(X)—- H(X|Y)=3/8 bits.

» 9.3 Noisy channels

A discrete memoryless channel () is characterized by an input alphabet
Ax, an output alphabet Ay, and a set of conditional probability distri-
butions P(y | x), one for each z € Ax.

These transition probabilities may be written in a matrix

qu =P(y=bj|z=a). (9.1)

I usually orient this matrix with the output variable j indexing the rows
and the input variable i indexing the columns, so that each column of Q is
a probability vector. With this convention, we can obtain the probability
of the output, py, from a probability distribution over the input, px, by
right-multiplication:

pr = Qpx. (9.2)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

148 9 — Communication over a Noisy Channel

Some useful model channels are:

Binary symmetric channel. Ax ={0,1}. Ay ={0,1}.

01
00 Ply=0lz=0) = 1-f; Ply=0lz=1) = f; o M
€T y) b
2% Ply=1]2=0) = fi = Ply=1lr=1) = 1 f. i
Binary erasure channel. Ax={0,1}. Ay ={0,7,1}.
01
00 P(y=0]lz=0) = 1-f; Py=0lz=1) = 0 olm
G Z%?y Ply=2|a=0) = fi Ply=?|v=1) = f; a0
1—~1 Ply=1|z=0) = 0; Ply=1|z=1) = 1-f.
Noisy typewriter. Ax = Ay = the 27 letters {A, B, ..., Z, =}. The letters
are arranged in a circle, and when the typist attempts to type B, what
comes out is either A, B or C, with probability /3 each; when the input is
C, the output is B, C or D; and so forth, with the final letter ‘-’ adjacent
to the first letter A.
A ABCDEFGHI JKLMNOPQRSTUVWXYZ-
B % H "
»C .
D : O,
E : v i,
E Py=F|z=C) = 1/3; : N
G Ply=Glz=G) = 1/3; ",
B Ply=H|e=6) = 1/3 : i
: [r\} .=E=l
: E iév L] .=EE=
Z channel. Ax ={0,1}. Ay ={0,1}.
01
0—0 Ply=0]|z=0) = 1; P(y=0lz=1) = f; 0| M=
“ / Y P(y= = = 0; Py= = = 1- -
15+1 (y=1lz=0) = 0; Ply=1lz=1) = f

» 9.4 Inferring the input given the output

If we assume that the input = to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P(xz,y) = P(y|z)P(z). (9-3)
Now if we receive a particular symbol y, what was the input symbol 7 We

typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P(y|z)P(x) Ply|z)P(x)
Px|y) = = - .
=Ty T S Pl P@)
Example 9.1. Consider a binary symmetric channel with probability of error

f=0.15. Let the input ensemble be Px : {p9=0.9,p1 =0.1}. Assume
we observe y =1.

(9.4)

Ply=1|lz=1)P(x=1)
S Ply o) P
0.85 x 0.1
0.85 x0.140.15x0.9

0.085
= gy = 039 (9.5)

Plz=1|y=1)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

9.5: Information conveyed by a channel

Thus ‘e =1’ is still less probable than ‘z=0’, although it is not as im-
probable as it was before.

ﬁ% Exercise 9.2, P157] Now assume we observe y=0. Compute the probability
of x=1 given y=0.

Example 9.3. Consider a Z channel with probability of error f=0.15. Let the
input ensemble be Py : {pg=0.9,p1 =0.1}. Assume we observe y=1.

Plo=1ly=1) = 0.85 x 0.1
T T 085 x01+0x009
0.085
= 2). 9.6
0.085 (96)

So given the output y =1 we become certain of the input.

ﬁ% Exercise 9.4.[1 P-157] Alternatively, assume we observe y=0. Compute
Plz=1|y=0).

» 9.5 Information conveyed by a channel

We now consider how much information can be communicated through a chan-
nel. In operational terms, we are interested in finding ways of using the chan-
nel such that all the bits that are communicated are recovered with negligible
probability of error. In mathematical terms, assuming a particular input en-
semble X, we can measure how much information the output conveys about
the input by the mutual information:

I(X;Y)=H(X)-H(X|Y)=H(Y) - HY|X). (9.7)

Our aim is to establish the connection between these two ideas. Let us evaluate
I(X;Y) for some of the channels above.

Hint for computing mutual information

We will tend to think of I(X;Y) as H(X) — H(X|Y), i.e., how much the
uncertainty of the input X is reduced when we look at the output Y. But for
computational purposes it is often handy to evaluate H(Y)— H (Y| X) instead.

| H(X,Y) |

| H(X) |

H(Y) |

| H(X|Y) | 1(X:Y) || HY|X) |

Example 9.5. Consider the binary symmetric channel again, with f=0.15 and
Px : {po=0.9,p1 =0.1}. We already evaluated the marginal probabil-
ities P(y) implicitly above: P(y=0) = 0.78; P(y=1) = 0.22. The
mutual information is:

I(X;Y) = H(Y)-H(Y|X).

149

Figure 9.1. The relationship
between joint information,
marginal entropy, conditional
entropy and mutual entropy.
This figure is important, so I'm
showing it twice.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

150 9 — Communication over a Noisy Channel

What is H(Y|X)? It is defined to be the weighted sum over x of H(Y | z);
but H(Y |z) is the same for each value of x: H(Y |x=0) is H5(0.15),
and H(Y |z=1) is H5(0.15). So

I(X;Y) = H(Y)-H(Y|X)
= Hy(0.22) — Hy(0.15)
= 0.76—0.61 = 0.15 bits. (9.8)

This may be contrasted with the entropy of the source H(X) =
Hy(0.1) = 0.47 bits.

Note: here we have used the binary entropy function Hy(p) = H(p,1—
p) = plog % + (1 —p)log ﬁ‘ Throughout this book, log means
logs.
Example 9.6. And now the Z channel, with Px as above. P(y=1)=0.085.

I(X;Y) = H(Y)—H(Y|X)
= H,(0.085) — [0.9H5(0) + 0.1H5(0.15)]
0.42 — (0.1 x 0.61) = 0.36 bits. (9.9)

The entropy of the source, as above, is H(X) = 0.47 bits. Notice that
the mutual information I(X;Y") for the Z channel is bigger than the
mutual information for the binary symmetric channel with the same f.
The Z channel is a more reliable channel.

ﬁ% Exercise 9.7.11 P-157] Compute the mutual information between X and Y for
the binary symmetric channel with f=0.15 when the input distribution
is Px = {po=0.5,p1 =0.5}.

ﬁ% Exercise 9.8.[% P-157] Compute the mutual information between X and Y for
the Z channel with f = 0.15 when the input distribution is Px :

{po=0.5,p1 =0.5}.

Mazimizing the mutual information

We have observed in the above examples that the mutual information between
the input and the output depends on the chosen input ensemble.

Let us assume that we wish to maximize the mutual information conveyed
by the channel by choosing the best possible input ensemble. We define the
capacity of the channel to be its maximum mutual information.

The capacity of a channel @ is:

c@) = H%?{X I(X;Y). (9.10)

The distribution Px that achieves the maximum is called the optimal
input distribution, denoted by P%. [There may be multiple optimal
input distributions achieving the same value of I(X;Y").]

In Chapter 10 we will show that the capacity does indeed measure the maxi-
mum amount of error-free information that can be transmitted over the chan-
nel per unit time.

Example 9.9. Consider the binary symmetric channel with f=0.15. Above,
we considered Px = {pp=0.9,p1 =0.1}, and found I(X;Y) = 0.15 bits.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

9.6: The noisy-channel coding theorem 151

How much better can we do? By symmetry, the optimal input distribu-
tion is {0.5,0.5} and the capacity is

I(X:;Y)
C(Qpsc) = Hy(0.5) — Hy(0.15) = 1.0 —0.61 = 0.39bits. (9.11) 04 T T
We'll justify the symmetry argument later. If there’s any doubt about 03 1
the symmetry argument, we can always resort to explicit maximization ok |
of the mutual information 1(X;Y), '
0.1 | 4
I(X;Y)=Ho((1—f)p1 + (1—p1)f) — Ha(f) (figure 9.2). (9.12) 1 1 1
0 0 0.25 0.5 0.75 1
Example 9.10. The noisy typewriter. The optimal input distribution is a uni- P
form distribution over z, and gives C' = log, 9 bits. Figure 9.2. The mutual

information I(X;Y’) for a binary
Example 9.11. Consider the Z channel with f=0.15. Identifying the optimal symmetric channel with f = 0.15
input distribution is not so straightforward. We evaluate I(X;Y') explic- as a function of the input
itly for Px = {po,p1}. First, we need to compute P(y). The probability distribution.
of y=1 is easiest to write down:

Py=1) = pi(1-f). (9.13)
Then the mutual information is:
I(X;Y)
I(X;Y) = H(Y)-H(Y[X) 07 ———
= Ha(p1(1 - f)) — (poH2(0) + p1H2(f)) 06 - 1
05 | -
= Ha(pi(1—f)) — p1H2(f). (9.14) 0al i
This is a non-trivial function of p;, shown in figure 9.3. It is maximized Z:z I |
for f =0.15 by p; = 0.445. We find C(Qz) = 0.685. Notice the optimal 01 |
input distribution is not {0.5,0.5}. We can communicate slightly more 0 ok o5 o
information by using input symbol 0 more frequently than 1. D1

Exercise 9.12.[% P-158] \What is the capacity of the binary symmetric channel ~ Figure 9-3. The mutual
for general f? information I(X;Y) for a Z

channel with f =0.15 as a

) (2, p.158]) i function of the input distribution.
ﬁ% Exercise 9.13.1~ P Show that the capacity of the binary erasure channel

with f = 0.15 is Cggc = 0.85. What is its capacity for general f7
Comment.

» 9.6 The noisy-channel coding theorem

It seems plausible that the ‘capacity’ we have defined may be a measure of
information conveyed by a channel; what is not obvious, and what we will
prove in the next chapter, is that the capacity indeed measures the rate at
which blocks of data can be communicated over the channel with arbitrarily
small probability of error.

We make the following definitions.

An (N, K) block code for a channel Q is a list of S = 2% codewords
{(xW x® ,X(QK)}, x®) ¢ AY,

each of length N. Using this code we can encode a signal s €
{1,2,3,...,25} as x(®). [The number of codewords S is an integer,
but the number of bits specified by choosing a codeword, K = log, S, is
not necessarily an integer.|

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

152 9 — Communication over a Noisy Channel

The rate of the code is R = K/N bits per channel use.

[We will use this definition of the rate for any channel, not only chan-
nels with binary inputs; note however that it is sometimes conventional
to define the rate of a code for a channel with ¢ input symbols to be

K/(Nlogq).]

A decoder for an (N, K) block code is a mapping from the set of length-N
strings of channel outputs, A%Y, to a codeword label 3 € {0,1,2,...,2K}.
The extra symbol §=0 can be used to indicate a ‘failure’.

The probability of block error of a code and decoder, for a given channel,
and for a given probability distribution over the encoded signal P(siy),

is:

B = Z P(Sin>P(50ut7é5in | 5in)~ (915)

Sin

The maximal probability of block error is

PBM = n;ax P(Sout #sin | sin)- (916)

The optimal decoder for a channel code is the one that minimizes the prob-
ability of block error. It decodes an output y as the input s that has
maximum posterior probability P(s|y).

Py |s)P(s)

P = Py 0 P) o1

Soptimal = argmax P(s|y). (9.18)

A uniform prior distribution on s is usually assumed, in which case the PBM
optimal decoder is also the maximum likelihood decoder, i.e., the decoder
that maps an output y to the input s that has maximum likelihood
P(y|s). achievable

The probability of bit error p;, is defined assuming that the codeword
number s is represented by a binary vector s of length K bits; it is the C R
average probability that a bit of sy is not equal to the corresponding

bit of si, (averaging over all K bits). Figure 9.4. Portion of the R, ppm
plane asserted to be achievable by
Shannon’s noisy-channel coding theorem (part one). Associated with the first part of Shannon’s noisy

each discrete memoryless channel, there is a non-negative number C' channel coding theorem.
(called the channel capacity) with the following property. For any € > 0

and R < C, for large enough NV, there exists a block code of length N and

rate > R and a decoding algorithm, such that the maximal probability

of block error is < e.

Confirmation of the theorem for the noisy typewriter channel

In the case of the noisy typewriter, we can easily confirm the theorem, because
we can create a completely error-free communication strategy using a block
code of length N = 1: we use only the letters B, E, H, ..., Z, i.e., every third
letter. These letters form a non-confusable subset of the input alphabet (see
figure 9.5). Any output can be uniquely decoded. The number of inputs
in the non-confusable subset is 9, so the error-free information rate of this
system is logy 9 bits, which is equal to the capacity C, which we evaluated in
example 9.10 (p.151).

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

9.7: Intuitive preview of proof 153
A 0 A A Figure 9.5. A non-confusable
B B A subset of inputs for the noisy
C é typewriter.
D
E E y
F
G
H H Q
I 7
U
W
Y
Z Z :
Figure 9.6. Extended channels
0000 obtained from a binary symmetric
3288 channel with transition
1100 probability 0.15.
0010
1010
0110
1110
0001
S=o« 0101
1101
01 00 |Hl=n 0011
10 | - = | 1011
O |l= |01 | = -ll= |0111
1| wjll| 12| -« u]l| 1111
N=1 N =2

How does this translate into the terms of the theorem? The following table

explains.
The theorem How it applies to the noisy typewriter
Associated with each discrete The capacity C' is log, 9.

memoryless channel, there is a
non-negative number C.

For any e > 0 and R < C, for large No matter what € and R are, we set the blocklength NV to 1.

enough N,

there exists a block code of length N and The block code is {B,E,...,Z}. The value of K is given by

rate > R 2K =9 so K = log, 9, and this code has rate logy 9, which is
greater than the requested value of R.

and a decoding algorithm, The decoding algorithm maps the received letter to the nearest
letter in the code;

such that the mazximal probability of the maximal probability of block error is zero, which is less

block error is < e. than the given e.

» 9.7 Intuitive preview of proof

Eaxtended channels

To prove the theorem for any given channel, we consider the extended channel
corresponding to N uses of the channel. The extended channel has |A x|V
possible inputs x and |Ay |V possible outputs. Extended channels obtained
from a binary symmetric channel and from a Z channel are shown in figures

9.6 and 9.7, with N =2 and N = 4.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

g

154

1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

W | 0000

0000
1000 L]

0100 |

1100 || L] L]
0010 . .
1010 H - L] .
0110 - LI
1110 | -
0001 . .o
1001 H - L] .
0101 - LI
1101 | -
0011 .
1011 |
0111
1111

10
01
11

B | oo
H=

01 00
10
o|l= |01
1 | 11

RN o)
) /..!\ >¢
ST

eﬁg\;&;\?{ (Q)()
IO

‘ \f‘!‘ l ‘ Q
iy =

LY
i)y
&

Typical y for a given typical x

(a)

Exercise 9.14.1% P15 pind the transition probability matrices Q for the ex-
tended channel, with N = 2, derived from the binary erasure channel
having erasure probability 0.15.

By selecting two columns of this transition probability matrix, we can
define a rate-1/2 code for this channel with blocklength N = 2. What is
the best choice of two columns? What is the decoding algorithm?

To prove the noisy-channel coding theorem, we make use of large block-
lengths N. The intuitive idea is that, if IV is large, an extended channel looks
a lot like the noisy typewriter. Any particular input x is very likely to produce
an output in a small subspace of the output alphabet — the typical output set,
given that input. So we can find a non-confusable subset of the inputs that
produce essentially disjoint output sequences. For a given N, let us consider
a way of generating such a non-confusable subset of the inputs, and count up
how many distinct inputs it contains.

Imagine making an input sequence x for the extended channel by drawing
it from an ensemble X, where X is an arbitrary ensemble over the input
alphabet. Recall the source coding theorem of Chapter 4, and consider the
number of probable output sequences y. The total number of typical output
sequences y is 2V7(Y) | all having similar probability. For any particular typical
input sequence x, there are about 2V7(1X) probable sequences. Some of these
subsets of AJ)\,’ are depicted by circles in figure 9.8a.

We now imagine restricting ourselves to a subset of the typical inputs
x such that the corresponding typical output sets do not overlap, as shown
in figure 9.8b. We can then bound the number of non-confusable inputs by
dividing the size of the typical y set, 2V7() by the size of each typical-y-

9 — Communication over a Noisy Channel

Figure 9.7. Extended channels
obtained from a Z channel with
transition probability 0.15. Each
column corresponds to an input,
and each row is a different output.

Figure 9.8. (a) Some typical
outputs in A{Y corresponding to
typical inputs x. (b) A subset of
the typical sets shown in (a) that
do not overlap each other. This
picture can be compared with the
solution to the noisy typewriter in
figure 9.5.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

9.8: Further exercises 155

given-typical-x set, 2V (¥1X) | So the number of non-confusable inputs, if they
are selected from the set of typical inputs x ~ XN, is < 2NHY)-NHI[X)
oNI(X;Y).

