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Info, resources, participate

• Issue Ticket (w/ links to PRs)
• https://github.com/mpi-forum/mpi-
issues/issues/20

• Implementation available
• Version 1.1 based on Open MPI 1.6 released early November 2015

https://bitbucket.org/icldistcomp/ulfm
• Full communicator-based (point-to-point and all flavors of collectives) support
• Network support IB, uGNI, TCP, SM
• Runs with ALPS, PBS, etc…
• RMA, I/O in progress

http://fault-tolerance.org/



Use cases: Fenix+S3D
• Fenix is a framework to provide scoped user 

level checkpoint/restart
• Provides some of the same services provided by the 

“MPI_Reinit” idea floated around by T. Gamblin and I. Laguna
• Recover failed processes with revoke-shrink-spawn-reoder

sequence
• Revovered and surviving processes jump back to the start 

(longjump in Fenix_init)
• Fenix has helpers to perform user directed “in-memory” or 

“buddy” checkpointing (and reload)
• Injection of FT layer: PMPI based

• Fenix_Checkpoint_Allocate mark a memory 
segment (baseptr,size) as part of the 
checkpoint.

• Fenix_Init Initialize Fenix, and restart point 
after a recovery, status contains info about 
the restart mode

• Fenix_Comm_Add can be used to notify
Fenix about the creation of user 
communicators

• Fenix_Checkpoint performs a checkpoint of 
marked segments 

peer-node. In practice, however, assuming a non-correlated
distribution of failures among the group of ranks (which is
certainly not an unrealistic assumption, as the group size can
be tuned to contain correlated failures), if two groups have to
fail, the probability of the failure of a node and its peer-node
is:
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which for Titan translates to 1/18687 assuming a group of 16
cores (a physical node) or 1/194 assuming a group of cabinet-
size (96 physical nodes). Therefore, it is highly unlikely that if
two failures occur simultaneously, no recovery by the neighbor
algorithm is possible.

IV. FENIX PROGRAMMING INTERFACE

The API provided by Fenix, for both C and Fortran, is
comprised of five operators as described in Section IV-A.
Section IV-B describes the integration of S3D with Fenix, and
the changes required to the S3D code to tolerate process, node,
blade, and cabinet failures using Fenix.

A. Interface overview

The following functions make up the Fenix API. We
discuss their usage below.

Fenix_Checkpoint_Allocate notifies Fenix about a
data element (e.g., an array) that will be saved. Only two
parameters are needed, specifying the memory location of the
element to save and its size in bytes. It returns an identifier
that can be used to uniquely refer to the element when actually
performing a checkpoint.
Fenix_Init is the basic operation to initialize the Fenix
library. Three parameters are required to specify the check-
pointing algorithm, its parameters, and the resuming des-
tination. The function returns the status of the rank,
specifying whether this is the first time the application is
started (i.e., Fenix_st_new), it has survived a failure (i.e.,
Fenix_st_survivor), or has been respawned after a fail-
ure (i.e., Fenix_st_respawned; note that processes are
considered respawned even if the spare process pool method
is used). It also returns world, the new/repaired world com-
municator, which will include all processes except ones kept
in a process pool to tolerate failures.
Fenix_Comm_Add can be used to notify Fenix about the
creation of user communicators.
Fenix_Checkpoint performs a checkpoint of the specified
element identifier, which has been previously initialized by
Fenix_Checkpoint_Allocate.
Fenix_Finalize is the basic operation to terminate Fenix.

In terms of interface design, Fenix cannot take advantage of
existing ideas about application-level checkpointing interfaces
such SRS [54] or SCR [42]. The semantics of these are
richer in aspects not needed by Fenix, such as (1) no need
to provide SRS’s value restarting functionality because this is
automatically done by Fenix upon failure, or (2) unlike SCR,
Fenix creates checkpoints internally, and so operations such
as SCR_Complete_checkpoint or SCR_Route_file
are not needed. Furthermore, our interface provides additional
features required by Fenix, such as the aforementioned regis-
tration of application communicators.

B. Integrating S3D with Fenix

As previously mentioned, changes to S3D were required
in order to incorporate Fenix. We outline these changes in the
skeleton below.
1 allocate(yspc(nx,ny,nz,nslvs))
2 allocate(other_arrays)
3 call MPI_Init()
4 [...] ! Initialize non-conflicting modules
5 call Fenix_Checkpoint_Allocate(C_LOC(yspc),
6 sizeof(yspc),ckpt_yspc)
7 call Fenix_Init(Fenix_Neighbors,PEER_NODE_SIZE,
8 Fenix_resume_to_init, status, C_LOC(world))
9

10 if(status.eq.Fenix_st_survivor) then
11 [...] ! Finalize conflicting modules
12 endif
13 [...] ! Initialize conflicting modules
14 if(status.eq.Fenix_st_new)
15 call initialize_yspc()
16 endif
17

18 do ! Main loop
19 [...] ! Iterate and update yspc array
20 if(mod(step-1,CHECKPOINT_PERIOD).eq.0) then
21 call Fenix_Checkpoint(ckpt_yspc);
22 endif
23 enddo
24

25 call Fenix_Finalize()
26 call MPI_Finalize()

In the original S3D code, the array allocation (lines 1,2)
was done after initializing modules (lines 10-13). It was
moved to before line 5 to allow the proper invocation of
Fenix_Checkpoint_Allocate (line 5) to allocate yspc
as the element to be checkpointed. Note that conflicting
modules assume a global state among all the cores to be
maintained, or are modules that must be initialized collectively,
for example. These modules are noteworthy because upon
failure they must be re-initialized. One example is the S3D
topology module, which is initialized by all ranks to re-create
communicators. Some modules require finalization prior to re-
initialization (e.g., the S3D derivative module). This is done
on line 11.

Fenix_Init (line 7) is configured to resume to the
beginning of execution instead of to the last checkpoint, as
detailed in Section III-A. Therefore, after recovering from a
node failure (which is automatically detected by Fenix at every
MPI operation invocation), all ranks will return to line 7, line
10 being the first instruction executed. Survivor processes will
then finalize conflicting modules (line 11). After that, all ranks
will merge in line 13 to initialize the conflicting modules
collectively and continue the simulation in the main loop. The
yspc array is initialized in line 15 the first time the execution
is started.

As there is no collective synchronization in the main loop
of S3D, its instructions might be executed at different wall
clock times by the different ranks. However, before and after
line 19, all ranks would have the same logical time/state
(independent of the imbalance between the ranks). In other
words, the element to be checkpointed (yspc array) will have
a well-defined, globally strong-consistent value when all ranks
finish, for example, line 19. The important point is that this
statement still holds when all of the different cores reach that
point, regardless of if they reach it at different wall times
(i.e., independently of any imbalance in S3D). As a result,
a checkpoint done at the end of iteration would generate
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Use cases: Fenix+S3D
• S3D is a production, highly

parallel method-of-lines solver
for PDEs
• used to perform first-principles-based direct 

numerical simulations of turbulent 
combustion

• S3D rendered fault tolerant
using Fenix/ULFM

• 35 lines of code modified in 
S3D in total!

• Order of magnitude 
performance improvement in 
failure scenarios 
• thanks to online recovery and in-memory 

checkpoint advantage over I/O based
checkpointing

• Injection of FT layer: addition 
of a couple of Fenix calls

a strongly consistent state. In addition, we only request a
checkpoint every CHECKPOINT_PERIOD iterations, as we
will show in Section V-D.

In the following code snippet we show the rest of changes
to S3D: the usage of Fenix_Comm_Add, which is called
inside the topology module, immediately after creating each
derived communicator.
1 call MPI_Comm_split(gcomm, py+1000*pz, r, xcomm)
2 call MPI_Comm_split(gcomm, px+1000*pz, r, ycomm)
3 call MPI_Comm_split(gcomm, px+1000*py, r, zcomm)
4 call Fenix_Comm_Add(xcomm);
5 call Fenix_Comm_Add(ycomm);
6 call Fenix_Comm_Add(zcomm);
7 [...]
8 call MPI_Comm_split(gcomm, xid, r, yz_comm)
9 call MPI_Comm_split(gcomm, yid, r, xz_comm)

10 call MPI_Comm_split(gcomm, zid, r, xy_comm)
11 call Fenix_Comm_Add(yz_comm);
12 call Fenix_Comm_Add(xz_comm);
13 call Fenix_Comm_Add(xy_comm);

The overall impact on programmability using Fenix is very
low, requiring less than 35 new, changed, or rearranged lines
throughout the S3D code.

In containment domains [47] terminology, our integration
of Fenix within S3D can be seen as a top-level domain that
isolates multi-node failures from job crashes. The inclusion of
more finely grained levels to further isolate multi-node failures
is left as future work.

V. EMPIRICAL EVALUATION

If applications must tolerate high frequency failures (on
the order of 30-300 seconds) that involve only a subset of the
machine (e.g., a node, a blade, a cabinet...), we must reduce the
sources of fault tolerance overhead. By leveraging the fact that
the majority of the system will survive these failures, online
recovery can be used to further contain the failure. To enable
online recovery, data must survive multi-node failures. Data
checkpointing is therefore used. Specifically, Fenix implements
diskless [55] neighbor-based [4] checkpointing.

