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ABSTRACT
We perform social analyses over an important community: the
open code collaboration network. Speci�cally, we study the corre-
lation among features that measure the strength of social coding
collaboration on GitHub – a Web-based source code repository that
can be modeled as a social coding network. We also make publicly
available a curated dataset called GitSED, GitHub Socially Enhanced
Dataset. Our results have many practical applications such as to
improve the recommendation of developers, the evaluation of team
formation and existing analysis algorithms.
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1 INTRODUCTION
Social network analysis has conquered its place as a research area
for its importance and increasing community of people. Here, we
perform social analyses over an equally relevant community: the
open code collaboration network, an important type of social pro-
fessional network [9]. Speci�cally, we study the correlation among
features that measure the strength of social coding collaboration
over a so�ware repository. Indeed, analyzing so�ware repositories
allows to answer relevant questions such as “Which pa�erns do
govern developers interactions?”, “How do developers sentiment
in�uence their performance?” or “Who are the best developers that
a company may contract for a speci�c job?”. Current research has
addressed them and others [5, 6, 11, 12, 18, 21–23].
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�ere are di�erent so�ware repositories as SourceForge, GitHub,
and Google Code. Here, we mine developers interactions from
GitHub1, a website and online hosting service that o�ers source
code management to users. Currently, GitHub has over 53 mil-
lion repositories (February 2017) and 14 million users (April 2016)2.
Many studies have mined GitHub for: modeling reasons for a devel-
oper to join a project [22], showing typical practices programmers
use to handle exceptions [19], and so on. �ere are also studies on
analyzing the social aspects of so�ware repositories [6, 7, 11, 25].
Studying such aspects may help to understand which ones in�u-
ence developers productivity [11, 25], and how social interactions
between developers and users in�uence so�ware quality [7].

A speci�c type of social aspects is the strength of interaction
between developers, or the strength of their social tie [2] in the con-
text of social coding [13]. In this context, the strength of interaction
has been investigated on GitHub in order to analyze the productiv-
ity of developers in projects [11], predict developers collaboration
[6] and investigate the acceptance of pull requests [24].

Such studies measure the strength of interactions di�erently.
However, none evaluates the best way to measure such strength,
which varies according to number of shared repositories, amount
of commi�ed lines, and so on. Also, they do not investigate the
correlation among such metrics. Another problem is that, according
to Cosentino et al. [12], more than two thirds of the publications
(analyzed on their long survey) do not provide the datasets used
neither the source code to make the studies replicable. Likewise, as
pointed out by Jacobs et al [17], important answers from network
analyses come from a good dataset and time-varying relations.

In this paper, we analyze the strength of social collaboration mea-
sured by distinct metrics through di�erent programming languages.
Our goal is to provide insights about relationships’ pa�erns and
their strength over a huge so�ware repository. Our contributions
are summarized as follows.

First, we build a dataset called GitSED, for GitHub Socially En-
hanced Dataset, and make it publicly available, complying to the
manifesto by Weller and Kinder-Kurlanda [26]. It provides the
following distinguished features: curated by being �ltered and
focusing on two programming languages, augmented by adding
repository and developer’s data not available on GHTorrent [15],
and enriched with social network information (Section 3).

1GitHub: h�p://github.com
2�e largest code host on the planet: github.com/features and github.com/about/press
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Second, we propose three new metrics for the strength of social
coding collaboration considering the commits’ number of lines and
pontential of contribution. Also, we modify an existing metric for
prior social interaction between developers (Section 4).

�ird, we evaluate all metrics over two social networks for
JavaScript and Ruby (Section 5). Overall, we �nd that: most devel-
opers are active in few repositories, the number of connections be-
tween developers varies through di�erent programming languages,
and few pairs of developers have interactions in more than one
repository. �en, we provide a deep correlation analysis among
existing collaboration strength metrics and those proposed here.
�e results show that the prior social collaboration aspect is related
to the commits in shared repositories. Also, commits’ number of
lines and pontential of contribution are weakly correlated. Such
results are relevant to further, deeper and even completely new
studies on social coding collaboration strength [6, 11, 24].

2 RELATEDWORK
We divide related work in two parts. First, we go over studies that
are somehow related to ours. �en, we brie�y describe the existing
metrics that can be applied to measure collaboration strength.

