cloudera

Ask Bigger Questions

Deploying Apache Flume for
Low-Latency Analytics

Mike Percy
Software Engineer, Cloudera
PMC Member & Committer, Apache Flume

About me

Software engineer @ Cloudera

Previous life @ Yahoo! in CORE

PMC member / commiter on Apache Flume
Part-time MSCS student @ Stanford

| play the drums (when | can find the time!)
Twitter: @mike_percy

cloudera

Ask Bigger Questions

What do you mean by low-latency?

Shooting for a 2-minute SLA
from time of occurrence
to visibility via interactive SQL

Pretty modest SLA

The goal is fast access to all of our “big data”
from a single SQL interface

cloudera

Ask Bigger Questions

Approach

Stream Avro data into HDFS using Flume
Lots of small files

Convert the Avro data to Parquet in batches
Compact into big files

Efficiently query both data sets using Impala
UNION ALL or (soon) VIEW

Eventually delete the small files

cloudera

Ask Bigger Questions

Agenda

Using Flume
Streaming Avro into HDFS using Flume

Using Hive & Impala
Batch-converting older Avro data to Parquet
How to query the whole data set (new and old together)

Gotchas
A little about HBase

github.com/mpercy/flume-rtg-hadoop-summit-2013

cloudera

Ask Bigger Question

Why Flume event streaming is awesome

« Couldn’t | just do this with a shell script?
- What year is this, 20017 There is a better way!

- Scalable collection, aggregation of events (i.e. logs)
- Dynamic, contextual event routing

- Low latency, high throughput

- Declarative configuration

- Productive out of the box, yet powerfully extensible
- Open source software

Flume Agent design

‘ Host Machine .

B Single JVM (Flume Agent) B

Source Channel Sink
Stores events Buffers and Drains events
into channel(s) stores events from a channel

Multi-agent network architecture

™ Typical fan-in topology
™ O |

el O\ |

I \ | Shown here:

*E—>|:|N\\) * Many agents (1 per host) at edge tier
J_,,:/E U § * 4 “collector” agents in that data center
> ;> * 3 centralized agents writing to HDFS
o] .

e e o |

| R g S

=

Events

Flume’s core data movement atom: the Event

- An Event has a simple schema

- Event header: Map<String, String>
- similar in spirit to HTTP headers

- Event body: array of bytes

Channels

- Passive Component
- Channel type determines the reliability guarantees
- Stock channel types:

- JDBC — has performance issues
- Memory —lower latency for small writes, but not durable

- File — provides durability; most people use this

Sources

- Event-driven or polling-based
- Most sources can accept batches of events
- Stock source implementations:

Avro-RPC — other Java-based Flume agents can send data to this source port
Thrift-RPC = for interop with Thrift clients written in any language

HTTP — post via a REST service (extensible)

JMS —ingest from Java Message Service

Syslog-UDP, Syslog-TCP

Netcat

Scribe

Spooling Directory — parse and ingest completed log files
Exec — execute shell commands and ingest the output

Sinks

- All sinks are polling-based
- Most sinks can process batches of events at a time

- Stock sink implementations (as of 1.4.0 RC1):
« HDFS
- HBase (2 variants)
- SolrCloud
- ElasticSearch

- Avro-RPC, Thrift-RPC — Flume agent inter-connect
- File Roller —write to local filesystem
- Null, Logger, Seq, Stress — for testing purposes

Flume component interactions

- Source: Puts events into the local channel
« Channel: Store events until someone takes them
- Sink: Takes events from the local channel

- On failure, sinks backoff and retry forever until success

Flume configuration example

agentl.properties:

Flume will start these named components
agentl.sources =srcl

agentl.channels = chl

agentl.sinks = sink1

channel config

agentl.channels.chl.type = memory

source config
agentl.sources.srcl.type = netcat
agentl.sources.srcl.channels = chl
agentl.sources.srcl.bind =127.0.0.1
agentl.sources.srcl.port = 8080

sink config

agentl.sinks.sinkl.type = logger
agentl.sinks.sinkl.channel = chl

Our Flume config

agent.channels = mem1
agent.sources = netcat
agent.sinks = hdfs1 hdfs2 hdfs3 hdfs4

agent.channels.mem1.type = memory
agent.channels.mem1.capacity = 1000000
agent.channels.mem1l.transactionCapacity = 10000

agent.sources.netcat.type = netcat
agent.sources.netcat.channels = mem1
agent.sources.netcat.bind = 0.0.0.0
agent.sources.netcat.port = 8080
agent.sources.netcat.ack-every-event = false

agent.sinks.hdfsl.type = hdfs
agent.sinks.hdfsl.channel = mem1
agent.sinks.hdfs1.hdfs.uselLocalTimeStamp = true
agent.sinks.hdfs1.hdfs.path =
hdfs:///flume/webdata/avro/year=%Y/month=%m/
day=%d
agent.sinks.hdfs1.hdfs.fileType = DataStream
agent.sinks.hdfs1.hdfs.inUsePrefix = .
agent.sinks.hdfs1.hdfs.filePrefix = log
agent.sinks.hdfs1.hdfs.fileSuffix = .sl.avro
agent.sinks.hdfs1.hdfs.batchSize = 10000
agent.sinks.hdfs1.hdfs.rollinterval = 30
agent.sinks.hdfs1.hdfs.rollCount =0
agent.sinks.hdfs1.hdfs.rollSize = 0
agent.sinks.hdfs1.hdfs.idleTimeout = 60
agent.sinks.hdfs1.hdfs.callTimeout = 25000
agent.sinks.hdfsl.serializer =
com.cloudera.flume.demo.CSVAvroSerializerSBuilder

agent.sinks.hdfs2.type = hdfs
agent.sinks.hdfs2.channel = mem1
etc ... sink configs 2 thru 4 omitted for brevity

Avro schema

{
"type": "record",
"name": "UserAction",
"namespace"” : "com.cloudera.flume.demo",
"fields": [
{"name": "txn_id", "type": "long"},
{"name": ”ts", "type": "long"},
{"name": "action", "type": "string"},
{"name": "product_id", "type": "long"},
{"name": "user_ip", "type": "string"},
{"name": "user_name", "type": "string"},
{"name": "path", "type": "string"},
{"name": "referer", "type": "string", "default":""}
i
¥

Custom Event Parser / Avro Serializer

/** converts comma-separated-value (CSV) input protected UserAction convert(Event event) {
text into binary Avro output on HDFS */ String line = new String(event.getBody());
String[] fields = line.split(",");
public class CSVAvroSerializer extends UserAction action = new UserAction();
AbstractAvroEventSerializer<UserAction> { action.setTxnld(Long.parseLong(fields[0]));
action.setTimestamp(Long.parseLong(fields[1]));
private OutputStream out; action.setAction(fields[2]);
private CSVAvroSerializer(OutputStream out) { action.setProductld(Long.parseLong(fields[3]));
this.out = out; action.setUserlp(fields[4]);
} action.setUserName(fields[5]);
action.setPath(fields[6]);
protected OutputStream getOutputStream() { action.setReferer(fields[7]);
return out; return action;
} }
protected Schema getSchema() { public static class Builder {
Schema schema = UserAction.SCHEMAS; // Builder impl omitted for brevity
return schema; }
}
}

And now our data flows into Hadoop

Send some data to Flume:

./generator.pl | nc localhost 8080

Flume does the rest:

$ hadoop fs -1s /flume/webdata/avro/year=2013/month=06/day=26

Found 16 items
/flume/webdata/avro/year=2013/month=06/day=26/10g.1372244099633.s1.avro
/flume/webdata/avro/year=2013/month=06/day=26/10g.1372244099633.s2.avro
/flume/webdata/avro/year=2013/month=06/day=26/10g.1372244099633.s3.avro
/flume/webdata/avro/year=2013/month=06/day=26/10g.1372244099633.s4.avro
/flume/webdata/avro/year=2013/month=06/day=26/10g.1372244099634.s1.avro
/flume/webdata/avro/year=2013/month=06/day=26/10g.1372244099634 .s2.avro
/flume/webdata/avro/year=2013/month=06/day=26/10g.1372244099634.s3.avro
/flume/webdata/avro/year=2013/month=06/day=26/10g.1372244099634 .s4.avro

