MPI: A Message-Passing Interface Standard
Version 3.2
(Draft)

Unofficial, for comment only

Message Passing Interface Forum

May 13, 2019

Issue #96 + PR #116: Semantic Terms Update

See changes on pages:
1:xv:11-14:41-42:52:59:69;73-75;220:393:556:;721-723:837:860-864

for Chicago meeting May 28-31, 2019



hpcrabe
Schreibmaschinentext
Issue #96 + PR #116: Semantic Terms Update

See changes on pages:
i;xv;11-14;41-42;52;59;69;73-75;220;393;556;721-723;837;860-864
for Chicago meeting May 28-31, 2019

puri
Rectangle


10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

This document describes a draft version of the Message-Passing Interface (MPI) stan-
dard, version 3.1, intended for comment. It is not an official version of the standard. The
MPI standard includes point-to-point message-passing, collective communications, group
and communicator concepts, process topologies, environmental management, process cre-
ation and management, one-sided communications, extended collective operations, external
interfaces, I/O, some miscellaneous topics, and a profiling interface. Language bindings for
C and Fortran are defined.

Historically, the evolution of the standards is from MPI-1.0 (May 5, 1994) to MPI-1.1
(June 12, 1995) to MPI-1.2 (July 18, 1997), with several clarifications and additions and
published as part of the MPI-2 document, to MPI-2.0 (July 18, 1997), with new functionality,
to MPI-1.3 (May 30, 2008), combining for historical reasons the documents 1.1 and 1.2
and some errata documents to one combined document, and to MPI-2.1 (June 23, 2008),
combining the previous documents. Version MPI-2.2 (September 4, 2009) added additional
clarifications and seven new routines. Version MPI-3.0 (September 21, 2012) is an extension
of MPI-2.2. This version, MPI-3.1, adds clarifications and minor extensions to MPI-3.0

Comments. Please send comments on MPI to the MPI Forum as follows:
1. Subscribe tohttp://lists.mpi-forum.org/mailman/listinfo.cgi/mpi-comments

2. Send your comment to: mpi-comments@mpi-forum.org, together with the URL of
the version of the MPI standard and the page and line numbers on which you are
commenting.

Your comment will be forwarded to MPI| Forum committee members for consideration.
Messages sent from an unsubscribed e-mail address will not be considered.

(©1993, 1994, 1995, 1996, 1997, 2008, 2009, 2012, 2015 University of Tennessee, Knoxville,
Tennessee. Permission to copy without fee all or part of this material is granted, provided
the University of Tennessee copyright notice and the title of this document appear, and
notice is given that copying is by permission of the University of Tennessee.

Unofficial Draft for Comment Only il


http://lists.mpi-forum.org/mailman/listinfo.cgi/mpi-comments
mailto:mpi-comments@mpi-forum.org

Version 3.1: June 4, 2015. This document contains mostly corrections and clarifications to
the MPI-3.0 document. The largest change is a correction to the Fortran bindings introduced
in MPI-3.0. Additionally, new functions added include routines to manipulate MPI_Aint
values in a portable manner, nonblocking collective I/O routines, and routines to get the
index value by name for MPI_T performance and control variables.

Version 3.0: September 21, 2012. Coincident with the development of MPI-2.2 the MPI
Forum began discussions of a major extension to MPI. This document contains the MPI-3
Standard. This draft version of the MPI-3 standard contains significant extensions to MPI
functionality, including nonblocking collectives, new one-sided communication operations,
and Fortran 2008 bindings. Unlike MPI-2.2, this standard is considered a major update to
the MPI standard. As with previous versions, new features have been adopted only when
there were compelling needs for the users. Some features, however, may have more than a
minor impact on existing MPI implementations.

Version 2.2: September 4, 2009. This document contains mostly corrections and clarifi-
cations to the MPI-2.1 document. A few extensions have been added; however all correct
MPI-2.1 programs are correct MPI-2.2 programs. New features were adopted only when
there were compelling needs for users, open source implementations, and minor impact on
existing MPI implementations.