The maximum value of this bound is achieved if X is the ensemble that
maximizes I(X;Y’), in which case the number of non-confusable inputs is
< 2NC. Thus asymptotically up to C bits per cycle, and no more, can be
communicated with vanishing error probability. O

This sketch has not rigorously proved that reliable communication really
is possible — that’s our task for the next chapter.

» 9.8 Further exercises

ﬁ% Exercise 9.15.1% P15 Refer back to the computation of the capacity of the Z
channel with f = 0.15.

(a) Why is pj less than 0.57 One could argue that it is good to favour
the 0 input, since it is transmitted without error — and also argue
that it is good to favour the 1 input, since it often gives rise to the
highly prized 1 output, which allows certain identification of the
input! Try to make a convincing argument.

(b) In the case of general f, show that the optimal input distribution

1S
. 1a-f)
L= T mR(p/a-n)

(9.19)
(c) What happens to pj if the noise level f is very close to 17

g%Exercise 9.16.[% P19 Qieteh graphs of the capacity of the Z channel, the
binary symmetric channel and the binary erasure channel as a function

of f.

> Exercise 9.17. What is the capacity of the five-input, ten-output channel
whose transition probability matrix is

(2]

(025 0 0 0 025]

0.25 0 0 0 0.25 01234
025 025 0 0 0 T
025 025 0 0 0 1la, =
0 025 025 0 0 EH

: . 1 2

0 025 025 0 0 5| o |f (9.20)
0 0 025 025 0 RS
0 0 025 025 0 s s
0 0 0 025 025

0 0 0 025 025 |

ﬁ%Exercise 9.18.[% P 199] Consider a Gaussian channel with binary input z €
{—1,+1} and real output alphabet Ay, with transition probability den-
sity
1 (y=za)?

e 2% 9.21
V2mo? ()

Q(y | "E’O"J) =

where « is the signal amplitude.

(a) Compute the posterior probability of x given y, assuming that the
two inputs are equiprobable. Put your answer in the form

1

g (9.22)

Plz=1]y,a,0) =

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

156 9 — Communication over a Noisy Channel

Sketch the value of P(x=1]|y,«,0) as a function of y.

(b) Assume that a single bit is to be transmitted. What is the optimal
decoder, and what is its probability of error? Express your answer
in terms of the signal-to-noise ratio a?/0? and the error function
(the cumulative probability function of the Gaussian distribution),

=1 22
P(2) = e 2 dz. 9.23

o=/ 7 (929)
[Note that this definition of the error function ®(z) may not corre-
spond to other people’s.]

Pattern recognition as a noisy channel

We may think of many pattern recognition problems in terms of communi-
cation channels. Consider the case of recognizing handwritten digits (such
as postcodes on envelopes). The author of the digit wishes to communicate
a message from the set Ax = {0,1,2,3,...,9}; this selected message is the
input to the channel. What comes out of the channel is a pattern of ink on
paper. If the ink pattern is represented using 256 binary pixels, the channel
Q has as its output a random variable y € Ay = {0,1}2°6. An example of an
element from this alphabet is shown in the margin.

ﬁ% Exercise 9.19.[%] Estimate how many patterns in Ay are recognizable as the
character ‘2’. [The aim of this problem is to try to demonstrate the
existence of as many patterns as possible that are recognizable as 2s.]

Discuss how one might model the channel P(y|z=2). Estimate the
entropy of the probability distribution P(y|x=2).

One strategy for doing pattern recognition is to create a model for
P(y|) for each value of the input z = {0,1,2,3,...,9}, then use Bayes’
theorem to infer x given y.

Plly) = LWl "")I,D(I) . (9.24)

> Ply|a")P(a')

This strategy is known as full probabilistic modelling or generative
modelling. This is essentially how current speech recognition systems
work. In addition to the channel model, P(y | x), one uses a prior proba-
bility distribution P(z), which in the case of both character recognition
and speech recognition is a language model that specifies the probability
of the next character/word given the context and the known grammar
and statistics of the language.

Random coding

ﬁ% Exercise 9.20.1% P-160] Given twenty-four people in a room, what is the prob-
ability that there are at least two people present who have the same
birthday (i.e., day and month of birth)? What is the expected number

of pairs of people with the same birthday? Which of these two questions

is easiest to solve? Which answer gives most insight? You may find it

helpful to solve these problems and those that follow using notation such

as A = number of days in year = 365 and S = number of people = 24.

Figure 9.9. Some more 2s.

> Exercise 9.21.[2] The birthday problem may be related to a coding scheme.

Assume we wish to convey a message to an outsider identifying one of

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

9.9: Solutions

the twenty-four people. We could simply communicate a number s from
As = {1,2,...,24}, having agreed a mapping of people onto numbers;
alternatively, we could convey a number from Ax = {1,2,...,365},
identifying the day of the year that is the selected person’s birthday
(with apologies to leapyearians). [The receiver is assumed to know all
the people’s birthdays.] What, roughly, is the probability of error of this
communication scheme, assuming it is used for a single transmission?
What is the capacity of the communication channel, and what is the
rate of communication attempted by this scheme?
> Exercise 9.22.[%] Now imagine that there are K rooms in a building, each
containing ¢ people. (You might think of K = 2 and ¢ = 24 as an
example.) The aim is to communicate a selection of one person from each
room by transmitting an ordered list of K days (from Ax). Compare
the probability of error of the following two schemes.

(a) As before, where each room transmits the birthday of the selected
person.

(b) To each K-tuple of people, one drawn from each room, an ordered
K-tuple of randomly selected days from Ax is assigned (this K-
tuple has nothing to do with their birthdays). This enormous list
of S = ¢! strings is known to the receiver. When the building has
selected a particular person from each room, the ordered string of
days corresponding to that K-tuple of people is transmitted.

What is the probability of error when ¢ = 364 and K = 17 What is the
probability of error when ¢ = 364 and K is large, e.g. K = 60007

» 9.9 Solutions
Solution to exercise 9.2 (p.149). If we assume we observe y =0,

P(y=0|xz=1)P(z=1)

0.15 x 0.1
— 9.26
0.15 x 0.1 +0.85 x 0.9 ()
0.015
= _— = . 1 . 2
078 0.019 (9.27)

Solution to exercise 9.4 (p.149). If we observe y = 0,

0.15 x 0.1

(z=1]y=0) 0.15 x 0.1 + 1.0 x 0.9 (9.28)
0.015

= 222 _ 9016 9.29

0.915 (9-29)

Solution to exercise 9.7 (p.150). The probability that y = 1 is 0.5, so the
mutual information is:

I(X;Y) = H(Y)-H(Y|X) (9.30)
= H(0.5) — Hy(0.15) (9.31)
= 1-061 = 0.39 bits. (9.32)

Solution to exercise 9.8 (p.150). We again compute the mutual information
using I(X;Y) = H(Y) — H(Y | X). The probability that y = 0 is 0.575, and

157

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

158 9 — Communication over a Noisy Channel

HY|X)=>,P@HY|z)=Pla=1)H(Y |z=1) + P(e=0)H(Y |2=0)

so the mutual information is:

I(X;Y) = H(Y)-H(Y|X) (9.33)
= H,(0.575) — [0.5 x H5(0.15) + 0.5 x 0] (9.34)
= 0.98-0.30 = 0.679 bits. (9.35)

Solution to exercise 9.12 (p.151). By symmetry, the optimal input distribution
is {0.5,0.5}. Then the capacity is

C =1I(X;Y) = HY)-H(Y|X) (9.36)
= H>(0.5) — Ha(f) (9.37)
= 1— Hy(f). (9.38)

Would you like to find the optimal input distribution without invoking sym-
metry? We can do this by computing the mutual information in the general
case where the input ensemble is {po, p1 }:

I(X:Y) = H(Y)-H(Y|X) (9.39)
Hy(pof +p1(1 = f)) — Ha(f). (9.40)

The only p-dependence is in the first term Ha(pof + p1(1 — f)), which is
maximized by setting the argument to 0.5. This value is given by setting

Po = 1/2

Solution to exercise 9.13 (p.151). Answer 1. By symmetry, the optimal input
distribution is {0.5,0.5}. The capacity is most easily evaluated by writing the
mutual information as I(X;Y) = H(X) — H(X |Y). The conditional entropy
H(X|Y)is >, P(y)H(X |y); when y is known, z is uncertain only if y = 7,
which occurs with probability f/2+ f/2, so the conditional entropy H(X |Y)

is fH»(0.5).
C=1I1(X;Y) = H(X)-HX|Y) (9.41)
= Hy(0.5) — fH5(0.5) (9.42)
= 1-/ (9.43)

The binary erasure channel fails a fraction f of the time. Its capacity is
precisely 1 — f, which is the fraction of the time that the channel is reliable.
This result seems very reasonable, but it is far from obvious how to encode
information so as to communicate reliably over this channel.

Answer 2. Alternatively, without invoking the symmetry assumed above, we
can start from the input ensemble {pg,p1}. The probability that y = ? is
pof + p1f = f, and when we receive y = ?, the posterior probability of z is
the same as the prior probability, so:

I(X;Y) = H(X)-H(X|Y) (9.44)
= Hs(p1) — fHa2(m) (9.45)
= (1= f)Hz(p1). (9.46)

This mutual information achieves its maximum value of (1— f) when p; = 1/2.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

9.9: Solutions 159
X_(l) x® Figure 9.10. (a) The extended
g9+ sle S’E channel (N = 2) obtained from a
binary erasure channel with
gg ! . gg ! 28: erasure probability 0.15. (b) A
0| W 10 10 block code consisting of the two
01 EZ - o " 2;: "I codewords 00 and 11. (c) The
1? . 1? 17 optimal decoder for this code.
ol 01 [| 01 01
2| mm 21 s 21 21
1 11 [| 11 11+
Q' B () " L (©
N=1 N=2

Solution to exercise 9.14 (p.153). The extended channel is shown in fig-
ure 9.10. The best code for this channel with N = 2 is obtained by choosing
two columns that have minimal overlap, for example, columns 00 and 11. The
decoding algorithm returns ‘00’ if the extended channel output is among the

top four and ‘11’ if it’s among the bottom four, and gives up if the output is
‘277,

Solution to exercise 9.15 (p.155). In example 9.11 (p.151) we showed that the
mutual information between input and output of the Z channel is

I(X:Y) = H(Y)-H(Y|X)
Hy(p1(1 = f)) — prHa(f). (9.47)

We differentiate this expression with respect to p1, taking care not to confuse
logy with log,:

A v = (1- Ao 1—pi(1-f)
I(X;Y) = (1= f)log, (=)

dpy
Setting this derivative to zero and rearranging using skills developed in exer-
cise 2.17 (p.36), we obtain:

— Ha(f). (9.48)

1
* p—
Pl =f) = T =mman (9-49)

so the optimal input distribution is .
1/(1-f) et — 1
* 08 [N H
L= a7 (050) SIN
As the noise level f tends to 1, this expression tends to 1/e (as you can prove Zj s - 1
using L’Hoépital’s rule). el B
For all values of f, pj is smaller than 1/2. A rough intuition for why input o2 1

01} e A

1 is used less than input 0 is that when input 1 is used, the noisy channel
injects entropy into the received string; whereas when input 0 is used, the
noise has zero entropy.

0 L L L L
0 01 02 03 0

ST, |
4 05 06 07 08 09 1

Figure 9.11. Capacities of the Z

)) channel, binary symmetric
Solution to exercise 9.16 (p.155). The capacities of the three channels are channel, and binary erasure

shown in figure 9.11. For any f < 0.5, the BEC is the channel with highest channel.
capacity and the BSC the lowest.

Solution to exercise 9.18 (p.155). The logarithm of the posterior probability
ratio, given y, is

a(y) = In (@=1ly,a,0) _ Qlylz=la0) _ ay
P($:_1|y,04,0') Q(y|x=—1,a,0) o2

(9.51)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

160 9 — Communication over a Noisy Channel

Using our skills picked up from exercise 2.17 (p.36), we rewrite this in the

form
1

1+ e—a(y)’
The optimal decoder selects the most probable hypothesis; this can be done
simply by looking at the sign of a(y). If a(y) > 0 then decode as & = 1.

The probability of error is

Plxz=1|y,a,0) = (9.52)

m=[@Qulz=ta0)= [4y —o(-=). (959)

Random coding

Solution to exercise 9.20 (p.156). The probability that S = 24 people whose
birthdays are drawn at random from A = 365 days all have distinct birthdays
is

AA-1)(A-2)...(A-85+1)
AS
The probability that two (or more) people share a birthday is one minus this
quantity, which, for S = 24 and A = 365, is about 0.5. This exact way of
answering the question is not very informative since it is not clear for what
value of S the probability changes from being close to 0 to being close to 1.
The number of pairs is S(S — 1)/2, and the probability that a particular
pair shares a birthday is 1/A, so the expected number of collisions is

. (9.54)

S(S—1)1
2o (9.55)

This answer is more instructive. The expected number of collisions is tiny if
S < VA and big if S > VA.

We can also approximate the probability that all birthdays are distinct,
for small S, thus:

A(Afl)(A*i)S;“(A’SH) = (1)(1 = YA)(1 —2a)... (1 - (5=D/a

~ exp(0)exp(—1/A)exp(—2/A)...exp(—(S—1)/A) (9.56)

S—1
exp (—il Z z) = exp (—5(521)/2> . (9.57)

12

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

About Chapter 10

Before reading Chapter 10, you should have read Chapters 4 and 9. Exer-
cise 9.14 (p.153) is especially recommended.

Cast of characters

Q the noisy channel

C the capacity of the channel

XN an ensemble used to create a random code
C a random code

N the length of the codewords

x() a codeword, the sth in the code

5 the number of a chosen codeword (mnemonic: the source
selects s)

S =2K the total number of codewords in the code

K =logy S the number of bits conveyed by the choice of one codeword
from S, assuming it is chosen with uniform probability

S a binary representation of the number s

R = K/N therate of the code, in bits per channel use (sometimes called
R’ instead)

S the decoder’s guess of s

161

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

10

The Noisy-Channel Coding Theorem

» 10.1 The theorem

The theorem has three parts, two positive and one negative. The main positive
result is the first.

Pv
1. For every discrete memoryless channel, the channel capacity
R(p
C =max I(X;Y) (10.1) (es)
Px 1 2
has the following property. For any ¢ > 0 and R < C, for large enough N, 3
there exists a code of length N and rate > R and a decoding algorithm,
such that the maximal probability of block error is < €. c R
2. If a probability of bit error py, is acceptable, rates up to R(py,) are achiev- Figure 10.1. Portion of the R, py,
able, where plane to be proved achievable
C (1,2) and not achievable (3).
Ripy) = ———. 10.2 ’
) = Tt 102

3. For any py, rates greater than R(py,) are not achievable.

» 10.2 Jointly-typical sequences

We formalize the intuitive preview of the last chapter.

We will define codewords x®) as coming from an ensemble X, and con-
sider the random selection of one codeword and a corresponding channel out-
put y, thus defining a joint ensemble (XY)V. We will use a typical-set decoder,
which decodes a received signal y as s if x(®) and y are jointly typical, a term
to be defined shortly.

The proof will then centre on determining the probabilities (a) that the
true input codeword is not jointly typical with the output sequence; and (b)
that a false input codeword is jointly typical with the output. We will show
that, for large N, both probabilities go to zero as long as there are fewer than
2NC codewords, and the ensemble X is the optimal input distribution.

Joint typicality. A pair of sequences x,y of length N are defined to be
jointly typical (to tolerance () with respect to the distribution P(z,y)

if
x is typical of P(x), i.e., E log L H(X)’ < B,
N ° P(x)
y is typical of P(y), i.e., 1 log L _ H(Y)' < S,
N " P(y)
and x,y is typical of P(x,y), i.e., %log ﬁ — H(X,Y)‘ < f.

162

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

10.2: Jointly-typical sequences

The jointly-typical set Jyg is the set of all jointly-typical sequence pairs
of length N.

Example. Here is a jointly-typical pair of length N = 100 for the ensemble
P(z,y) in which P(x) has (pg,p1) = (0.9,0.1) and P(y|x) corresponds to a
binary symmetric channel with noise level 0.2.

X 111111111100
Yy 001111111100111111111111111111

Notice that x has 10 1s, and so is typical of the probability P(x) (at any
tolerance (); and y has 26 1s, so it is typical of P(y) (because P(y=1) = 0.26);
and x and y differ in 20 bits, which is the typical number of flips for this
channel.

Joint typicality theorem. Let x,y be drawn from the ensemble (XY)V
defined by

N
P(x,y) = H P(zn,yn).
n=1
Then

1. the probability that x,y are jointly typical (to tolerance 3) tends
to1las N — oo;

2. the number of jointly-typical sequences |Jng| is close to oNH(X,Y)

To be precise,
| Ing| < 2NHEY)H), (10.3)

3.ifx' ~ XN and y ~ YV, ie, x' and y’ are independent samples
with the same marginal distribution as P(x,y), then the probability
that (x',y’) lands in the jointly-typical set is about 2~ N(X;Y) To

be precise,
P((x',y") € Jnp) < 27 NUCEY)=35) (10.4)

Proof. The proof of parts 1 and 2 by the law of large numbers follows that
of the source coding theorem in Chapter 4. For part 2, let the pair x,y
play the role of x in the source coding theorem, replacing P(x) there by
the probability distribution P(z,y).

