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Info, resources, participate

• Issue Ticket (w/ links to PRs)
• https://github.com/mpi-forum/mpi-
issues/issues/20

• Implementation available
• Version 1.1 based on Open MPI 1.6 released early November 2015

https://bitbucket.org/icldistcomp/ulfm
• Full communicator-based (point-to-point and all flavors of collectives) support
• Network support IB, uGNI, TCP, SM
• Runs with ALPS, PBS, etc…
• RMA, I/O in progress

http://fault-tolerance.org/



Minimal Feature Set for a Resilient MPI 

1. Failure Notification
2. Error Propagation
3. Error Recovery 

Not all recovery strategies
require all of these features,
that’s why the interface splits
notification, propagation and 
recovery.

ULFM is not a recovery strategy, but a minimalistic set of 
building blocks for more complex recovery strategies. 

Minimal Feature Set for FT MPI 
•  Failure Notification 
• Error Propagation 
• Error Recovery 

Not all recovery strategies  
require all of these features,  
that’s why the interface splits  
notification, propagation and recovery. 
ULFM is not a recovery strategy, but a minimalistic 
set of building blocks for more complex recovery 
strategies. 
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Errors are visible only for operations that
can’t complete
• New error codes to deal with failures 
• MPI_ERROR_PROC_FAILED: report that the operation discovered a 

newly dead process. Returned from all blocking function, and all 
completion functions. 

• MPI_ERROR_PROC_FAILED_PENDING: report that a non-blocking 
MPI_ANY_SOURCE potential sender has been discovered dead. 

• MPI_ERROR_REVOKED: a communicator has been declared improper 
for further communications. All future communications on this 
communicator will raise the same error code, with the exception of a 
handful of recovery functions

• Operations that can’t complete return 
ERR_PROC_FAILED
• State of MPI objects unchanged (communicators, etc)
• Repeating the same operation has the same outcome

• Operations that can be completed return 
MPI_SUCCESS
• Pt-2-pt operations between non failed ranks can continue

• Leverage on existing error handler 
infrastructure 
• MPI_COMM_SET_ERRHANDLER 
• conveniently capture and manage the new survivable error codes
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Summary of new functions
• MPI_Comm_failure_ack(comm)
• Resumes matching for MPI_ANY_SOURCE 

• MPI_Comm_failure_get_acked(comm, &group)
• Returns to the user the group of processes acknowledged to have failed 

• MPI_Comm_revoke(comm)
– Non-collective, interrupts all operations on comm (future or 

active, at all ranks) by raising MPI_ERR_REVOKED 

• MPI_Comm_shrink(comm, &newcomm) 
– Collective, creates a new communicator without failed 

processes (identical at all ranks) 

• MPI_Comm_agree(comm, &mask)
– Collective, agrees on the AND value on binary mask, 

ignoring failed processes (reliable AllReduce), and the 
return code

N
otification

Propagation
Recovery



(a) failure-free (b) few failures (c) many failures

Figure 5. Results of the FT-MLMC implementation for three different failure scenarios.

In Fig. 5 we show three different results, the mean of the density ⇢ at t = 0.06s,
obtained by FT-MLMC. The result in Fig. 5(a) is computed failure-free. In Fig. 5(b) a
result is shown where 3 out of 46 processes where killed. Figure 5(c) shows the result of
a FT-MLMC run where 9 out of 46 processes where killed, among them both processes
dealing with levels 2, such that all samples of this level are missing. The deterioration of
the result is obvious.

In Fig. 6 several quantities of the FT-MLMC method for different MTBFs are pre-
sented. They are discussed in the next section. Figure 6(a) presents two measurements
for the “intermediate save” strategy. (The results for the “late save” strategy are similar.)
First, we show the percentage of processes failed during the computation. Second, the “at
least a failure” probability is shown which measures the fraction of FT-MLMC runs that
experience at least one failure. (All other FT-MLMC runs are failure-free.) Remember
that standard MPI crashes if a failure occurs.

The measurement of the FT-MLMC error versus MTBF is shown in Fig. 6(b). The
error of the failure-free ALSVID-UQ is shown at MTBF = 2 ·104 s, where the fault
tolerant strategies (“intermediate save” and “late save”) are of the same quality. For
MTBF > 200 s the error remains rather constant. This can be seen for MTBF < 200 s
where the error slightly grows. It explodes at MTBF < 40 s for the “late save” strategy,
and at MTBF < 20 s for the “intermediate save” strategy.

Figure 6(c) shows the measured wall-clock run-time for the two fault tolerant strate-
gies and the failure-free run. Between the two fault tolerant versions no significant dif-
ference is measured. At MTBF = 2 ·104 s we see the small overhead (around 5%) of
both fault tolerant runs, compared to the standard failure-free ALSVID-UQ implemen-
tation. For the fault tolerant versions the run-time remains approximately constant for
MTBF > 100 s. Then the run-time decreases.

Figure 6(d) presents two measurements for the “intermediate save” strategy. (The re-
sults for the “late save” strategy are similar.) The first measurement “all samples failed”
shows how often no samples at all could be computed, since too many processes failed.
Then no FT-MLMC result is computed, such that these runs are ignored in the error com-
putation of Fig. 6(b). The same holds for runs which crashed (indicated by “program
crashed”).
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Resilient X10

X10 is an APGAS programming language 

that is designed to provide a simple and 

clean programming model for developing 

scale-out applications.

As supercomputers grow larger, the Mean 

Time Between Failure reduces, and the 

need for writing fault tolerance 

applications becomes more critical.