In this section, we evaluate the capabilities and impact of
a prototype implementation of Fenix on the Titan Cray XK7
system, using the S3D [21] combustion simulation. We also
evaluate the correctness of implicitly-coordinated checkpoint-
ing as previously described, which further reduces overhead by
not requiring any synchronization (either explicit or assumed)
from the cores.

We also present a study of a 125k-core, 24-hour production
runs with S3D on Titan, highlighting the failures encountered
and the fault tolerance actions taken.

The ultimate aim of the experimentation is to run an
execution mimicking a future extreme-scale scenario, in which
node failures occur with extremely high frequency (i.e., every
47 seconds).

A. Methodology

In order to run this experiment, we need to determine
(1) the checkpointing implementation overhead and scalability,
both in terms of data size and total core count, (2) the
optimal interval between checkpoints, calculated using the
Young formula [56] and validated with empirical results, (3)
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Fig. 2. Checkpoint time for different data sizes (1000 cores).

the scalability of recovery algorithms towards an increasing
number of concurrent failures within a group of ranks, and (4)
the weak scalability of the recovery algorithm. Finally, we are
able to run the experiment surviving frequent node failures
assuming different system MTBFs. Failures, or crashes,
are injected by sending simultaneous SIGKILL signals to the
involved application and runtime helper processes. As a result,
both the processes and the MPI runtime become unavailable to
other nodes (i.e., this is seen as a real failure in the vicinity).
As our porting of the ULFM prototype from UTK (r4579379)
on Titan only works up to ∼5000 cores, the experiments where
no crash was injected were done using Cray MPICH (v6.3.0).

In an effort to reduce the impact of performance variability,
all of the experiments presented in this section have been
repeated five times, at different days of the week and at
different times of day.
We use checkpointing as a vehicle for data resilience, but
improving its overall performance was not the goal of this
paper. As a result, the memcpy process was not optimized by
the compiler.

B. Benchmarking S3D production runs – A base line test

Currently, S3D production runs create checkpoints every
600 iterations. Our 24-hour runs on Titan using state-of-
the-art IO technology (ADIOS [57]) over 125k cores are
shown in the top part of Figure 7. The checkpoint process of
5.2 MB/core (aggregated size of 658 GB) takes ∼55 seconds,
while loading it from the filesystem takes ∼44 seconds. In
total, 1126 seconds were spent checkpointing (1.72% more
time compared to a failure-free, checkpoint-free execution3).
Our records registered 9 process/node failures, incurring a
total rollback cost of 14884 seconds (22.63% overhead) while
the rest of the recovery process took 4638 seconds (7.05%
overhead). Therefore, the total time spent in fault-tolerance-
related tasks represents 31.40% compared to a failure-free and
checkpoint-free execution.

C. Determining failure-free Checkpoint Cost

Data size. Figure 2 shows the checkpoint time for different
data sizes, ranging from 0.07 to 15 MB per core (1 to 240

3Estimated by subtracting overheads from total time.
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S3D Code snippet to declare to Fenix the
communicators to recover
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Fig. 3. Checkpoint time for different core counts (8.6 MB/core). The numbers
above each test show the aggregated bandwidth (the total checkpoint size over
the average checkpoint time).

MB per node). The bars represent the average among all
checkpoints, all cores, throughout the five repetitions, while
error bars indicate variability (including minimum, maximum,
first, and third quartile). The three different sub-bars show
the three different processes that the checkpoint algorithm
requires. Clearly, the communication cost dominates the ex-
ecution. The lower plot in Figure 2 shows that the checkpoint
time is linearly dependent on data size (for sizes greater than
1 MB/core), as expected.

The overhead caused by each array size strongly influences
the choice of the size to be used in the rest of the experiments
of this paper – 50 grid points per core, which corresponds to
8.58 MB of the yspc array.

Weak scalability. Figure 3 shows how checkpointing scales
to 250k cores as we increase total the number of cores
while achieving similar average checkpoint time, sustaining
a bandwidth of 16.8 TB/s in the test with a higher number of
cores. Again, the checkpoint procedure is dominated mostly
by the transfer cost. As expected, the memcpy time remains
constant throughout all executions, and the garbage collection
cost is negligible.

The lower communication time of the tests with less than
4k cores is due to the configured group size. In small tests it
was set to 16 nodes, while in bigger ones was set to 96 nodes
(the Cray XK7 cabinet size). As the group size is increased,
messages must traverse more Gemini nodes [53] to reach the
destination.

The minimum of each test (the lower point on the error
bars) is in all cases close to the third quartile. Furthermore,
the median (the white line inside the error bar) is below 0.075
in all cases but in the 64k test. These observations indicate that
25% of cores finish the checkpoint process within a reasonably
small time window and half of them take less than 0.075 s,
while others take more time. As this paper is not focused on
the checkpointing process, no further analysis of this behavior
is provided.

Assuming a linear relationship between checkpoint size
and checkpoint writing time in ADIOS, we can extrapolate
a production run’s checkpoint time assuming 8.58 MB/core.
This would be translated to a 90-second checkpoint write

overhead and a 72-second checkpoint read overhead, a 750-
fold increase in the checkpoint time, compared to 0.12 s with
250k ranks obtained with Fenix (Figure 3). Regarding data
recovery time, our implementation only requires the transfer of
the checkpoints to the failed nodes, a process whose overhead
can be expected to be the same as checkpoint time.

Compared to other studies, such as CRUISE [37] (an
extension of SCR [42]), our implementation is slower. This
is mainly due to the fact that we have to send the checkpoint
remotely in order to tolerate entire-node failures, while tests
done in [37] only store checkpoints in local main memory.

D. Validating Optimal Checkpoint Rate

Young’s formula [56], [58] can be used to determine TC ,
the optimal interval between two consecutive checkpoints,
depending on the MTBF of the system (TF ) and the checkpoint
time (TS). The checkpoint time has been determined in Section
V-C. As in the previous weak scalability test, checkpoint size
is 8.58 MB/core, which leads to TS = 0.0748 s in the case
of 2197 cores (Figure 3). For a system with one million
nodes, each with an MTBF of 3 years, the overall system
MTBF will drop to TF = 94.608 seconds. Using second-order
approximation for exponential distribution [56], [58], TC is
expressed as follows:

TC =
√
2TSTF =

√
2 · 0.0748s · 94.608s = 3.76s (2)

As the average S3D iteration time is 1.182 s with 50 grid points
per core (over five executions of a failure- and checkpoint-free
experiment on 2197 cores), TC can be expressed as 3 S3D
iterations rounded due to the fact that checkpoints are triggered
by the application only at the end of iterations. Using the same
procedure as in equation 2, we obtained the optimal number
of iterations between checkpoints for system’ MTBFs of 47
seconds (TC = 2) and 189 seconds (TC = 4).

As suggested in [58], we want to verify the proper usage of
the formula, i.e. the correct parameter settings and the correct
rounding of TC from seconds to application iterations. To do
that, we evaluated the total cost induced by a set of uniformly
distributed, independent failures, for several given checkpoint
rates. Specifically, assuming an MTBF of 94 seconds we used
a Poisson distribution4 to obtain ten random possible failure
timestamps within the 94-second time frame. We obtained
the following timestamps: 12, 19, 24, 32, 41, 51, 61, 70, 78,
91. Next, we had to chose 10 different number of iterations
between consecutive checkpoints. As the formula indicated
frequent checkpoints, we concentrated on the smallest five (1-
5). Also, to have an idea of the cost with lower frequency, we
chose the other five to be disperse (10, 20, 30, 40, 50).

For every checkpoint rate, we evaluated the total overhead
of fault tolerance while injecting a failure to every chosen
failure timestamp. The overheads induced in the resulting 100
experiments, each running 90 iterations, are represented in
Figure 4. To determine which is the interval that offers the
lowest overall overhead, Figure 5 shows the average of the
overheads caused by the ten different failures, on each chosen
checkpoint rate. Within the highlighted tests (2, 3, 4, and 5),
checkpointing every three or four iterations offers the best
overall solution, validating in turn the result from Young’s
formula.

4We used R v 3.0.2, rpois() with a seed of 10, λ = 10.
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Use cases: Resilient X10
• X10 is a PGAS programming language
• Legacy resilient X10 TCP based

• MPI operations in resilient X10 runtime
• Progress loop does MPI_Iprobe, post needed recv according to 

probes
• Asynchronous background collective operations (on multiple 

different comms to form 2d grids, etc).

• Recovery
• Upon failure, all communicators recreated (from shrinking a 

large communicator with spares, or using MPI_COMM_SPAWN 
to get new ones)

• Ranks reassigned identically to rebuild the same X10 “teams”

• Injection of FT layer
• Unnecessary, x10 has a runtime that hides all MPI from the 

application and handles failures internally

Source: Sara Hamouda, Benjamin Herta, Josh Milthorpe, David Grove, Olivier Tardieu. Resilient X10 over Fault Tolerant MPI. In : poster 
session SC’15, Austin, TX, 2015.