For the third part,

P(x\y)€Jdng) = Y PXPy) (10.5)
xy)eJng
< |JIngl 9—N(H(X)—B) 9—N(H(Y)—p) (10.6)

IN

oNHXY)+B)-NHX)+HY)=28) (10.7)
9—N(I(X;Y)-38) O (10.8)

A cartoon of the jointly-typical set is shown in figure 10.2. Two independent
typical vectors are jointly typical with probability

P((X,y') € Jng) =~ 27 NUEGY)) (10.9)

because the total number of independent typical pairs is the area of the dashed
rectangle, 2VH(X)9NHY) “and the number of jointly-typical pairs is roughly
oNH(X.Y) 56 the probability of hitting a jointly-typical pair is roughly

163

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

164 10 — The Noisy-Channel Coding Theorem
AY Figure 10.2. The jointly-typical
set. The horizontal direction
_________ SNA represents AY, the set of all input

strings of length N. The vertical
direction represents A}]Y , the set of
all output strings of length N.
The outer box contains all
conceivable input—output pairs.
Each dot represents a
jointly-typical pair of sequences
(x,¥). The total number of

jointly-typical sequences is about
QNH(X,Y)

» 10.3 Proof of the noisy-channel coding theorem

Analogy

Imagine that we wish to prove that there is a baby in a class of one hundred
babies who weighs less than 10kg. Individual babies are difficult to catch and
weigh. Shannon’s method of solving the task is to scoop up all the babies
and weigh them all at once on a big weighing machine. If we find that their
average weight is smaller than 10kg, there must exist at least one baby who
weighs less than 10 kg — indeed there must be many! Shannon’s method isn’t
guaranteed to reveal the existence of an underweight child, since it relies on Figure 10.3. Shannon’s method for
there being a tiny number of elephants in the class. But if we use his method %‘i{vmg one baby weighs less than
and get a total weight smaller than 1000 kg then our task is solved. &

From skinny children to fantastic codes

We wish to show that there exists a code and a decoder having small prob-
ability of error. Evaluating the probability of error of any particular coding
and decoding system is not easy. Shannon’s innovation was this: instead of
constructing a good coding and decoding system and evaluating its error prob-
ability, Shannon calculated the average probability of block error of all codes,
and proved that this average is small. There must then exist individual codes
that have small probability of block error.

Random coding and typical-set decoding

Consider the following encoding—decoding system, whose rate is R’.

1. We fix P(z) and generate the S = 2N%' codewords of a (N,NR') =

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

10.3: Proof of the noisy-channel coding theorem 165

@50 x@ @ @@ 5@ x@®
R - - - Figure 10.4. (a) A random code.

. . (b) Example decodings by the
Ya : : " 5(ya)=0 typical set decoder. A sequence
ek that is not jointly typical with any
Yo - 5(y»)=3 of the codewords, such as yq, is
ek decoded as § = 0. A sequence that
el is jointly typical with codeword
ek x®) alone, yp, is decoded as § = 3.
R Similarly, y. is decoded as § = 4.
A sequence that is jointly typical
ce, LR with more than one codeword,
such as yg, is decoded as § = 0.
L i H—— sy =0
i Ve e 8(ye) =4
(N, K) code C at random according to
N
P(x) =[] P(xn). (10.11)
n=1
A random code is shown schematically in figure 10.4a.
2. The code is known to both sender and receiver.
3. A message s is chosen from {1,2,...,2V%'}, and x(®) is transmitted. The
received signal is y, with
N
Py |x*) = [] Plun|). (10.12)
n=1

4. The signal is decoded by typical-set decoding.

Typical-set decoding. Decode y as 3 if (x(*), y) are jointly typical and
there is no other s’ such that (x(*'),y) are jointly typical;
otherwise declare a failure (§=0).

This is not the optimal decoding algorithm, but it will be good enough,
and easier to analyze. The typical-set decoder is illustrated in fig-
ure 10.4b.

5. A decoding error occurs if § # s.

There are three probabilities of error that we can distinguish. First, there
is the probability of block error for a particular code C, that is,

pp(C) = P(8 #5|C). (10.13)

This is a difficult quantity to evaluate for any given code.
Second, there is the average over all codes of this block error probability,

(pB) = _P(s #5|C)P(C). (10.14)
C

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

166 10 — The Noisy-Channel Coding Theorem

Fortunately, this quantity is much easier to evaluate than the first quantity

P(5+#s]|0). (pB) is just the probability that
Third, the maximal block error probability of a code C, there is a decoding error at step 5
of the five-step process on the
peM(C) = max P(§ # s|s,C), (10.15) previous page.
S

is the quantity we are most interested in: we wish to show that there exists a
code C with the required rate whose maximal block error probability is small.

We will get to this result by first finding the average block error probability,
(pB). Once we have shown that this can be made smaller than a desired small
number, we immediately deduce that there must exist at least one code C
whose block error probability is also less than this small number. Finally,
we show that this code, whose block error probability is satisfactorily small
but whose maximal block error probability is unknown (and could conceivably
be enormous), can be modified to make a code of slightly smaller rate whose
maximal block error probability is also guaranteed to be small. We modify
the code by throwing away the worst 50% of its codewords.

We therefore now embark on finding the average probability of block error.

Probability of error of typical-set decoder

There are two sources of error when we use typical-set decoding. Either (a)
the output y is not jointly typical with the transmitted codeword x(*), or (b)
there is some other codeword in C that is jointly typical with y.

By the symmetry of the code construction, the average probability of error
averaged over all codes does not depend on the selected value of s; we can
assume without loss of generality that s = 1.

(a) The probability that the input x(!) and the output y are not jointly
typical vanishes, by the joint typicality theorem’s first part (p.163). We give a
name, §, to the upper bound on this probability, satisfying § — 0 as N — oo;
for any desired &, we can find a blocklength N(8) such that the P((x(1),y) ¢
JIng) < 4.

(b) The probability that x() and y are jointly typical, for a given s’ # 1
is < 2~ NUXY)=36) by part 3. And there are (ZNR’ — 1) rival values of s’ to
worry about.

Thus the average probability of error (pp) satisfies:

oNR/

(pg) < G+ y 27 NUENI=0) (10.16)
s§'=2

< § 4 2 NUXY)=RI=36) (10.17)

The inequality (10.16) that bounds a total probability of error Pror by the
sum of the probabilities P, of all sorts of events s’ each of which is sufficient
to cause error,

Pror <P +P+---,

is called a union bound. It is only an equality if the different events that cause
error never occur at the same time as each other.

The average probability of error (10.17) can be made < 20 by increasing N if
R <I(X;Y) - 3p. (10.18)
We are almost there. We make three modifications:

1. We choose P(z) in the proof to be the optimal input distribution of the
channel. Then the condition R’ < I(X;Y) — 33 becomes R’ < C' — 30.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

10.4: Communication (with errors) above capacity 167
. . o« o o ° R Figure 10.5. How expurgation
L e works. (a) In a typical random
R o S « T . code, a small fraction of the
N codewords are involved in
° ¢ ° ° o i . o collisions — pairs of codewords are
¢ . . ¢ . . sufficiently close to each other
. ‘o . ® o . that the probability of error when
o N . either codeword is transmitted is
et . * . not tiny. We obtain a new code
¢ ¢ from a random code by deleting
. ° ¢ . . ° ¢ . all these confusable codewords.
hd * hd b (b) The resulting code has slightly
= fewer codewords, so has a slightly
(a) A random code ... (b) expurgated lower rate, and its maximal
probability of error is greatly
reduced.
2. Since the average probability of error over all codes is < 26, there must
exist a code with mean probability of block error pg(C) < 26.
3. To show that not only the average but also the maximal probability of
error, ppmM, can be made small, we modify this code by throwing away
the worst half of the codewords — the ones most likely to produce errors.
Those that remain must all have conditional probability of error less
than 45. We use these remaining codewords to define a new code. This Db
new code has 2VF'~1 codewords, i.e., we have reduced the rate from R’ r— - - -~
to R’ —1/N (a negligible reduction, if N is large), and achieved pgy < 46. !
This trick is called expurgation (figure 10.5). The resulting code may achievable :
not be the best code of its rate and length, but it is still good enough to |
prove the noisy-channel coding theorem, which is what we are trying to A
do here. C R

Figure 10.6. Portion of the R, py,

In conclusion, we can ‘construct’ a code of rate R’ — /N, where R’ < C' — 34, . .
plane proved achievable in the

with maximal probability of error < 46. We obtain the theorem as stated by first b ,
. ; rst part of the theorem. [We've
setting R’ = (R+C)/2, 6 = ¢/4, B < (C — R')/3, and N sufficiently large for ,;oved that the maximal
the remaining conditions to hold. The theorem’s first part is thus proved. O probability of block error pgy can
be made arbitrarily small, so the
same goes for the bit error
» 10.4 Communication (with errors) above capacity probability pp, which must be
smaller than pp.]
We have proved, for any discrete memoryless channel, the achievability of a
portion of the R, py, plane shown in figure 10.6. We have shown that we can
turn any noisy channel into an essentially noiseless binary channel with rate
up to C bits per cycle. We now extend the right-hand boundary of the region
of achievability at non-zero error probabilities. [This is called rate-distortion
theory.|
We do this with a new trick. Since we know we can make the noisy channel
into a perfect channel with a smaller rate, it is sufficient to consider commu-
nication with errors over a noiseless channel. How fast can we communicate
over a noiseless channel, if we are allowed to make errors?
Consider a noiseless binary channel, and assume that we force communi-
cation at a rate greater than its capacity of 1 bit. For example, if we require
the sender to attempt to communicate at R=2 bits per cycle then he must
effectively throw away half of the information. What is the best way to do
this if the aim is to achieve the smallest possible probability of bit error? One
simple strategy is to communicate a fraction 1/R of the source bits, and ignore
the rest. The receiver guesses the missing fraction 1 — 1/R at random, and

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

168 10 — The Noisy-Channel Coding Theorem
0.3
the average probability of bit error is
0.25 | Optimum — —
1 Simple -----
Py = 5(1 —1/R). (10.19) P 1
015 | j
The curve corresponding to this strategy is shown by the dashed line in fig- ol |
ure 10.7. ' :
We can do better than this (in terms of minimizing py,) by spreading out oo , 1
the risk of corruption evenly among all the bits. In fact, we can achieve o5 v - v . o5
pp = Hy ' (1 —1/R), which is shown by the solid curve in figure 10.7. So, how R

can this optimum be achieved?

We reuse a tool that we just developed, namely the (N, K) code for a
noisy channel, and we turn it on its head, using the decoder to define a lossy
compressor. Specifically, we take an excellent (N, K) code for the binary
symmetric channel. Assume that such a code has a rate R’ = K/N, and that
it is capable of correcting errors introduced by a binary symmetric channel
whose transition probability is q. Asymptotically, rate-R’ codes exist that
have R’ ~ 1 — Hs(q). Recall that, if we attach one of these capacity-achieving
codes of length N to a binary symmetric channel then (a) the probability
distribution over the outputs is close to uniform, since the entropy of the
output is equal to the entropy of the source (NR') plus the entropy of the
noise (NHs(q)), and (b) the optimal decoder of the code, in this situation,
typically maps a received vector of length N to a transmitted vector differing
in ¢IN bits from the received vector.

We take the signal that we wish to send, and chop it into blocks of length N
(ves, N, not K). We pass each block through the decoder, and obtain a shorter
signal of length K bits, which we communicate over the noiseless channel. To
decode the transmission, we pass the K bit message to the encoder of the
original code. The reconstituted message will now differ from the original
message in some of its bits — typically gN of them. So the probability of bit
error will be p, = q. The rate of this lossy compressor is R= N/K =1/R’' =
1/(1 — Ha(py)).

Now, attaching this lossy compressor to our capacity-C' error-free commu-
nicator, we have proved the achievability of communication up to the curve
(pb, R) defined by:

Figure 10.7. A simple bound on
achievable points (R, py,), and
Shannon’s bound.

B C
1 — Ha(py)

For further reading about rate-distortion theory, see Gallager (1968), p.451,
or McEliece (2002), p. 75.

R | (10.20)

» 10.5 The non-achievable region (part 3 of the theorem)

The source, encoder, noisy channel and decoder define a Markov chain: §—>X—oy—S§
P(s,x,y,8) = P(s)P(x|s)P(y |x)P(8]|y). (10.21)

The data processing inequality (exercise 8.9, p.141) must apply to this chain:
I(s;8) < I(x;y). Furthermore, by the definition of channel capacity, I(x;y) <
NC,so I(s;8) < NC.

Assume that a system achieves a rate R and a bit error probability py;
then the mutual information I(s;$§) is > NR(1 — Ha(py)). But I(s;8) > NC
is not achievable, so R > ————— is not achievable. O

1—H>(pb)
Exercise 10.1.1%] Fill in the details in the preceding argument. If the bit errors
between § and s are independent then we have I(s; §) = NR(1—Ha(pp))-

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

10.6: Computing capacity 169

What if we have complex correlations among those bit errors? Why does
the inequality I(s;§) > NR(1 — Hz(pp)) hold?

» 10.6 Computing capacity

We have proved that the capacity of a channel is the maximum rate at which Sections 10.6-10.8 contain
reliable communication can be achieved. How can we compute the capacity of ~ advanced material. The first-time
a given discrete memoryless channel? We need to find its optimal input distri- ~ reader is encouraged to skip to
bution. In general we can find the optimal input distribution by a computer section 10.9 (p-172).

search, making use of the derivative of the mutual information with respect

to the input probabilities.

> Exercise 10.2.[2] Find the derivative of I1(X;Y) with respect to the input prob-
ability p;, 9I(X;Y")/0p;, for a channel with conditional probabilities @ ;.

Exercise 10.3.12] Show that I(X;Y) is a concave ~ function of the input prob-
ability vector p.

Since I(X;Y") is concave ~ in the input distribution p, any probability distri-
bution p at which I(X;Y") is stationary must be a global maximum of I(X;Y).
So it is tempting to put the derivative of I(X;Y") into a routine that finds a
local maximum of I(X;Y), that is, an input distribution P(z) such that

OI(X:Y)

=X for all 7, 10.22
op; (10.22)

where X is a Lagrange multiplier associated with the constraint » ,p; = 1.
However, this approach may fail to find the right answer, because I(X;Y)
might be maximized by a distribution that has p; =0 for some inputs. A
simple example is given by the ternary confusion channel.

Ternary confusion channel. Ax={0,7,1}. Ay ={0,1}.

0—x0
2 Ply=0|z=0) = 1; P(y=0|z=7) = 1/2; Py=0|z=1) = 0;
1% Ply=1lz=0) = Ply= =?) = 1/2; Py=1lz=1) =

|
o
—~

<
—

&

|
N

|

|
=

Whenever the input 7 is used, the output is random; the other inputs
are reliable inputs. The maximum information rate of 1 bit is achieved
by making no use of the input ?.

b Exercise 10.4.[% P173] Sketch the mutual information for this channel as a
function of the input distribution p. Pick a convenient two-dimensional
representation of p.

The optimization routine must therefore take account of the possibility that,
as we go up hill on I(X;Y"), we may run into the inequality constraints p, > 0.

> Exercise 10.5.[% P17 Degeribe the condition, similar to equation (10.22), that
is satisfied at a point where I(X;Y") is maximized, and describe a com-
puter program for finding the capacity of a channel.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

170 10 — The Noisy-Channel Coding Theorem

Results that may help in finding the optimal input distribution

1. All outputs must be used.

2. I(X;Y) is a convex — function of the channel parameters. Reminder: The term ‘convex —’
means ‘convex’, and the term
3. There may be several optimal input distributions, but they all look the ‘concave ~” means ‘concave’; the
same at the output. little smile and frown symbols are

included simply to remind you

> Exercise 10.6.[2] Prove that no output y is unused by an optimal input distri- what convex and concave mean,

bution, unless it is unreachable, that is, has Q(y |) = 0 for all .
Exercise 10.7.12] Prove that I(X;Y) is a convex — function of Q(y|).

Exercise 10.8.12] Prove that all optimal input distributions of a channel have
the same output probability distribution P(y) = > P(z)Q(y|x).

These results, along with the fact that I(X;Y) is a concave ~ function of
the input probability vector p, prove the validity of the symmetry argument
that we have used when finding the capacity of symmetric channels. If a
channel is invariant under a group of symmetry operations — for example,
interchanging the input symbols and interchanging the output symbols — then,
given any optimal input distribution that is not symmetric, i.e., is not invariant
under these operations, we can create another input distribution by averaging
together this optimal input distribution and all its permuted forms that we
can make by applying the symmetry operations to the original optimal input
distribution. The permuted distributions must have the same I(X;Y) as the
original, by symmetry, so the new input distribution created by averaging
must have I(X;Y") bigger than or equal to that of the original distribution,
because of the concavity of I.

Symmetric channels

In order to use symmetry arguments, it will help to have a definition of a
symmetric channel. I like Gallager’s (1968) definition.