By applying the HBI principle, Resilient X10 will ensure that statement D executes after Task C  nishes, despite the loss of the 
synchronization construct ( nish) at place p

try{ /*Task A*/

 at (p) { /*Task B*/

  finish { at (q) async { /*Task C*/ } }

 }

} catch(dpe:DeadPlaceException){ /*recovery steps*/}

D;

Place r Place p Place q

Resilient X10 over MPI ULFM

CBA

finish
{@q async C;}Happens Before Invariance 

Principle (HBI): 
Failure of a place should not alter 
the happens before relationship 
between statements at the 
remaining places.

val wordCount = new AtomicInteger();

val refCount = GlobalRef(wordCount);

finish for (p in Place.places()) {

  val files = getFilesForPlace(p); 

  at (p) async { //create task at place p

    val pCount = countWords(files, “ibm”);

    at (refCount.home)

      refCount().addAndGet(pCount);

  }

} print(wordCount);

Resilient X10 [1] allows X10 programs to survive process failures. 

By introducing the Happens Before Invariance Principle, it guarantees the 

correct repair of the global program structure after a failure.

Conclusion: Using a fault tolerant MPI 

implementation (ULFM), resilient X10 applications can 

achieve better performance with the optimized MPI 

communication routines and the support for high 

speed network protocols provided by MPI (e.g. 

Infiniband verbs).

Although MPI is the preferred transport layer for scale-out computing, 

Resilient X10 was initially supported only over sockets.

ULFM (User-Level Failure Mitigation) is the most recent proposed 

specification for fault tolerant MPI [2]. An implementation of ULFM is available 

based on OpenMPI 1.7.

We integrated X10 with ULFM to allow Resilient X10 applications to benefit 

from the scalability and performance of MPI.
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Sample X10 program performing distributed word count
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The performance improvement due to using ULFM 

v1.0 for running the LULESH proxy application [3] 

(a shock hydrodynamics stencil based simulation) 

running on 64 processes on 16 nodes with 

problem size 203 per process. The cluster is an 

AMD64 Linux cluster, each node having 16G RAM 

and 2 quad core AMD Opteron 2356 processors.



Resolving transitive dependencies

• P1 fails 
• P2 raises an error and wants 

to change comm pattern to do 
application recovery 

• but P3..Pn are stuck in their 
posted recv

• P2 can unlock them with 
Revoke

• P3..Pn join P2 in the recovery 

2. NON-UNIFORM FAILURE KNOWLEDGE
This section discusses the rationale behind the proposed

design that justifies the introduction of the Revoke opera-
tion. We take the perspective of the performance conscious
MPI implementor, and analyze the unacceptable overhead
resulting from requiring uniformity of failure knowledge. We
then present the issues that arise when this requirement is
dropped, and the modus-operandi of the Revoke interface to
resolve them. The proposed design does indeed permit min-
imal overhead on failure free performance, as has been illus-
trated by the implementation presented in [7]. A more gen-
eral presentation of the ulfm interface can be found in [6].

2.1 Failure Detection
Failure detection has proven to be a complex but crucial

area of fault tolerance research. Although in the most ad-
verse hypothesis of a completely asynchronous system, fail-
ures (even simple processes crash, as we consider here) are
intractable in theory [17], the existence of an appropriate
failure detector permits resolving most of the theoretical
impossibilities [11]. However, requiring complete awareness
(thus active monitoring) of failures of every process by every
other process would generate an immense amount of system
noise (from heartbeat messages injected into the network
and the respective treatments on the computing resources
to respond to them), and it is known that MPI communi-
cation performance is very sensitive to system noise [23].
Fortunately, processes that are not trying to communicate
with a dead process do not need, a priori, to be aware of
its failure, as their operations are with alive processors and
therefore deadlock-free. As a consequence, failure detection
in ulfm only requires to detect failures of processes that are
direct partners in a communication operation.

2.2 Local versus Uniform Error Reporting
Another natural preconception is to consider that detec-

tion of failures at any rank results in MPI automatically
altering the state of all communication objects in which the
associated process appears (i.e. communicators, windows,
etc.). In such a model, it is understood that the failure
“damages”the communication object and renders it inappro-
priate for further communications. However, a complication
is hidden in such an approach: the state of MPI communi-
cation objects is the aggregate state of individual views by
each process of the distributed system. As failure aware-
ness is not expected to be global, the implementation would
then require internal and asynchronous propagation of fail-
ure detection, again, a process that is prone to introduce jit-
ter. Furthermore, some recovery patterns (typical in PDE
solvers [1], as an example) do not require advanced, nor
collective, corrective actions and can continue between non-
failed processes on the unmodified communication object.
As a consequence, ulfm never automatically modifies the
state of communication objects. Even if it contains failed
processes, a communicator remains a valid communication
object, until explicitly required. Therefore, error reporting
is not intended to indicate that a process failed, but to indi-
cate that an operation cannot deliver the normal semantic
at the local rank: when a failure happened, but an MPI
operation can proceed without disruption, it completes nor-
mally; when the failed process is supposed to participate in
the result of the operation, it is obviously impossible for the
operation to succeed, and an appropriate error is returned.

P1

P2

P3

Pn
Recv(Pn-1)

Recv(P1)

Recv(P[3:n]): Revoked

Recv(P1): Failed
P2 calls Revoke

Plan A Plan B

Recovery

Figure 1: The transitive communication pattern in

plan A must be interrupted before any process can

switch to the recovery communication pattern plan
B. By revoking the communication context, P2 en-

sures that all possibly unmatched operations in plan
A, which could provoke deadlocks, are interrupted.

