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}Info, resources, participate

 [ssue Ticket (w/ links to PRS)

e https://github.com/mpi-forum/mpi-
Issues/issues/20

* Implementation available

« Version 1.1 based on Open MPI 1.6 released early November 2015
https://bitbucket.org/icldistcomp/ulfm

« Full communicator-based (point-to-point and all flavors of collectives) support
« Network support IB, uGNI, TCP, SM

 Runs with ALPS, PBS, etc...

« RMA, I/0 in progress

http://fault-tolerance.org/
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> Minimal Feature Set for a Resilient MPI

1. Failure Notification
2. Error Propagation

3. Error Recovery
Cheskpomnty/ e Unirornm Oth
| : eSSl Gol[ECtVes 91
- Not all recovery strategies

require all of these features,
~ that’s why the interface splits FAngii]m 'AEE\SEKE '
notification, propagation and

recovery.

Application

VIP]

ULFM is not a recovery strategy, but a minimalistic set of
building blocks for more complex recovery strategies.
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Errors are visible only for operations that
can’t complete

. New error codes to deal with failures SendRecv

MPI_ERROR_PROC_FAILED: report that the operation discovered a
newly dead process. Returned from all blocking function, and all
completion functions.

MPI_ERROR_PROC_FAILED_PENDING: report that a non-blocking
MPI_ANY_SOURCE potential sender has been discovered dead.

MPI_ERROR_REVOKED: a communicator has been declared improper
for further communications. All future communications on this
communicator will raise the same error code, with the exception of a
handful of recovery functions

« Operationsthat can’t complete return
ERR_PROC_FAILED

State of MPI objects unchanged (communicators, etc)
Repeating the same operation has the same outcome

« Operationsthat can be completed return
MPI_SUCCESS
Pt-2-pt operations between non failed ranks can continue
» Leverage on existing error handler

infrastructure

« MPI_COMM_SET_ERRHANDLER
* conveniently capture and manage the new survivable error codes

iiiii
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Example: only rank4 should
report the failure of rank 5
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Summary of new functions

(comm)
Resumes matching for MPI_ANY_SOURCE

(comm, &group)

« Returns to the user the group of processes acknowledged to have failed

(comm)

— Non-collective, interrupts all operations on comm (future or
active, at all ranks) by raising MPI_ERR_REVOKED

(comm, &newcomm)

— Collective, creates a new communicator without failed
processes (identical at all ranks)

(comm, &mask)

— Collective, agrees on the AND value on binary mask,
ignoring failed processes (reliable AlIReduce), and the
return code
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> Bibliography of users’ activity
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The performance improvement due to using ULFM _7
v1.0 for running the LULESH proxy application [3]

Credits: ETH Zurich (a shock hydrodynamics stencil based simulation)
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14 m X10 over Sockets (IP over Infiniband)
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Figure 5. Results of the FT-MLMC implementation for three different failure scenarios.
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Resolving transitive dependenmes

Recv(P,): Failed
Recv(P,) P, calls Revoke

)
D
Q
o
<
D
==
<

. P1 fails

P2 raises an error and wants
to change comm patternto do *
application recovery

* but P3..Pn are stuck in their
posted recv

« P2 can unlock them with
Revoke

P3..Pnjoin P2 in the recovery
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Full Capabilities Recovery

« Some applications are moldable

 Shrink creates a new communicator on which collectives
work

« Some applications are not moldable

« Spawn can recreate a “same size” communicator

» It is easy to reorder the ranks according to the original
ordering
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Scalable Resilient Constructs: Revoke

BMG* Revoke propagation in less than 100us

First post-Revoke collective operation sustains
some performance degradation resulting from

D
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Revoke Time and Perturbation in Barrier (np=6000)

- - - Fault Free Barrier
—7— Revoked Barrier

- —>— 15t post-revoke Barrier
—— 2"9'post-revoke Barrier ; ;
—— 5" post-revoke Barrier

Revoke Initiator Rank

the network jitter associated with the circulation

of revoke tokens

After the fifth Barrier (approximately 700us), the

Revoke reliable broadcast has completely

terminated, therefore leaving the application free

from observable jitter.

AllReduce
(revoked)
.

AllIReduce
(2nd post revoke)
| |

»
AllReduce
(1st post revoke)

AllIReduce
(before revoke)

AllIReduce
(before revoke)

One rank Revokes | | Revoke notification echo

* Bouteiller, A., Bosilca, G., Dongarra, J.J. “Plan B:
Interruption of Ongoing MPI Operations to Support Failure

AllReduce
(3@ post revoke)

Recovery,” In Proceedings of the 22nd European MPI

Users' Group Meeting (EuroMPI '15). ACM
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Scalable Resilient Agreement
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Log2phases vs ERA Scalability (Cray XC30)

#processes

* Novel Early Returning
Agreement algorithm®*

 Logarithmic topology &
logarithmic
computation: scalable

« 2Xx the Cray AllIReduce
latency at 6k
processors!

* Herault, T., Bouteiller, A., Bosilca,
G., Gamell, M., Teranishi, K.,
Parashar, M., Dongarra, J. "Practical
Scalable Consensus for Pseudo-
Synchronous Distributed Systems,"
SuperComputing, Austin, TX,
November, 2015

eI T, w2y U O\ W

SICL I |



VA B V

> User projects: Resilient X10
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Happens Before Invariance
Principle (HBI):

Failure of a place should not alter
the happens before relationship
between statements at the
remaining places.