A discrete memoryless channel is a symmetric channel if the set of
outputs can be partitioned into subsets in such a way that for each
subset the matrix of transition probabilities has the property that each
row (if more than 1) is a permutation of each other row and each column
is a permutation of each other column.

Example 10.9. This channel

Ply=0|z=0) 0.7; P(y=0|z=1) = 0.1;
Ply=7|xz=0) = 0.2; Py=7|z=1) 0.2; (10.23)
P(y=1|z=0) = 0.1; P(y=1|jz=1) = 0.7.

is a symmetric channel because its outputs can be partitioned into (0, 1)
and 7, so that the matrix can be rewritten:

P(y=0|z=0) = 0.7; Ply=0lz=1) =
= 01; Ply=1lz=1) = 0.7; (10.24)

e
—~
<

\
—_
8

\

o
=

\

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

10.7: Other coding theorems 171

Symmetry is a useful property because, as we will see in a later chapter,
communication at capacity can be achieved over symmetric channels by linear
codes.

Exercise 10.10.12! Prove that for a symmetric channel with any number of
inputs, the uniform distribution over the inputs is an optimal input
distribution.

> Exercise 10.11.1% P17 Are there channels that are not symmetric whose op-
timal input distributions are uniform? Find one, or prove there are
none.

» 10.7 Other coding theorems

The noisy-channel coding theorem that we proved in this chapter is quite gen-
eral, applying to any discrete memoryless channel; but it is not very specific.

The theorem only says that reliable communication with error probability e E(R)
and rate R can be achieved by using codes with sufficiently large blocklength C
N. The theorem does not say how large IV needs to be to achieve given values R
of R and e.
Presumably, the smaller € is and the closer R is to C, the larger N has to Figure 10.8. A typical
be. random-coding exponent.

Noisy-channel coding theorem — version with explicit N-dependence

For a discrete memoryless channel, a blocklength IV and a rate R,
there exist block codes of length N whose average probability of
error satisfies:

pp < exp [-NE;(R)] (10.25)

where E,(R) is the random-coding exponent of the channel, a
convex —, decreasing, positive function of R for 0 < R < C. The
random-coding exponent is also known as the reliability function.

[By an expurgation argument it can also be shown that there exist
block codes for which the maximal probability of error pgy is also
exponentially small in N.]

The definition of E\(R) is given in Gallager (1968), p.139. E.(R) approaches
zero as R — C'; the typical behaviour of this function is illustrated in fig-
ure 10.8. The computation of the random-coding exponent for interesting
channels is a challenging task on which much effort has been expended. Even
for simple channels like the binary symmetric channel, there is no simple ex-
pression for Ey(R).

Lower bounds on the error probability as a function of blocklength

The theorem stated above asserts that there are codes with pp smaller than
exp [-NE(R)]. But how small can the error probability be? Could it be
much smaller?

For any code with blocklength N on a discrete memoryless channel,
the probability of error assuming all source messages are used with
equal probability satisfies

pB 2 exp[—NEg (R)], (10.26)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

172 10 — The Noisy-Channel Coding Theorem

where the function Eg,(R), the sphere-packing exponent of the
channel, is a convex —, decreasing, positive function of R for 0 <
R<C.

For a precise statement of this result and further references, see Gallager
(1968), p.157.

» 10.8 Noisy-channel coding theorems and coding practice

Imagine a customer who wants to buy an error-correcting code and decoder
for a noisy channel. The results described above allow us to offer the following
service: if he tells us the properties of his channel, the desired rate R and the
desired error probability pg, we can, after working out the relevant functions
C, Ei(R), and Eg,(R), advise him that there exists a solution to his problem
using a particular blocklength N; indeed that almost any randomly chosen
code with that blocklength should do the job. Unfortunately we have not
found out how to implement these encoders and decoders in practice; the cost
of implementing the encoder and decoder for a random code with large N
would be exponentially large in N.

Furthermore, for practical purposes, the customer is unlikely to know ex-
actly what channel he is dealing with. So Berlekamp (1980) suggests that
the sensible way to approach error-correction is to design encoding-decoding
systems and plot their performance on a wvariety of idealized channels as a
function of the channel’s noise level. These charts (one of which is illustrated
on page 568) can then be shown to the customer, who can choose among the
systems on offer without having to specify what he really thinks his channel
is like. With this attitude to the practical problem, the importance of the
functions E,(R) and Eg,(R) is diminished.

» 10.9 Further exercises

ﬁ% Exercise 10.12.[2] A binary erasure channel with input x and output y has
transition probability matrix:

1—gq 0 00
Q= q q i?

0 1—gq 141

Find the mutual information I(X;Y) between the input and output for
general input distribution {pg,p1}, and show that the capacity of this
channel is C = 1 — g bits.

A Z channel has transition probability matrix:

1 0—0
@ { 010y } Z
1—1
Show that, using a (2,1) code, two uses of a Z channel can be made to
emulate one use of an erasure channel, and state the erasure probability

of that erasure channel. Hence show that the capacity of the Z channel,
Cy, satisfies Cyz > %(1 — q) bits.

Explain why the result Cyz > %(1 — @) is an inequality rather than an
equality.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

10.10: Solutions 173

Exercise 10.13.1% P17 A transatlantic cable contains N = 20 indistinguish-
able electrical wires. You have the job of figuring out which wire is
which, that is, to create a consistent labelling of the wires at each end.
Your only tools are the ability to connect wires to each other in groups
of two or more, and to test for connectedness with a continuity tester.
What is the smallest number of transatlantic trips you need to make,
and how do you do it?

How would you solve the problem for larger N such as N = 10007

As an illustration, if N were 3 then the task can be solved in two steps
by labelling one wire at one end a, connecting the other two together,
crossing the Atlantic, measuring which two wires are connected, labelling
them b and ¢ and the unconnected one a, then connecting b to a and
returning across the Atlantic, whereupon on disconnecting b from ¢, the
identities of b and ¢ can be deduced.

This problem can be solved by persistent search, but the reason it is
posed in this chapter is that it can also be solved by a greedy approach
based on maximizing the acquired information. Let the unknown per-
mutation of wires be z. Having chosen a set of connections of wires C at
one end, you can then make measurements at the other end, and these
measurements y convey information about x. How much? And for what
set of connections is the information that y conveys about z maximized?

» 10.10 Solutions

Solution to exercise 10.4 (p.169). If the input distribution is p = (po, p?,p1),
the mutual information is

I(X;Y) = H(Y) = H(Y|X) = Ha(po +p2/2) — pr. (10.27) 0 0
We can build a good sketch of this function in two ways: by careful inspection ? 12
of the function, or by looking at special cases. ' /o

For the plots, the two-dimensional representation of p I will use has pg and
p1 as the independent variables, so that p = (po, p7,p1) = (po, (1 —po—p1),p1)-

By inspection. If we use the quantities p. = po + p?/2 and p; as our two
degrees of freedom, the mutual information becomes very simple: I(X;Y) =
Hy(ps) — pr. Converting back to pg = px —p?/2 and p1 = 1 — p. — p?/2,
we obtain the sketch shown at the left below. This function is like a tunnel
rising up the direction of increasing pg and p;. To obtain the required plot of
I(X;Y) we have to strip away the parts of this tunnel that live outside the
feasible simplex of probabilities; we do this by redrawing the surface, showing
only the parts where py > 0 and p; > 0. A full plot of the function is shown
at the right.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

174 10 — The Noisy-Channel Coding Theorem

Special cases. In the special case p; = 0, the channel is a noiseless binary
channel, and I(X;Y) = Ha(po)-

In the special case pg = p1, the term Hs(pg + p7/2) is equal to 1, so
I(X;Y)=1—ps.

In the special case pg = 0, the channel is a Z channel with error probability

05
0.5. We know how to sketch that, from the previous chapter (figure 9.3). f '
These special cases allow us to construct the skeleton shown in figure 10.9. o 05
0
0 05 Do 1

Solution to exercise 10.5 (p.169). Necessary and sufficient conditions for p to

maximize I(X;Y) are Figure 10.9. Skeleton of the

OI(XY) _ \ and pi >0 mutual information for the
Op;i g f i 10.28 ternary confusion channel.

AI(X;Y) or all , (10.28)

o~ = A and p;=0

where)\ is a constant related to the capacity by C = X + logs e.

This result can be used in a computer program that evaluates the deriva-
tives, and increments and decrements the probabilities p; in proportion to the
differences between those derivatives.

This result is also useful for lazy human capacity-finders who are good
guessers. Having guessed the optimal input distribution, one can simply con-
firm that equation (10.28) holds.

Solution to exercise 10.11 (p.171). We certainly expect nonsymmetric chan-
nels with uniform optimal input distributions to exist, since when inventing a
channel we have I(J — 1) degrees of freedom whereas the optimal input dis-
tribution is just (I — 1)-dimensional; so in the I(J—1)-dimensional space of
perturbations around a symmetric channel, we expect there to be a subspace
of perturbations of dimension I(J —1) — (I —1) = I(J —2) + 1 that leave the
optimal input distribution unchanged.
Here is an explicit example, a bit like a Z channel.

0.9585 0.0415 0.35 0.0

_ | 0.0415 0.9585 0.0 0.35
Q= 0 0 0.65 O

0 0 0 0.65

(10.29)

Solution to exercise 10.13 (p.173). The labelling problem can be solved for
any N > 2 with just two trips, one each way across the Atlantic.

The key step in the information-theoretic approach to this problem is to
write down the information content of one partition, the combinatorial object
that is the connecting together of subsets of wires. If N wires are grouped
together into g subsets of size 1, go subsets of size 2, ..., then the number of

such partitions is

N!
Q=— (10.30)

H (r)9r gl

-
and the information content of one such partition is the log of this quantity.
In a greedy strategy we choose the first partition to maximize this information
content.

One game we can play is to maximize this information content with re-
spect to the quantities g,, treated as real numbers, subject to the constraint
>, 9r = N. Introducing a Lagrange multiplier A for the constraint, the
derivative is

% <logQ + A Zgﬂ) = —logr! —log g, + Ar, (10.31)
r T

10.10: Solutions

which, when set to zero, leads to the rather nice expression

e)\r

—; (10.32)

gr = r!

the optimal g, is proportional to a Poisson distribution! We can solve for the
Lagrange multiplier by plugging g, into the constraint)" g,r = N, which
gives the implicit equation

N = et (10.33)

where i = e is a convenient reparameterization of the Lagrange multiplier.

Figure 10.10a shows a graph of u(N); figure 10.10b shows the deduced non-
integer assignments g, when p = 2.2, and nearby integers g, = {1,2,2,1,1}
that motivate setting the first partition to (a)(bc)(de)(fgh)(ijk) (Imno)(pgrst).

This partition produces a random partition at the other end, which has an
information content of log 2 = 40.4 bits, which is a lot more than half the total
information content we need to acquire to infer the transatlantic permutation,
log 20! ~ 61bits. [In contrast, if all the wires are joined together in pairs,
the information content generated is only about 29bits.] How to choose the
second partition is left to the reader. A Shannonesque approach is appropriate,
picking a random partition at the other end, using the same {g,}; you need
to ensure the two partitions are as unlike each other as possible.

If N # 2 5 or 9, then the labelling problem has solutions that are
particularly simple to implement, called Knowlton-Graham partitions: par-
tition {1,..., N} into disjoint sets in two ways A and B, subject to the
condition that at most one element appears both in an A set of cardinal-
ity j and in a B set of cardinality k, for each j and k (Graham, 1966;
Graham and Knowlton, 1968).

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

175

1234561380910
Figure 10.10. Approximate
solution of the cable-labelling
problem using Lagrange
multipliers. (a) The parameter
as a function of N; the value
1(20) = 2.2 is highlighted. (b)
Non-integer values of the function
gr = #"/r! are shown by lines and
integer values of g, motivated by
those non-integer values are
shown by crosses.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

About Chapter 11

Before reading Chapter 11, you should have read Chapters 9 and 10.
You will also need to be familiar with the Gaussian distribution.

One-dimensional Gaussian distribution. If a random variable y is Gaus-
sian and has mean p and variance o2, which we write:

y ~ Normal(u, 0%), or P(y) = Normal(y; 1, 0?), (11.1)

then the distribution of y is:

Pyl p,0?) = \/ijexp [~y — w)?/20%]. (11.2)

[I use the symbol P for both probability densities and probabilities.]
The inverse-variance 7 = /o2 is sometimes called the precision of the

Gaussian distribution.

Multi-dimensional Gaussian distribution. If y = (y1,99,...,yn) has a
multivariate Gaussian distribution, then

PlyIxA) = yigr e (50 -0A-x0). (L)

where x is the mean of the distribution, A is the inverse of the
variance—covariance matrix, and the normalizing constant is Z(A) =
(det(A/2m)) V2.

This distribution has the property that the variance X;; of y;, and the
covariance X;; of y; and y; are given by

i = Elyi — 0y —)] = Ay (11.4)

where A~1 is the inverse of the matrix A.

The marginal distribution P(y;) of one component y; is Gaussian;
the joint marginal distribution of any subset of the components is
multivariate-Gaussian; and the conditional density of any subset, given
the values of another subset, for example, P(y; |y;), is also Gaussian.

176

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

11

Error-Correcting Codes & Real Channels

The noisy-channel coding theorem that we have proved shows that there exist
reliable error-correcting codes for any noisy channel. In this chapter we address
two questions.

First, many practical channels have real, rather than discrete, inputs and
outputs. What can Shannon tell us about these continuous channels? And
how should digital signals be mapped into analogue waveforms, and vice versa?

Second, how are practical error-correcting codes made, and what is
achieved in practice, relative to the possibilities proved by Shannon?

» 11.1 The Gaussian channel

The most popular model of a real-input, real-output channel is the Gaussian
channel.

The Gaussian channel has a real input = and a real output y. The condi-
tional distribution of y given x is a Gaussian distribution:

Ply|x) =

1 2 /6 2
exp |—(y —x)*/207] . (11.5)
V2mwo? []
This channel has a continuous input and output but is discrete in time.
We will show below that certain continuous-time channels are equivalent
to the discrete-time Gaussian channel.

This channel is sometimes called the additive white Gaussian noise
(AWGN) channel.

As with discrete channels, we will discuss what rate of error-free information
communication can be achieved over this channel.

Motivation in terms of a continuous-time channel

Consider a physical (electrical, say) channel with inputs and outputs that are
continuous in time. We put in x(t), and out comes y(t) = z(t) + n(t).

Our transmission has a power cost. The average power of a transmission
of length T' may be constrained thus:

/T dt [z(t)]*/T < P. (11.6)
0

The received signal is assumed to differ from x(¢) by additive noise n(t) (for
example Johnson noise), which we will model as white Gaussian noise. The
magnitude of this noise is quantified by the noise spectral density, Ny.

177

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

178 11 — Error-Correcting Codes and Real Channels

How could such a channel be used to communicate information? Consider
transmitting a set of N real numbers {x,,}_; in a signal of duration 7" made d1(t) /\
up of a weighted combination of orthonormal basis functions ¢, (t),

N
z(t) = Y wadu(t), 17y 20 WV\/
n=1
where foT dt ¢n(t)Pm(t) = Opm. The receiver can then compute the scalars: b3(t) J\/\/\/\NV\/\/\/

T T
Yo = / dt du(ty(t) = 20+ / dto,(n(t) (118) t
= 2, +nn (11.9) ™) ALV

for n = 1...N. If there were no noise, then y, would equal x,. The white
Gaussian noise n(t) adds scalar noise n, to the estimate y,. This noise is Figure 11.1. Three basis functions,
Gaussian: and a weighted combination of

~ them, z(t) = 25:1 T (t), with
ftn Normal(O, NO/Z), (11'10) r1=04, o= —0.2, and x3=0.1.

where Ny is the spectral density introduced above. Thus a continuous chan-
nel used in this way is equivalent to the Gaussian channel defined at equa-
tion (11.5). The power constraint fOT dt [z(t)]?> < PT defines a constraint on
the signal amplitudes xz,,

> al < PT = 22 < —. (11.11)

Before returning to the Gaussian channel, we define the bandwidth (mea-
sured in Hertz) of the continuous channel to be:

Nmax

W = 57 (11.12)
where N™2% is the maximum number of orthonormal functions that can be
produced in an interval of length 7. This definition can be motivated by
imagining creating a band-limited signal of duration T" from orthonormal co-
sine and sine curves of maximum frequency W. The number of orthonormal
functions is N™* = 2WT. This definition relates to the Nyquist sampling
theorem: if the highest frequency present in a signal is W, then the signal
can be fully determined from its values at a series of discrete sample points
separated by the Nyquist interval At = /2 seconds.

So the use of a real continuous channel with bandwidth W, noise spectral
density Ny, and power P is equivalent to N/T = 2W uses per second of a
Gaussian channel with noise level 02 = Ny/2 and subject to the signal power
constraint E < Plw.

Definition of Ey, /Ny

Imagine that the Gaussian channel y,, = x, + n, is used with an encoding
system to transmit binary source bits at a rate of R bits per channel use. How
can we compare two encoding systems that have different rates of communi-
cation R and that use different powers E? Transmitting at a large rate R is
good; using small power is good too.