Errors can then be captured by the application by setting
the appropriate MPI_ERRHANDLER.
An additional criterion to consider is that some MPI op-

erations are collective, or have a matching call at some other
process (e.g. Send/Recv). Convenience would call for the
same error be returned uniformly at all ranks that partici-
pated in the communication. This would easily permit track-
ing the global progress of the application (and then infer a
consistent, synchronized recovery point). However, the per-
formance consequences are dire, as it requires that every
communication concludes with an agreement operation be-
tween its participants in order to determine the global suc-
cess or failure of the communication, as viewed by each pro-
cess. Such an operation cannot be possibly achieved in less
than the cost of an AllReduce, even without accounting for
the cost of actually tolerating failures during the operation,
and would thus impose an enormous overhead on communi-
cation. In regard to the goal of maintaining an unchanged
level of performance, it is clearly unacceptable to double,
at best, the cost of all latency bound communication opera-
tions, especially when no failure has occurred. Furthermore,
it is already customary for MPI operations to have a local
only semantic, for example, when an MPI_REDUCE completes
at a non-root process, there is no guarantee that the root
has received the result of the collective operation yet. The
semantic only specifies that when the operation completes,
the local input bu↵er can be reused.
As a consequence, in ulfm, the reporting of errors has a lo-

cal operation semantic: the local completion status (in error,
or successfully) cannot be used to assume if the operation
has failed or succeeded at other ranks. In many applications,
this uncertainty is manageable, because the communication
pattern is simple enough. In some cases, however, the com-
munication pattern does not allow such flexibility, and the
application thereby requires an operation to resolve that un-
certainty, as described below.

2.3 Dependencies Between Processes
If the communication pattern is complex, the occurrence

of failures has the potential to deeply disturb the application
and prevent an e↵ective recovery from being implemented.
Consider the example in Figure 1: as long as no failure oc-
curs, the processes are communicating in a point-to-point
pattern (called plan A). Process Pk is waiting to receive a
message from Pk�1, then sends a message to Pk+1 (when

proc_failed_err_handler(MPI_Comm comm, int err, …) {
if(err == MPI_ERR_PROC_FAILED || 

err == MPI_ERR_REVOKED ) {
if(err == MPI_ERR_PROC_FAILED) MPI_Comm_revoke(comm);
recovery(comm);

}
}
ft_transitive_deps(void) {

for(i=0; i<nbrecv; i++) {
if(myrank>0) MPI_Irecv(buff, count, datatype,

myrank-1, tag, comm, &req); 
if(myrank<n) MPI_Send(buff2, count, datatype,

myrank+1, tag, comm, &req); }
}



Full Capabilities Recovery

• Some applications are moldable
• Shrink creates a new communicator on which collectives 

work

• Some applications are not moldable
• Spawn can recreate a “same size” communicator
• It is easy to reorder the ranks according to the original 

ordering
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Scalable Resilient Constructs: Revoke
• BMG* Revoke propagation in less than 100µs
• First post-Revoke collective operation sustains 

some performance degradation resulting from 
the network jitter associated with the circulation 
of revoke tokens

• After the fifth Barrier (approximately 700µs), the 
Revoke reliable broadcast has completely 
terminated, therefore leaving the application free 
from observable jitter. 
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Figure 3: Revoke cost in Barrier depending on the

initiator rank calling MPIX_COMM_REVOKE (6,000 pro-

cesses).

erations posted on commB until the typical latency becomes
similar to pre-Revoke operations on commA.

The collective communication patterns are inherited, with-
out modification, from the Open MPI non-fault tolerant
“tuned” module. The Cray optimized MPI can, in some
instances, achieve higher performance. For the purpose of
our evaluation, the tuned generic implementation, based on
MPI point-to-point message exchanges, is representative of
users’ communication patterns commonly found in typical,
portable HPC applications.

4.2 Initiator Location and Revoke Impact
Figure 3 presents the latency of Barriers on 6,000 pro-

cesses, depending on the rank of the initiator process that
invokes the MPIX_COMM_REVOKE operation. Thanks to the
symmetric nature of the BMG topology, the Revoked Bar-
rier latency is stable and independent of the initiator rank.
One can note that the time to complete a Revoked Bar-
rier is smaller than the time to complete a normal Barrier.
The normal Barrier has a strong synchronizing semantic:
the operation cannot complete before every process has en-
tered the barrier. A Revoked Barrier doesn’t enforce that
synchronization anymore and it can complete locally before
some processes have participated. Instead, the latency of the
Revoked operation denotes the time taken by the Revoke re-
silient broadcast to reach every rank for the first time; this
propagation latency is similar to the cost of a small message
Broadcast.

However, as stated before, when the Revoke notification
has been delivered to every rank, the reliable broadcast has
not terminated yet, and some Revoke token messages have
been freshly injected in the network (at the minimum, the
2log2(n) messages injected by the last rank to deliver the
Revoke notification are still circulating in the network). As

a consequence, the performance of the first post-Revoke col-
lective operation sustains some performance degradation re-
sulting from the network jitter associated with the circula-
tion of these tokens. This performance degradation is mod-
erate, with the latency approximately doubling. The jitter
noise is equally spread on the BMG topology, therefore, the
increased latency of the first (and the much reduced impact
on the 2nd to 5th) Barrier is also independent of the initia-
tors’ rank.
Although after the first post-Revoke Barrier, no new Re-

voke tokens are injected (when the first Barrier of plan B
completes, a Revoke token has been delivered at every rank,
thus every rank has already injected its reliable broadcast
tokens), the absorption of delayed tokens and the lost syn-
chrony resulting from the initial jitter combine to impact
slightly the Barrier performance. After the fifth Barrier (ap-
proximately 700µs), the application is fully resynchronized,
and the Revoke reliable broadcast has terminated, therefore
leaving the application free from observable jitter.

