U A BV

AL

| £ACL

NOVATIVE
ULFM Process Fault
Tolerance reading E

TENNESSEE

KNOXVILLE

Aurelien Boutelller
FT WG

MPI Forum, March 02
Chicago, IL

LN ARV

}Info, resources, participate

 [ssue Ticket (w/ links to PRS)

e https://github.com/mpi-forum/mpi-
Issues/issues/20

* Implementation available

« Version 1.1 based on Open MPI 1.6 released early November 2015
https://bitbucket.org/icldistcomp/ulfm

« Full communicator-based (point-to-point and all flavors of collectives) support
« Network support IB, uGNI, TCP, SM

 Runs with ALPS, PBS, etc...

« RMA, I/0 in progress

http://fault-tolerance.org/

(ICL TTTTTTTTTTTTTTT s
AN \dP - .

;
|
f/,

> Minimal Feature Set for a Resilient MPI

1. Failure Notification
2. Error Propagation

3. Error Recovery
Cheskpomnty/ e Unirornm Oth
| : eSSl Gol[ECtVes 91
- Not all recovery strategies

require all of these features,
~ that’s why the interface splits FAngii]m 'AEE\SEKE '
notification, propagation and

recovery.

Application

VIP]

ULFM is not a recovery strategy, but a minimalistic set of
building blocks for more complex recovery strategies.

£ICL

IV A BEERR YV

Errors are visible only for operations that
can’t complete

. New error codes to deal with failures SendRecv

MPI_ERROR_PROC_FAILED: report that the operation discovered a
newly dead process. Returned from all blocking function, and all
completion functions.

MPI_ERROR_PROC_FAILED_PENDING: report that a non-blocking
MPI_ANY_SOURCE potential sender has been discovered dead.

MPI_ERROR_REVOKED: a communicator has been declared improper
for further communications. All future communications on this
communicator will raise the same error code, with the exception of a
handful of recovery functions

« Operationsthat can’t complete return
ERR_PROC_FAILED

State of MPI objects unchanged (communicators, etc)
Repeating the same operation has the same outcome

« Operationsthat can be completed return
MPI_SUCCESS
Pt-2-pt operations between non failed ranks can continue
» Leverage on existing error handler

infrastructure

« MPI_COMM_SET_ERRHANDLER
* conveniently capture and manage the new survivable error codes

iiiii

Eape eSS 7 (S CAR S

Example: only rank4 should
report the failure of rank 5

SICL I |

L ANWSEEER YV

Summary of new functions

(comm)
Resumes matching for MPI_ANY_SOURCE

(comm, &group)

« Returns to the user the group of processes acknowledged to have failed

(comm)

— Non-collective, interrupts all operations on comm (future or
active, at all ranks) by raising MPI_ERR_REVOKED

(comm, &newcomm)

— Collective, creates a new communicator without failed
processes (identical at all ranks)

(comm, &mask)

— Collective, agrees on the AND value on binary mask,
ignoring failed processes (reliable AlIReduce), and the
return code

UOI1Eed1ION

) <

uonegedold

> <

K19N000Y

V\ B

Y

="’/ /7 |
7wy

YNy T T

ey | 14

> Bibliography of users’ activity

A U

mean of rho at t=0.06 mean of rho at t=0.06 E(p) [kg/m? 1 " X10 over ULFM (Infiniband)
20.0 20.0 20.0 10
17.5 17.5 17.5
15.0 15.0 15.0
12.5 12.5 12.5 ' 6
10.0 10.0 10.0
7.5 7.5 7.5 2
5.0 5.0 5.0 o
2.5 2.5 2.5 Non Resilient Resilient no failure Resilient with a failure
’ ' ' (3 checkpoints + 1 restore)
0.0 0.0 0.0

The performance improvement due to using ULFM _7
v1.0 for running the LULESH proxy application [3]

Credits: ETH Zurich (a shock hydrodynamics stencil based simulation)

FRAMEWORKS USING ULFM
These works use ULFM LFLR, FENIX, FTLA, Falanx, X10

HAMOUDA, Sara S., MILTHORPE, Josh, STRAZDINS, Peter E., et al. A Resilient Framework for Iterative Linear Algebra Applications in X10. In: 16th IEEE International Workshop on Parallel and
Distributed Scientific and Engineering Computing (PDSEC 2015). 2015.

ST PAULI, P. Arbenz et SCHWAB, Ch. Intrinsic fault tolerance of multi level Monte Carlo methods. ETH Zurich, Computer Science Department, Tech. Rep, 2012.