Resilient X10 over Fault Tolerant MPI
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Resilient X10

X10 is an APGAS programming language 

that is designed to provide a simple and 

clean programming model for developing 

scale-out applications.

As supercomputers grow larger, the Mean 

Time Between Failure reduces, and the 

need for writing fault tolerance 

applications becomes more critical.

By applying the HBI principle, Resilient X10 will ensure that statement D executes after Task C  nishes, despite the loss of the 
synchronization construct ( nish) at place p

try{ /*Task A*/

 at (p) { /*Task B*/

  finish { at (q) async { /*Task C*/ } }

 }

} catch(dpe:DeadPlaceException){ /*recovery steps*/}

D;

Place r Place p Place q

Resilient X10 over MPI ULFM

CBA

finish
{@q async C;}Happens Before Invariance 

Principle (HBI): 
Failure of a place should not alter 
the happens before relationship 
between statements at the 
remaining places.

val wordCount = new AtomicInteger();

val refCount = GlobalRef(wordCount);

finish for (p in Place.places()) {

  val files = getFilesForPlace(p); 

  at (p) async { //create task at place p

    val pCount = countWords(files, “ibm”);

    at (refCount.home)

      refCount().addAndGet(pCount);

  }

} print(wordCount);

Resilient X10 [1] allows X10 programs to survive process failures. 

By introducing the Happens Before Invariance Principle, it guarantees the 

correct repair of the global program structure after a failure.

Conclusion: Using a fault tolerant MPI 

implementation (ULFM), resilient X10 applications can 

achieve better performance with the optimized MPI 

communication routines and the support for high 

speed network protocols provided by MPI (e.g. 

Infiniband verbs).

Although MPI is the preferred transport layer for scale-out computing, 

Resilient X10 was initially supported only over sockets.

ULFM (User-Level Failure Mitigation) is the most recent proposed 

specification for fault tolerant MPI [2]. An implementation of ULFM is available 

based on OpenMPI 1.7.

We integrated X10 with ULFM to allow Resilient X10 applications to benefit 

from the scalability and performance of MPI.

References:
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v1.0 for running the LULESH proxy application [3] 

(a shock hydrodynamics stencil based simulation) 

running on 64 processes on 16 nodes with 

problem size 203 per process. The cluster is an 

AMD64 Linux cluster, each node having 16G RAM 

and 2 quad core AMD Opteron 2356 processors.
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Use cases: CoArrays “failed images”
WIP to support Fortran TS 18508

Additional Coarray Features in Fortran, John Reid (JKR Associates), 7th international conference on 
PGAS programmning models, 2013

• Implementation effort in progress using ULFM
• Failure detection/propagation is communicator-based (service communicator)
• RMA based communications (win_revoke interrupted) 
• Team repair based on comm_shrink – team windows recreated from service 

communicator

if (num_images(failed=.true.) > 0 ) then
form subteam(1, recover) 
sync all (stat=st) ! Will return stat_failed_image
change team (recover) 
: ! Execute as a subteam

end team 
end if 



Use cases: Monte-Carlo PDE solver
• ALSVID-UQ algorithm solving the 2-

dimensional stochastic Euler 
equations of gas dynamics.
• Multi-level Monte-carlo expressed as a 

telescopic sum

(a) failure-free (b) few failures (c) many failures

Figure 5. Results of the FT-MLMC implementation for three different failure scenarios.

In Fig. 5 we show three different results, the mean of the density ⇢ at t = 0.06s,
obtained by FT-MLMC. The result in Fig. 5(a) is computed failure-free. In Fig. 5(b) a
result is shown where 3 out of 46 processes where killed. Figure 5(c) shows the result of
a FT-MLMC run where 9 out of 46 processes where killed, among them both processes
dealing with levels 2, such that all samples of this level are missing. The deterioration of
the result is obvious.

In Fig. 6 several quantities of the FT-MLMC method for different MTBFs are pre-
sented. They are discussed in the next section. Figure 6(a) presents two measurements
for the “intermediate save” strategy. (The results for the “late save” strategy are similar.)
First, we show the percentage of processes failed during the computation. Second, the “at
least a failure” probability is shown which measures the fraction of FT-MLMC runs that
experience at least one failure. (All other FT-MLMC runs are failure-free.) Remember
that standard MPI crashes if a failure occurs.

The measurement of the FT-MLMC error versus MTBF is shown in Fig. 6(b). The
error of the failure-free ALSVID-UQ is shown at MTBF = 2 ·104 s, where the fault
tolerant strategies (“intermediate save” and “late save”) are of the same quality. For
MTBF > 200 s the error remains rather constant. This can be seen for MTBF < 200 s
where the error slightly grows. It explodes at MTBF < 40 s for the “late save” strategy,
and at MTBF < 20 s for the “intermediate save” strategy.

Figure 6(c) shows the measured wall-clock run-time for the two fault tolerant strate-
gies and the failure-free run. Between the two fault tolerant versions no significant dif-
ference is measured. At MTBF = 2 ·104 s we see the small overhead (around 5%) of
both fault tolerant runs, compared to the standard failure-free ALSVID-UQ implemen-
tation. For the fault tolerant versions the run-time remains approximately constant for
MTBF > 100 s. Then the run-time decreases.

Figure 6(d) presents two measurements for the “intermediate save” strategy. (The re-
sults for the “late save” strategy are similar.) The first measurement “all samples failed”
shows how often no samples at all could be computed, since too many processes failed.
Then no FT-MLMC result is computed, such that these runs are ignored in the error com-
putation of Fig. 6(b). The same holds for runs which crashed (indicated by “program
crashed”).

ure rates. The execution time of the FT-MLMC method is compared with the standard
failure-free MLMC method and the influence of the failures is quantified. In Section 4 we
discuss and analyse the obtained results. Finally, we draw our conclusions in Section 5.

1. FT-MLMC

The convergence rate with respect to the computational work of Monte Carlo (MC) meth-
ods, applied to estimate the expected solution to a partial differential equation with ran-
dom input, is often suboptimal. The accuracy of the MC method is determined on the one
hand by the number of samples used and on the other hand by the discretization error ac-
cepted in the computation of each sample (for instance using a finite volume method). To
increase the accuracy of the MC solution, it is not sufficient to simply use more samples,
additionally each sample has to be computed with a lower discretization error. This re-
sults in higher computational costs per sample, as for instance by using a finer mesh. This
is illustrated in Fig. 1, where two MC simulations are shown, on the left an inaccurate,
and on the right a more accurate one. The error of MC methods normally converges as

Figure 1. On the left a inaccurate MC simulation with 2 samples inaccurately computed on a coarse mesh. On
the right a more accurate MC simulation with more samples computed on a finer mesh.

1/
√

M, where M is the number of samples. If all samples were equally expensive the er-
ror versus work convergence rate would be 1/

√
work. But, increasing accuracy demands

more accurately computed samples, which comes with increasing computation costs per
sample. This explains why the MC convergence versus work is worse than 1/

√
work. If

applicable, Multi-level Monte Carlo (MLMC) methods may reach this optimal 1/
√

work
convergence rate.

In MLMC methods [4,5,6,7] not all samples are computed on the finest mesh. In
fact, most samples are computed on coarser meshes with a larger discretization error. We
specify a hierarchy of discretization levels with the corresponding mesh width, hℓ<hℓ−1,
from the coarsest level ℓ= 0 to the finest ℓ=L. We denote by Xhℓ−Xhℓ−1 a sample on
level ℓ, where Xhℓ is computed with a mesh width hℓ. Using a telescopic sum the MLMC
approximation is defined as

E[XhL ] = EM0 [Xh0 ]+
L

∑
ℓ=1

EMℓ [Xhℓ −Xhℓ−1 ].

Here, EMℓ [·] denotes the mean estimated with MC using Mℓ samples. First, the mean of
the coarsest discretization level ℓ=0 is computed. Then, the difference from each con-
secutive discretization level to the next is approximated and added. The MLMC approx-
imation is illustrated and compared to an MC method in Fig. 2, where every color sym-
bolizes a sample with equal input parameters and the discretization level is illustrated by
the underlying mesh.

Two solutions Xhℓ ,Xhℓ−1 computed on consecutive discretization levels are similar.
The MLMC method exploits that the variance of the difference Xhℓ−Xhℓ−1 decreases as ℓ
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Figure 2. The idea of MLMC is illustrated on the left and compared to the MC method on the right.

increases. The error of the MC estimate is determined by this variance and by the number
of samples Mℓ. As for large ℓ (fine mesh, and hence expensive) the variance is small,
it is possible to use fewer samples on fine levels, such that M0 >M1 >.. .>ML. More
precisely, the MLMC error is bounded by

∥E[X ]−E[XhL ]∥L2(Ω;L1) ≤ ∥E[X ]−E[XhL ]∥L1 +M−1/2
0 ∥Xh0∥L2(Ω;L1)

+
L

∑
ℓ=1

M−1/2
ℓ ∥Xhℓ −Xhℓ−1∥L2(Ω;L1).