Version 2.1: June 23, 2008. This document combines the previous documents MPI-1.3 (May
30, 2008) and MPI-2.0 (July 18, 1997). Certain parts of MPI-2.0, such as some sections of
Chapter 4, Miscellany, and Chapter 7, Extended Collective Operations, have been merged
into the Chapters of MPI-1.3. Additional errata and clarifications collected by the MPI
Forum are also included in this document.

Version 1.3: May 30, 2008. This document combines the previous documents MPI-1.1 (June
12, 1995) and the MPI-1.2 Chapter in MPI-2 (July 18, 1997). Additional errata collected
by the MPI Forum referring to MPI-1.1 and MPI-1.2 are also included in this document.

Version 2.0: July 18, 1997. Beginning after the release of MPI-1.1, the MPIl Forum began
meeting to consider corrections and extensions. MPI-2 has been focused on process creation
and management, one-sided communications, extended collective communications, external
interfaces and parallel I/O. A miscellany chapter discusses items that do not fit elsewhere,
in particular language interoperability.

Version 1.2: July 18, 1997. The MPI-2 Forum introduced MPI-1.2 as Chapter 3 in the
standard “MPI-2: Extensions to the Message-Passing Interface”, July 18, 1997. This section
contains clarifications and minor corrections to Version 1.1 of the MPI Standard. The only
new function in MPI-1.2 is one for identifying to which version of the MPI Standard the
implementation conforms. There are small differences between MPI-1 and MPI-1.1. There
are very few differences between MPI-1.1 and MPI-1.2, but large differences between MPI-1.2
and MPI-2.

Unofficial Draft for Comment Only iii

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Version 1.1: June, 1995. Beginning in March, 1995, the Message-Passing Interface Forum
reconvened to correct errors and make clarifications in the MPI document of May 5, 1994,
referred to below as Version 1.0. These discussions resulted in Version 1.1. The changes
from Version 1.0 are minor. A version of this document with all changes marked is available.

Version 1.0: May, 1994. The Message-Passing Interface Forum (MPIF), with participation
from over 40 organizations, has been meeting since January 1993 to discuss and define a set
of library interface standards for message passing. MPIF is not sanctioned or supported by
any official standards organization.

The goal of the Message-Passing Interface, simply stated, is to develop a widely used
standard for writing message-passing programs. As such the interface should establish a
practical, portable, efficient, and flexible standard for message-passing.

This is the final report, Version 1.0, of the Message-Passing Interface Forum. This
document contains all the technical features proposed for the interface. This copy of the
draft was processed by KTEX on May 5, 1994.

Unofficial Draft for Comment Only iv



Contents

Acknowledgments ix
1 Introduction to MPI 1
1.1 Overview and Goals . . . . . . .. . .. ... ... .. ... 1
1.2 Background of MPI-1.0. . . . . . . .. oL oo 2
1.3 Background of MPI-1.1, MPI-1.2, and MPI-2.0 . . . . . ... ... ... ... 2
1.4 Background of MPI-1.3 and MPI-2.1 . . . .. .. ... ... ... ... .. 3
1.5 Background of MPI-2.2 . . . . . .. .. Lo 4
1.6 Background of MPI-3.0. . . . . . . .. L Lo 4
1.7 Background of MPI-3.1. . . . . . . ... Lo 4
1.8 Who Should Use This Standard? . . . .. .. ... ... ... ... ..... 5
1.9 What Platforms Are Targets for Implementation? . . . . . . . ... ... .. 5
1.10 What Is Included in the Standard? . . . . . ... ... ... ... .. .... 5
1.11 What Is Not Included in the Standard? . . . . ... .. ... ... ..... 6
1.12 Organization of This Document . . . . . . . . . ... ... ... ... .... 6
2 MPI Terms and Conventions 9
2.1 Document Notation . . . . ... ... .. . 9
2.2 Naming Conventions . . . . . . . . . . . e 9
2.3 Procedure Specification . . . .. ... Lo oL 10
2.4 Semantic Terms . . . . . . . . . . .. 11
2.5 Data Types . . . . . . o o 14
2.5.1 Opaque Objects . . . . . . . . e 14
2.5.2  Array Arguments . . . . . .. .. 16
2.5.3 State. . . . .. 17
2.5.4 Named Constants . . . . . . . . . . . .. ... ... ... ..., 17
2.5.5 Choice . . . . . o o e 18
2.5.6 Absolute Addresses and Relative Address Displacements . . . . . . . 18
2.5.7 File Offsets . . . . . . . . e 19
2.5.8 CountsS. . . . . . . . 19