2.1 Studies Alike
Analyzing GitHub (and so�ware repositories) allows to acquire
knowledge that helps to improve so�ware development and, hence,
its quality. For example, Dabbish et al. [13] show how to infer
developers technical goals and vision from network activities and
guess which projects have the chance to be active in long term.

Studying the whole repository reveals general comprehension,
whereas studying the communities over speci�c languages may be
even more relevant. Indeed, GitHub studies over speci�c program-
ming languages reveal pa�erns of development and collaboration
that are peculiar to each language and coding paradigm. For in-
stance, Kery et al. [19] show typical practices programmers use to
handle exceptions on Java projects. In a more social perspective,
Padhye et al [23] consider 89 popular GitHub projects (and their
108.000+ forks) to study the levels of participation from di�erent
communities in the projects and present the results grouped by
programming language (11 of the most popular ones).

Still on social perspectives, team formation is also an important
topic on developer relationship studies as well. Zihayat at al. [27]
propose an e�cient algorithm to �nd teams of experts that cover
all the required skills in a project, then maximizing the costs of
team formation (like communication cost, expertise cost and the
personnel cost). Another example is given by Jarczyk et al. [18]
who study task allocation of virtual programmer teams based on
real-life data from GitHub repositories and a simulation about the
choices of developers of the tasks in which they are going to work.

Other studies consider solutions on distinct areas towards un-
derstanding developers and projects relations. For example, Nielek
et. al [22] present machine learning algorithms to understand and
model the main reasons that lead developers to join speci�c projects.
Likewise, Loyola et. al [21] relate how developers and repositories
behave with mutualism (a biological notion in which two species
provide bene�ts to each other).

Finally, a di�erent perspective is to analyze the correlation among
distinct features of the so�ware repository. For example, Barne�
et al. [5] study the correlation between volume and content of
commits messages and tendency to defects in java projects. �e
results point out metrics for the volume and content of commits
message improve Just-In-Time defect prediction models.

Here, we take such studies many steps forward by analyzing
the social tie strength over a huge so�ware repository. We start by
building a socially enhanced dataset and making it publicly avail-
able, not very common in this type of study [26]. We propose new
metrics for the strength of social coding collaboration considering
features that provide more information on the nature of the tie.
�en, we analyze the linear and non-linear correlation among exist-
ing metrics and the proposed ones. Overall, our study di�ers from
the existing ones by showing correlated and non-correlated metrics
and then revealing a set of metrics that can be used to measure the
strength of social coding collaboration.

2.2 Collaboration Strength Metrics
A collaboration SN is mathematically represented by a weighted
graph G = (V, Ew ), with V the set of nodes and Ew the set of
non-directed links with an associated weight. Nodes are developers,
a link between any two developers exists if both contributed to
the same repository, and the link weight measures the strength
of the social coding collaboration. Based on this mathematical
model, we characterize the nature of the social coding ties using
both topological and semantic properties, de�ned as follows.

2.2.1 Topological Properties. In order to characterize GitHub
social network and analyze the correlation of the strength of collab-
orations with network properties, we use topological metrics based
on their ability to represent the relationship between individuals.
Clustering Coe�cient (CC). In many networks, if node u con-
nects to node v , and node v to node w , then there is a heightened
probability that nodeu will also be connected to nodew . In terms of
network topology, transitivity means the presence of a heightened
number of triangles in the network, i.e., sets of three nodes con-
nected to each other. Let T (u) be the total number of triangles that
u belongs to and deд(u) the degree (number of connected edges) of
u, then the clustering coe�cient CC of node u is:

CC(u) =
2T (u)

deд(u)(deд(u) − 1) ,

where T (u) is the number of triangles through node u. Such metric
shows the tendency of the nodes to cluster together.
Neighborhood Overlap (NO). It measures the neighborhood sim-
ilarity for any two pair of nodes. Let N(u) and N(v) be the set of
nodes u and v neighbors, respectively, then

NO(u,v) =
|N(u)| ∩ |N(v)|

|N(u)| ∪ |N(v)|
.

According to [8] and [14], neighborhood overlap can be used to
compute the strength of the ties. �us, we are interested in analyz-
ing the behavior of such metric in GitHub social network.
Adamic-Adar Coe�cient (AA). Given a set of features, it was
originally used for computing the similarity between two web pages
[1]. In the social network context, the features are the common
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neighbors, and the metric is customized as:

AA(u,v) =

∑∀z ∈ |N(u)| ∩ |N(v)|
loд |N(z)|

.