(1)

For many problems a clever choice of Mℓ leads to the optimal MLMC convergence rate
of error versus 1/

√
work [4,5,6,7].

In [2] we proposed a fault tolerant MLMC (FT-MLMC) algorithm, which uses only
the surviving samples (unaffected by failures) to compute the MLMC estimate. The num-
ber of surviving samples is not a fixed number, but a random variable M̂ℓ from the failure
probability space Ω′. The resulting error is bounded by

∥E[X ]−E[XhL ]∥L1(Ω′;L2(Ω;L1)) ≤ ∥E[X ]−E[XhL ]∥L1(Ω′;L1)

+E[min(M̂−1/2
0 ,1)] ∥Xh0∥L2(Ω;L1) +

L

∑
ℓ=1

E[min(M̂−1/2
ℓ ,1)] ∥Xhℓ −Xhℓ−1∥L2(Ω;L1),

an error bound very similar to the failure-free MLMC method. Compared with (1), M−1/2
ℓ

is replaced by the expected value E[min(M̂−1/2
ℓ ,1)] (over the failure probability space

Ω′). The minimum covers the case where all samples of a level ℓ are lost. This introduces
a significant error in the FT-MLMC estimate [2]. Note that the coarser the level, the
larger the error, which makes it fatal to lose coarse levels.

2. Implementation

We implemented FT-MLMC using ALSVID-UQ [8], an existing MPI-parallelized code
designed for uncertainty quantification in partial differential equations using MLMC
simulations. In order to achieve fault tolerance with MPI, we chose the User Level Fail-
ure Mitigation (ULFM) [3].

2.1. ULFM

Originally, ULFM [3] was proposed as a process fault tolerance extension in the MPI-3.0
standard. However, it was removed from the standard before its release. It consists of
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a minimal set of changes, necessary for libraries and applications, to incorporate fault
tolerance. ULFM is implemented in the development branch 1.7ft of Open MPI (We use
git rev. 2d7175b).

In ULFM, process failures are reported using the return code of MPI communica-
tion routines. A point-to-point communication routine returns with success or it (even-
tually) reports the failure of the partner process. In collective communication, the re-
sult might be non-uniform, i.e., some processes report process failures, while others
successfully terminate the current communication. MPI_COMM_REVOKE can be used
to explicitly propagate knowledge about failures and prohibit any further communica-
tion on the given communicator by setting the communicator in the revoked state. Us-
ing MPI_COMM_SHRINK, a new communicator is created containing all surviving pro-
cesses of a revoked communicator. Additionally, ULFM provides a consensus protocol
by the MPI_COMM_AGREE routine.

2.2. Parallelization

The parallelization of FT-MLMC follows the approach made in ALSVID-UQ [9]. As
illustrated in Fig. 3, levels (red) are executed in parallel, like samples of the same level
(blue) and subdomains, when domain decomposition is applied to large samples of fine
levels. The load of each process can be balanced statically as samples of coarse levels
require a known fraction of the execution time of a sample of the finest level [9]. Samples
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Figure 3. Parallel distribution of work in ALSVID-UQ [9].

of very coarse levels are computed by a single process. In the actual implementation of
ALSVID-UQ multiple levels (e.g., 0 and 1 in Fig. 3) can be dealt with by one process. If
one of these processes fails, all samples of the respective level are lost, leaving us with
a large error. In order to avoid this, in FT-MLMC, we assign at least two processes to
a level such that at least two processes have to fail until all samples of a level are lost.
This is illustrated in Fig. 4, where levels 0 to 2 are distributed among 2 processes. Note
that processes dealing with the coarsest levels are usually underloaded. However, the
performance drop is marginal for large runs.
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Figure 4. Parallel distribution of work in FT-MLMC with improved failure resilience.
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• Communication pattern:
• P2p Halo exchange between decomposed domains
• Collective allreduce inside levels (between domains)
• Collective aggregation between levels

• FT pattern:
• Fine levels domain decomposed, with halo exchange 

between domains and in-memory checkpoints on 
neighbors processes, work redistributed after failure

• Coarse domains replicated (failure ignored)
• Failure of all processes holding a domain looses the 

results for that domain
• Massive failure will degrade the solution

a minimal set of changes, necessary for libraries and applications, to incorporate fault
tolerance. ULFM is implemented in the development branch 1.7ft of Open MPI (We use
git rev. 2d7175b).

In ULFM, process failures are reported using the return code of MPI communica-
tion routines. A point-to-point communication routine returns with success or it (even-
tually) reports the failure of the partner process. In collective communication, the re-
sult might be non-uniform, i.e., some processes report process failures, while others
successfully terminate the current communication. MPI_COMM_REVOKE can be used
to explicitly propagate knowledge about failures and prohibit any further communica-
tion on the given communicator by setting the communicator in the revoked state. Us-
ing MPI_COMM_SHRINK, a new communicator is created containing all surviving pro-
cesses of a revoked communicator. Additionally, ULFM provides a consensus protocol
by the MPI_COMM_AGREE routine.

2.2. Parallelization

The parallelization of FT-MLMC follows the approach made in ALSVID-UQ [9]. As
illustrated in Fig. 3, levels (red) are executed in parallel, like samples of the same level
(blue) and subdomains, when domain decomposition is applied to large samples of fine
levels. The load of each process can be balanced statically as samples of coarse levels
require a known fraction of the execution time of a sample of the finest level [9]. Samples
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of very coarse levels are computed by a single process. In the actual implementation of
ALSVID-UQ multiple levels (e.g., 0 and 1 in Fig. 3) can be dealt with by one process. If
one of these processes fails, all samples of the respective level are lost, leaving us with
a large error. In order to avoid this, in FT-MLMC, we assign at least two processes to
a level such that at least two processes have to fail until all samples of a level are lost.
This is illustrated in Fig. 4, where levels 0 to 2 are distributed among 2 processes. Note
that processes dealing with the coarsest levels are usually underloaded. However, the
performance drop is marginal for large runs.
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Use cases: Hadoop over MPI

• Non-HPC workflow usually do not consider MPI 
because it lacks FT
Judicael A. Zounmevo, Dries Kimpe, Robert Ross, and Ahmad Afsahi. 2013. Using MPI in high-performance 
computing services. In Proceedings of the 20th European MPI Users' Group Meeting (EuroMPI '13). ACM, New 
York, NY, USA, 43-48.SE), 2013 IEEE 16th International Conference on. IEEE, 2013. p. 58-65.

• ULFM permits high performance exchange in non-HPC runtimes (like 
Hadoop)
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...
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MapReduce Process

Task
Runner

Distributed
Master

Failure Hdlr

Load 
Balancer

MapReduce Process

Task
Runner

Distributed
Master

Failure Hdlr

Load 
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Figure 2: The architecture of FT-MRMPI.

2.4 Our Opportunities
We have found that we can force all processes of an MPI

program to exit if any of them detect an error using current
MPI semantics. This mimics failure detection and notifica-
tion. All the processes are terminated, and the user has to
restart the failed MapReduce application as a new job. For
this reason, the checkpoint/restart fault tolerance model [8,
40] is a logically first option for MapReduce because the
recovered application can continue processing from the lat-
est checkpoint rather than starting over. Despite the ad-
ditional overhead that the checkpoint/restart model intro-
duces, it has distinct advantages in its compatibility with
gang scheduling and it requires no changes to MPI.

Fault tolerance is one of the major focuses in the future
MPI standard. One of the proposals is User Level Failure
Mitigation (ULFM) proposed in our prior work. It enables
application-level fault tolerance by o↵ering interfaces to ap-
plications and libraries to mitigate failure. It allows a failed
MPI program to recover without restarting the job and en-
ables us to use the detect/resume fault tolerance model [15]
to recover a failed job without restarting it completely. It
provides an automated and e�cient fault tolerant job execu-
tion for MapReduce by redistributing the workload of failed
processes to the surviving ones.

To build a fault tolerant MapReduce in HPC with these
models, we need a new framework that traces the job exe-
cution state and manages workload distribution so that the
work of failed processes can be correctly saved and recovered.
These fault tolerance models also need to be carefully tai-
lored to adapt to MapReduce in HPC clusters. Next section,
we present FT-MRMPI, a novel framework for MapReduce
in MPI that supports both fault tolerance models.

3. SYSTEM DESIGN
FT-MRMPI is a fault tolerant MapReduce framework im-

plemented on MPI. It tracks a consistent state during job
execution and supports e�cient fault tolerance through two
models: checkpoint/restart and detect/resume. The check-
point/restart model o↵ers the basic fault tolerance using the
current MPI semantics. The detect/resume model enables
automated in-place recovery and a more e�cient job execu-
tion engine.