2.6 Language Binding . . . . . . .. .. 19
2.6.1 Deprecated and Removed Interfaces . . . . ... .. ... ... ... 20
2.6.2 Fortran Binding Issues . . . . . . . . . ... oo 20
2.6.3 C Binding Issues . . . . . . . ... 21
2.6.4 Functions and Macros . . . . . . . . . ..o 21

2.7 Processes . . . ... e e 21
2.8 Error Handling . . . . . . .. .. . e 22



2.9 Implementation Issues . . . . . . . . ... L L 23

2.9.1 Independence of Basic Runtime Routines . . . . .. ... ... ... 23
2.9.2 Interaction with Signals . . . . . . .. .. .. ... oL 24

2.10 Examples . . . . ..o e 24
Point-to-Point Communication 27
3.1 Introduction . . . . . . . . . . . . e 27
3.2 Blocking Send and Receive Operations . . . . . . .. ... ... ... .... 28
3.21 Blocking Send . . . . ... 28
3.22 Message Data . . . . . .. . L L 29
3.2.3 Message Envelope . . . . .. ... o oo 31
3.2.4 Blocking Receive . . . . . . . .. 32
3.2.5 Return Status. . . . . . . . ... ... 34
3.2.6 Passing MPI_STATUS_IGNORE for Status . . ... ... ... ..... 36

3.3 Data Type Matching and Data Conversion . . .. ... .. ... ...... 37
3.3.1 Type Matching Rules . . . .. ... ... ... ... ... ...... 37
Type MPI_CHARACTER . . . . . . . . . . . . o oo 38

3.3.2 Data Conversion . . . . . . .. . ... . . 39

3.4 Communication Modes . . . . . . . . . . ... ... e 41
3.5 Semantics of Point-to-Point Communication . . . . . . ... ... ... ... 45
3.6 Buffer Allocation and Usage . . . . . . . . . . ... . .. 48
3.6.1 Model Implementation of Buffered Mode . . . . . . .. .. ... ... 50

3.7 Nonblocking Communication . . . . .. .. ... ... ... ......... 51
3.7.1 Communication Request Objects . . . . . . .. ... ... .. .... 52
3.7.2 Communication Initiation . . . . ... .. ... ... ... ...... 52
3.7.3 Communication Completion . . . . . . .. ... ... ... ...... 56
3.7.4  Semantics of Nonblocking Communications . . . . .. ... .. ... 60
3.7.5 Multiple Completions . . . . . . . ... ... ... 61
3.7.6 Non-destructive Test of status . . . . . . . . ... ... ... ..... 68

3.8 Probeand Cancel . . . . . . . . . . . .. ... ... 68
3.8.1 Probe . . . ... 69
3.8.2 Matching Probe . . . .. ... 72
3.8.3 Matched Receives . . . . . . . . ... 74
3.84 Cancel . . . . . . . e 76

3.9 Persistent Communication Requests . . . . . .. ... ... ... ...... 78
3.10 Send-Receive . . . . . . . . e 83
3.11 Null Processes . . . . . . . . . e e 85
Datatypes 87
4.1 Derived Datatypes . . . . . . . . . 87
4.1.1 Type Constructors with Explicit Addresses . . . . ... .. ... .. 89
4.1.2 Datatype Constructors . . . . . . . . . . . .. ... ... ... 89
4.1.3 Subarray Datatype Constructor . . . . . . .. ... .. ... ..... 98
4.1.4 Distributed Array Datatype Constructor . . . . . . .. .. .. .. .. 100
4.1.5 Address and Size Functions . . . . . .. ... ... ... ... ..., 105
4.1.6 Lower-Bound and Upper-Bound Markers . . .. ... ... ... .. 108
4.1.7 Extent and Bounds of Datatypes . . . . . . .. .. .. ... ... .. 110
4.1.8 True Extent of Datatypes . . . . . . ... ... ... ... 112