PAULI, Stefan, KOHLER, Manuel, et ARBENZ, Peter. A fault tolerant implementation of Multi-Level Monte Carlo methods. In: PARCO. 2013. p. 471-480.

BLAND, Wesley, DU, Peng, BOUTEILLER, Aurelien, et al. Extending the scope of the Checkpoint-on-Failure protocol for forward recovery in standard MPI. Concurrency and computation: Practice
and experience, 2013, vol. 25,n0 17, p. 2381-2393.

ALI, Md Mortuza, SOUTHERN, James, STRAZDINS, Peter, et al. Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver. In : Parallel & Distributed Processing Symposium
Workshops (IPDPSW), 2014 IEEE International. |EEE, 2014.p. 1169-1178.

NAUGHTON, Thomas, ENGELMANN, Christian, VALLEE, Geoffroy, et al.Supporting the development of resilient message passing applications using simulation. In : Parallel, Distributed and
Network-Based Processing (PDP), 2014 22nd Euromicro International Conference on. IEEE, 2014. p. 271-278.

ENGELMANN, Christian et NAUGHTON, Thomas. Improving the Performance of the Extreme-scale Simulator. In : Proceedings of the 2014 IEEE/ACM 18th International Symposium on
Distributed Simulation and Real Time Applications. IEEE Computer Society, 2014. p. 198-207.

TERANISHI, Keita et HEROUX, Michael A. Toward Local Failure Local Recovery Resilience Model using MPI-ULFM. In : Proceedings of the 21st European MPI Users' Group Meeting. ACM, 2014. p.
51.

ALl, Md Mohsin, STRAZDINS, Peter E., HARDING, Brendan, et al. A fault-tolerant _gyrokinetic plasma application using the sparse grid combination technique. In : High Performance Computing &
Simulation (HPCS), 2015 International Conference on. |EEE, 2015. p. 499-507.

VALLEE, Geoffroy, NAUGHTON, Thomas, BOHM, Swen, et al. A runtime environment for supporting research in resilient HPC system software & tools. In : Computing and Networking (CANDAR),
2013 First International Symposium on. IEEE, 2013. p. 213-219.

ZOUNMEVO, Judicael A., KIMPE, Dries, ROSS, Robert, et al. Extreme-scale computing services over MPI: Experiences, observations and features proposal for next-generation message passing
interface. International Journal of High Performance Computing Applications, 2014, vol. 28, no 4, p. 435-449.

NAUGHTON, Thomas, BOHM, Swen, ENGELMANN, Christian, et al. Using Performance Tools to Support Experiments in HPC Resilience. In : Euro-Par 2013: Parallel Processing Workshops.
Springer Berlin Heidelberg, 2014. p. 727-736.

ENGELMANN, Christian et NAUGHTON, Thomas. A NETWORK CONTENTION MODEL FOR THE EXTREME-SCALE SIMULATOR.

GAMELL, Marc, KATZ, Daniel S., KOLLA, Hemanth, et al. Exploring automatic, online failure recovery for scientific applications at extreme scales. In : Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. |IEEE Press, 2014. p. 895-906.

XIAOGUANG, Ren, XINHAI, Xu, YUHUA, Tang, et al. An Application-Level Synchronous Checkpoint-Recover Method for Parallel CFD Simulation. In : Computational Science and Engineering (C
Judicael A. Zounmevo, Dries Kimpe, Robert Ross, and Ahmad Afsahi. 2013. Using MPI in high-performance computing services. In Proceedings of the 20th European MPI Users' Group Meeting
(EuroMPI '"13). ACM, New York, NY, USA, 43-48.SE), 2013 IEEE 16th International Conference on. IEEE, 2013. p. 58-65.

Jinho Ahn, "N Fault-Tolerant Sender-Based Messa%e Logging for Group Communication-Based Message Passing Systems," in Computational Science and Engineering (CSE), 2014 IEEE 17th

International Conference on , vol., no., pp.1296-1301, 19-21 Dec. 2014. 16

14 m X10 over Sockets (IP over Infiniband)

o)

Time in seconds

IS

(a) failure-free (b) few failures (c) many failures |

Figure 5. Results of the FT-MLMC implementation for three different failure scenarios.