4.3 Scalability
Figure 4 presents the scalability of the Barrier (left) and

AllReduce (right) collective communications in the Revoke
benchmark. The first observation is that the performance
of post-Revoke collective communications follows the same
scalability trend as the pre-Revoke operations, even those
impacted by jitter. In the case of the AllReduce collec-
tive communication, aside from the 1st post-Revoke AllRe-
duce communication, which still exhibit a moderate over-
head from jitter, the 2nd post-Revoke AllReduce is only
mildly impacted and the 3rd AllReduce exhibit no signif-
icant di↵erence from the failure free case, illustrating that
the jitter introduced by the reliable broadcast algorithm has
a lesser impact on this communication pattern. When the
number of processes increases, the impact of jitter —the
di↵erence between the failure-free and the 1st post-Revoke
operation— is almost constant (or slightly decreasing). If
this trend were to continue at larger scales, the impact of
jitter could become asymptotically negligible.
Last, while the implementations of the “tuned” collective

operations di↵er in performance trends on this Cray machine
(for reasons outside of the scope of this work, but rooting in
the internal collective algorithm selection logic being tuned
for the Infiniband network), the performance of the revoked
operation is similar in both cases, illustrating that, as long
as MPI progress is triggered, the propagation latency of the
BMG reliable broadcast is independent from the communi-
cation plan being revoked.

4.4 AllReduce and Message Size
Figure 5 presents the latency of the AllReduce collective

communication when the message size varies. Focusing first
on the cost of the Revoked AllReduce operation, one can ob-
serve that the duration of the operation remains independent
of the message size until the message size increases to 1MB
or more. As the Revoked operation is interrupted before ex-
changing the entire communication volume, this behavior is
expected. For larger message sizes, however, the delivery of
the Revoke notification may be delayed by the granularity
of the ongoing reduction computation; as these computa-
tions are progressing, the MPI progress engine is managing
them with maximum priority, and thus does not consider
incoming fragments for that time duration. As soon as one

The MPI_COMM_FREE function is defined as a collective op-
eration whose implementation is likely to be local, that is,
it usually requires no communication. In order to minimize
the performance impact, we designed a fault tolerant barrier
that can progress in the background, so that it doesn’t inflict
a significant duration increase on the MPI_COMM_FREE call it-
self. The deallocation of the communicator then becomes
lazy, when the application calls MPI_COMM_FREE, the com-
municator is marked for deallocation (and the user handle
can be destroyed immediately), however, the internal rep-
resentation of the communicator is deallocated only when
it is safe, after the background barrier completes. Simi-
larly to the Revoke operation, this barrier is implemented
at the BTL level and essentially performs a binomial reduce-
broadcast sequence. When a process receives the broadcast
direction message, it can infer that every process invoked
MPI_COMM_FREE on that communicator, hence all communi-
cation on the communicator completed1 (either successfully,
or in error when a participant died, or the revoked operation
was interrupted).

However, Revoke notification messages are not posted un-
der the control of the user, and therefore they are not com-
pleted before MPI_COMM_FREE. Thus, it is still possible that
some continue to be delivered after the loosely synchronizing
MPI_COMM_FREE has completed. In order to discriminate be-
tween di↵erent communicators using the same index, the Re-
voke message compounds the index with the epoch number,
representing how many times this index has been allocated.
This compound key is then used to perform the communi-
cator lookup (in the case of Revoke messages only, normal
MPI messages still employ the normal MPI matching with
context identifiers only). If a communicator does not exist
anymore (the message epoch is lower than the index epoch),
the Revoke message is dropped; this is safe, as when the com-
municator doesn’t exist anymore, the loosely synchronized
MPI_COMM_FREE guarantees that it has been freed at every
other process too. When the communicator with the cor-
rect epoch exists, there are two cases; 1) the communicator
had already been revoked, then the callback drops the mes-
sage and returns; 2) the communicator is not yet revoked,
then it is revoked immediately and the Revoke message is
broadcast to all neighbors.

When a communicator is revoked for the first time, the
list of pending MPI requests is traversed to mark all re-
quests on that communicator as completed in error. Their
status is set to the special error code MPIX_ERR_REVOKED,
pending RDMA operations are cancelled, and the memory
registrations are withdrawn. In addition, the unexpected
and matching queues of the communicator are also traversed
to discard incoming message fragments.

4. EXPERIMENTAL EVALUATION
The experimental evaluation of the Revoke operation is

conducted on the Darter platform, a Cray XC30 supercom-
puter hosted at the National Institute for Computational
Science (NICS). Each of the 724 compute nodes features
Two 2.6 GHz Intel 8-core XEON E5-2600 (Sandy Bridge) Se-

1Freeing a communicator that still has pending messages is
standard compliant, but strongly discouraged: as the com-
municator is not available anymore, if the operation must
report an error, it triggers the default MPI_ERRORS_ABORT
error handler, which e↵ectively makes such an application
inherently non-fault tolerant.
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Figure 2: The Revoke Benchmark: a process re-

vokes plan A during a collective communication. As

soon as plan A is interrupted, every process switches

to plan B, a similar communication plan, with the

same collective operation, but on a distinct, dupli-

cate communicator.

ries processors, and is connected via a Cray Aries router with
a bandwidth of 8GB/sec. We employ the ulfm Open MPI
fork, with the“tuned”collective communication module, the
“uGNI” transport module between nodes, and the “SM” trans-
port module for inter-core, shared-memory communication.