3.1 Overview
Figure 2 shows the structure of a MapReduce application

using FT-MRMPI. FT-MRMPI consists of four components:
TaskRunner, Master, FailureHandler, and LoadBalancer. It

provides a set of interfaces that enable progress tracking of
user-defined tasks. The master is a thread dedicated to job
management. It handles the data operations during check-
pointing and recovery. It also monitors the job execution
status in each process and maintains the global state consis-
tency. The failure handler is a customized MPI error handler
that performs the failure notification, state preservation, and
recovery. The load balancer estimates the completion time
of each process and redistributes the workload to mitigate
load imbalance after recovery from failures. We briefly de-
scribe some major features of FT-MRMPI in the following.

3.2 Task Runner
The lifespan of a MapReduce job can be divided into

three phases: map, shu✏e, and reduce. The map and re-
duce phases are mainly user-defined logics that read input
data, process each record, and writes output results. It is
not trivial to trace the consistent states in all three phases
at a fine granularity.
FT-MRMPI’s task runner provides a set of user-customizable

interfaces for the map and reduce phases. It embeds the
tracing feature into the user-defined logic.
Table 1 shows the interfaces for map and reduce phases

in FT-MRMPI. The main purpose of these new interfaces
is to delegate the essential operations in a MapReduce job
to the library. For example, instead of writing the file op-
erations in the map function, users are expected to tell the
library how the input data should be tokenized and how the
output records should be serialized. This can be achieved
by extending the FileRecordReader and the FileRecord-

Writer class templates. The library will perform the read
and write operations for a MapReduce job and track the
progress at fine granularity. Similarly, the user can also ex-
tend the KVWriter and the KMVReader class templates in case
of special operations is needed when handling the interme-
diate data.
After delegating the I/O operations to the library, the im-

plementation of the map and reduce functions can be largely
simplified. The map and reduce functions only need to con-
tain the job logic that needs to be applied to individual
records. We provide the Mapper and the Reducer class tem-
plates for defining map and reduce functions.
With the interfaces, FT-MRMPI generalizes the workflow

of map and reduce phases. Algorithm 1 shows an example of
a map task in FT-MRMPI. The loop in the map task reads
input data using the record reader that a user provides and
applies the user-defined map function to each input record.
Each iteration has a commit operation that tells FT-MRMPI
that the processing of the current record is finished, and the
task has reached a consistent state. The workflow of the
reduce phase follows the same loop structure.
The state tracing in the shu✏e phase is relatively simple

because no user code is involved. FT-MRMPI traces the
send and receive for each memory bu↵er in data transmission
stage as well as the merging on each partition.

3.3 Distributed Masters
Although a process-local consistent state is su�cient for

fault tolerance in the map and reduce phases. It is not
enough for the shu✏e phase. Unlike the other phases that
have no inter-process coordination, the shu✏e phase has col-
lective communication between all processes. In the shu✏e
phase, all processes in the MapReduce job exchange interme-
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for all processes.

the persistent storage, the I/O wait time is 11% longer than
MRMPI. The main overhead for periodically checkpointing
is still the increased number of I/O operations.

6.3 Performance Benefit of Fault Tolerance
Although enabling fault tolerance models in FT-MRMPI

introduces overhead to the job execution, it significantly re-
duces the potential time needed for recovering the job after
failure. Here we demonstrate the performance benefit of
fault tolerance. We run a wordcount job with 128 GB input
data. We measure the total time of two runs. The first run
has one failed process at the reduce phase. The second run
is the recovery run without any further failure. The total
time of these two runs as the performance metric.

Figure 8 shows that FT-MRMPI using the checkpoint/restart
model outperforms MR-MPI by up to 33%. Since MR-MPI
is not fault tolerant, we use the total time of a failed run and
a successful run for comparison. FT-MRMPI using the de-
tect/resume (WC) model not only outperforms MR-MPI by
up to 39%, it also achieves 10%�12% shorter job completion
time than using the checkpoint/restart model. FT-MRMPI
using the detect/resume (NWC) spends 12% � 17% longer
time to finished the job. The extra time is used to reprocess
all the tasks of the failed process.

Figure 9 shows the completion time of the failure and
recovery runs with 256 processes. Comparing the check-
point/restart model with MR-MPI, it is clear that recovering
from checkpoints significantly reduces the time in the recov-
ery run. We also observe the impact of using checkpointing
with the detect/resume model. The detect/resume (NWC)
model, which has no checkpointing, takes 15% longer than
the detect/resume (WC) model does due to the reprocess-
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ing of all tasks in the failed process. However, for simple
MapReduce jobs like wordcount, the detect/resume (NWC)
model still o↵ers decent performance compared to MR-MPI.

The checkpoint/restartmodel and the detect/resume (WC)
model achieved close performance in this case. The di↵er-
ence in the overall time of these two models is mainly be-
cause of the recovery time. As detect/resume only needs to
read the checkpoints of the failed processes, it takes signif-
icantly less time to recover. Figure 10 shows the decompo-
sition of job completion time of the checkpoint/restart and
detect/resume (WC) models. It is clear that the recovery
in the checkpoint/restart model takes longer than the detec-
t/resume (WC) model does.

6.4 Mitigating Continuous Failures
One major reason that FT-MRMPI supports the detec-

t/resume fault tolerance model is to mitigate continuous fail-
ures. The in-place recovery capability of the detect/resume
makes it the best choice for this scenario. Here we use the
BFS and the PageRank benchmarks to evaluate how FT-
MRMPI handles continuous failures in complex jobs.

For each job, we prepared 250 GB of input data. We run
these jobs with 256 processes to avoid the I/O performance
bottleneck. Continuous failures are injected by randomly
terminating one process every 5 seconds. We measure the
job completion time of both the work-conserving and the
non-work-conserving detect/resume models and compare to
a reference time. The reference time is measured as the
failure-free job completion time with the same number of
absent processes.

Figure 11 shows the job completion time of pagerank with
di↵erent number of failed nodes. The results show a signif-

Yanfei Guo, Wesley Bland, Pavan Balaji, and Xiaobo Zhou. 2015. Fault tolerant MapReduce-MPI for HPC clusters. In Proceedings of the International Conference for 
High Performance Computing, Networking, Storage and Analysis (SC '15). ACM, New York, NY, USA, , Article 34 , 12 pages.



Capabilities Recovery

• Some applications can continue w/o recovery
• Some applications are maleable
• Shrink creates a new, smaller communicator on which collectives work

• Some applications are not maleable
• Spawn can recreate a “same size” communicator
• It is easy to reorder the ranks according to the original ordering
• Pre-made code snippets available
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Minimal Feature Set for a Resilient MPI 
1. Failure Notification
2. Error Propagation
3. Error Recovery 

Not all recovery strategies
require all of these features,
that’s why the interface splits
notification, propagation and 
recovery*.

ULFM is not a recovery strategy, but a minimalistic set of 
building blocks for more complex recovery strategies. 

*: some machines are stable, supporting post-failure semantic is optional

Minimal Feature Set for FT MPI 
•  Failure Notification 
• Error Propagation 
• Error Recovery 

Not all recovery strategies  
require all of these features,  
that’s why the interface splits  
notification, propagation and recovery. 
ULFM is not a recovery strategy, but a minimalistic 
set of building blocks for more complex recovery 
strategies. 
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Notification integrating with existing 
error handling features
• Use existing error handlers
• MPI_COMM_SET_ERRHANDLER 
• conveniently capture and manage the new survivable error codes

• New error codes to deal with failures 
• MPI_ERROR_PROC_FAILED: report that the operation discovered a 

newly dead process. Returned from all blocking function, and all 
completion functions. 

• MPI_ERROR_PROC_FAILED_PENDING: report that a non-blocking 
MPI_ANY_SOURCE potential sender has been discovered dead. 

• MPI_ERROR_REVOKED: a communicator has been declared improper 
for further communications. All future communications on this 
communicator will raise the same error code, with the exception of a 
handful of recovery functions

• Operations that can’t complete return 
ERR_PROC_FAILED
• State of MPI objects unchanged (communicators, etc)
• Repeating the same operation has the same outcome

• Operations that can be completed return 
MPI_SUCCESS
• Pt-2-pt operations between non failed ranks can continue

0 1

2 3

4

6 7

SendRecv

8 9

5

Example: only rank4 should 
report the failure of rank 5



Summary of new functions
• MPI_Comm_failure_ack(comm)
• Resumes matching for MPI_ANY_SOURCE 

• MPI_Comm_failure_get_acked(comm, &group)
• Returns to the user the group of processes acknowledged to have failed 

• MPI_Comm_revoke(comm)
– Non-collective, interrupts all operations on comm (future or 

active, at all ranks) by raising MPI_ERR_REVOKED 

• MPI_Comm_shrink(comm, &newcomm) 
– Collective, creates a new communicator without failed 

processes (identical at all ranks) 

• MPI_Comm_agree(comm, &mask)
– Collective, agrees on the AND value on binary mask, 

ignoring failed processes (reliable AllReduce), and the 
return code

N
otification

Propagation
Recovery



Resolving transitive dependencies

• P1 fails 
• P2 raises an error and wants 

to change comm pattern to do 
application recovery 

• but P3..Pn are stuck in their 
posted recv

• P2 can unlock them with 
Revoke

• P3..Pn join P2 in the recovery 

2. NON-UNIFORM FAILURE KNOWLEDGE
This section discusses the rationale behind the proposed

design that justifies the introduction of the Revoke opera-
tion. We take the perspective of the performance conscious
MPI implementor, and analyze the unacceptable overhead
resulting from requiring uniformity of failure knowledge. We
then present the issues that arise when this requirement is
dropped, and the modus-operandi of the Revoke interface to
resolve them. The proposed design does indeed permit min-
imal overhead on failure free performance, as has been illus-
trated by the implementation presented in [7]. A more gen-
eral presentation of the ulfm interface can be found in [6].