Adamic-Adar coe�cient has a similar meaning to neighborhood
overlap, because both consider the nodes’ neighbors. However,
their correlation to other properties is still not known. Also, the
denominator indicates unpopular developers (few collaborators)
may be more likely to introduce a particular pair of their collabora-
tors to each other. Here, we investigate such aspects and infer its
capacity to measure the collaborations strength.
Preferential Attachment (PA). It assumes the likelihood of re-
ceiving new edges increases with the node’s degree; i.e., the greater
the number of neighbors, the higher the value of preferential at-
tachment. To calculate it, we use Networkx [20]: given N(u) and
N(v) as the sets of neighbors of u and v , respectively, PA is

PA(u,v) = |N(u)| |N(v)|.

According to [4], there is a linear relation between the number of
neighbors of a node and its P.A. (producing the “rich gets richer”
e�ect). �us, we investigate such claim in the GitHub network.
Resource Allocation (RA)3. It measures the resource allocation
dynamics on the network. Given a pair of nodes u and v , it repre-
sents the amount of resource sent to v by u through their common
neighbors. Let w(u), w(v) be the weighted degree of nodes u and
v , respectively, and w(u, z), w(z,v), w(u,v) be the weight of links
(u, z), (z,v) and (u,v). �e weighted degree of a node is the sum of
the weight of each edge connected to the node (e.g., a node with two
edges with weight 3 has weighted degree as 3+3=6). We compute
this metric six times, one for each semantic metric that represents
edge weight (de�ned later), as follows:

RA(u,v) =
w(u,v)

w(u)
+

∑
z∈N(u)∩N(v)

w(u, z)w(z,v)

w(u)w(z)
.

Considering the GitHub social network, a developer u is viewed
as sending some resource (sharing repositories and commi�ing
code) to all of her/his contributors, which has a secondary e�ect to
all of the contributors of the developer v who receives it. No study
has used such metric for the strength of social coding collaboration.
Tieness (T). It measures the strength of interactions between in-
dividuals [10]. Let N(vi ) and N(vj ) be the set of nodes vi and vj
neighbors, respectively, the metric is calculated as

tienessi, j =

|N(vi )∩N(vj ) |+1
1+ |N(vi )∪N(vj ) |−{vi ,vj } | |wi, j | |

2 ,

where | |wi, j | | is the edge weight of a pair of developers vi and vj
normalized by unity-based method (it allows to normalize the data
within a selected range). Such metric was evaluated for measuring
the strength of co-authorship collaboration. Here, we investigate
the behavior of tieness in the context of social coding collaboration.

2.2.2 Semantic properties. In some situations, considering only
topological properties to measure the strength of ties may not be
very accurate, because relationships may be in�uenced by aspects
not only related to the network structure. �en, we consider three

3Also known as Propagation Coe�cient (PC)

semantic properties previously proposed by us to measure collabo-
ration strength (edge weight) [3]. Overall, the semantic properties
capture the amount of interaction between two developers. �e
higher their values, the stronger the interaction between those
two. We also propose two new semantic properties to measure the
strength of social coding collaboration, described in Section 4.
Number of shared repositories (SR(Di ,D j )). Given two develop-
ers Di ,D j ∈ D, where D is the set of all developers in a network,
the metric R(Di ,D j ) is the total number of repositories that they
both worked at, and is given by the cardinality of R set (i.e., |R |).
Jointly developers contribution to shared repositories
(JCSR(Di ,D j )). Given two developers Di and D j and their reposito-
ries ri , the jointly contribution is :

JCSR(Di ,D j ) =

∑
∀ri ∈ R

JCSR(Di ,D j ,ri )

|R |
.

For example, given r1 that is only shared by developers A and
B, their jointly contribution to r1 (JCSR(A,B,r1)) is equal to 1. On
the other hand, given r2 that is shared by developers A, B and C ,
the jointly contribution by A and B to r2 (JCSR(A,B,r2)) is 0.66. If A
and B share only r1 and r2, the jointly contribution given by them
to these repositories (JCSR(A,B)) is 0.83.
Jointly developers commits to shared repositories
(JCOSR(Di ,D j )). Given NC(Di ,r j ) as the total number of commits
by Di into repository r j , NC(D j ,r j ) as the total number of commits
by B into repository r j , and NC(r j ) the total number of commits by
any developer into repository r j . JCOSR(Di ,D j ) is de�ned as:

JCOSR(Di ,D j ) =
∑

∀ri ∈ R

(NC(Di ,ri ) + NC(D,ri ))

NC(ri )
.