vi



4.1.9 Commit and Free . . . . . . . . . . 113

4.1.10 Duplicating a Datatype . . . . . .. .. .. ..o, 115
4.1.11 Use of General Datatypes in Communication . . . .. ... ... .. 115
4.1.12 Correct Use of Addresses . . . . . . . . . . . .. 119
4.1.13 Decoding a Datatype . . . . . . . .. .. .o 120
4.1.14 Examples . . . . . ..o 127

4.2 Pack and Unpack . . . . . . . .. 136
4.3 Canonical MPI_PACK and MPI_UNPACK . . . . . ... ... ... ..... 142
Collective Communication 145
5.1 Introduction and Overview . . . . . . ... ... ... ... ..., 145
5.2 Communicator Argument . . . . . . . . .. ... 148
5.2.1 Specifics for Intracommunicator Collective Operations . . . . . . . . 148
5.2.2  Applying Collective Operations to Intercommunicators . . . . . . . . 149
5.2.3 Specifics for Intercommunicator Collective Operations . . . . . . . . 150

5.3 Barrier Synchronization . . . . . .. .. L L L L L 151
5.4 Broadcast . . . . . . ... e 152
5.4.1 Example using MPI_BCAST . . . . .. . ... ... .. ... ..... 152

5.5 Gather . . . . . . L 153
5.5.1 Examples using MPI_GATHER, MPI_GATHERV . . . . . .. ... .. 156

5.6 Scatter . . . . . . . . e 163
5.6.1 Examples using MPI_SCATTER, MPI_SCATTERV . . . .. ... .. 166

5.7 Gather-to-all . . . . . . . . ... 169
5.7.1 Example using MPI_ALLGATHER . . . . . . . ... ... ... .... 171

5.8 All-to-All Scatter/Gather . . . . .. .. ... ... ... .. ... ... 172
5.9 Global Reduction Operations . . . . . . . . ... ... ... .. ....... 177
5.9.1 Reduce . . .. .. . e 178
5.9.2 Predefined Reduction Operations . . . . . . .. .. ... ... .... 180
5.9.3 Signed Characters and Reductions . . . . .. .. ... ... .. ... 182
5.9.4 MINLOC and MAXLOC . . ... ... ... ... ..... 183
5.9.5 User-Defined Reduction Operations . . . . .. .. ... ... .... 187
Example of User-defined Reduce . . .. ... ... ... ....... 190

5.9.6 All-Reduce . . . . .. . .. 191
5.9.7 Process-Local Reduction . . . . . ... ... ... ... ........ 193

5.10 Reduce-Scatter . . . . . . . . . . .. 194
5.10.1 MPI_REDUCE_SCATTER_BLOCK . . ... ... ... ... ..... 195
5.10.2 MPI_REDUCE_SCATTER . . . .. ... .. ... ... . ....... 196

5.11 Scan . . . . ..o 197
5.11.1 Inclusive Scan. . . . . . . . . . . . e 197
5.11.2 Exclusive Scan . . . . . . . ... 198
5.11.3 Example using MPI_SCAN . . . . . . . .. ... ... ... ..., 199

5.12 Nonblocking Collective Operations . . . . . . .. .. ... ... .. ..... 201
5.12.1 Nonblocking Barrier Synchronization . . . . . . . .. ... ... ... 203
5.12.2 Nonblocking Broadcast . . . . ... ... ... ... ... ... 204
Example using MPI_IBCAST . . . . ... ... ... ... ...... 204