4.1 Benchmark
Because of its asymmetrical nature, the impact of the Re-

voke call cannot be measured directly. At the initiator, the
call only starts a non-synchronizing wave of token circula-
tion, and measuring the very short duration of the call is
not representative of the actual time required for the Revoke
call to operate at all target processes. Measuring the time
needed for a particular operation to be interrupted gives a
better estimate of the propagation time of a Revoke notifica-
tion. However, the overall impact remains underestimated
if one doesn’t account for the fact that even after all pro-
cesses have successfully delivered a Revoke notification, the
reliable broadcast algorithm continues to emit and handle
Revoke messages in the background for some time.
The benchmark we designed measures both the duration

and the perturbation generated by the progress of a Revoke
operation on the network. The benchmark comprises two
communication plans (illustrated in Figure 2). Plan A is a
loop that performs a given collective operation on a com-
municator that spans on all available processes (commA). At
some iteration, an initiator process does not match the col-
lective operation, but, instead, invokes MPIX_COMM_REVOKE
on commA, which e↵ectively ends plan A. Plan B is a similar
loop performing the same collective operation in a duplicate
communicator (commB) that spans on the same processes as
commA. However, because it is a distinct communicator, op-
erations on commB do not match operations on commA; in par-
ticular, the Revoke operation on commA has no e↵ect on the
semantic of collective operations posted in commB, all ranks
need to match the operation, and it completes normally. We
consider that the duration of a particular collective opera-
tion is the maximum latency across all ranks, and we then
compute the average over 2,000 repetitions of the bench-
mark. We report the latency of operations on commA before
it is revoked, and when one rank does not match the oper-
ation and instead invokes MPIX_COMM_REVOKE; this Revoked
collective communication gives an estimate of the Revoke
propagation time. Last, we report the latency of the first op-

* Bouteiller, A., Bosilca, G., Dongarra, J.J. “Plan B: 
Interruption of Ongoing MPI Operations to Support Failure 
Recovery,” In Proceedings of the 22nd European MPI 
Users' Group Meeting (EuroMPI '15). ACM

Darter, ugni network, 6000 processes



Scalable Resilient Agreement
• Novel Early Returning 

Agreement algorithm*
• Logarithmic topology & 

logarithmic 
computation: scalable

• 2x the Cray AllReduce
latency at 6k 
processors!
* Herault, T., Bouteiller, A., Bosilca, 
G., Gamell, M., Teranishi, K., 
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User projects: Resilient X10
• X10 is a PGAS programming language
• Legacy resilient X10 TCP based

• MPI operations in resilient X10 runtime
• Progress loop does MPI_Iprobe, post needed recv according to 

probes
• Asynchronous background collective operations (on multiple 

different comms to form 2d grids, etc).

• Recovery
• Upon failure, all communicators recreated (from shrinking a 

large communicator with spares, or using MPI_COMM_SPAWN 
to get new ones)

• Ranks reassigned identically to rebuild the same X10 “teams”

• Injection of FT layer
• Unnecessary, x10 has a runtime that hides all MPI from the 

application and handles failures internally

Source: Sara Hamouda, Benjamin Herta, Josh Milthorpe, David Grove, Olivier Tardieu. Resilient X10 over Fault Tolerant MPI. In : poster 
session SC’15, Austin, TX, 2015.
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Resilient X10

X10 is an APGAS programming language 

that is designed to provide a simple and 

clean programming model for developing 

scale-out applications.

As supercomputers grow larger, the Mean 

Time Between Failure reduces, and the 

need for writing fault tolerance 

applications becomes more critical.

By applying the HBI principle, Resilient X10 will ensure that statement D executes after Task C  nishes, despite the loss of the 
synchronization construct ( nish) at place p

try{ /*Task A*/

 at (p) { /*Task B*/

  finish { at (q) async { /*Task C*/ } }

 }

} catch(dpe:DeadPlaceException){ /*recovery steps*/}

D;

Place r Place p Place q

Resilient X10 over MPI ULFM

CBA

finish
{@q async C;}Happens Before Invariance 

Principle (HBI): 
Failure of a place should not alter 
the happens before relationship 
between statements at the 
remaining places.

val wordCount = new AtomicInteger();

val refCount = GlobalRef(wordCount);

finish for (p in Place.places()) {

  val files = getFilesForPlace(p); 

  at (p) async { //create task at place p

    val pCount = countWords(files, “ibm”);

    at (refCount.home)

      refCount().addAndGet(pCount);

  }

} print(wordCount);

Resilient X10 [1] allows X10 programs to survive process failures. 

By introducing the Happens Before Invariance Principle, it guarantees the 

correct repair of the global program structure after a failure.

Conclusion: Using a fault tolerant MPI 

implementation (ULFM), resilient X10 applications can 

achieve better performance with the optimized MPI 

communication routines and the support for high 

speed network protocols provided by MPI (e.g. 

Infiniband verbs).

Although MPI is the preferred transport layer for scale-out computing, 

Resilient X10 was initially supported only over sockets.

ULFM (User-Level Failure Mitigation) is the most recent proposed 

specification for fault tolerant MPI [2]. An implementation of ULFM is available 

based on OpenMPI 1.7.