3 METHODOLOGY
Our methodology has the following steps. First, we build a new
dataset GitSED based on extracted data from GHTorrent [15], which
is an open project that provides GitHub databases. Such dataset is
curated, augmented and enriched with social features in Section
3.1. Next, we build a social network that is formed by developers
and their projects in Section 3.2. �en, we measure the strength of
social coding collaboration with existing topological and semantic
properties (as explained in Section 2.2) and new ones proposed
in Section 4. Finally, our experimental evaluation analyzes the
correlation among collaboration strength metrics in Section 5.

3.1 GitSED: GitHub Socially Enhanced Dataset
Dataset Description. In order to build the dataset, we �rst ex-
tract data from GHTorrent [15]. As pointed out by Cosentino et
al in their seminal survey on analyzing GitHub [12], GHTorrent
is the most popular way for collecting data from GitHub. Unlike
most of the studies covered in their survey (almost 70%) and given
the importance emphasized by [26], we make our dataset publicly
available at h�p://www.dcc.ufmg.br/∼mirella/projs/apoena.

In summary, the objective of GHTorrent is to monitor public data
available on GitHub. We collected a complete dataset on September
15th, 2015. Initially, there was a total of 1,987,760 projects (32 GB of
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Figure 1: Number of Repositories and Contributors

Figure 2: Number of Connections (edges)

data). From those projects, 1,204,212 were forks4. We then removed
the forked repositories because the changes made on them must be
approved by the base repositories (done through a pull request)5.
As such approval is not guaranteed and forked repositories may be
used just for testing performance and other side analyses, we work
only with non-forked projects, then resulting in 529,405 projects.
Even with such cuts, the remaining dataset was still large to process
and would need high computation power to handle all data.
Curating the Data. To prune the dataset and make it easier to
handle, we focus on two programming languages; without loss
of generality and following previous work (Section 2). First, we
consider JavaScript with 90,363 repositories (17% of non-forked
projects), as it is the most common language on GitHub according
to our pre-analysis of the original dataset downloaded from GHTor-
rent. Second, we include Ruby with 59,225 repositories. Finally, we
model a graph as described in Section 2.2, and Figures 1 and 2 show
the dataset statistics for both programming languages.
Augmenting with Further Features. A�er curating (�ltering)
the original dataset, we have pre-evaluated to identify what kind of
analyses such a dataset allows. Moreover, as pointed out by Aiello
et al [2], investigating the nature of the social interactions given
by the social ties is also important. However, our pre-evaluation
showed that such an investigation would be very hard to do over
the curated dataset. Hence, we also add other features to allow
be�er analyses of the strength of social coding metrics.

First is the number of lines with which a developer has con-
tributed to a repository, exempli�ed as follows. Consider two dif-
ferent developers: one who works hours to commit at the end, and
4Copy of a repository that allows changes without a�ecting the original project.
5Changes commi�ed to an external repository must be approved in the base repository

another who works the same number of hours but commits at each
10 minutes. Clearly, the importance or relevance of their coding
cannot be solely measured by the number of commits.

Nonetheless, GHTorrent does not share the number of lines in
each commit. �erefore, we coded a crawler using BeautifulSoup
and Requests (modules of Python). �e crawler works �ne except
for those repositories that are not available anymore to be collected
(as such numbers were crawled months a�er collecting the original
dataset from GHTorrent). �en, we synchronize GitSED to include
developers interactions only from those repositories found by the
crawler. Hence, GitSED considers the interactions from 45,926
repositories: 28,584 for Javascript and 17,342 for Ruby.

Second is time. We add an a�ribute create date de�ned by the
minimum date between created at from GHTorrent and the �rst
commit date. Likewise, end date is the last commit date in the
repository. However, a pre-analysis of such creation dates returns
commits with this date before the creation of the repository, i.e.,
a conundrum. �us, we �x this problem by considering the �rst
commit date as a start date of such repositories. Furthermore, we
consider all repositories (even the oldest ones) to allow studying
developers relationship over time. Finally, such dates enable to
de�ne repositories’ duration by adding a �eld duration days.