Querying our data via SQL: Impala and Hive

Batch Interactive
Processing SQL

Impala

Shares Everything Client-Facing
Metadata (table definitions)
ODBC/JDBC drivers
SQL syntax (Hive SQL)
Flexible file formats

SQL Syntax +
MapReduce Compute Framework
Compute Framework
Resource Management

Machine pool s
- § HDFS HBase
But Built for Different Purposes . - -
Hive: runs on MapReduce and ideal for batch \t-jlj
processing TEXT, RCFILE, PARQUET, AVRO, ETC. RECORDS

Impala: native MPP query engine ideal for
interactive SQL

Integration

Cloudera Impala

Interactive SQL for Hadoop

Responses in seconds
Nearly ANSI-92 standard SQL with Hive SQL

Native MPP Query Engine

Purpose-built for low-latency queries
Separate runtime from MapReduce
Designed as part of the Hadoop ecosystem

Open Source cloudera
Apache-licensed IM PA LA

Impala Query Execution

1) Request arrives via ODBC/JDBC/Beeswax/Shell

Hive

Query Planner Query Planner Query Planner

Query Coordinator Query Coordinator Query Coordinator
Query Executor Query Executor

SQL request

HBase

HBase __HoFsDN | HBase

Impala Query Execution

2) Planner turns request into collections of plan fragments
3) Coordinator initiates execution on impalad(s) local to data

Hive

Query Planner Query Planner Query Planner
Query Coordinator Query Coordinator Query Coordinator

Query Executor Query Executor Query Executor

SQL App

ODBC

Impala Query Execution

4) Intermediate results are streamed between impalad(s)
5) Query results are streamed back to client

Hive
Query results

Query Planner Query Planner Query Planner
Query Coordinator Query Coordinator Query Coordinator

Query Executor Query Executor Query Executor

SQL App

Parquet File Format: http://parquet.io

Open source, columnar file format for
Hadoop developed by Cloudera & Twitter

Rowgroup format: file contains multiple horiz. slices

Supports storing each column in a separate file

Supports fully shredded nested data

Column values stored in native types

Supports index pages for fast lookup

Extensible value encodings

Table setup (using the Hive shell)

CREATE EXTERNAL TABLE webdataln

PARTITIONED BY (year int, month int, day int)

ROW FORMAT SERDE 'org.apache.hadoop.hive.serdeZ.avro.AvroSerDe'

STORED AS INPUTFORMAT
'org.apache.hadoop.hive.ql.10.avro.AvroContainerInputFormat’

OUTPUTFORMAT
'org.apache.hadoop.hive.ql.10.avro.AvroContainerOutputFormat

LOCATION '/flume/webdata/avro/’

TBLPROPERTIES
('avro.schema.url’ = 'hdfs:///user/mpercy/UserAction.avsc');

/* this must be done for every new day: */
ALTER TABLE webdataln
ADD PARTITION (year = 2013, month = 06, day = 20);

Conversion to Parquet

Create the archive table from Impala:

impala> CREATE TABLE webdataArchive

(txn_id bigint, ts bigint, action string, product_id bigint, user_ip string,
user_name string, path string, referer string)

PARTITIONED BY (year int, month int, day int)

STORED AS PARQUETFILE;

Conversion to Parquet

Load the Parquet table from an Impala SELECT:

ALTER TABLE webdataArchive
ADD PARTITION (year = 2013, month =6, day = 20);

INSERT OVERWRITE TABLE webdataArchive
PARTITION (year = 2013, month = 6, day = 20)
SELECT txn_id, ts, action, product_id, user_ip, user_name, path, referer
FROM webdataln
WHERE year = 2013 AND month = 6 AND day = 20;

Partition update & metadata refresh

Impala can’t see the Avro data until you add the
partition and refresh the metadata for the table

- Pre-create partitions on a daily basis

hive> ALTER TABLE webdataln
ADD PARTITION (year = 2013, month = 6, day = 20);