It is conventional to measure the rate-compensated signal-to-noise ratio by
the ratio of the power per source bit E}, = x_%/ R to the noise spectral density

No: - Ey /Ny is dimensionless, but it is
x% usually reported in the units of
Eb/NO = 2%902R’ (11-13) decibels; the value given is

Ey, /Ny is one of the measures used to compare coding schemes for Gaussian 101og1o E /No-

channels.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

11.2: Inferring the input to a real channel 179

» 11.2 Inferring the input to a real channel

‘The best detection of pulses’

In 1944 Shannon wrote a memorandum (Shannon, 1993) on the problem of
best differentiating between two types of pulses of known shape, represented
by vectors x¢ and xi, given that one of them has been transmitted over a
noisy channel. This is a pattern recognition problem. It is assumed that the

noise is Gaussian with probability density X0 il
l I

) = [aer ()] oxp (fea (11.14
P(n) = |det [— exp (—— n), 11.14
2m 2 XLl Ll L

where A is the inverse of the variance—covariance matrix of the noise, a sym-
metric and positive-definite matrix. (If A is a multiple of the identity matrix, y ’J Il m M\
I/0?, then the noise is ‘white’. For more general A, the noise is ‘coloured’.) ' [H‘ | ”‘
The probability of the received vector y given that the source signal was s

(either zero or one) is then Figure 11.2. Two pulses xo and
x1, represented as 31-dimensional
ANTY? 1 T vectors, and a noisy version of one
P(y|s) = [det (%>] exp <—§(y —x5) Ay — xs)> . (11.15) ¢ them, y.

The optimal detector is based on the posterior probability ratio:

P(s=1ly) P(y|s=1)P(s=1)
P(s=0]y) P(y|s=0)P(s=0) (11.16)

- (_%(y —x1) A(y —x1) + %(y —x0)"A(y — xo) +In %)

= exp(y'A(x1 —x0) +0), (11.17)

where 6 is a constant independent of the received vector y,

P(s=1)

PG0)’ (11.18)

1 1
0= —§XIAX1 + §X-6AX0 +1In
If the detector is forced to make a decision (i.e., guess either s=1 or s =0) then
the decision that minimizes the probability of error is to guess the most prob- W el i J‘Hl .
able hypothesis. We can write the optimal decision in terms of a discriminant H

function:
(11.19) Figure 11.3. The weight vector

a(y) = yTA(Xl B XO) +0 W X X1 — Xo that is used to
with the decisions discriminate between xg and x;.
a(y) >0 — guess s=1
aly) <0 — guess s=0 (11.20)
a(y) =0 — guess either.

Notice that a(y) is a linear function of the received vector,
aly) =w'y +0, (11.21)

where w = A(x1 — Xg).

» 11.3 Capacity of Gaussian channel

Until now we have measured the joint, marginal, and conditional entropy
of discrete variables only. In order to define the information conveyed by
continuous variables, there are two issues we must address — the infinite length
of the real line, and the infinite precision of real numbers.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

180 11 — Error-Correcting Codes and Real Channels

Infinite inputs

How much information can we convey in one use of a Gaussian channel? If
we are allowed to put any real number z into the Gaussian channel, we could
communicate an enormous string of N digits didads...dy by setting z =
didads ...dn000...000. The amount of error-free information conveyed in
just a single transmission could be made arbitrarily large by increasing N,
and the communication could be made arbitrarily reliable by increasing the
number of zeroes at the end of x. There is usually some power cost associated
with large inputs, however, not to mention practical limits in the dynamic
range acceptable to a receiver. It is therefore conventional to introduce a
cost function v(z) for every input x, and constrain codes to have an average
cost U less than or equal to some maximum value. A generalized channel
coding theorem, including a cost function for the inputs, can be proved — see
McEliece (1977). The result is a channel capacity C(¥) that is a function of
the permitted cost. For the Gaussian channel we will assume a cost

v(z) = 2? (11.22)

such that the ‘average power’ 22 of the input is constrained. We motivated this
cost function above in the case of real electrical channels in which the physical
power consumption is indeed quadratic in z. The constraint #2 = © makes
it impossible to communicate infinite information in one use of the Gaussian
channel.

Infinite precision

It is tempting to define joint, marginal, and conditional entropies for real
variables simply by replacing summations by integrals, but this is not a well
defined operation. As we discretize an interval into smaller and smaller divi-
sions, the entropy of the discrete distribution diverges (as the logarithm of the
granularity) (figure 11.4). Also, it is not permissible to take the logarithm of
a dimensional quantity such as a probability density P(z) (whose dimensions
are [z]71).

There is one information measure, however, that has a well-behaved limit,
namely the mutual information — and this is the one that really matters, since
it measures how much information one variable conveys about another. In the
discrete case,

P(z,y)

I(X;Y) =) P(a,y)log 5=~ (11.23)

P(x)P(y)
Now because the argument of the log is a ratio of two probabilities over the
same space, it is OK to have P(z,y), P(z) and P(y) be probability densities
and replace the sum by an integral:

I(X;Y) = /dx dy P(z, y)log % (11.24)
_ P(y|z)
= /dx dy P(z)P(y|z)log D) (11.25)

We can now ask these questions for the Gaussian channel: (a) what probability
distribution P(z) maximizes the mutual information (subject to the constraint
22 = v)? and (b) does the maximal mutual information still measure the
maximum error-free communication rate of this real channel, as it did for the
discrete channel?

(a) A
HH
(b)

]
el

Figure 11.4. (a) A probability
density P(x). Question: can we
define the ‘entropy’ of this
density? (b) We could evaluate
the entropies of a sequence of
probability distributions with
decreasing grain-size g, but these

entropies tend to
1
P(z)log ——— dz, which is not
/ P(x)g
independent of g: the entropy
goes up by one bit for every

halving of g.

1
P(z)log) dz is an illegal
integral.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

11.3: Capacity of Gaussian channel 181

Exercise 11.1.[% P-189] proye that the probability distribution P(z) that max-
imizes the mutual information (subject to the constraint z2 = v) is a
Gaussian distribution of mean zero and variance v.

b Exercise 11.2.[% P189] Show that the mutual information I(X;Y), in the case
of this optimized distribution, is

C= %log (1 + %) . (11.26)

This is an important result. We see that the capacity of the Gaussian channel
is a function of the signal-to-noise ratio v/c?.

Inferences given a Gaussian input distribution

If P(z) = Normal(x;0,v) and P(y|z) = Normal(y; z,0?) then the marginal
distribution of y is P(y) = Normal(y;0,v+0?2) and the posterior distribution
of the input, given that the output is y, is:

P(z|y)

R

P(y|z)P(x) (11.27)
x exp(—(y —)?/20%) exp(—a? /2v) (11.28)

v 1 1\!
= Normal (ac; g (v + 02)) . (11.29)

[The step from (11.28) to (11.29) is made by completing the square in the
exponent.] This formula deserves careful study. The mean of the posterior
distribution, # y, can be viewed as a weighted combination of the value
that best fits the output, x = y, and the value that best fits the prior, x = 0:

v 1/0? 1/v
2 Y= zyY+ 3 0-
v+o 1/v+1/o 1/jv+1/o

(11.30)

The weights 1/02 and 1/v are the precisions of the two Gaussians that we
multiplied together in equation (11.28): the prior and the likelihood.

The precision of the posterior distribution is the sum of these two pre-
cisions. This is a general property: whenever two independent sources con-
tribute information, via Gaussian distributions, about an unknown variable,
the precisions add. [This is the dual to the better-known relationship ‘when
independent variables are added, their variances add’.]

Noisy-channel coding theorem for the Gaussian channel

We have evaluated a maximal mutual information. Does it correspond to a
maximum possible rate of error-free information transmission? One way of
proving that this is so is to define a sequence of discrete channels, all derived
from the Gaussian channel, with increasing numbers of inputs and outputs,
and prove that the maximum mutual information of these channels tends to the
asserted C. The noisy-channel coding theorem for discrete channels applies
to each of these derived channels, thus we obtain a coding theorem for the
continuous channel. Alternatively, we can make an intuitive argument for the
coding theorem specific for the Gaussian channel.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

182 11 — Error-Correcting Codes and Real Channels

Geometrical view of the noisy-channel coding theorem: sphere packing

Consider a sequence x = (x1, ...,z y) of inputs, and the corresponding output
y, as defining two points in an N dimensional space. For large IV, the noise
power is very likely to be close (fractionally) to No?. The output y is therefore
very likely to be close to the surface of a sphere of radius v No? centred on x.
Similarly, if the original signal x is generated at random subject to an average
power constraint z2 = v, then x is likely to lie close to a sphere, centred
on the origin, of radius v/ Nv; and because the total average power of y is
v+ 02, the received signal y is likely to lie on the surface of a sphere of radius

/N (v + 02), centred on the origin.

The volume of an N-dimensional sphere of radius r is

V(r,N) = =22V

Now consider making a communication system based on non-confusable
inputs x, that is, inputs whose spheres do not overlap significantly. The max-
imum number S of non-confusable inputs is given by dividing the volume of
the sphere of probable ys by the volume of the sphere for y given x:

N
N(v+0?)
S< (W) (11.32)

Thus the capacity is bounded by:

1 1 v
C = < log M < S log (1 + ;) . (11.33)
A more detailed argument like the one used in the previous chapter can es-
tablish equality.

Back to the continuous channel

Recall that the use of a real continuous channel with bandwidth W, noise
spectral density Ny and power P is equivalent to N/T = 2W uses per second of
a Gaussian channel with 02 = Ny/2 and subject to the constraint E < P/2W.
Substituting the result for the capacity of the Gaussian channel, we find the
capacity of the continuous channel to be:

P
C =Wlog (1 + NO—W> bits per second. (11.34)

This formula gives insight into the tradeoffs of practical communication. Imag-
ine that we have a fixed power constraint. What is the best bandwidth to make

use of that power? Introducing Wy = P/Ny, i.e., the bandwidth for which the 14
signal-to-noise ratio is 1, figure 11.5 shows C/Wy = W/Wylog(1l + Wy /W) as . 1
a function of W/Wy. The capacity increases to an asymptote of Wyloge. It g 82
is dramatically better (in terms of capacity for fixed power) to transmit at a ° 04
low signal-to-noise ratio over a large bandwidth, than with high signal-to-noise o'g R,
in a narrow bandwidth; this is one motivation for wideband communication 0 1 2 3 4 5 6

methods such as the ‘direct sequence spread-spectrum’ approach used in 3G banduidin

mobile phones. Of course, you are not alone, and your electromagnetic neigh- Figure 11.5. Capacity versus
bours may not be pleased if you use a large bandwidth, so for social reasons, bandwidth for a real channel:

engineers often have to make do with higher-power, narrow-bandwidth trans- C/Wy = W/Wylog (1 + Wy/W)
mitters. as a function of W/W.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

11.4: What are the capabilities of practical error-correcting codes? 183

» 11.4 What are the capabilities of practical error-correcting codes?

Nearly all codes are good, but nearly all codes require exponential look-up
tables for practical implementation of the encoder and decoder — exponential
in the blocklength N. And the coding theorem required N to be large.

By a practical error-correcting code, we mean one that can be encoded
and decoded in a reasonable amount of time, for example, a time that scales
as a polynomial function of the blocklength N — preferably linearly.

The Shannon limit is not achieved in practice

The non-constructive proof of the noisy-channel coding theorem showed that
good block codes exist for any noisy channel, and indeed that nearly all block
codes are good. But writing down an explicit and practical encoder and de-
coder that are as good as promised by Shannon is still an unsolved problem.

Very good codes. Given a channel, a family of block codes that achieve
arbitrarily small probability of error at any communication rate up to
the capacity of the channel are called ‘very good’ codes for that channel.

Good codes are code families that achieve arbitrarily small probability of
error at non-zero communication rates up to some maximum rate that
may be less than the capacity of the given channel.

Bad codes are code families that cannot achieve arbitrarily small probability
of error, or that can achieve arbitrarily small probability of error only by
decreasing the information rate to zero. Repetition codes are an example
of a bad code family. (Bad codes are not necessarily useless for practical
purposes.)

Practical codes are code families that can be encoded and decoded in time
and space polynomial in the blocklength.

Most established codes are linear codes

Let us review the definition of a block code, and then add the definition of a
linear block code.

An (N, K) block code for a channel Q is a list of S = 2% codewords
{(x x@ ,X(ZK)}, each of length N: x(®) € AY. The signal to be
encoded, s, which comes from an alphabet of size 2%, is encoded as x(*).

A linear (N, K) block code is a block code in which the codewords {x(*)}
make up a K-dimensional subspace of .A% . The encoding operation can
be represented by an N x K binary matrix GT such that if the signal to
be encoded, in binary notation, is s (a vector of length K bits), then the
encoded signal is t = G™s modulo 2.

The codewords {t} can be defined as the set of vectors satisfying Ht =
0mod 2, where H is the parity-check matrix of the code.

For example the (7,4) Hamming code of section 1.2 takes K = 4 signal
bits, s, and transmits them followed by three parity-check bits. The N =7 1
transmitted symbols are given by G's mod 2.

Coding theory was born with the work of Hamming, who invented a fam-
ily of practical error-correcting codes, each able to correct one error in a
block of length N, of which the repetition code Rz and the (7,4) code are

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

184 11 — Error-Correcting Codes and Real Channels

the simplest. Since then most established codes have been generalizations of
Hamming’s codes: Bose-Chaudhury-Hocquenhem codes, Reed—Miiller codes,
Reed—Solomon codes, and Goppa codes, to name a few.

Convolutional codes

Another family of linear codes are convolutional codes, which do not divide
the source stream into blocks, but instead read and transmit bits continuously.
The transmitted bits are a linear function of the past source bits. Usually the
rule for generating the transmitted bits involves feeding the present source
bit into a linear-feedback shift-register of length k, and transmitting one or
more linear functions of the state of the shift register at each iteration. The
resulting transmitted bit stream is the convolution of the source stream with
a linear filter. The impulse-response function of this filter may have finite or
infinite duration, depending on the choice of feedback shift-register.
We will discuss convolutional codes in Chapter 48.

Are linear codes ‘good’?

One might ask, is the reason that the Shannon limit is not achieved in practice
because linear codes are inherently not as good as random codes? The answer
is no, the noisy-channel coding theorem can still be proved for linear codes,
at least for some channels (see Chapter 14), though the proofs, like Shannon’s
proof for random codes, are non-constructive.

Linear codes are easy to implement at the encoding end. Is decoding a
linear code also easy? Not necessarily. The general decoding problem (find
the maximum likelihood s in the equation G's+n = r) is in fact NP-complete
(Berlekamp et al., 1978). [NP-complete problems are computational problems
that are all equally difficult and which are widely believed to require expo-
nential computer time to solve in general.] So attention focuses on families of
codes for which there is a fast decoding algorithm.

Concatenation

One trick for building codes with practical decoders is the idea of concatena-

tion.

An encoder—channel-decoder system C — () — D can be viewed as defining C—-C—-Q—D—D
a super-channel Q' with a smaller probability of error, and with complex -
correlations among its errors. We can create an encoder C’ and decoder D’ for Q

this super-channel @Q’. The code consisting of the outer code C’ followed by
the inner code C is known as a concatenated code.

Some concatenated codes make use of the idea of interleaving. We read
the data in blocks, the size of each block being larger than the blocklengths
of the constituent codes C and C’. After encoding the data of one block using
code C', the bits are reordered within the block in such a way that nearby
bits are separated from each other once the block is fed to the second code
C. A simple example of an interleaver is a rectangular code or product code
in which the data are arranged in a Ko x K7 block, and encoded horizontally
using an (N, K1) linear code, then vertically using a (N2, K3) linear code.

> Exercise 11.3.[3] Show that either of the two codes can be viewed as the inner
code or the outer code.

As an example, figure 11.6 shows a product code in which we encode
first with the repetition code R3 (also known as the Hamming code H(3,1))

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

11.4: What are the capabilities of practical error-correcting codes? 185
1111 1/11 111 111 Figure 11.6. A product code. (a)
010 0 * | 1110 1j11 000 A string 1011 encoded using a
111 111 111 111 concatenated code consisting of
111 * 1/0 1 111 111 two Hamming codes, H(3,1) and
000 * 001 000 000 H(7,4). (b) a noise pattern that
000 * 100 000 000 flips 5 bits. (c) The received

(a) (L1 1] (b) (L1 1] (@ 11] (el L1 vector. (d) After decoding using
110 1 1111 the horizontal (3,1) decoder, and
1110 1Y1)1 (e) after subsequently using the
1111 1/11 vertical (7,4) decoder. The
1/0 1 1111 decoded vector matches the
100 000 original.
100 000 (d’, €’) After decoding in the other

(d) 111 (¢') 111 order, three errors still remain.

horizontally then with H(7,4) vertically. The blocklength of the concatenated
code is 27. The number of source bits per codeword is four, shown by the
small rectangle.

We can decode conveniently (though not optimally) by using the individual
decoders for each of the subcodes in some sequence. It makes most sense to
first decode the code which has the lowest rate and hence the greatest error-
correcting ability.