�ird is statistics of commits: the amount of commits (num-
ber commits), sum of added and deleted lines (number add lines
and number del lines) for each commit, and the number of “commit-
ters” in the repository (number commi�ers). �e la�er represents
the developers who e�ectively contributed for each repository, i.e.
not necessarily the original number of members in the repository.
Enriched Relational Schema. We now describe the relational
schema to store and handle GitSED in Figure 3. Some tables have
processed, enriched data as detailed next.
User. Since GitHub users may collaborate with projects and reposi-
tories from di�erent programming languages, we consider all users
available and their respective data. �us, the users in GitSED may
code beyond JavaScript and Ruby. Furthermore, the users’ informa-
tion in GitSED 2015 can be expanded by including other data such
as gender; then allowing relevant diversity analyses as in [25].
Developer Social Network. �is table represents all developers
interactions for each repository. For each repository in which two
developers code, such a pair adds value to it; i.e, for each pair of
developers, we quantify such value by considering their number of
commits, added and deleted lines in the repositories. We also add
the date of start and end of such interaction. Both dates allow to
compute the interaction time for each pair of developers, and may
be useful for time-oriented complex network analyses.
Social Network Metric. We also add social value to the dataset
by incorporating social metrics. Speci�cally, combining a�ributes
allows to measure strength of interaction between developers by
di�erent metrics. In its current version (GitSED 2015), this table has
�elds that represent the social coding analysis metrics proposed
by [3]. Additionally, GitSED 2015 allows to compute other social
network metrics, specially the topological ones.
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Figure 3: Dataset schema: table names, identi�ers (primary keys), attributes and foreign keys (lines connecting tables). *Metric
also combined with tieness (T) and resource allocation (RA), i.e., the table has two extra columns for each combination.

3.2 Network Model
�e GitHub social coding collaboration network is represented by
a weighted graph G = (V, Ew ) formalized in Section 2.2. Our
curated dataset, with its social characteristics, provides some inter-
esting insights. As expected, the �nal network is formed by several
cliques, as each repository forms one. Such cliques are connected by
developers who have coded in more than one repository. Although
JavaScript SN has more repositories and nodes, Ruby SN is more
dense. �is may indicate that Ruby developers tend to contribute
to distinct repositories more than JavaScript developers.

4 NEW SEMANTIC PROPERTIES
We now introduce three new metrics for the strength of social cod-
ing collaboration. Complementing our previous analyses [3], we
focus on understanding how the importance of shared commits, in
terms of number of lines modi�ed on each repository, as well as
past collaborations and collaboration opportunity may in�uence
the strength of social coding collaboration. Such metrics are based
on Granove�er’s theory [16], which claims that the strength of rela-
tionships is de�ned as a merge of the time, the emotional force, the
intimacy, and the reciprocal services that represent a link between
people. Indeed, our new metrics consider the time and reciprocity
of the relationships (collaboration) between developers.

4.1 Jointly developers weighted commit to
shared repositories

Based on JCOSR(Di ,D j ) features, we propose a new semantic metric,
called the jointly developers weighted commit to shared reposito-
ries (JWCOSR(Di ,D j )), to di�erentiate the amount of collaboration
between developers. �e idea is to weight the commits with their
total number of updated lines, then giving more importance to the
commits that de�ne more changes to the repository content. More-
over, we consider the following operations for de�ning updates.
NLa : We consider only the number of lines added in a commit,
even if the developer deletes one or more lines. �e intuition is
only new pieces of code ma�ers for measuring collaboration.
NLa+d : We consider the sum of the number of lines added and
deleted in a commit, then considering new functionalities intro-
duced on the code as well as possible code corrections.

NLa−d : In GitHub, modi�cations in a code are not distinguished in a
commit. For instance, if a developer changes the name of a variable
and commits it, GitHub shows 1 line added and 1 line deleted,
which indicates a small contribution. �e NLa−d metric subtracts
the number of deleted lines from the added ones and represents the
new contribution of developers to a code by disregarding simple
modi�cations. Also, it considers that the process of adding lines
is more expensive than the process of deleting lines. �us, it is
possible to give more importance to the added lines.

As a simple extension, we also consider its module value |NLa−d |:
a positive value even when the number of deleted lines is greater
than the number of added lines. In this case, we consider a devel-
oper may have optimized the code (ergo, more deleted lines).