- Refresh metadata for incoming table every minute
impala> REFRESH webdataln

Querying against both data sets

Query against the correct table based on job schedule

SELECT txn_id, product_id, user _name, action
FROM webdataln
WHERE year = 2013 AND month =6
AND (day = 25 OR day = 26)
AND product_id=30111
UNION ALL
SELECT txn_id, product_id, user _name, action
FROM webdataArchive
WHERE NOT (year = 2013 AND month =6
AND (day = 25 OR day = 26))
AND product_id =30111;

Query results

R e e e e e e e O et +
| txn_1id | product_id | user_name | action |
R e e E TR Fomm - Fomm - +-——————- +
1372244973556	30111	ylucas	click
1372244169096	30111	fdiaz	click
1372244563287	30111	vbernard	view
1372244268481	30111	ntrevino	view I
1372244381025	30111	oramsey	click
1372244242387	30111	wwallace	click
1372244227407	30111	thughes	click
1372245609209	30111	gyoder	view
1372245717845	30111	yblevins	view I
1372245733985	30111	moliver	click
1372245756852	30111	pjensen	view
1372245800509	30111	ucrane	view I
1372244848845	30111	tryan	click
1372245073616	30111	pgilbert	view I
1372245141668	30111	walexander	click
1372245362977	30111	agillespie	click
1372244892540	30111	ypham	view
1372245466121	30111	yowens	buy I
1372245515189	30111	emurray	view I
+ + +

Views

- |t would be much better to be able to define a view
to simplify your queries instead of using UNION ALL

- Hive currently supports views

- Impala 1.1 will add VIEW support
- Available next month (July 2013)

Other considerations

- Don’t forget to delete the small files once they have
been compacted

- Keep your incoming data table to a minimum
- REFRESH <table> is expensive

- Flume may write duplicates

- Your webdataln table may return duplicate entries

- Consider doing a de-duplication job via M/R before the
INSERT OVERWRITE

- Your schema should have keys to de-dup on
- DISTINCT might help with both of these issues

Even lower latency via Flume & HBase

- HBase

- Flume has 2 HBase sinks:
- ASYNC_HBASE is faster, doesn’t support Kerberos or 0.96 yet
- HBASE is slower but uses the stock libs and supports everything

- Take care of de-dup by using idempotent operations
- Write to unique keys

- Stream + Batch pattern is useful here if you need counters
- Approximate counts w/ real-time increment ops

- Go back and reconcile the streaming numbers with batch-

generated accurate numbers excluding any duplicates created by
retries

Flume ingestion strategies

- In this example, we used “netcat” because it’s easy
- For a system that needs reliable delivery we should
use something else:
« Flume RPC client API
- Thrift RPC
- HTTP source (REST)
- Spooling Directory source

- Memory channel vs. File channel

For reference

Flume docs
- User Guide: flume.apache.org/FlumeUserGuide.html

- Dev Guide:
flume.apache.org/FlumeDeveloperGuide.html

Impala tutorial:

- www.cloudera.com/content/cloudera-content/
cloudera-docs/Impala/latest/Installing-and-Using-
Impala/ciiu_tutorial.html

Flume 1.4.0

- Release candidate is out for version 1.4.0
- Adds:

- SSL connection security for Avro source

- Thrift source

« SolrCloud sink
Flume embedding support (embedded agent)
File channel performance improvements
Easier plugin integration
Many other improvements & bug fixes

- Tryit:

http://people.apache.org/~mpercy/flume/apache-
flume-1.4.0-RC1/

Flume: How to get involved!

Join the mailing lists:
- user-subscribe@flume.apache.org
- dev-subscribe@flume.apache.org

Look at the code

- github.com/apache/flume — Mirror of the
flume.apache.org git repo

File a bug (or fix one!)
- issues.apache.org/jira/browse/FLUME

More on how to contribute:

- cwiki.apache.org/confluence/display/FLUME/How+to
+Contribute

38

Thank Youl!
Mike Percy

Work: Software Engineer, Cloudera
Apache: PMC Member & Committer, Apache Flume

Twitter: @mike_percy
Code: github.com/mpercy/flume-rtg-hadoop-summit-2013

cloudera

Ask Bigger Questions

o)

()