2.1 Failure Detection
Failure detection has proven to be a complex but crucial

area of fault tolerance research. Although in the most ad-
verse hypothesis of a completely asynchronous system, fail-
ures (even simple processes crash, as we consider here) are
intractable in theory [17], the existence of an appropriate
failure detector permits resolving most of the theoretical
impossibilities [11]. However, requiring complete awareness
(thus active monitoring) of failures of every process by every
other process would generate an immense amount of system
noise (from heartbeat messages injected into the network
and the respective treatments on the computing resources
to respond to them), and it is known that MPI communi-
cation performance is very sensitive to system noise [23].
Fortunately, processes that are not trying to communicate
with a dead process do not need, a priori, to be aware of
its failure, as their operations are with alive processors and
therefore deadlock-free. As a consequence, failure detection
in ulfm only requires to detect failures of processes that are
direct partners in a communication operation.

2.2 Local versus Uniform Error Reporting
Another natural preconception is to consider that detec-

tion of failures at any rank results in MPI automatically
altering the state of all communication objects in which the
associated process appears (i.e. communicators, windows,
etc.). In such a model, it is understood that the failure
“damages”the communication object and renders it inappro-
priate for further communications. However, a complication
is hidden in such an approach: the state of MPI communi-
cation objects is the aggregate state of individual views by
each process of the distributed system. As failure aware-
ness is not expected to be global, the implementation would
then require internal and asynchronous propagation of fail-
ure detection, again, a process that is prone to introduce jit-
ter. Furthermore, some recovery patterns (typical in PDE
solvers [1], as an example) do not require advanced, nor
collective, corrective actions and can continue between non-
failed processes on the unmodified communication object.
As a consequence, ulfm never automatically modifies the
state of communication objects. Even if it contains failed
processes, a communicator remains a valid communication
object, until explicitly required. Therefore, error reporting
is not intended to indicate that a process failed, but to indi-
cate that an operation cannot deliver the normal semantic
at the local rank: when a failure happened, but an MPI
operation can proceed without disruption, it completes nor-
mally; when the failed process is supposed to participate in
the result of the operation, it is obviously impossible for the
operation to succeed, and an appropriate error is returned.

P1

P2

P3

Pn
Recv(Pn-1)

Recv(P1)

Recv(P[3:n]): Revoked

Recv(P1): Failed
P2 calls Revoke

Plan A Plan B

Recovery

Figure 1: The transitive communication pattern in

plan A must be interrupted before any process can

switch to the recovery communication pattern plan
B. By revoking the communication context, P2 en-

sures that all possibly unmatched operations in plan
A, which could provoke deadlocks, are interrupted.

Errors can then be captured by the application by setting
the appropriate MPI_ERRHANDLER.
An additional criterion to consider is that some MPI op-

erations are collective, or have a matching call at some other
process (e.g. Send/Recv). Convenience would call for the
same error be returned uniformly at all ranks that partici-
pated in the communication. This would easily permit track-
ing the global progress of the application (and then infer a
consistent, synchronized recovery point). However, the per-
formance consequences are dire, as it requires that every
communication concludes with an agreement operation be-
tween its participants in order to determine the global suc-
cess or failure of the communication, as viewed by each pro-
cess. Such an operation cannot be possibly achieved in less
than the cost of an AllReduce, even without accounting for
the cost of actually tolerating failures during the operation,
and would thus impose an enormous overhead on communi-
cation. In regard to the goal of maintaining an unchanged
level of performance, it is clearly unacceptable to double,
at best, the cost of all latency bound communication opera-
tions, especially when no failure has occurred. Furthermore,
it is already customary for MPI operations to have a local
only semantic, for example, when an MPI_REDUCE completes
at a non-root process, there is no guarantee that the root
has received the result of the collective operation yet. The
semantic only specifies that when the operation completes,
the local input bu↵er can be reused.
As a consequence, in ulfm, the reporting of errors has a lo-

cal operation semantic: the local completion status (in error,
or successfully) cannot be used to assume if the operation
has failed or succeeded at other ranks. In many applications,
this uncertainty is manageable, because the communication
pattern is simple enough. In some cases, however, the com-
munication pattern does not allow such flexibility, and the
application thereby requires an operation to resolve that un-
certainty, as described below.

2.3 Dependencies Between Processes
If the communication pattern is complex, the occurrence

of failures has the potential to deeply disturb the application
and prevent an e↵ective recovery from being implemented.
Consider the example in Figure 1: as long as no failure oc-
curs, the processes are communicating in a point-to-point
pattern (called plan A). Process Pk is waiting to receive a
message from Pk�1, then sends a message to Pk+1 (when

proc_failed_err_handler(MPI_Comm comm, int err, …) {
if(err == MPI_ERR_PROC_FAILED || 

err == MPI_ERR_REVOKED ) {
if(err == MPI_ERR_PROC_FAILED) MPI_Comm_revoke(comm);
recovery(comm);

}
}
ft_transitive_deps(void) {

for(i=0; i<nbrecv; i++) {
if(myrank>0) MPI_Irecv(buff, count, datatype,

myrank-1, tag, comm, &req); 
if(myrank<n) MPI_Send(buff2, count, datatype,

myrank+1, tag, comm, &req); }
}



Scalable Agreement/Shrink
• Novel Early Returning 

Agreement algorithm*
• Logarithmic topology & 

logarithmic 
computation: scalable

• 2x the Cray AllReduce
latency at 6k 
processors!
* Herault, T., Bouteiller, A., Bosilca, 
G., Gamell, M., Teranishi, K., 
Parashar, M., Dongarra, J. "Practical 
Scalable Consensus for Pseudo-
Synchronous Distributed Systems," 
SuperComputing, Austin, TX, 
November, 2015
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Summary

• Issue Ticket (w/ links to PRs)
• https://github.com/mpi-forum/mpi-issues/issues/20

• Implementation available
• It is actually fast, now.      http://fault-tolerance.org/

• User base has grown quickly
• Filling a need
• outlined best practice
• Varied use cases exercise all capabilities

• FAQ
• I don’t care, my machines are stable
• Fair enough, your implementation does not have to support FT (just provide stub interfaces so 

that FT programs compile and run w/o faults)
• I want to do only Checkpoint/Restart
• ULFM opens up faster, better C/R than before (that can use NVRAM effectively, etc)

• This is too complicated
• It doesn’t have to be: high level frameworks and code snippets for common tasks are available 

and help tremendously for quick prototyping



Scalable Resilient Constructs: Revoke
• BMG* Revoke propagation in less than 100µs
• First post-Revoke collective operation sustains 

some performance degradation resulting from 
the network jitter associated with the circulation 
of revoke tokens

• After the fifth Barrier (approximately 700µs), the 
Revoke reliable broadcast has completely 
terminated, therefore leaving the application free 
from observable jitter. 
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Figure 3: Revoke cost in Barrier depending on the

initiator rank calling MPIX_COMM_REVOKE (6,000 pro-

cesses).

erations posted on commB until the typical latency becomes
similar to pre-Revoke operations on commA.

The collective communication patterns are inherited, with-
out modification, from the Open MPI non-fault tolerant
“tuned” module. The Cray optimized MPI can, in some
instances, achieve higher performance. For the purpose of
our evaluation, the tuned generic implementation, based on
MPI point-to-point message exchanges, is representative of
users’ communication patterns commonly found in typical,
portable HPC applications.

4.2 Initiator Location and Revoke Impact
Figure 3 presents the latency of Barriers on 6,000 pro-

cesses, depending on the rank of the initiator process that
invokes the MPIX_COMM_REVOKE operation. Thanks to the
symmetric nature of the BMG topology, the Revoked Bar-
rier latency is stable and independent of the initiator rank.
One can note that the time to complete a Revoked Bar-
rier is smaller than the time to complete a normal Barrier.
The normal Barrier has a strong synchronizing semantic:
the operation cannot complete before every process has en-
tered the barrier. A Revoked Barrier doesn’t enforce that
synchronization anymore and it can complete locally before
some processes have participated. Instead, the latency of the
Revoked operation denotes the time taken by the Revoke re-
silient broadcast to reach every rank for the first time; this
propagation latency is similar to the cost of a small message
Broadcast.