For a pair of developers (Di ,D j ), JWCOSR(Di ,D j ) is given by:

JWCOSR(Di ,Dj )
=

∑
∀ri ∈ R

∑
∀cj ∈ C(Di ,ri )

CL(Di ,cj )
+

∑
∀ri ∈ R

∑
∀cl ∈ C(Dj ,ri )

CL(Dj ,cl )∑
∀ri ∈ R

CL(ri )
,

where C(Di ,ri ) and C(D j ,ri ) are the set of commits made by Di and
D j in repository ri , respectively; CL(Di ,c j ) and CL(D j ,cl ) are the
contribution, in number of lines, made by the developer Di and D j
when performing the commit c j and cl , respectively (such contribu-
tions are calculated using one of the aforementioned operations);
andCL(ri ) is the total number of lines modi�ed in ri , for all commits
in ri , despite a particular developer.

Roughly speaking, JWCOSR(Di ,D j ) calculates the amount of in-
teraction between pairs of developers. Usually, the amount of com-
mits, issues, comments or pull requests are considered to measure
the strength of such interaction [11, 24]. Hence, JWCOSR(Di ,D j )

goes further by considering not only the commits, but also the
number of lines from each commit.

4.2 Previous Collaboration
Authors in [11] show that developers preferentially join projects in
which past social connections are present. Based on their conclu-
sions, we de�ne a new metric that accounts for previous collabora-
tion. Hence, PC(Di ,D j ,t ) is de�ned as the amount of collaboration
performed by developers Di and D j at time t:

174



Collaboration Strength Metrics and Analyses on GitHub WI ’17, August 23-26, 2017, Leipzig, Germany

PC(Di ,D j ,t ) =

∑
∀ri ∈ R

1
ND(ri ,t )

|R |
,

where ND(ri ,t ) is the total number of developers working in repos-
itory ri at time t , before developer D j joins it. High values for
fraction 1/ND(ri ,t ) means that Di is more likely to work with D j ,
and vice-versa. For example, if there is only one person in that
project, there is only one possible collaboration; whereas, the more
people in the project, the more options to choose from and, hence,
the less possibility to collaborate with one particular developer. In
other words, there is a higher possibility to establish a collaboration
if the developer a�ention is not split over many potential choices.

4.3 Local and Global Potential Contributions
Collaboration opportunities may be improved if a pair of developers
work together at many common repositories for large periods of
time. �en, given developers Di and D j , we coin the metric local
potential contribution, named LPC(Di ,D j ) as:

LPC(Di ,D j ) =

∑
∀ri ∈ R

T(Di ,Dj ,ri )
T(ri )

|R |
,

where T(Di ,D j ,ri ) is the time interval both developers contribute to
repository ri , de�ned as the di�erence between the �rst commit
given by Di or D j and the last commit on ri ; andT(ri ) is the interval
between the �rst and last commits on repository ri .

Local potential contribution may introduce bias, mainly to repos-
itories with small lifetime. For instance, let two repositories r1 and
r2 withTr1 = 1 month andTr2 = 12 months, andA,B,C,D ∈ D. De-
velopers A and B only work together in r1 for T(A,B,r1) = 1 month.
Developers C and D only work together in r2 for T(C,D,r2) = 12
months. �en, LPC(A,B) = 1 and LPC(C,D) = 0.5. Applying only
local information suggests that developers A and B have more op-
portunities to collaborate. However, as developers C and D work
together more time, it may result in a more proli�c contribution.
For understanding the collaboration strength over all pairs of de-
velopers, it should be more interesting to have a global view of all
repositories and their collaborations.

To overcome such drawback, we extend LPC(Di ,D j ) to its global
version, named global potential collaboration (GPC(Di ,D j )):

GPC(Di ,D j ) =

∑
∀ri ∈ R

T(Di ,D j ,ri )

max∀(Di ,D j )∈D, ri ∈R T (Di ,D j , ri )
.

GPC(Di ,D j )metric considers the maximum lifetime over all project
repositories. Regarding the previous example, if the largest collabo-
ration time interval is 6, GPC(A,B) drops to ≈ 0.16 and GPC(C,D)
increases to 1. �en GPC(A,B) metric enables to rank potential con-
tribution strength over all possible contributions inside a network.
Although local metrics tend to be easier to calculate, we also apply
GPC(Di ,D j ) in our analyses (Section 5.2).

5 ANALYSES AND CORRELATIONS
We now describe the options for weighting the commits (Section
5.1) and the correlation analyses between properties (Section 5.2).

�en, we consider the least correlated metrics and present a ranking
to the collaborations according to their strength (Section 5.3).