« X10 is a PGAS programming language

i « Legacy resilient X10 TCP based

try{ /*Task Ax*/
Place r Place p | | Place g

at () L /xTask Br/ Fiien ||
finish { at (q) async { /*Task C*/ } } A ___SE§W%ff_*c
}

} catch(dpe:DeadPlaceException){ /*recovery steps*/}

D;

By applying the HBI principle, Resilient X10 will ensure that statement D executes after Task C finishes, despite the loss of the
synchronization construct (finish) at place p

« MPI operations in resilient X10 runtime o P —
u over Sockets over Infinipan
. Pro%ress loop does MPI_lprobe, post needed recv according to M m X120 over ULEM (finibard)
probes 12
» Asynchronous background collective operations (on multiple 10

different commsto form 2d grids, etc).

» Recovery

« Upon failure, all communicators recreated (from shrinking a
large communicator with spares, or using MPI_COMM_SPAWN

to get new ones)

©

Time in seconds

IN

Non Resilient Resilient no failure  Resilient with a failure

» Ranks reassigned identically to rebuild the same X10 “teams” (3 checkpoints + 1 restore)
° i i The performance improvement due to using ULFM
Injectlon Of FT Iayer ) _ v1.0 for running the LULESH proxy application [3]
« Unnecessary, x10 has a runtime that hides all MPI from the (a shock hydrodynamics stencil based simulation)
application and handles failures internally running on 64 processes on 16 nodes with

' Source: Sara Hamouda, Benjamin Herta, Josh Milthorpe, David Grove, Olivier Tardieu. Resilient X10 over Fault Tolerant MPI. In : poster

session SC'15, Austin, TX, 2015.
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User projects: Fenix+S3D

1

Fenix is a framework to provide scoped user
Ievel checkpoint/restart

Prowdes some of the same services provided by the
“MPI_Reinit” idea floated around by T. Gamblin

» Recoverfailed processes with revoke-shrink-spawn-reoder
sequence

* Revovered andsurviving processes jump back to the start
(longjump in Fenix_init)
Fenix has helpers to perform user directed “in-memory” or
“buddy” checkpointing (and reload)

» Injection of FT layer: PMPI based

Fenix_Checkpoint_Allocate mark a memory
segment (baseptr,size) as partof the
checkpoint.

Fenix_Init Initialize Fenix, and restart point
after a recovery, status contains info about
the restart mode

Fenix_Comm_Add can be used to notify
Fenix about the creation of user
communicators

Fenix_Checkpoint performs a checkpoint of
marked segments

O oo —a o\ Wi B W b —

allocate (yspc (nx,ny,nz,nslvs))

allocate (other_arrays)

call MPI_Init()

[...] ! Initialize non-conflicting modules

call Fenix_Checkpoint_Allocate (C_LOC (yspc),
sizeof (yspc), ckpt_yspc)

call Fenix_Init (Fenix_Neighbors,PEER_NODE_SIZE,
Fenix_resume_to_init, status, C_LOC(world))

if (status.eq.Fenix_st_survivor) then
[...] ! Finalize conflicting modules
endif
[...] ! Initialize conflicting modules
if (status.eq.Fenix_st_new)
call initialize_yspc()
endif

do ! Main loop
[...] ! Iterate and update yspc array
if (mod(step-1,CHECKPOINT_PERIOD).eq.0) then
call Fenix_Checkpoint (ckpt_yspc);
endif
enddo

call Fenix_Finalize()
call MPI Finalize()

B 7/ 1% VAR QW N

GAMELL, Marc, KATZ, Daniel S., KOLLA, Hemanth, et al. Exploring automatic, online failure recovery for scientific applications atextreme scales. In
: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE Press, 2014. p. 895-906.
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User projects: Fenix+S3D

|

« S3D is a production, highly
parallel method-of-lines solver
for PDEs

« used to perform first-principles-based direct
numerical simulations of turbulent
combustion

 S3D rendered fault tolerant
using Fenix/ULFM

35 lines of code modified in
S3D in total!

* Order of magnitude
performance improvementin
failure scenarios

» thanks to online recovery and in-memory
checkpoint advantage over |/0 based
checkpointing

 |njection of FT layer: addition
of a couple of Fenix calls

1 call MPI_Comm_split (gcomm, py+1000xpz, r, xcomm)
2 call MPI_Comm_split (gcomm, px+1000*pz, r, ycomm)
3 call MPI_Comm_split (gcomm, px+1000xpy, r, zcomm)
4 call Fenix_ Comm_Add (xcomm) ;

5 call Fenix_Comm_Add (ycomm) ;

6 call Fenix Comm_Add (zcomm) ;

7 [...]

8 call MPI_Comm_split (gcomm, xid, r, yz_comm)

9 call MPI_Comm_split (gcomm, yid, r, xz_comm)

10 call MPI_Comm_ split (gcomm, zid, r, xXy_comm)

11 call Fenix_Comm_Add (yz_comm) ;

12 call Fenix_Comm_Add (xz_comm) ;

13 call Fenix_Comm_Add (xy_comm) ;

S3D Code snippet to declare to Fenix the
communicatorsto recover

Pictures and examples from M. Gamel&al
SC14’ paper

Checkpoint time (s)

Fig. 3. Checkpoint time for different core counts (8.6 MB/core). The numbers
above each test show the aggregated bandwidth (the total checkpoint size over
the average checkpoint time).
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