Figure 11.6(c—e) shows what happens if we receive the codeword of fig-
ure 11.6a with some errors (five bits flipped, as shown) and apply the decoder
for H(3,1) first, and then the decoder for H(7,4). The first decoder corrects
three of the errors, but erroneously modifies the third bit in the second row
where there are two bit errors. The (7,4) decoder can then correct all three
of these errors.

Figure 11.6(d’~¢’) shows what happens if we decode the two codes in the
other order. In columns one and two there are two errors, so the (7,4) decoder
introduces two extra errors. It corrects the one error in column 3. The (3,1)
decoder then cleans up four of the errors, but erroneously infers the second
bit.

Interleaving

The motivation for interleaving is that by spreading out bits that are nearby
in one code, we make it possible to ignore the complex correlations among the
errors that are produced by the inner code. Maybe the inner code will mess
up an entire codeword; but that codeword is spread out one bit at a time over
several codewords of the outer code. So we can treat the errors introduced by
the inner code as if they are independent.

Other channel models

In addition to the binary symmetric channel and the Gaussian channel, coding
theorists keep more complex channels in mind also.

Burst-error channels are important models in practice. Reed—Solomon
codes use Galois fields (see Appendix C.1) with large numbers of elements
(e.g. 29) as their input alphabets, and thereby automatically achieve a degree
of burst-error tolerance in that even if 17 successive bits are corrupted, only 2
successive symbols in the Galois field representation are corrupted. Concate-
nation and interleaving can give further protection against burst errors. The
concatenated Reed—Solomon codes used on digital compact discs are able to
correct bursts of errors of length 4000 bits.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

186 11 — Error-Correcting Codes and Real Channels

> Exercise 11.4.[% P-189] Tpe technique of interleaving, which allows bursts of
errors to be treated as independent, is widely used, but is theoretically
a poor way to protect data against burst errors, in terms of the amount
of redundancy required. Explain why interleaving is a poor method,
using the following burst-error channel as an example. Time is divided
into chunks of length N = 100 clock cycles; during each chunk, there
is a burst with probability b = 0.2; during a burst, the channel is a bi-
nary symmetric channel with f = 0.5. If there is no burst, the channel
is an error-free binary channel. Compute the capacity of this channel
and compare it with the maximum communication rate that could con-
ceivably be achieved if one used interleaving and treated the errors as
independent.

Fading channels are real channels like Gaussian channels except that the
received power is assumed to vary with time. A moving mobile phone is an
important example. The incoming radio signal is reflected off nearby objects
so that there are interference patterns and the intensity of the signal received
by the phone varies with its location. The received power can easily vary by
10 decibels (a factor of ten) as the phone’s antenna moves through a distance
similar to the wavelength of the radio signal (a few centimetres).

» 11.5 The state of the art

What are the best known codes for communicating over Gaussian channels?
All the practical codes are linear codes, and are either based on convolutional
codes or block codes.

Convolutional codes, and codes based on them

Textbook convolutional codes. The ‘de facto standard’ error-correcting
code for satellite communications is a convolutional code with constraint
length 7. Convolutional codes are discussed in Chapter 48.

Concatenated convolutional codes. The above convolutional code can be
used as the inner code of a concatenated code whose outer code is a Reed—
Solomon code with eight-bit symbols. This code was used in deep space
communication systems such as the Voyager spacecraft. For further
reading about Reed—Solomon codes, see Lin and Costello (1983).

Ch
The code for Galileo. A code using the same format but using a longer

constraint length — 15 — for its convolutional code and a larger Reed— Cy -
Solomon code was developed by the Jet Propulsion Laboratory (Swan-
son, 1988). The details of this code are unpublished outside JPL, and the
decoding is only possible using a room full of special-purpose hardware.
In 1992, this was the best code known of rate /4.

Figure 11.7. The encoder of a
turbo code. Each box C4, Cs,
contains a convolutional code.

. e . The source bits are reordered
Turbo codes. In 1993, Berrou, Glavieux and Thitimajshima reported work using a permutation 7 before they

on turbo codes. The encoder of a turbo code is based on the encoders are fed to Cy. The transmitted
of two convolutional codes. The source bits are fed into each encoder, codeword is obtained by
the order of the source bits being permuted in a random way, and the concatenating or interleaving the

resulting parity bits from each constituent code are transmitted. outputs of the two convolutional
codes. The random permutation

The decoding algorithm involves iteratively decoding each constituent is chosen when the code is
code using its standard decoding algorithm, then using the output of designed, and fixed thereafter.
the decoder as the input to the other decoder. This decoding algorithm

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

11.6: Summary 187

is an instance of a message-passing algorithm called the sum—product

T T 1T 1
algorithm. . 111% 111 11
Turbo codes are discussed in Chapter 48, and message passing in Chap- R 1
ters 16, 17, 25, and 26. H=], 6t + it

) bt) 1t i 1 i

Block codes .

Gallager’s low-density parity-check codes. The best block codes known
for Gaussian channels were invented by Gallager in 1962 but were
promptly forgotten by most of the coding theory community. They were
rediscovered in 1995 and shown to have outstanding theoretical and prac-
tical properties. Like turbo codes, they are decoded by message-passing
algorithms. Figure 11.8. A low-density

parity-check matrix and the

corresponding graph of a rate- 1/4

The performances of the above codes are compared for Gaussian channels low-density parity-check code
in ﬁgure 47.17, p.568. with blocklength N =16, and
M =12 constraints. Each white
circle represents a transmitted bit.
» 11.6 Summary Each bit participates in j = 3
constraints, represented by
Random codes are good, but they require exponential resources to encode squares. Each constraint forces
and decode them. the sum of the k = 4 bits to which
it is connected to be even. This
Non-random codes tend for the most part not to be as good as random code is a (16,4) code.
codes. For a non-random code, encoding may be easy, but even for Outstanding performance is

simply-defined linear codes, the decoding problem remains very difficult. ~ obtained when the blocklength is
increased to N ~ 10000.

We will discuss these beautifully simple codes in Chapter 47.

The best practical codes (a) employ very large block sizes; (b) are based
on semi-random code constructions; and (c) make use of probability-
based decoding algorithms.

» 11.7 Nonlinear codes

Most practically used codes are linear, but not all. Digital soundtracks are
encoded onto cinema film as a binary pattern. The likely errors affecting the
film involve dirt and scratches, which produce large numbers of 1s and 0Os
respectively. We want none of the codewords to look like all-1s or all-Os, so
that it will be easy to detect errors caused by dirt and scratches. One of the
codes used in digital cinema sound systems is a nonlinear (8, 6) code consisting
of 64 of the (i) binary patterns of weight 4.

» 11.8 Errors other than noise

Another source of uncertainty for the receiver is uncertainty about the tim-
ing of the transmitted signal z(t). In ordinary coding theory and infor-
mation theory, the transmitter’s time ¢ and the receiver’s time u are as-
sumed to be perfectly synchronized. But if the receiver receives a signal
y(u), where the receiver’s time, u, is an imperfectly known function w(t)
of the transmitter’s time ¢, then the capacity of this channel for commu-
nication is reduced. The theory of such channels is incomplete, compared
with the synchronized channels we have discussed thus far. Not even the ca-
pacity of channels with synchronization errors is known (Levenshtein, 1966;
Ferreira et al., 1997); codes for reliable communication over channels with
synchronization errors remain an active research area (Davey and MacKay,

2001).

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

188 11 — Error-Correcting Codes and Real Channels

Further reading

For a review of the history of spread-spectrum methods, see Scholtz (1982).

» 11.9 Exercises

The Gaussian channel

> Exercise 11.5.[% P19 Congider a Gaussian channel with a real input z, and
signal to noise ratio v/o?.

(a) What is its capacity C?

(b) If the input is constrained to be binary, € {£+/v}, what is the
capacity C’ of this constrained channel?

(¢) If in addition the output of the channel is thresholded using the
mapping

r 1 y>0
y—>y_{0 <0, (11.35)

what is the capacity C” of the resulting channel?

(d) Plot the three capacities above as a function of v/o? from 0.1 to 2.
[You'll need to do a numerical integral to evaluate C”.]

> Exercise 11.6.[%] For large integers K and N, what fraction of all binary error-
correcting codes of length N and rate R = K/N are linear codes? [The
answer will depend on whether you choose to define the code to be an
ordered list of 25 codewords, that is, a mapping from s € {1,2,...,25}
to x(®), or to define the code to be an unordered list, so that two codes
consisting of the same codewords are identical. Use the latter definition:
a code is a set of codewords; how the encoder operates is not part of the
definition of the code.]

Erasure channels

> Exercise 11.7.[4] Design a code for the binary erasure channel, and a decoding
algorithm, and evaluate their probability of error. [The design of good
codes for erasure channels is an active research area (Spielman, 1996;
Byers et al., 1998); see also Chapter 50.]

> Exercise 11.8.19] Design a code for the g-ary erasure channel, whose input x is
drawn from 0,1,2,3,...,(¢ — 1), and whose output y is equal to z with
probability (1 — f) and equal to ? otherwise. [This erasure channel is a
good model for packets transmitted over the internet, which are either
received reliably or are lost.]

Exercise 11.9.1% P19 How do redundant arrays of independent disks (RAID)
work? These are information storage systems consisting of about ten [Some people say RAID stands for
disk drives, of which any two or three can be disabled and the others are ‘r.edundant array of inexpgnsive
able to still able to reconstruct any requested file. What codes are used, disks’, but I thl,nk that’s silly —
o RAID would still be a good idea
and how far are these systems from the Shannon limit for the problem . . .
) . even if the disks were expensivel]
they are solving? How would you design a better RAID system? Some
information is provided in the solution section. See http://www.acnc.
com/raid2.html; see also Chapter 50.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

11.10: Solutions 189

» 11.10 Solutions

Solution to exercise 11.1 (p.181). Introduce a Lagrange multiplier A for the
power constraint and another, u, for the constraint of normalization of P(z).

F = I(X;Y)—=\[dzP(z)2? — p [dz P(x) (11.36)
Ply|z) 2
= dx P(x /d P(y|x)In —Ax? — . 11.37
Jaer@ | farplom S u. auam
Make the functional derivative with respect to P(x*).
—— = [dyPy|z")ln —=—= — ™ —
3P(z") yPle =50y g

_ / dz P(z) / dy P@@)% 555((;’3). (11.38)

The final factor 6P (y)/dP(z*) is found, using P(y) = [da P(z)P(y|z), to be
P(y|z*), and the whole of the last term collapses in a puff of smoke to 1,
which can be absorbed into the p term.

Substitute P(y | z) = exp(—(y —x)%/20?%)/v2ma? and set the derivative to
Z€r0:

/dy P(y|z)ln P](Dy(L;C) —xz? -/ =0 (11.39)
exp(—(y —)2 /202
= /dy D % [20°) In[P(y)o] = —Aa? — p/ — % (11.40)

This condition must be satisfied by In[P(y)o] for all z.

Writing a Taylor expansion of In[P(y)o] = a-+by-+cy?+- - -, only a quadratic
function In[P(y)o] = a+ cy? would satisfy the constraint (11.40). (Any higher
order terms yP, p > 2, would produce terms in xP that are not present on
the right-hand side.) Therefore P(y) is Gaussian. We can obtain this optimal
output distribution by using a Gaussian input distribution P(z).

Solution to exercise 11.2 (p.181). Given a Gaussian input distribution of vari-
ance v, the output distribution is Normal(0,v +0?2), since 2 and the noise
are independent random variables, and variances add for independent random
variables. The mutual information is:

1Y) = [dody P@)P(y]a)log Plyl) ~ [dy Py)log P(y) (11.41)
1 1 1
= §1og§ 510gv+02 (11.42)
1 v
= Zlog (1+§). (11.43)

Solution to exercise 11.4 (p.186). The capacity of the channel is one minus
the information content of the noise that it adds. That information content is,
per chunk, the entropy of the selection of whether the chunk is bursty, Hs(b),
plus, with probability b, the entropy of the flipped bits, IV, which adds up
to Ha(b) + Nb per chunk (roughly; accurate if N is large). So, per bit, the
capacity is, for N = 100,

1
C=1- (NHz(b) + b> =1-0.207 = 0.793. (11.44)
In contrast, interleaving, which treats bursts of errors as independent, causes

the channel to be treated as a binary symmetric channel with f = 0.2 x 0.5 =
0.1, whose capacity is about 0.53.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

190 11 — Error-Correcting Codes and Real Channels

Interleaving throws away the useful information about the correlated-
ness of the errors. Theoretically, we should be able to communicate about
(0.79/0.53) ~ 1.6 times faster using a code and decoder that explicitly treat
bursts as bursts.

Solution to exercise 11.5 (p.188).

(a) Putting together the results of exercises 11.1 and 11.2, we deduce that

a Gaussian channel with real input «, and signal to noise ratio v/ o2 has 12 4
capacity 14
1 v 0.8
C = 5log (1 n —2) . (11.45) o6
o 04
(b) If the input is constrained to be binary, € {£+/v}, the capacity is 0'2 1.7
achieved by using these two inputs with equal probability. The capacity 0 05 1 15 2 25

is reduced to a somewhat messy integral,

¢ = [~ ayN 0 oe N0 - [dyP)log PG). (1140

- - 0.1 A

where N(y;z) = (1/v2r)exp|(y — 2)2/2], = = /v/o, and P(y) = 1

[N(y;x)+ N(y; —x)]/2. This capacity is smaller than the unconstrained 0.01 o —— T
capacity (11.45), but for small signal-to-noise ratio, the two capacities '

are close in value. Figure 11.9. Capacities (from top

to bottom in each graph) C, C’,
(c) If the output is thresholded, then the Gaussian channel is turned into and ¢, versus the signal-to-noise

a binary symmetric channel whose transition probability is given by the ratio (y/v/o). The lower graph is
error function ® defined on page 156. The capacity is a log-log plot.

C" =1— Hy(f), where f = ®(\/v/0). (11.47)

Solution to exercise 11.9 (p.188). There are several RAID systems. One of
the easiest to understand consists of 7 disk drives which store data at rate
4/7 using a (7,4) Hamming code: each successive four bits are encoded with
the code and the seven codeword bits are written one to each disk. Two or
perhaps three disk drives can go down and the others can recover the data.
The effective channel model here is a binary erasure channel, because it is
assumed that we can tell when a disk is dead.

It is not possible to recover the data for some choices of the three dead
disk drives; can you see why?

> Exercise 11.10.[% P19 Give an example of three disk drives that, if lost, lead
to failure of the above RAID system, and three that can be lost without
failure.

Solution to exercise 11.10 (p.190). The (7,4) Hamming code has codewords
of weight 3. If any set of three disk drives corresponding to one of those code-
words is lost, then the other four disks can recover only 3 bits of information
about the four source bits; a fourth bit is lost. [cf. exercise 13.13 (p.220) with
q = 2: there are no binary MDS codes. This deficit is discussed further in
section 13.11.]

Any other set of three disk drives can be lost without problems because
the corresponding four by four submatrix of the generator matrix is invertible.
A better code would be a digital fountain — see Chapter 50.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Part 111

Further Topics in Information Theory

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

About Chapter 12

In Chapters 1-11, we concentrated on two aspects of information theory and
coding theory: source coding — the compression of information so as to make
efficient use of data transmission and storage channels; and channel coding —
the redundant encoding of information so as to be able to detect and correct
communication errors.

In both these areas we started by ignoring practical considerations, concen-
trating on the question of the theoretical limitations and possibilities of coding.
We then discussed practical source-coding and channel-coding schemes, shift-
ing the emphasis towards computational feasibility. But the prime criterion
for comparing encoding schemes remained the efficiency of the code in terms
of the channel resources it required: the best source codes were those that
achieved the greatest compression; the best channel codes were those that
communicated at the highest rate with a given probability of error.

In this chapter we now shift our viewpoint a little, thinking of ease of
information retrieval as a primary goal. It turns out that the random codes
which were theoretically useful in our study of channel coding are also useful
for rapid information retrieval.

Efficient information retrieval is one of the problems that brains seem to
solve effortlessly, and content-addressable memory is one of the topics we will
study when we look at neural networks.

192

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

12

Hash Codes: Codes for Efficient
Information Retrieval

» 12.1 The information-retrieval problem

A simple example of an information-retrieval problem is the task of imple- gtring length N ~ 200
menting a phone directory service, which, in response to a person’s name, number of strings S ~ 223
returns (a) a confirmation that that person is listed in the directory; and (b) number of possible 2V ~ 2200
the person’s phone number and other details. We could formalize this prob- strings

lem as follows, with S being the number of names that must be stored in the

directory. Figure 12.1. Cast of characters.

You are given a list of S binary strings of length N bits, {x(1), ... x()},
where S is considerably smaller than the total number of possible strings, 2%.
We will call the superscript ‘s’ in x(®) the record number of the string. The
idea is that s runs over customers in the order in which they are added to the
directory and x(®) is the name of customer s. We assume for simplicity that
all people have names of the same length. The name length might be, say,
N = 200 bits, and we might want to store the details of ten million customers,
so S ~ 107 ~ 223, We will ignore the possibility that two customers have
identical names.