;‘ln - o/

running on 64 processes on 16 nodes with|
4 o ammyrTT

_— 7 1% VA% QW N

—

¥

/
|

i

BN ANV SR/

Resolving transitive dependenmes

Recv(P,): Failed
Recv(P,) P, calls Revoke

)
D
Q
o
<
D
==
<

. P1 fails

P2 raises an error and wants
to change comm patternto do *
application recovery

* but P3..Pn are stuck in their
posted recv

« P2 can unlock them with
Revoke

P3..Pnjoin P2 in the recovery

£ICL

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

z o

Full Capabilities Recovery

« Some applications are moldable

 Shrink creates a new communicator on which collectives
work

« Some applications are not moldable

« Spawn can recreate a “same size” communicator

» It is easy to reorder the ranks according to the original
ordering

THE UNIVERSITY OF

g 8l TENNESSEE

KNOXVILLE

s 1 1 d

Scalable Resilient Constructs: Revoke

BMG* Revoke propagation in less than 100us

First post-Revoke collective operation sustains
some performance degradation resulting from

D

180

170

150

140

130

TIME (us)

120

110

100

90

80

160 %

arter, ugninetwork, 6000 processes
Revoke Time and Perturbation in Barrier (np=6000)

- - - Fault Free Barrier
—7— Revoked Barrier

- —>— 15t post-revoke Barrier
—— 2"9'post-revoke Barrier ; ;
—— 5" post-revoke Barrier

Revoke Initiator Rank

the network jitter associated with the circulation

of revoke tokens

After the fifth Barrier (approximately 700us), the

Revoke reliable broadcast has completely

terminated, therefore leaving the application free

from observable jitter.

AllReduce
(revoked)
.

AllIReduce
(2nd post revoke)
| |

»
AllReduce
(1st post revoke)

AllIReduce
(before revoke)

AllIReduce
(before revoke)

One rank Revokes | | Revoke notification echo

* Bouteiller, A., Bosilca, G., Dongarra, J.J. “Plan B:
Interruption of Ongoing MPI Operations to Support Failure

AllReduce
(3@ post revoke)

Recovery,” In Proceedings of the 22nd European MPI

Users' Group Meeting (EuroMPI '15). ACM

;
E

|
|

B] |

Scalable Resilient Agreement

500

450 |

w»
(=4
o

Duration (us)
N N
o (3)]
(=] o

100

— o Log2phases ' : 5 5
—— ERA(bin/bin tree)
6.7 logs 125(x) B
—«+— Cray Allreduce(4Bytes)
A00 | R
32 64 128 256 512 1k 2k 4k

Log2phases vs ERA Scalability (Cray XC30)

#processes

* Novel Early Returning
Agreement algorithm®*

 Logarithmic topology &
logarithmic
computation: scalable

« 2Xx the Cray AllIReduce
latency at 6k
processors!

* Herault, T., Bouteiller, A., Bosilca,
G., Gamell, M., Teranishi, K.,
Parashar, M., Dongarra, J. "Practical
Scalable Consensus for Pseudo-
Synchronous Distributed Systems,"
SuperComputing, Austin, TX,
November, 2015

eI T, w2y U O\ W

SICL I |

VA B V

> User projects: Resilient X10

<

N\
A

Happens Before Invariance
Principle (HBI):

Failure of a place should not alter
the happens before relationship
between statements at the
remaining places.

« X10 is a PGAS programming language

i « Legacy resilient X10 TCP based

try{ /*Task Ax*/
Place r Place p | | Place g

at () L /xTask Br/ Fiien ||
finish { at (q) async { /*Task C*/ } } A ___SE§W%ff_*c
}

} catch(dpe:DeadPlaceException){ /*recovery steps*/}

D;

By applying the HBI principle, Resilient X10 will ensure that statement D executes after Task C finishes, despite the loss of the
synchronization construct (finish) at place p

« MPI operations in resilient X10 runtime o P —
u over Sockets over Infinipan
. Pro%ress loop does MPI_lprobe, post needed recv according to M m X120 over ULEM (finibard)
probes 12
» Asynchronous background collective operations (on multiple 10

different commsto form 2d grids, etc).

» Recovery

« Upon failure, all communicators recreated (from shrinking a
large communicator with spares, or using MPI_COMM_SPAWN

to get new ones)

©

Time in seconds

IN

Non Resilient Resilient no failure Resilient with a failure

» Ranks reassigned identically to rebuild the same X10 “teams” (3 checkpoints + 1 restore)
° i i The performance improvement due to using ULFM
Injectlon Of FT Iayer) _ v1.0 for running the LULESH proxy application [3]
« Unnecessary, x10 has a runtime that hides all MPI from the (a shock hydrodynamics stencil based simulation)
application and handles failures internally running on 64 processes on 16 nodes with

' Source: Sara Hamouda, Benjamin Herta, Josh Milthorpe, David Grove, Olivier Tardieu. Resilient X10 over Fault Tolerant MPI. In : poster

session SC'15, Austin, TX, 2015.