5.1 Weighted Commit Analyses
We now analyze the update operations in the repositories. �e
goal is to select the best option for weighting the commits to dif-
ferentiate the amount of collaboration between developers for the
cases using JWCOSR(A,B). We consider: the best option gives more
information about collaborations than the others; and for di�erent
weight metrics, the best has lower computational cost.

Figures 4 (a) and (b) depict Pearson and Spearman correlations
for JavaScript and Ruby. Stronger correlations are reached when
Spearman coe�cient is used, suggesting a non-linear correlation
between update operations. �en, as updating measures are corre-
lated and |NLa−d | consider both deleted and added lines, we apply
it on the collaboration strength analysis, next.

5.2 Collaboration Strength Analyses
�e strength of social coding collaboration can be measured in
di�erent ways with distinct goals [6, 11, 24]. �us, it is important
to identify which aspects be�er represent such strength. Such anal-
ysis is, for example, crucial for building a computational model
(or framework) to be�er classify the strength of ties in order to
predict new collaborations, study team formation, analyze infor-
mation exchange, and so on. �en, our goal here is to identify
network properties that be�er classify the strength of collaboration
on GitHub, i.e., we need to de�ne a set of properties that add new
information to such a model. We do so by analyzing the properties
described in Sections 2 and 4, and selecting those least correlated
to each other. In other words, for highly correlated properties, we
may choose only one; whereas low correlated properties qualify
di�erent data features and should be considered together. Note
such study is only possible because of our new dataset GitSED.

To evaluate the correlation, we use both Pearson and Spear-
man correlation coe�cients but, due to space constraints, we only
present the results for the former and discuss their di�erences.
Also, we have previously analyzed the correlation among all the
properties, and here go over the results grouped by the most (least)
correlated ones. �us, Figures 5a and 5b show the most correlated
properties for JavaScript, and Figures 6a and 6b the most corre-
lated properties for Ruby; whereas Figures 5c and 6c show the least
correlated properties for JavaScript and Ruby, respectively.

Note that tieness (T ) and resource allocation (RA) consider the
edges weight represented by the semantic properties. For example,
T SR is tieness with edge weight given by number of shared repos-
itories, and RA JCSR is resource allocation with edge weight given
by JCSR, and so on. Also, there are six possible combinations of
tieness and resource allocation with other semantic properties. We
emphasize that for all topological properties considered here (Sec-
tion 2.2), only tieness and resource allocation combine the social
network topological characteristics with the semantic ones.

As for the results, considering the correlation between proper-
ties in Figures 5 and 6, we do not observe signi�cant di�erence
between the results for JavaScript and Ruby. �is may indicate a
similar behavior between both programming languages. Further-
more, Figures 5a and 6a show each combination of tieness with
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Pearson Spearman
(a) JavaScript

Pearson Spearman
(b) Ruby

Figure 4: Correlation of the number of lines operations for JavaScript and Ruby

(a) (b) (c)

Figure 5: Javascript: Pearson correlation coe�cients of the most and least correlated properties.

(a) (b) (c)

Figure 6: Ruby: Pearson correlation coe�cients of the most and least correlated properties.

di�erent semantic properties is largely correlated with each other.
�e exception is when the edge weight of tieness is JCSR, in which
T JCSR is moderately correlated with the other metrics. Note that
tieness is also largely correlated with neighborhood overlap for
di�erent edge weight. �is result indicates that is not necessary to
consider tieness with all weights to measure the strength of collabo-
ration between developers. As most of them are strongly correlated,

we can choose one (T SR, T JCOSR, T JWCOSR, T PC or T GPC)
to represent tieness with edge weight in a computational model
and T JCSR, which is the least correlated with the others. It is also
important to choose the semantic property with low computational
cost, which has data easily accessible. For example, the data to
compute SR is easier gathered than to calculated JWCOSR. �us,
it is be�er to choose SR to the weight of tieness than JWCOSR.
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Table 1: Top-10 pairs of developers ranked by T JWCOSR followed by the other properties values.