We integrated X10 with ULFM to allow Resilient X10 applications to benefit 

from the scalability and performance of MPI.
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User projects: Fenix+S3D
• Fenix is a framework to provide scoped user 

level checkpoint/restart
• Provides some of the same services provided by the 

“MPI_Reinit” idea floated around by T. Gamblin
• Recover failed processes with revoke-shrink-spawn-reoder

sequence
• Revovered and surviving processes jump back to the start 

(longjump in Fenix_init)
• Fenix has helpers to perform user directed “in-memory” or 

“buddy” checkpointing (and reload)
• Injection of FT layer: PMPI based

• Fenix_Checkpoint_Allocate mark a memory 
segment (baseptr,size) as part of the 
checkpoint.

• Fenix_Init Initialize Fenix, and restart point 
after a recovery, status contains info about 
the restart mode

• Fenix_Comm_Add can be used to notify
Fenix about the creation of user 
communicators

• Fenix_Checkpoint performs a checkpoint of 
marked segments 

peer-node. In practice, however, assuming a non-correlated
distribution of failures among the group of ranks (which is
certainly not an unrealistic assumption, as the group size can
be tuned to contain correlated failures), if two groups have to
fail, the probability of the failure of a node and its peer-node
is:

N/2(N
2

) =
N

2× N !
2!(N−2)!

=
(N − 2)!

(N − 1)!
=

1

N − 1
(1)

which for Titan translates to 1/18687 assuming a group of 16
cores (a physical node) or 1/194 assuming a group of cabinet-
size (96 physical nodes). Therefore, it is highly unlikely that if
two failures occur simultaneously, no recovery by the neighbor
algorithm is possible.

IV. FENIX PROGRAMMING INTERFACE

The API provided by Fenix, for both C and Fortran, is
comprised of five operators as described in Section IV-A.
Section IV-B describes the integration of S3D with Fenix, and
the changes required to the S3D code to tolerate process, node,
blade, and cabinet failures using Fenix.

A. Interface overview

The following functions make up the Fenix API. We
discuss their usage below.

Fenix_Checkpoint_Allocate notifies Fenix about a
data element (e.g., an array) that will be saved. Only two
parameters are needed, specifying the memory location of the
element to save and its size in bytes. It returns an identifier
that can be used to uniquely refer to the element when actually
performing a checkpoint.
Fenix_Init is the basic operation to initialize the Fenix
library. Three parameters are required to specify the check-
pointing algorithm, its parameters, and the resuming des-
tination. The function returns the status of the rank,
specifying whether this is the first time the application is
started (i.e., Fenix_st_new), it has survived a failure (i.e.,
Fenix_st_survivor), or has been respawned after a fail-
ure (i.e., Fenix_st_respawned; note that processes are
considered respawned even if the spare process pool method
is used). It also returns world, the new/repaired world com-
municator, which will include all processes except ones kept
in a process pool to tolerate failures.
Fenix_Comm_Add can be used to notify Fenix about the
creation of user communicators.
Fenix_Checkpoint performs a checkpoint of the specified
element identifier, which has been previously initialized by
Fenix_Checkpoint_Allocate.
Fenix_Finalize is the basic operation to terminate Fenix.

In terms of interface design, Fenix cannot take advantage of
existing ideas about application-level checkpointing interfaces
such SRS [54] or SCR [42]. The semantics of these are
richer in aspects not needed by Fenix, such as (1) no need
to provide SRS’s value restarting functionality because this is
automatically done by Fenix upon failure, or (2) unlike SCR,
Fenix creates checkpoints internally, and so operations such
as SCR_Complete_checkpoint or SCR_Route_file
are not needed. Furthermore, our interface provides additional
features required by Fenix, such as the aforementioned regis-
tration of application communicators.

B. Integrating S3D with Fenix

As previously mentioned, changes to S3D were required
in order to incorporate Fenix. We outline these changes in the
skeleton below.
1 allocate(yspc(nx,ny,nz,nslvs))
2 allocate(other_arrays)
3 call MPI_Init()
4 [...] ! Initialize non-conflicting modules
5 call Fenix_Checkpoint_Allocate(C_LOC(yspc),
6 sizeof(yspc),ckpt_yspc)
7 call Fenix_Init(Fenix_Neighbors,PEER_NODE_SIZE,
8 Fenix_resume_to_init, status, C_LOC(world))
9

10 if(status.eq.Fenix_st_survivor) then
11 [...] ! Finalize conflicting modules
12 endif
13 [...] ! Initialize conflicting modules
14 if(status.eq.Fenix_st_new)
15 call initialize_yspc()
16 endif
17

18 do ! Main loop
19 [...] ! Iterate and update yspc array
20 if(mod(step-1,CHECKPOINT_PERIOD).eq.0) then
21 call Fenix_Checkpoint(ckpt_yspc);
22 endif
23 enddo
24

25 call Fenix_Finalize()
26 call MPI_Finalize()

In the original S3D code, the array allocation (lines 1,2)
was done after initializing modules (lines 10-13). It was
moved to before line 5 to allow the proper invocation of
Fenix_Checkpoint_Allocate (line 5) to allocate yspc
as the element to be checkpointed. Note that conflicting
modules assume a global state among all the cores to be
maintained, or are modules that must be initialized collectively,
for example. These modules are noteworthy because upon
failure they must be re-initialized. One example is the S3D
topology module, which is initialized by all ranks to re-create
communicators. Some modules require finalization prior to re-
initialization (e.g., the S3D derivative module). This is done
on line 11.

Fenix_Init (line 7) is configured to resume to the
beginning of execution instead of to the last checkpoint, as
detailed in Section III-A. Therefore, after recovering from a
node failure (which is automatically detected by Fenix at every
MPI operation invocation), all ranks will return to line 7, line
10 being the first instruction executed. Survivor processes will
then finalize conflicting modules (line 11). After that, all ranks
will merge in line 13 to initialize the conflicting modules
collectively and continue the simulation in the main loop. The
yspc array is initialized in line 15 the first time the execution
is started.