The task is to construct the inverse of the mapping from s to x() ie., to
make a system that, given a string x, returns the value of s such that x = x(®)
if one exists, and otherwise reports that no such s exists. (Once we have the
record number, we can go and look in memory location s in a separate memory
full of phone numbers to find the required number.) The aim, when solving
this task, is to use minimal computational resources in terms of the amount
of memory used to store the inverse mapping from x to s and the amount of
time to compute the inverse mapping. And, preferably, the inverse mapping
should be implemented in such a way that further new strings can be added
to the directory in a small amount of computer time too.

Some standard solutions

The simplest and dumbest solutions to the information-retrieval problem are
a look-up table and a raw list.

The look-up table is a piece of memory of size 2V log, S, log, S being the
amount of memory required to store an integer between 1 and S. In
each of the 2VV locations, we put a zero, except for the locations x that
correspond to strings x(®), into which we write the value of s.

The look-up table is a simple and quick solution, but only if there is
sufficient memory for the table, and if the cost of looking up entries in

193

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

194 12 — Hash Codes: Codes for Efficient Information Retrieval

memory is independent of the memory size. But in our definition of the
task, we assumed that N is about 200 bits or more, so the amount of
memory required would be of size 22°0; this solution is completely out
of the question. Bear in mind that the number of particles in the solar
system is only about 2190,

The raw list is a simple list of ordered pairs (s,x(®)) ordered by the value
of s. The mapping from x to s is achieved by searching through the list
of strings, starting from the top, and comparing the incoming string x
with each record x(®) until a match is found. This system is very easy
to maintain, and uses a small amount of memory, about SN bits, but
is rather slow to use, since on average five million pairwise comparisons
will be made.
> Exercise 12.1.1% P292) §how that the average time taken to find the required
string in a raw list, assuming that the original names were chosen at
random, is about S + N binary comparisons. (Note that you don’t
have to compare the whole string of length N, since a comparison can
be terminated as soon as a mismatch occurs; show that you need on
average two binary comparisons per incorrect string match.) Compare
this with the worst-case search time — assuming that the devil chooses
the set of strings and the search key.

The standard way in which phone directories are made improves on the look-up
table and the raw list by using an alphabetically-ordered list.

Alphabetical list. The strings {x(®)} are sorted into alphabetical order.
Searching for an entry now usually takes less time than was needed
for the raw list because we can take advantage of the sortedness; for
example, we can open the phonebook at its middle page, and compare
the name we find there with the target string; if the target is ‘greater’
than the middle string then we know that the required string, if it exists,
will be found in the second half of the alphabetical directory. Otherwise,
we look in the first half. By iterating this splitting-in-the-middle proce-
dure, we can identify the target string, or establish that the string is not
listed, in [logy S| string comparisons. The expected number of binary
comparisons per string comparison will tend to increase as the search
progresses, but the total number of binary comparisons required will be
no greater than [logy STN.

The amount of memory required is the same as that required for the raw
list.
Adding new strings to the database requires that we insert them in the

correct location in the list. To find that location takes about [logs S|
binary comparisons.

Can we improve on the well-established alphabetized list? Let us consider
our task from some new viewpoints.

The task is to construct a mapping x — s from N bits to log, S bits. This
is a pseudo-invertible mapping, since for any x that maps to a non-zero s, the
customer database contains the pair (s, x(s)) that takes us back. Where have
we come across the idea of mapping from N bits to M bits before?

We encountered this idea twice: first, in source coding, we studied block
codes which were mappings from strings of N symbols to a selection of one
label in a list. The task of information retrieval is similar to the task (which

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

12.2: Hash codes 195

we never actually solved) of making an encoder for a typical-set compression
code.

The second time that we mapped bit strings to bit strings of another
dimensionality was when we studied channel codes. There, we considered
codes that mapped from K bits to N bits, with IV greater than K, and we
made theoretical progress using random codes.

In hash codes, we put together these two notions. We will study random
codes that map from NN bits to M bits where M is smaller than N.

The idea is that we will map the original high-dimensional space down into
a lower-dimensional space, one in which it is feasible to implement the dumb
look-up table method which we rejected a moment ago.

string length N ~ 200
number of strings S ~ 22
size of hash function M ~ 30 bits

. ize of hash tabl T =2M
First we will describe how a hash code works, then we will study the properties size of ash table ~ 30

» 12.2 Hash codes

of idealized hash codes. A hash code implements a solution to the information-
retrieval problem, that is, a mapping from x to s, with the help of a pseudo-
random function called a hash function, which maps the N-bit string x to an
M-bit string h(x), where M is smaller than N. M is typically chosen such that
the ‘table size’ T ~ 2M is a little bigger than S — say, ten times bigger. For
example, if we were expecting S to be about a million, we might map x into
a 30-bit hash h (regardless of the size N of each item x). The hash function
is some fixed deterministic function which should ideally be indistinguishable
from a fixed random code. For practical purposes, the hash function must be
quick to compute.
Two simple examples of hash functions are:

Figure 12.2. Revised cast of
characters.

Division method. The table size T is a prime number, preferably one that
is not close to a power of 2. The hash value is the remainder when the
integer x is divided by T

Variable string addition method. This method assumes that x is a string
of bytes and that the table size T is 256. The characters of x are added,
modulo 256. This hash function has the defect that it maps strings that
are anagrams of each other onto the same hash.

It may be improved by putting the running total through a fixed pseu-
dorandom permutation after each character is added. In the variable
string exclusive-or method with table size < 65536, the string is hashed
twice in this way, with the initial running total being set to 0 and 1
respectively (algorithm 12.3). The result is a 16-bit hash.

Having picked a hash function h(x), we implement an information retriever
as follows. (See figure 12.4.)

Encoding. A piece of memory called the hash table is created of size 2Mb
memory units, where b is the amount of memory needed to represent an
integer between 0 and S. This table is initially set to zero throughout.
Each memory x(*) is put through the hash function, and at the location
in the hash table corresponding to the resulting vector h(®) = h(x(s)),
the integer s is written — unless that entry in the hash table is already
occupied, in which case we have a collision between x(®) and some earlier
x() which both happen to have the same hash code. Collisions can be
handled in various ways — we will discuss some in a moment — but first
let us complete the basic picture.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

196 12 — Hash Codes: Codes for Efficient Information Retrieval

Algorithm 12.3. C code

unsigned char Rand8[256]; // This array contains a random implementing the variable string
permutation from 0..255 to 0..255 exclusive-or method to create a
int Hash(char *x) { // x is a pointer to the first char; hash h in the range 0...65535
int h; // *x is the first character from a string x. Author: Thomas
unsigned char hil, h2; Niemann.

if (*x == 0) return 0; // Special handling of empty string
hl = *x; h2 = *x + 1; // Initialize two hashes
X++; // Proceed to the next character
while (*x) {
hl = Rand8[h1 ~ *x]; // Exclusive-or with the two hashes
h2 = Rand8[h2 ~ =*x]; // and put through the randomizer

X++;
} // End of string is reached when *x=0
h = ((int) (h1)<<8) | // Shift hl left 8 bits and add h2
(int) h2 ;
return h ; // Hash is concatenation of hl and h2
}
Hash
Strines function Hash table
&8 hashes . i S as ions
M bits Figure 12.4. Use of hash functions
-~ for information retrieval. For each
string x(*), the hash h = h(x(®))
) h(x®) — 2 is computed, and the value of s is
N bits written into the hth row of the
hash table. Blank rows in the
| NED) | hash table contain the value zero.
The table size is T = 2M.
| x@ |
| x® | h(xW) — 1
S : \
h(x“>)4» 3 oM
| x) |
\ E

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

12.3: Collision resolution 197

Decoding. To retrieve a piece of information corresponding to a target vector
x, we compute the hash h of x and look at the corresponding location
in the hash table. If there is a zero, then we know immediately that the
string x is not in the database. The cost of this answer is the cost of one
hash-function evaluation and one look-up in the table of size 2M. If, on
the other hand, there is a non-zero entry s in the table, there are two
possibilities: either the vector x is indeed equal to x(®); or the vector x(*)
is another vector that happens to have the same hash code as the target
X. (A third possibility is that this non-zero entry might have something
to do with our yet-to-be-discussed collision-resolution system.)

To check whether x is indeed equal to x(*), we take the tentative answer
s, look up x(®) in the original forward database, and compare it bit by
bit with x; if it matches then we report s as the desired answer. This
successful retrieval has an overall cost of one hash-function evaluation,
one look-up in the table of size 2, another look-up in a table of size
S, and N binary comparisons — which may be much cheaper than the
simple solutions presented in section 12.1.

> Exercise 12.2.[% P-202) 1 wo have checked the first few bits of x(*) with x and
found them to be equal, what is the probability that the correct entry
has been retrieved, if the alternative hypothesis is that x is actually not
in the database? Assume that the original source strings are random,
and the hash function is a random hash function. How many binary
evaluations are needed to be sure with odds of a billion to one that the
correct entry has been retrieved?

The hashing method of information retrieval can be used for strings x of
arbitrary length, if the hash function h(x) can be applied to strings of any
length.

» 12.3 Collision resolution

We will study two ways of resolving collisions: appending in the table, and
storing elsewhere.

Appending in table

When encoding, if a collision occurs, we continue down the hash table and
write the value of s into the next available location in memory that currently
contains a zero. If we reach the bottom of the table before encountering a
zero, we continue from the top.

When decoding, if we compute the hash code for x and find that the s
contained in the table doesn’t point to an x(*) that matches the cue x, we
continue down the hash table until we either find an s whose x(*) does match
the cue x, in which case we are done, or else encounter a zero, in which case
we know that the cue x is not in the database.

For this method, it is essential that the table be substantially bigger in size
than S. If 2 < S then the encoding rule will become stuck with nowhere to
put the last strings.

Storing elsewhere

A more robust and flexible method is to use pointers to additional pieces of
memory in which collided strings are stored. There are many ways of doing

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

198 12 — Hash Codes: Codes for Efficient Information Retrieval

this. As an example, we could store in location h in the hash table a pointer
(which must be distinguishable from a valid record number s) to a ‘bucket’
where all the strings that have hash code h are stored in a sorted list. The
encoder sorts the strings in each bucket alphabetically as the hash table and
buckets are created.

The decoder simply has to go and look in the relevant bucket and then
check the short list of strings that are there by a brief alphabetical search.

This method of storing the strings in buckets allows the option of making
the hash table quite small, which may have practical benefits. We may make it
so small that almost all strings are involved in collisions, so all buckets contain
a small number of strings. It only takes a small number of binary comparisons
to identify which of the strings in the bucket matches the cue x.

» 12.4 Planning for collisions: a birthday problem

ﬁ% Exercise 12.3.1% P-202] If we wish to store S entries using a hash function whose
output has M bits, how many collisions should we expect to happen,
assuming that our hash function is an ideal random function? What
size M of hash table is needed if we would like the expected number of

collisions to be smaller than 17

What size M of hash table is needed if we would like the expected number
of collisions to be a small fraction, say 1%, of S?

[Notice the similarity of this problem to exercise 9.20 (p.156).]

» 12.5 Other roles for hash codes

Checking arithmetic

If you wish to check an addition that was done by hand, you may find useful
the method of casting out nines. In casting out nines, one finds the sum,
modulo nine, of all the digits of the numbers to be summed and compares
it with the sum, modulo nine, of the digits of the putative answer. [With a
little practice, these sums can be computed much more rapidly than the full
original addition.]

Example 12.4. In the calculation shown in the margin the sum, modulo nine, of 189
the digits in 189+1254+238 is 7, and the sum, modulo nine, of 1+6+8+1 +1254

is 7. The calculation thus passes the casting-out-nines test. + 238

1681

Casting out nines gives a simple example of a hash function. For any
addition expression of the form a + b+ ¢+ ---, where a,b,¢,... are decimal
numbers we define h € {0,1,2,3,4,5,6,7,8} by

h(a+b+c+---) = sum modulo nine of all digits in a,b, ¢ ; (12.1)
then it is nice property of decimal arithmetic that if
a+b+c+---=m+n+o+--- (12.2)

then the hashes h(a +b+c+---) and h(m+n+ o+ ---) are equal.

> Exercise 12.5.[% P203] What evidence does a correct casting-out-nines match
give in favour of the hypothesis that the addition has been done cor-
rectly?

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

12.5: Other roles for hash codes 199

Error detection among friends

Are two files the same? If the files are on the same computer, we could just
compare them bit by bit. But if the two files are on separate machines, it
would be nice to have a way of confirming that two files are identical without
having to transfer one of the files from A to B. [And even if we did transfer one
of the files, we would still like a way to confirm whether it has been received
without modifications!]

This problem can be solved using hash codes. Let Alice and Bob be the
holders of the two files; Alice sent the file to Bob, and they wish to confirm
it has been received without error. If Alice computes the hash of her file and
sends it to Bob, and Bob computes the hash of his file, using the same M-bit
hash function, and the two hashes match, then Bob can deduce that the two
files are almost surely the same.

Example 12.6. What is the probability of a false negative, i.e., the probability,
given that the two files do differ, that the two hashes are nevertheless
identical?

If we assume that the hash function is random and that the process that causes
the files to differ knows nothing about the hash function, then the probability
of a false negative is 2=M. O
A 32-bit hash gives a probability of false negative of about 10710, It is
common practice to use a linear hash function called a 32-bit cyclic redundancy
check to detect errors in files. (A cyclic redundancy check is a set of 32 parity-
check bits similar to the 3 parity-check bits of the (7,4) Hamming code.)

To have a false-negative rate smaller than one in a billion, M = 32

bits is plenty, if the errors are produced by noise.

> Exercise 12.7.1% 203 quch simple parity-check code only detects errors; it
doesn’t help correct them. Since error-correcting codes exist, why not
use one of them to get some error-correcting capability too?

Tamper detection

What if the differences between the two files are not simply ‘noise’, but are
introduced by an adversary, a clever forger called Fiona, who modifies the
original file to make a forgery that purports to be Alice’s file? How can Alice
make a digital signature for the file so that Bob can confirm that no-one has
tampered with the file? And how can we prevent Fiona from listening in on
Alice’s signature and attaching it to other files?

Let’s assume that Alice computes a hash function for the file and sends it
securely to Bob. If Alice computes a simple hash function for the file like the
linear cyclic redundancy check, and Fiona knows that this is the method of
verifying the file’s integrity, Fiona can make her chosen modifications to the
file and then easily identify (by linear algebra) a further 32-or-so single bits
that, when flipped, restore the hash function of the file to its original value.
Linear hash functions give no security against forgers.

We must therefore require that the hash function be hard to invert so that
no-one can construct a tampering that leaves the hash function unaffected.
We would still like the hash function to be easy to compute, however, so that
Bob doesn’t have to do hours of work to verify every file he received. Such
a hash function — easy to compute, but hard to invert — is called a one-way

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

200 12 — Hash Codes: Codes for Efficient Information Retrieval

hash function. Finding such functions is one of the active research areas of
cryptography.

A hash function that is widely used in the free software community to
confirm that two files do not differ is MD5, which produces a 128-bit hash. The
details of how it works are quite complicated, involving convoluted exclusive-
or-ing and if-ing and and-ing.!

Even with a good one-way hash function, the digital signatures described
above are still vulnerable to attack, if Fiona has access to the hash function.
Fiona could take the tampered file and hunt for a further tiny modification to
it such that its hash matches the original hash of Alice’s file. This would take
some time — on average, about 232 attempts, if the hash function has 32 bits —
but eventually Fiona would find a tampered file that matches the given hash.
To be secure against forgery, digital signatures must either have enough bits
for such a random search to take too long, or the hash function itself must be
kept secret.

Fiona has to hash 2™ files to cheat. 232 file modifications is not
very many, so a 32-bit hash function is not large enough for forgery
prevention.

Another person who might have a motivation for forgery is Alice herself.
For example, she might be making a bet on the outcome of a race, without
wishing to broadcast her prediction publicly; a method for placing bets would
be for her to send to Bob the bookie the hash of her bet. Later on, she could
send Bob the details of her bet. Everyone can confirm that her bet is consis-
tent with the previously publicized hash. [This method of secret publication
was used by Isaac Newton and Robert Hooke when they wished to establish
priority for scientific ideas without revealing them. Hooke’s hash function
was alphabetization as illustrated by the conversion of UT TENSIO, SIC VIS
into the anagram CEIIINOSSSTTUV.] Such a protocol relies on the assumption
that Alice cannot change her bet after the event without the hash coming
out wrong. How big a hash function do we need to use to ensure that Alice
cannot cheat? The answer is different from the size of the hash we needed in
order to defeat Fiona above, because Alice is the author of both files. Alice
could cheat by searching for two files that have identical hashes to each other.
For example, if she’d like to cheat by placing two bets for the price of one,
she could make a large number Nj of versions of bet one (differing from each
other in minor details only), and a large number N5 of versions of bet two, and
hash them all. If there’s a collision between the hashes of two bets of different
types, then she can submit the common hash and thus buy herself the option
of placing either bet.

Example 12.8. If the hash has M bits, how big do N; and N3 need to be for
Alice to have a good chance of finding two different bets with the same
hash?