_— 7 1% VA% QW N

Ylll‘ - of 4 - 72 ! ! !l' ¥ A

V. A B V

User projects: Fenix+S3D

1

Fenix is a framework to provide scoped user
Ievel checkpoint/restart

Prowdes some of the same services provided by the
“MPI_Reinit” idea floated around by T. Gamblin

» Recoverfailed processes with revoke-shrink-spawn-reoder
sequence

* Revovered andsurviving processes jump back to the start
(longjump in Fenix_init)
Fenix has helpers to perform user directed “in-memory” or
“buddy” checkpointing (and reload)

» Injection of FT layer: PMPI based

Fenix_Checkpoint_Allocate mark a memory
segment (baseptr,size) as partof the
checkpoint.

Fenix_Init Initialize Fenix, and restart point
after a recovery, status contains info about
the restart mode

Fenix_Comm_Add can be used to notify
Fenix about the creation of user
communicators

Fenix_Checkpoint performs a checkpoint of
marked segments

O oo —a o\ Wi B W b —

allocate (yspc (nx,ny,nz,nslvs))

allocate (other_arrays)

call MPI_Init()

[...] ! Initialize non-conflicting modules

call Fenix_Checkpoint_Allocate (C_LOC (yspc),
sizeof (yspc), ckpt_yspc)

call Fenix_Init (Fenix_Neighbors,PEER_NODE_SIZE,
Fenix_resume_to_init, status, C_LOC(world))

if (status.eq.Fenix_st_survivor) then
[...] ! Finalize conflicting modules
endif
[...] ! Initialize conflicting modules
if (status.eq.Fenix_st_new)
call initialize_yspc()
endif

do ! Main loop
[...] ! Iterate and update yspc array
if (mod(step-1,CHECKPOINT_PERIOD).eq.0) then
call Fenix_Checkpoint (ckpt_yspc);
endif
enddo

call Fenix_Finalize()
call MPI Finalize()

B 7/ 1% VAR QW N

GAMELL, Marc, KATZ, Daniel S., KOLLA, Hemanth, et al. Exploring automatic, online failure recovery for scientific applications atextreme scales. In
: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE Press, 2014. p. 895-906.

g o > amnmn T
Al of S

V A BV

User projects: Fenix+S3D

|

« S3D is a production, highly
parallel method-of-lines solver
for PDEs

« used to perform first-principles-based direct
numerical simulations of turbulent
combustion

 S3D rendered fault tolerant
using Fenix/ULFM

35 lines of code modified in
S3D in total!

* Order of magnitude
performance improvementin
failure scenarios

» thanks to online recovery and in-memory
checkpoint advantage over |/0 based
checkpointing

 |njection of FT layer: addition
of a couple of Fenix calls

1 call MPI_Comm_split (gcomm, py+1000xpz, r, xcomm)
2 call MPI_Comm_split (gcomm, px+1000*pz, r, ycomm)
3 call MPI_Comm_split (gcomm, px+1000xpy, r, zcomm)
4 call Fenix_ Comm_Add (xcomm) ;

5 call Fenix_Comm_Add (ycomm) ;

6 call Fenix Comm_Add (zcomm) ;

7 [...]

8 call MPI_Comm_split (gcomm, xid, r, yz_comm)

9 call MPI_Comm_split (gcomm, yid, r, xz_comm)

10 call MPI_Comm_ split (gcomm, zid, r, xXy_comm)

11 call Fenix_Comm_Add (yz_comm) ;

12 call Fenix_Comm_Add (xz_comm) ;

13 call Fenix_Comm_Add (xy_comm) ;

S3D Code snippet to declare to Fenix the
communicatorsto recover

Pictures and examples from M. Gamel&al
SC14’ paper

Checkpoint time (s)

Fig. 3. Checkpoint time for different core counts (8.6 MB/core). The numbers
above each test show the aggregated bandwidth (the total checkpoint size over
the average checkpoint time).

0.35

0.3

0.25

0.2

0.15

0.05

communication
memcpy()

9 garbage collection
0.6TB/s 2.4TB/s
b 1.2TB/s

§ 0.2TB/s
0.1TB/s
| 0.7TB/s

TTTTTTTTTTTTTTTTT
7000 <79 %09s 8000 75625 32738 6400, 72500095004 -
Core count

3.8TB/s
16.8TB/s

S \ \ A > YNy Y

B 7/ 1% VAR QW N

/
|