As there is no collective synchronization in the main loop
of S3D, its instructions might be executed at different wall
clock times by the different ranks. However, before and after
line 19, all ranks would have the same logical time/state
(independent of the imbalance between the ranks). In other
words, the element to be checkpointed (yspc array) will have
a well-defined, globally strong-consistent value when all ranks
finish, for example, line 19. The important point is that this
statement still holds when all of the different cores reach that
point, regardless of if they reach it at different wall times
(i.e., independently of any imbalance in S3D). As a result,
a checkpoint done at the end of iteration would generate
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User projects: Fenix+S3D
• S3D is a production, highly

parallel method-of-lines solver
for PDEs
• used to perform first-principles-based direct 

numerical simulations of turbulent 
combustion

• S3D rendered fault tolerant
using Fenix/ULFM

• 35 lines of code modified in 
S3D in total!

• Order of magnitude 
performance improvement in 
failure scenarios 
• thanks to online recovery and in-memory 

checkpoint advantage over I/O based
checkpointing

• Injection of FT layer: addition 
of a couple of Fenix calls

a strongly consistent state. In addition, we only request a
checkpoint every CHECKPOINT_PERIOD iterations, as we
will show in Section V-D.

In the following code snippet we show the rest of changes
to S3D: the usage of Fenix_Comm_Add, which is called
inside the topology module, immediately after creating each
derived communicator.
1 call MPI_Comm_split(gcomm, py+1000*pz, r, xcomm)
2 call MPI_Comm_split(gcomm, px+1000*pz, r, ycomm)
3 call MPI_Comm_split(gcomm, px+1000*py, r, zcomm)
4 call Fenix_Comm_Add(xcomm);
5 call Fenix_Comm_Add(ycomm);
6 call Fenix_Comm_Add(zcomm);
7 [...]
8 call MPI_Comm_split(gcomm, xid, r, yz_comm)
9 call MPI_Comm_split(gcomm, yid, r, xz_comm)

10 call MPI_Comm_split(gcomm, zid, r, xy_comm)
11 call Fenix_Comm_Add(yz_comm);
12 call Fenix_Comm_Add(xz_comm);
13 call Fenix_Comm_Add(xy_comm);

The overall impact on programmability using Fenix is very
low, requiring less than 35 new, changed, or rearranged lines
throughout the S3D code.

In containment domains [47] terminology, our integration
of Fenix within S3D can be seen as a top-level domain that
isolates multi-node failures from job crashes. The inclusion of
more finely grained levels to further isolate multi-node failures
is left as future work.

V. EMPIRICAL EVALUATION

If applications must tolerate high frequency failures (on
the order of 30-300 seconds) that involve only a subset of the
machine (e.g., a node, a blade, a cabinet...), we must reduce the
sources of fault tolerance overhead. By leveraging the fact that
the majority of the system will survive these failures, online
recovery can be used to further contain the failure. To enable
online recovery, data must survive multi-node failures. Data
checkpointing is therefore used. Specifically, Fenix implements
diskless [55] neighbor-based [4] checkpointing.

In this section, we evaluate the capabilities and impact of
a prototype implementation of Fenix on the Titan Cray XK7
system, using the S3D [21] combustion simulation. We also
evaluate the correctness of implicitly-coordinated checkpoint-
ing as previously described, which further reduces overhead by
not requiring any synchronization (either explicit or assumed)
from the cores.

We also present a study of a 125k-core, 24-hour production
runs with S3D on Titan, highlighting the failures encountered
and the fault tolerance actions taken.

The ultimate aim of the experimentation is to run an
execution mimicking a future extreme-scale scenario, in which
node failures occur with extremely high frequency (i.e., every
47 seconds).

A. Methodology

In order to run this experiment, we need to determine
(1) the checkpointing implementation overhead and scalability,
both in terms of data size and total core count, (2) the
optimal interval between checkpoints, calculated using the
Young formula [56] and validated with empirical results, (3)
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Fig. 2. Checkpoint time for different data sizes (1000 cores).

the scalability of recovery algorithms towards an increasing
number of concurrent failures within a group of ranks, and (4)
the weak scalability of the recovery algorithm. Finally, we are
able to run the experiment surviving frequent node failures
assuming different system MTBFs. Failures, or crashes,
are injected by sending simultaneous SIGKILL signals to the
involved application and runtime helper processes. As a result,
both the processes and the MPI runtime become unavailable to
other nodes (i.e., this is seen as a real failure in the vicinity).
As our porting of the ULFM prototype from UTK (r4579379)
on Titan only works up to ∼5000 cores, the experiments where
no crash was injected were done using Cray MPICH (v6.3.0).

In an effort to reduce the impact of performance variability,
all of the experiments presented in this section have been
repeated five times, at different days of the week and at
different times of day.
We use checkpointing as a vehicle for data resilience, but
improving its overall performance was not the goal of this
paper. As a result, the memcpy process was not optimized by
the compiler.

B. Benchmarking S3D production runs – A base line test

Currently, S3D production runs create checkpoints every
600 iterations. Our 24-hour runs on Titan using state-of-
the-art IO technology (ADIOS [57]) over 125k cores are
shown in the top part of Figure 7. The checkpoint process of
5.2 MB/core (aggregated size of 658 GB) takes ∼55 seconds,
while loading it from the filesystem takes ∼44 seconds. In
total, 1126 seconds were spent checkpointing (1.72% more
time compared to a failure-free, checkpoint-free execution3).
Our records registered 9 process/node failures, incurring a
total rollback cost of 14884 seconds (22.63% overhead) while
the rest of the recovery process took 4638 seconds (7.05%
overhead). Therefore, the total time spent in fault-tolerance-
related tasks represents 31.40% compared to a failure-free and
checkpoint-free execution.