This is a birthday problem like exercise 9.20 (p.156). If there are N7 Montagues
and N Capulets at a party, and each is assigned a ‘birthday’ of M bits, the

expected number of collisions between a Montague and a Capulet is

NyN2~M, (12.3)

http://www.freesoft.org/CIE/RFC/1321/3.htm

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

12.6: Further exercises

S0 to minimize the number of files hashed, N1 + Ns, Alice should make Ny
and N equal, and will need to hash about 2M/2 files until she finds two that
match. a

Alice has to hash 2M/2 files to cheat. [This is the square root of the
number of hashes Fiona had to make.

If Alice has the use of C' = 10% computers for T' = 10 years, each computer
taking t = 1ns to evaluate a hash, the bet-communication system is secure
against Alice’s dishonesty only if M > 2logy CT/t ~ 160 bits.

Further reading

The Bible for hash codes is volume 3 of Knuth (1968). I highly recommend the
story of Doug Mcllroy’s spell program, as told in section 13.8 of Programming
Pearls (Bentley, 2000). This astonishing piece of software makes use of a 64-
kilobyte data structure to store the spellings of all the words of 75 000-word
dictionary.

» 12.6 Further exercises

ﬁ% Exercise 12.9.11] What is the shortest the address on a typical international

letter could be, if it is to get to a unique human recipient? (Assume

the permitted characters are [A-Z,0-9].) How long are typical email
addresses?

ﬁ% Exercise 12.10.1% P-203] piow long does a piece of text need to be for you to be
pretty sure that no human has written that string of characters before?
How many notes are there in a new melody that has not been composed

before?

b Exercise 12.11.1% P-204 pattern recognition by molecules.

Some proteins produced in a cell have a regulatory role. A regulatory
protein controls the transcription of specific genes in the genome. This
control often involves the protein’s binding to a particular DNA sequence
in the vicinity of the regulated gene. The presence of the bound protein
either promotes or inhibits transcription of the gene.

(a) Use information-theoretic arguments to obtain a lower bound on
the size of a typical protein that acts as a regulator specific to one
gene in the whole human genome. Assume that the genome is a
sequence of 3 x 10° nucleotides drawn from a four letter alphabet
{A,C,G,T}; a protein is a sequence of amino acids drawn from a
twenty letter alphabet. [Hint: establish how long the recognized
DNA sequence has to be in order for that sequence to be unique
to the vicinity of one gene, treating the rest of the genome as a
random sequence. Then discuss how big the protein must be to
recognize a sequence of that length uniquely.]

(b) Some of the sequences recognized by DNA-binding regulatory pro-
teins consist of a subsequence that is repeated twice or more, for
example the sequence

GCCCCCCACCCCTGCCCCC (12.4)

201

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

202 12 — Hash Codes: Codes for Efficient Information Retrieval

is a binding site found upstream of the alpha-actin gene in humans.
Does the fact that some binding sites consist of a repeated subse-
quence influence your answer to part (a)?

» 12.7 Solutions

Solution to exercise 12.1 (p.194). First imagine comparing the string x with
another random string x(¥). The probability that the first bits of the two
strings match is 1/2. The probability that the second bits match is 1/2. As-
suming we stop comparing once we hit the first mismatch, the expected number
of matches is 1, so the expected number of comparisons is 2 (exercise 2.34,
p-38).

Assuming the correct string is located at random in the raw list, we will
have to compare with an average of S/2 strings before we find it, which costs
25/2 binary comparisons; and comparing the correct strings takes N binary
comparisons, giving a total expectation of S + N binary comparisons, if the
strings are chosen at random.

In the worst case (which may indeed happen in practice), the other strings
are very similar to the search key, so that a lengthy sequence of comparisons
is needed to find each mismatch. The worst case is when the correct string
is last in the list, and all the other strings differ in the last bit only, giving a
requirement of SN binary comparisons.

Solution to exercise 12.2 (p.197). The likelihood ratio for the two hypotheses,
Ho: x®) = x, and Hy: x® # x, contributed by the datum ‘the first bits of
x(5) and x are equal’ is

P(Datum |Hy) 1

P(Datum | Hy) 1/2 (125)

If the first = bits all match, the likelihood ratio is 2" to one. On finding that
30 bits match, the odds are a billion to one in favour of H, assuming we start
from even odds. [For a complete answer, we should compute the evidence
given by the prior information that the hash entry s has been found in the
table at h(x). This fact gives further evidence in favour of H.]

Solution to exercise 12.3 (p.198). Let the hash function have an output al-
phabet of size T = 2M . If M were equal to log, S then we would have exactly
enough bits for each entry to have its own unique hash. The probability that
one particular pair of entries collide under a random hash function is 1/T. The
number of pairs is S(S — 1)/2. So the expected number of collisions between
pairs is exactly

S(S—1)/(27). (12.6)

If we would like this to be smaller than 1, then we need T'> S(S —1)/2 so
M > 2log, S. (12.7)

We need twice as many bits as the number of bits, logy S, that would be
sufficient to give each entry a unique name.

If we are happy to have occasional collisions, involving a fraction f of the
names S, then we need T' > S/f (since the probability that one particular
name is collided-with is f ~ S/T) so

M > logy S +logy[1/f], (12.8)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

12.7: Solutions 203

which means for f ~ 0.01 that we need an extra 7 bits above log, S.

The important point to note is the scaling of T" with S in the two cases
(12.7,12.8). If we want the hash function to be collision-free, then we must
have T greater than ~ S2. If we are happy to have a small frequency of
collisions, then T needs to be of order S only.

Solution to exercise 12.5 (p.198). The posterior probability ratio for the two
hypotheses, H; = ‘calculation correct’ and H_ = ‘calculation incorrect’ is
the product of the prior probability ratio P(H4)/P(H-) and the likelihood
ratio, P(match |Hy)/P(match |H_). This second factor is the answer to the
question. The numerator P(match |H4) is equal to 1. The denominator’s
value depends on our model of errors. If we know that the human calculator is
prone to errors involving multiplication of the answer by 10, or to transposition
of adjacent digits, neither of which affects the hash value, then P(match |H_)
could be equal to 1 also, so that the correct match gives no evidence in favour
of Hy. But if we assume that errors are ‘random from the point of view of the
hash function’ then the probability of a false positive is P(match |H_) = 1/9,
and the correct match gives evidence 9:1 in favour of H.

Solution to exercise 12.7 (p.199). If you add a tiny M = 32 extra bits of hash
to a huge N-bit file you get pretty good error detection — the probability that
an error is undetected is 27 | less than one in a billion. To do error correction
requires far more check bits, the number depending on the expected types of
corruption, and on the file size. For example, if just eight random bits in a
megabyte file are corrupted, it would take about log, (2;3) ~ 23 x 8 ~ 180
bits to specify which are the corrupted bits, and the number of parity-check
bits used by a successful error-correcting code would have to be at least this
number, by the counting argument of exercise 1.10 (solution, p.20).

Solution to exercise 12.10 (p.201). We want to know the length L of a string
such that it is very improbable that that string matches any part of the entire
writings of humanity. Let’s estimate that these writings total about one book
for each person living, and that each book contains two million characters (200
pages with 10000 characters per page) — that’s 106 characters, drawn from
an alphabet of, say, 37 characters.

The probability that a randomly chosen string of length L matches at one
point in the collected works of humanity is 1/37%. So the expected number
of matches is 10'6/37L which is vanishingly small if L > 16/log;, 37 =~ 10.
Because of the redundancy and repetition of humanity’s writings, it is possible
that L ~ 10 is an overestimate.

So, if you want to write something unique, sit down and compose a string
of ten characters. But don’t write gidnebinzz, because I already thought of
that string.

As for a new melody, if we focus on the sequence of notes, ignoring duration
and stress, and allow leaps of up to an octave at each note, then the number
of choices per note is 23. The pitch of the first note is arbitrary. The number
of melodies of length r notes in this rather ugly ensemble of Schénbergian
tunes is 23" 71; for example, there are 250000 of length r» = 5. Restricting
the permitted intervals will reduce this figure; including duration and stress
will increase it again. [If we restrict the permitted intervals to repetitions and
tones or semitones, the reduction is particularly severe; is this why the melody
of ‘Ode to Joy’ sounds so boring?] The number of recorded compositions is
probably less than a million. If you learn 100 new melodies per week for every
week of your life then you will have learned 250 000 melodies at age 50. Based

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

204 12 — Hash Codes: Codes for Efficient Information Retrieval

on empirical experience of playing the game ‘guess that tune’, it seems to In guess that tune, one player
me that whereas many four-note sequences are shared in common between chooses a melody, and sings a
melodies, the number of collisions between five-note sequences is rather smaller ~ gtadually-increasing number of its

— most famous five-note sequences are unique. notes, while the other participants
try to guess the whole melody.

Solution to exercise 12.11 (p.201). (a) Let the DNA-binding protein recognize = The Parsons code is a related hash
a sequence of length L nucleotides. That is, it binds preferentially to that function for melodies: each pair of
DNA sequence, and not to any other pieces of DNA in the whole genome. (In consecutive notes is coded as U
reality, the recognized sequence may contain some wildcard characters, e.g., (‘up’) if the second note }S ‘higher
the * in TATAA*A, which denotes ‘any of A, C, G and T’; so, to be precise, we are tl.lan the first, R (‘repeat)4 if the,
. . . . pitches are equal, and D (‘down’)

assuming that the recognized sequence contains L non-wildcard characters.) otherwise. You can find out how

Assuming the rest of the genome is ‘random’, i.e., that the sequence con- well this hash function works at
sists of random nucleotides A, C, G and T with equal probability — which is http://musipedia.org/.
obviously untrue, but it shouldn’t make too much difference to our calculation
— the chance that there is no other occurrence of the target sequence in the
whole genome, of length IV nucleotides, is roughly

(1= (/45N =~ exp(=N(1/4)"), (12.9)
which is close to one only if
N4t «1, (12.10)
that is,
L > log N/log4. (12.11)

Using N = 3 x 10, we require the recognized sequence to be longer than
Lin = 16 nucleotides.
What size of protein does this imply?

e A weak lower bound can be obtained by assuming that the information
content of the protein sequence itself is greater than the information
content of the nucleotide sequence the protein prefers to bind to (which
we have argued above must be at least 32 bits). This gives a minimum
protein length of 32/1log,(20) ~ 7 amino acids.

e Thinking realistically, the recognition of the DNA sequence by the pro-
tein presumably involves the protein coming into contact with all sixteen
nucleotides in the target sequence. If the protein is a monomer, it must
be big enough that it can simultaneously make contact with sixteen nu-
cleotides of DNA. One helical turn of DNA containing ten nucleotides
has a length of 3.4nm, so a contiguous sequence of sixteen nucleotides
has a length of 5.4nm. The diameter of the protein must therefore be
about 5.4nm or greater. Egg-white lysozyme is a small globular protein
with a length of 129 amino acids and a diameter of about 4nm. As-
suming that volume is proportional to sequence length and that volume
scales as the cube of the diameter, a protein of diameter 5.4nm must
have a sequence of length 2.5 x 129 ~ 324 amino acids.

(b) If, however, a target sequence consists of a twice-repeated sub-sequence, we
can get by with a much smaller protein that recognizes only the sub-sequence,
and that binds to the DNA strongly only if it can form a dimer, both halves
of which are bound to the recognized sequence. Halving the diameter of the
protein, we now only need a protein whose length is greater than 324/8 = 40
amino acids. A protein of length smaller than this cannot by itself serve as
a regulatory protein specific to one gene, because it’s simply too small to be
able to make a sufficiently specific match — its available surface does not have
enough information content.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

About Chapter 13

In Chapters 8-11, we established Shannon’s noisy-channel coding theorem
for a general channel with any input and output alphabets. A great deal of
attention in coding theory focuses on the special case of channels with binary
inputs. Constraining ourselves to these channels simplifies matters, and leads
us into an exceptionally rich world, which we will only taste in this book.

One of the aims of this chapter is to point out a contrast between Shannon’s
aim of achieving reliable communication over a noisy channel and the apparent
aim of many in the world of coding theory. Many coding theorists take as
their fundamental problem the task of packing as many spheres as possible,
with radius as large as possible, into an N-dimensional space, with no spheres
overlapping. Prizes are awarded to people who find packings that squeeze in an
extra few spheres. While this is a fascinating mathematical topic, we shall see
that the aim of maximizing the distance between codewords in a code has only
a tenuous relationship to Shannon’s aim of reliable communication.

205

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

13

Binary Codes

We’ve established Shannon’s noisy-channel coding theorem for a general chan-
nel with any input and output alphabets. A great deal of attention in coding
theory focuses on the special case of channels with binary inputs, the first
implicit choice being the binary symmetric channel.
The optimal decoder for a code, given a binary symmetric channel, finds
the codeword that is closest to the received vector, closest in Hamming dis- Example:

tance. The Hamming distance between two binary vectors is the number of The Hamming distance
between 00001111
and 11001101
is 3.

coordinates in which the two vectors differ. Decoding errors will occur if the
noise takes us from the transmitted codeword t to a received vector r that
is closer to some other codeword. The distances between codewords are thus
relevant to the probability of a decoding error.

» 13.1 Distance properties of a code

The distance of a code is the smallest separation between two of its codewords.

Example 13.1. The (7,4) Hamming code (p.8) has distance d = 3. All pairs of
its codewords differ in at least 3 bits. The maximum number of errors
it can correct is ¢ = 1; in general a code with distance d is [(d—1)/2]-
error-correcting.

A more precise term for distance is the minimum distance of the code. The
distance of a code is often denoted by d or di,.

We’ll now constrain our attention to linear codes. In a linear code, all Total 16
codewords have identical distance properties, so we can summarize all the
distances between the code’s codewords by counting the distances from the 7
all-zero codeword.

The weight enumerator function of a code, A(w), is defined to be the 4
number of codewords in the code that have weight w. The weight enumerator
function is also known as the distance distribution of the code. Sim M

e wol8

Example 13.2. The weight enumerator functions of the (7,4) Hamming code
and the dodecahedron code are shown in figures 13.1 and 13.2. Figure 13.1. The graph of the
(7,4) Hamming code, and its
» 13.2 Obsession with distance weight enumerator function.

Since the maximum number of errors that a code can guarantee to correct,

t, is related to its distance d by t = [(d—1)/2], many coding theorists focus d =2t + 1 if d is odd, and
on the distance of a code, searching for codes of a given size that have the d=2t+2if dis even.
biggest possible distance. Much of practical coding theory has focused on

decoders that give the optimal decoding for all error patterns of weight up to

the half-distance ¢ of their codes.

206

13.2: Obsession with distance

350 —

w A(w) 300 -
0 1 250
5 12 200
8 30 150
9 20 100 A
10 72 % 1
11 120 ol o .
12 100 0 5 810 15 25 30
13 180
14 240 T
15 272 100] P
16 345 *
17 300 * .
18 200 10 4 x
19 120
20 36
Total 2048 Y

T T T T T

0 5 810 15 20 25 30

A bounded-distance decoder is a decoder that returns the closest code-
word to a received binary vector r if the distance from r to that codeword
is less than or equal to t; otherwise it returns a failure message.

The rationale for not trying to decode when more than ¢ errors have occurred
might be ‘we can’t guarantee that we can correct more than ¢ errors, so we
won’t bother trying — who would be interested in a decoder that corrects some
error patterns of weight greater than ¢, but not others?’ This defeatist attitude
is an example of worst-case-ism, a widespread mental ailment which this book
is intended to cure.

The fact is that bounded-distance decoders cannot reach the Shannon limit
of the binary symmetric channel; only a decoder that often corrects more than
t errors can do this. The state of the art in error-correcting codes have decoders
that work way beyond the minimum distance of the code.

Definitions of good and bad distance properties

Given a family of codes of increasing blocklength N, and with rates approach-
ing a limit R > 0, we may be able to put that family in one of the following
categories, which have some similarities to the categories of ‘good’ and ‘bad’
codes defined earlier (p.183):

A sequence of codes has ‘good’ distance if d/N tends to a constant
greater than zero.

A sequence of codes has ‘bad’ distance if d/N tends to zero.

A sequence of codes has ‘very bad’ distance if d tends to a constant.

Example 13.3. A low-density generator-matrix code is a linear code whose K x
N generator matrix G has a small number dy of 1s per row, regardless
of how big N is. The minimum distance of such a code is at most dg, so
low-density generator-matrix codes have ‘very bad’ distance.

While having large distance is no bad thing, we’ll see, later on, why an
emphasis on distance can be unhealthy.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

207

Figure 13.2. The graph defining
the (30,11) dodecahedron code
(the circles are the 30 transmitted
bits and the triangles are the 20
parity checks, one of which is
redundant) and the weight
enumerator function (solid lines).
The dotted lines show the average
weight enumerator function of all
random linear codes with the
same size of generator matrix,
which will be computed shortly.
The lower figure shows the same
functions on a log scale.

Figure 13.3. The graph of a
rate-1/2 low-density
generator-matrix code. The
rightmost M of the transmitted
bits are each connected to a single
distinct parity constraint. The
leftmost K transmitted bits are
each connected to a small number
of pari