However, as stated before, when the Revoke notification
has been delivered to every rank, the reliable broadcast has
not terminated yet, and some Revoke token messages have
been freshly injected in the network (at the minimum, the
2log2(n) messages injected by the last rank to deliver the
Revoke notification are still circulating in the network). As

a consequence, the performance of the first post-Revoke col-
lective operation sustains some performance degradation re-
sulting from the network jitter associated with the circula-
tion of these tokens. This performance degradation is mod-
erate, with the latency approximately doubling. The jitter
noise is equally spread on the BMG topology, therefore, the
increased latency of the first (and the much reduced impact
on the 2nd to 5th) Barrier is also independent of the initia-
tors’ rank.
Although after the first post-Revoke Barrier, no new Re-

voke tokens are injected (when the first Barrier of plan B
completes, a Revoke token has been delivered at every rank,
thus every rank has already injected its reliable broadcast
tokens), the absorption of delayed tokens and the lost syn-
chrony resulting from the initial jitter combine to impact
slightly the Barrier performance. After the fifth Barrier (ap-
proximately 700µs), the application is fully resynchronized,
and the Revoke reliable broadcast has terminated, therefore
leaving the application free from observable jitter.

4.3 Scalability
Figure 4 presents the scalability of the Barrier (left) and

AllReduce (right) collective communications in the Revoke
benchmark. The first observation is that the performance
of post-Revoke collective communications follows the same
scalability trend as the pre-Revoke operations, even those
impacted by jitter. In the case of the AllReduce collec-
tive communication, aside from the 1st post-Revoke AllRe-
duce communication, which still exhibit a moderate over-
head from jitter, the 2nd post-Revoke AllReduce is only
mildly impacted and the 3rd AllReduce exhibit no signif-
icant di↵erence from the failure free case, illustrating that
the jitter introduced by the reliable broadcast algorithm has
a lesser impact on this communication pattern. When the
number of processes increases, the impact of jitter —the
di↵erence between the failure-free and the 1st post-Revoke
operation— is almost constant (or slightly decreasing). If
this trend were to continue at larger scales, the impact of
jitter could become asymptotically negligible.
Last, while the implementations of the “tuned” collective

operations di↵er in performance trends on this Cray machine
(for reasons outside of the scope of this work, but rooting in
the internal collective algorithm selection logic being tuned
for the Infiniband network), the performance of the revoked
operation is similar in both cases, illustrating that, as long
as MPI progress is triggered, the propagation latency of the
BMG reliable broadcast is independent from the communi-
cation plan being revoked.

4.4 AllReduce and Message Size
Figure 5 presents the latency of the AllReduce collective

communication when the message size varies. Focusing first
on the cost of the Revoked AllReduce operation, one can ob-
serve that the duration of the operation remains independent
of the message size until the message size increases to 1MB
or more. As the Revoked operation is interrupted before ex-
changing the entire communication volume, this behavior is
expected. For larger message sizes, however, the delivery of
the Revoke notification may be delayed by the granularity
of the ongoing reduction computation; as these computa-
tions are progressing, the MPI progress engine is managing
them with maximum priority, and thus does not consider
incoming fragments for that time duration. As soon as one

The MPI_COMM_FREE function is defined as a collective op-
eration whose implementation is likely to be local, that is,
it usually requires no communication. In order to minimize
the performance impact, we designed a fault tolerant barrier
that can progress in the background, so that it doesn’t inflict
a significant duration increase on the MPI_COMM_FREE call it-
self. The deallocation of the communicator then becomes
lazy, when the application calls MPI_COMM_FREE, the com-
municator is marked for deallocation (and the user handle
can be destroyed immediately), however, the internal rep-
resentation of the communicator is deallocated only when
it is safe, after the background barrier completes. Simi-
larly to the Revoke operation, this barrier is implemented
at the BTL level and essentially performs a binomial reduce-
broadcast sequence. When a process receives the broadcast
direction message, it can infer that every process invoked
MPI_COMM_FREE on that communicator, hence all communi-
cation on the communicator completed1 (either successfully,
or in error when a participant died, or the revoked operation
was interrupted).

However, Revoke notification messages are not posted un-
der the control of the user, and therefore they are not com-
pleted before MPI_COMM_FREE. Thus, it is still possible that
some continue to be delivered after the loosely synchronizing
MPI_COMM_FREE has completed. In order to discriminate be-
tween di↵erent communicators using the same index, the Re-
voke message compounds the index with the epoch number,
representing how many times this index has been allocated.
This compound key is then used to perform the communi-
cator lookup (in the case of Revoke messages only, normal
MPI messages still employ the normal MPI matching with
context identifiers only). If a communicator does not exist
anymore (the message epoch is lower than the index epoch),
the Revoke message is dropped; this is safe, as when the com-
municator doesn’t exist anymore, the loosely synchronized
MPI_COMM_FREE guarantees that it has been freed at every
other process too. When the communicator with the cor-
rect epoch exists, there are two cases; 1) the communicator
had already been revoked, then the callback drops the mes-
sage and returns; 2) the communicator is not yet revoked,
then it is revoked immediately and the Revoke message is
broadcast to all neighbors.

When a communicator is revoked for the first time, the
list of pending MPI requests is traversed to mark all re-
quests on that communicator as completed in error. Their
status is set to the special error code MPIX_ERR_REVOKED,
pending RDMA operations are cancelled, and the memory
registrations are withdrawn. In addition, the unexpected
and matching queues of the communicator are also traversed
to discard incoming message fragments.

4. EXPERIMENTAL EVALUATION
The experimental evaluation of the Revoke operation is

conducted on the Darter platform, a Cray XC30 supercom-
puter hosted at the National Institute for Computational
Science (NICS). Each of the 724 compute nodes features
Two 2.6 GHz Intel 8-core XEON E5-2600 (Sandy Bridge) Se-

1Freeing a communicator that still has pending messages is
standard compliant, but strongly discouraged: as the com-
municator is not available anymore, if the operation must
report an error, it triggers the default MPI_ERRORS_ABORT
error handler, which e↵ectively makes such an application
inherently non-fault tolerant.
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Revoke notification echo

Plan A Plan B

Figure 2: The Revoke Benchmark: a process re-

vokes plan A during a collective communication. As

soon as plan A is interrupted, every process switches

to plan B, a similar communication plan, with the

same collective operation, but on a distinct, dupli-

cate communicator.

ries processors, and is connected via a Cray Aries router with
a bandwidth of 8GB/sec. We employ the ulfm Open MPI
fork, with the“tuned”collective communication module, the
“uGNI” transport module between nodes, and the “SM” trans-
port module for inter-core, shared-memory communication.

4.1 Benchmark
Because of its asymmetrical nature, the impact of the Re-

voke call cannot be measured directly. At the initiator, the
call only starts a non-synchronizing wave of token circula-
tion, and measuring the very short duration of the call is
not representative of the actual time required for the Revoke
call to operate at all target processes. Measuring the time
needed for a particular operation to be interrupted gives a
better estimate of the propagation time of a Revoke notifica-
tion. However, the overall impact remains underestimated
if one doesn’t account for the fact that even after all pro-
cesses have successfully delivered a Revoke notification, the
reliable broadcast algorithm continues to emit and handle
Revoke messages in the background for some time.
The benchmark we designed measures both the duration

and the perturbation generated by the progress of a Revoke
operation on the network. The benchmark comprises two
communication plans (illustrated in Figure 2). Plan A is a
loop that performs a given collective operation on a com-
municator that spans on all available processes (commA). At
some iteration, an initiator process does not match the col-
lective operation, but, instead, invokes MPIX_COMM_REVOKE
on commA, which e↵ectively ends plan A. Plan B is a similar
loop performing the same collective operation in a duplicate
communicator (commB) that spans on the same processes as
commA. However, because it is a distinct communicator, op-
erations on commB do not match operations on commA; in par-
ticular, the Revoke operation on commA has no e↵ect on the
semantic of collective operations posted in commB, all ranks
need to match the operation, and it completes normally. We
consider that the duration of a particular collective opera-
tion is the maximum latency across all ranks, and we then
compute the average over 2,000 repetitions of the bench-
mark. We report the latency of operations on commA before
it is revoked, and when one rank does not match the oper-
ation and instead invokes MPIX_COMM_REVOKE; this Revoked
collective communication gives an estimate of the Revoke
propagation time. Last, we report the latency of the first op-

* Bouteiller, A., Bosilca, G., Dongarra, J.J. “Plan B: 
Interruption of Ongoing MPI Operations to Support Failure 
Recovery,” In Proceedings of the 22nd European MPI 
Users' Group Meeting (EuroMPI '15). ACM

Darter, ugni network, 6000 processes



(a) failure-free (b) few failures (c) many failures

Figure 5. Results of the FT-MLMC implementation for three different failure scenarios.

In Fig. 5 we show three different results, the mean of the density ⇢ at t = 0.06s,
obtained by FT-MLMC. The result in Fig. 5(a) is computed failure-free. In Fig. 5(b) a
result is shown where 3 out of 46 processes where killed. Figure 5(c) shows the result of
a FT-MLMC run where 9 out of 46 processes where killed, among them both processes
dealing with levels 2, such that all samples of this level are missing. The deterioration of
the result is obvious.