C. Determining failure-free Checkpoint Cost

Data size. Figure 2 shows the checkpoint time for different
data sizes, ranging from 0.07 to 15 MB per core (1 to 240

3Estimated by subtracting overheads from total time.
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MB per node). The bars represent the average among all
checkpoints, all cores, throughout the five repetitions, while
error bars indicate variability (including minimum, maximum,
first, and third quartile). The three different sub-bars show
the three different processes that the checkpoint algorithm
requires. Clearly, the communication cost dominates the ex-
ecution. The lower plot in Figure 2 shows that the checkpoint
time is linearly dependent on data size (for sizes greater than
1 MB/core), as expected.

The overhead caused by each array size strongly influences
the choice of the size to be used in the rest of the experiments
of this paper – 50 grid points per core, which corresponds to
8.58 MB of the yspc array.

Weak scalability. Figure 3 shows how checkpointing scales
to 250k cores as we increase total the number of cores
while achieving similar average checkpoint time, sustaining
a bandwidth of 16.8 TB/s in the test with a higher number of
cores. Again, the checkpoint procedure is dominated mostly
by the transfer cost. As expected, the memcpy time remains
constant throughout all executions, and the garbage collection
cost is negligible.

The lower communication time of the tests with less than
4k cores is due to the configured group size. In small tests it
was set to 16 nodes, while in bigger ones was set to 96 nodes
(the Cray XK7 cabinet size). As the group size is increased,
messages must traverse more Gemini nodes [53] to reach the
destination.

The minimum of each test (the lower point on the error
bars) is in all cases close to the third quartile. Furthermore,
the median (the white line inside the error bar) is below 0.075
in all cases but in the 64k test. These observations indicate that
25% of cores finish the checkpoint process within a reasonably
small time window and half of them take less than 0.075 s,
while others take more time. As this paper is not focused on
the checkpointing process, no further analysis of this behavior
is provided.

Assuming a linear relationship between checkpoint size
and checkpoint writing time in ADIOS, we can extrapolate
a production run’s checkpoint time assuming 8.58 MB/core.
This would be translated to a 90-second checkpoint write

overhead and a 72-second checkpoint read overhead, a 750-
fold increase in the checkpoint time, compared to 0.12 s with
250k ranks obtained with Fenix (Figure 3). Regarding data
recovery time, our implementation only requires the transfer of
the checkpoints to the failed nodes, a process whose overhead
can be expected to be the same as checkpoint time.

Compared to other studies, such as CRUISE [37] (an
extension of SCR [42]), our implementation is slower. This
is mainly due to the fact that we have to send the checkpoint
remotely in order to tolerate entire-node failures, while tests
done in [37] only store checkpoints in local main memory.

D. Validating Optimal Checkpoint Rate

Young’s formula [56], [58] can be used to determine TC ,
the optimal interval between two consecutive checkpoints,
depending on the MTBF of the system (TF ) and the checkpoint
time (TS). The checkpoint time has been determined in Section
V-C. As in the previous weak scalability test, checkpoint size
is 8.58 MB/core, which leads to TS = 0.0748 s in the case
of 2197 cores (Figure 3). For a system with one million
nodes, each with an MTBF of 3 years, the overall system
MTBF will drop to TF = 94.608 seconds. Using second-order
approximation for exponential distribution [56], [58], TC is
expressed as follows:

TC =
√
2TSTF =

√
2 · 0.0748s · 94.608s = 3.76s (2)

As the average S3D iteration time is 1.182 s with 50 grid points
per core (over five executions of a failure- and checkpoint-free
experiment on 2197 cores), TC can be expressed as 3 S3D
iterations rounded due to the fact that checkpoints are triggered
by the application only at the end of iterations. Using the same
procedure as in equation 2, we obtained the optimal number
of iterations between checkpoints for system’ MTBFs of 47
seconds (TC = 2) and 189 seconds (TC = 4).

As suggested in [58], we want to verify the proper usage of
the formula, i.e. the correct parameter settings and the correct
rounding of TC from seconds to application iterations. To do
that, we evaluated the total cost induced by a set of uniformly
distributed, independent failures, for several given checkpoint
rates. Specifically, assuming an MTBF of 94 seconds we used
a Poisson distribution4 to obtain ten random possible failure
timestamps within the 94-second time frame. We obtained
the following timestamps: 12, 19, 24, 32, 41, 51, 61, 70, 78,
91. Next, we had to chose 10 different number of iterations
between consecutive checkpoints. As the formula indicated
frequent checkpoints, we concentrated on the smallest five (1-
5). Also, to have an idea of the cost with lower frequency, we
chose the other five to be disperse (10, 20, 30, 40, 50).

For every checkpoint rate, we evaluated the total overhead
of fault tolerance while injecting a failure to every chosen
failure timestamp. The overheads induced in the resulting 100
experiments, each running 90 iterations, are represented in
Figure 4. To determine which is the interval that offers the
lowest overall overhead, Figure 5 shows the average of the
overheads caused by the ten different failures, on each chosen
checkpoint rate. Within the highlighted tests (2, 3, 4, and 5),
checkpointing every three or four iterations offers the best
overall solution, validating in turn the result from Young’s
formula.

4We used R v 3.0.2, rpois() with a seed of 10, λ = 10.
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