# JavaScript Ruby
D 1 D 2 T JWCOSR T PC T GPC NO AA D 1 D 2 T JWCOSR T PC T GPC NO AA

1 001 002 0.500 0.500 0.258 0.333 1.443 020 025 0.500 0.333 0.250 0.667 2.485
2 002 006 0.485 0.375 0.250 0.333 1.443 021 027 0.484 0.300 0.063 0.667 2.485
3 003 007 0.281 0.417 0.250 0.333 1.443 021 024 0.442 0.375 0.250 0.667 2.485
4 004 003 0.273 0.375 0.250 0.333 1.443 022 025 0.395 0.312 0.250 0.667 2.485
5 005 008 0.268 0.333 0.258 0.833 4.085 022 028 0.394 0.312 0.250 0.667 2.485
6 005 009 0.267 0.278 0.254 0.833 4.085 020 022 0.391 0.312 0.250 0.667 2.485
7 001 006 0.266 0.375 0.250 0.333 1.443 023 029 0.369 0.375 0.063 0.333 1.443
8 005 010 0.266 0.273 0.254 0.833 4.085 024 027 0.353 0.300 0.063 0.667 2.485
9 005 011 0.266 0.292 0.258 0.833 4.085 025 024 0.346 0.333 0.250 0.667 2.485
10 005 012 0.266 0.275 0.254 0.833 4.085 026 030 0.345 0.500 0.251 0.333 1.443

Figures 5b and 6b show similar pa�erns of correlations. �e
resource allocation values are strongly correlated with each other
when considering di�erent edge weights. Also, such metric is
strongly correlated with other semantic properties, such as JCOSR,
PC and JCSR. As RA has higher computational cost, it can be le�
out from the collaboration strength computation. �ese results are
also similar to Spearman correlation coe�cient.

Figures 5c and 6c show the metrics least correlated with each
other. Adamic Adar and preferential a�achment are inverse corre-
lated in a small and moderate way with JCOSR, JCSR and PC , and
these three metrics are largely correlated with each other. �us,
a computational model could consider only one to measure the
strength of collaboration. Also, these �ve metrics are insubstan-
tially correlated with SR, GPC and JWCOSR. Regarding NO , by
considering tieness, it is not necessary to use NO .

Overall, these results indicate that a model to measure the strength
of collaboration should: considerT JCSR and only one amongT SR,
T JCOSR, T JWCOSR, T PC or T GPC ; only one between AA and
PA (as they are strongly correlated); only one among JCOSR, JCSR
or PC; all three metrics SR, GPC and JWCOSR.

5.3 Collaboration Ranking: An Example
To exemplify how the network properties rank developers accord-
ing to their strength, Table 1 presents the top-10 pairs of (anonymised)
developers ranked by their values ofT JWCOSR and the correspon-
dent value to the other metrics. Table 1 reveals there are developers
with high collaboration with others. For instance, developer 005
is the one who most collaborate in JavaScript, whereas developers
022 and 025 the most collaborative ones in Ruby. �us, our metrics
identify strong ties with potential collaboration pro�les.

6 CONCLUSION
We presented a curated, augmented and enriched dataset built from
GitHub. It stores coding collaboration networks from Javascript
and Ruby, and allows analyzing social aspects, such as social coding
links. Its advantages include: easy to use and replicate and direct
computation of di�erent social network metrics.

We also introduced two properties to represent the commits’
number of lines and potential of contribution, and modi�ed an ex-
isting metric for prior social interaction between developers. �en,
we analyzed the correlation between those properties to under-
stand how they relate and choose the ones that capture di�erent
information about the collaboration strength. Our results showed
that from 21 properties (consideringT and RA combined with edges

weights), only �ve have to be considered in a computational model.
Also, we obtained similar results for both programming languages.

As future work, we plan to include repositories from di�erent
programming languages, and release new versions of GitSED cov-
ering them and other pre-computed social metrics, then allowing
studies from di�erent perspectives. We also plan to evaluate the
robustness of the proposed metrics and to build a full computational
model to properly measure collaboration strength.
Acknowledgments. �e authors would like to thank the fund-
ing agencies CAPES, CNPq and FAPEMIG, as well as the project
FAPEMIG-PRONEX-MASWeb.

REFERENCES
[1] Lada A. Adamic and Eytan Adar. 2003. Friends and neighbors on the Web. Social

Networks 25, 3 (2003), 211 – 230.
[2] Luca Maria Aiello, Rossano Schifanella, and Bogdan State. 2014. Reading the

source code of social ties. In WebSci. Bloomington, IN, USA, 139–148.
[3] Gabriela B. Alves et al. 2016. �e Strength of Social Coding Collaboration on

GitHub. In SBBD. Salvador, Brazil, 247–252.
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