In Fig. 6 several quantities of the FT-MLMC method for different MTBFs are pre-
sented. They are discussed in the next section. Figure 6(a) presents two measurements
for the “intermediate save” strategy. (The results for the “late save” strategy are similar.)
First, we show the percentage of processes failed during the computation. Second, the “at
least a failure” probability is shown which measures the fraction of FT-MLMC runs that
experience at least one failure. (All other FT-MLMC runs are failure-free.) Remember
that standard MPI crashes if a failure occurs.

The measurement of the FT-MLMC error versus MTBF is shown in Fig. 6(b). The
error of the failure-free ALSVID-UQ is shown at MTBF = 2 ·104 s, where the fault
tolerant strategies (“intermediate save” and “late save”) are of the same quality. For
MTBF > 200 s the error remains rather constant. This can be seen for MTBF < 200 s
where the error slightly grows. It explodes at MTBF < 40 s for the “late save” strategy,
and at MTBF < 20 s for the “intermediate save” strategy.

Figure 6(c) shows the measured wall-clock run-time for the two fault tolerant strate-
gies and the failure-free run. Between the two fault tolerant versions no significant dif-
ference is measured. At MTBF = 2 ·104 s we see the small overhead (around 5%) of
both fault tolerant runs, compared to the standard failure-free ALSVID-UQ implemen-
tation. For the fault tolerant versions the run-time remains approximately constant for
MTBF > 100 s. Then the run-time decreases.

Figure 6(d) presents two measurements for the “intermediate save” strategy. (The re-
sults for the “late save” strategy are similar.) The first measurement “all samples failed”
shows how often no samples at all could be computed, since too many processes failed.
Then no FT-MLMC result is computed, such that these runs are ignored in the error com-
putation of Fig. 6(b). The same holds for runs which crashed (indicated by “program
crashed”).

Bibliography of users’ activity
These works use ULFM
• HAMOUDA, Sara S., MILTHORPE, Josh, STRAZDINS, Peter E., et al. A Resilient Framework for Iterative Linear Algebra Applications in X10. In : 16th IEEE International Workshop on Parallel and 

Distributed Scientific and Engineering Computing (PDSEC 2015). 2015.
• ST PAULI, P. Arbenz et SCHWAB, Ch. Intrinsic fault tolerance of multi level Monte Carlo methods. ETH Zurich, Computer Science Department, Tech. Rep, 2012.
• PAULI, Stefan, KOHLER, Manuel, et ARBENZ, Peter. A fault tolerant implementation of Multi-Level Monte Carlo methods. In : PARCO. 2013. p. 471-480.
• BLAND, Wesley, DU, Peng, BOUTEILLER, Aurelien, et al. Extending the scope of the Checkpoint-on-Failure protocol for forward recovery in standard MPI. Concurrency and computation: Practice 

and experience, 2013, vol. 25, no 17, p. 2381-2393.
• ALI, Md Mortuza, SOUTHERN, James, STRAZDINS, Peter, et al. Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver. In : Parallel & Distributed Processing Symposium 

Workshops (IPDPSW), 2014 IEEE International. IEEE, 2014. p. 1169-1178.
• NAUGHTON, Thomas, ENGELMANN, Christian, VALLÉE, Geoffroy, et al.Supporting the development of resilient message passing applications using simulation. In : Parallel, Distributed and 

Network-Based Processing (PDP), 2014 22nd Euromicro International Conference on. IEEE, 2014. p. 271-278.
• ENGELMANN, Christian et NAUGHTON, Thomas. Improving the Performance of the Extreme-scale Simulator. In : Proceedings of the 2014 IEEE/ACM 18th International Symposium on 

Distributed Simulation and Real Time Applications. IEEE Computer Society, 2014. p. 198-207.
• TERANISHI, Keita et HEROUX, Michael A. Toward Local Failure Local Recovery Resilience Model using MPI-ULFM. In : Proceedings of the 21st European MPI Users' Group Meeting. ACM, 2014. p. 

51.
• ALI, Md Mohsin, STRAZDINS, Peter E., HARDING, Brendan, et al. A fault-tolerant gyrokinetic plasma application using the sparse grid combination technique. In : High Performance Computing & 

Simulation (HPCS), 2015 International Conference on. IEEE, 2015. p. 499-507.
• VALLÉE, Geoffroy, NAUGHTON, Thomas, BOHM, Swen, et al. A runtime environment for supporting research in resilient HPC system software & tools. In : Computing and Networking (CANDAR), 

2013 First International Symposium on. IEEE, 2013. p. 213-219.
• ZOUNMEVO, Judicael A., KIMPE, Dries, ROSS, Robert, et al. Extreme-scale computing services over MPI: Experiences, observations and features proposal for next-generation message passing 

interface. International Journal of High Performance Computing Applications, 2014, vol. 28, no 4, p. 435-449.
• NAUGHTON, Thomas, BÖHM, Swen, ENGELMANN, Christian, et al. Using Performance Tools to Support Experiments in HPC Resilience. In : Euro-Par 2013: Parallel Processing Workshops. 

Springer Berlin Heidelberg, 2014. p. 727-736.
• ENGELMANN, Christian et NAUGHTON, Thomas. A NETWORK CONTENTION MODEL FOR THE EXTREME-SCALE SIMULATOR.
• GAMELL, Marc, KATZ, Daniel S., KOLLA, Hemanth, et al. Exploring automatic, online failure recovery for scientific applications at extreme scales. In : Proceedings of the International Conference 

for High Performance Computing, Networking, Storage and Analysis. IEEE Press, 2014. p. 895-906.
• XIAOGUANG, Ren, XINHAI, Xu, YUHUA, Tang, et al. An Application-Level Synchronous Checkpoint-Recover Method for Parallel CFD Simulation. In : Computational Science and Engineering (C
• Judicael A. Zounmevo, Dries Kimpe, Robert Ross, and Ahmad Afsahi. 2013. Using MPI in high-performance computing services. In Proceedings of the 20th European MPI Users' Group Meeting

(EuroMPI '13). ACM, New York, NY, USA, 43-48.SE), 2013 IEEE 16th International Conference on. IEEE, 2013. p. 58-65.
• Jinho Ahn, "N Fault-Tolerant Sender-Based Message Logging for Group Communication-Based Message Passing Systems," in Computational Science and Engineering (CSE), 2014 IEEE 17th 

International Conference on , vol., no., pp.1296-1301, 19-21 Dec. 2014.

Credits: ETH Zurich

, X10

Resilient X10 over Fault Tolerant MPI

Sara Hamouda1, Benjamin Herta2, Josh Milthorpe1,2, David Grove2, Olivier Tardieu2
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Resilient X10

X10 is an APGAS programming language 

that is designed to provide a simple and 

clean programming model for developing 

scale-out applications.

As supercomputers grow larger, the Mean 

Time Between Failure reduces, and the 

need for writing fault tolerance 

applications becomes more critical.

By applying the HBI principle, Resilient X10 will ensure that statement D executes after Task C  nishes, despite the loss of the 
synchronization construct ( nish) at place p

try{ /*Task A*/

 at (p) { /*Task B*/

  finish { at (q) async { /*Task C*/ } }

 }

} catch(dpe:DeadPlaceException){ /*recovery steps*/}

D;

Place r Place p Place q

Resilient X10 over MPI ULFM

CBA

finish
{@q async C;}Happens Before Invariance 

Principle (HBI): 
Failure of a place should not alter 
the happens before relationship 
between statements at the 
remaining places.

val wordCount = new AtomicInteger();

val refCount = GlobalRef(wordCount);

finish for (p in Place.places()) {

  val files = getFilesForPlace(p); 

  at (p) async { //create task at place p

    val pCount = countWords(files, “ibm”);

    at (refCount.home)

      refCount().addAndGet(pCount);

  }

} print(wordCount);

Resilient X10 [1] allows X10 programs to survive process failures. 

By introducing the Happens Before Invariance Principle, it guarantees the 

correct repair of the global program structure after a failure.

Conclusion: Using a fault tolerant MPI 

implementation (ULFM), resilient X10 applications can 

achieve better performance with the optimized MPI 

communication routines and the support for high 

speed network protocols provided by MPI (e.g. 

Infiniband verbs).

Although MPI is the preferred transport layer for scale-out computing, 

Resilient X10 was initially supported only over sockets.

ULFM (User-Level Failure Mitigation) is the most recent proposed 

specification for fault tolerant MPI [2]. An implementation of ULFM is available 

based on OpenMPI 1.7.

We integrated X10 with ULFM to allow Resilient X10 applications to benefit 

from the scalability and performance of MPI.
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The performance improvement due to using ULFM 

v1.0 for running the LULESH proxy application [3] 

(a shock hydrodynamics stencil based simulation) 

running on 64 processes on 16 nodes with 

problem size 203 per process. The cluster is an 

AMD64 Linux cluster, each node having 16G RAM 

and 2 quad core AMD Opteron 2356 processors.