5.12.3 Nonblocking Gather . . . . . ... ... ... ... ... ... 205
5.12.4 Nomnblocking Scatter . . . . . . . .. ... ... .. 207
5.12.5 Nonblocking Gather-to-all . . . . . . . ... ... ... ... .... 209

vii



5.12.6 Nonblocking All-to-All Scatter/Gather . . . . . . ... .. ... ... 211

5.12.7 Nonblocking Reduce . . . . . . ... ... ... ... 214
5.12.8 Nonblocking All-Reduce . . . . . . . ... ... ... ... ... .. 215
5.12.9 Nonblocking Reduce-Scatter with Equal Blocks . . . . . . ... ... 216
5.12.10 Nonblocking Reduce-Scatter . . . . . . .. .. .. .. ... ... .. 217
5.12.11 Nonblocking Inclusive Scan . . . . . . . ... ... ... ... ... 218
5.12.12Nonblocking Exclusive Scan . . . . . . .. .. .. ..o 219
5.13 Persistent Collective Operations . . . . . . . . . . . ... ... ... 219
5.13.1 Persistent Barrier Synchronization . . . . ... ... ... ... .. 221
5.13.2 Persistent Broadcast . . . . . . ... ... oL 221
5.13.3 Persistent Gather . . . . . . . ... L oL 222
5.13.4 Persistent Scatter. . . . . . . . . ... ... 224
5.13.5 Persistent Gather-to-all . . . . . . .. ... ... ... ........ 226
5.13.6 Persistent All-to-All Scatter/Gather . . . . ... ... ... ..... 228
5.13.7 Persistent Reduce . . . . . .. . ... . oL 231
5.13.8 Persistent All-Reduce . . . . ... ... ... ... .. 232
5.13.9 Persistent Reduce-Scatter with Equal Blocks . . . . . .. ... ... 233
5.13.10 Persistent Reduce-Scatter . . . . . . . .. .. ... 234
5.13.11 Persistent Inclusive Scan . . . . . . . . .. . ... ... ... ..... 235
5.13.12 Persistent Exclusive Scan . . . . . . . ... o000 236
5.14 Correctness . . . . . . o o e e e 236
Groups, Contexts, Communicators, and Caching 245
6.1 Introduction . . . . . . . . . . . . . e 245
6.1.1 Features Needed to Support Libraries . . . .. ... ... ... ... 245
6.1.2 MPI’s Support for Libraries . . . . . . .. ... ... ... ...... 246
6.2 Basic Concepts . . . . . . . . e 248
6.2.1 Groups . . . . . o 248
6.2.2 Contexts . . . . . . . e 248
6.2.3 Intra-Communicators . . . . . . . . . . . . ... . . 249
6.2.4 Predefined Intra-Communicators . . . . . . ... .. .. ... .... 249
6.3 Group Management . . . . . . . . . .. 250
6.3.1 Group ACCESSOTS . . . . . . . v o e 250
6.3.2 Group Constructors . . . . . . . . . . ... . 252
6.3.3 Group Destructors . . . . . . . . .. ... 257
6.4 Communicator Management . . . . . . . . . . .. ... oL 257
6.4.1 Communicator ACCESSOIS . . . . . . . v v v v it e 257
6.4.2 Communicator Constructors. . . . . . . . . ... ... ... 259
6.4.3 Communicator Destructors . . . . . . ... .. ... ... .. ..., 270
6.4.4 Communicator Info. . . . . ... ... 0oL 271
6.5 Motivating Examples . . . . . . . ... o 273
6.5.1 Current Practice #1 . . . . . . . . . . ... 273
6.5.2 Current Practice #2 . . . . . . . ... 274
6.5.3 (Approximate) Current Practice #3 . . . . . .. .. ... ... ... 274
6.5.4 Example #4 . . . . . e 275
6.5.5 Library Example #1 . . . . . . . . . ... 276
6.5.6 Library Example #2 . . . . . . . ... 278
6.6 Inter-Communication . . . . . . . . . . .. . . ... .. 280



6.6.1 Inter-communicator AcCeSSOrs . . . . . v v v v v i i 282

6.6.2 Inter-communicator Operations . . . . . . . . . . . ... ... .... 283
6.6.3 Inter-Communication Examples . . . . . . .. .. ... ... ... .. 285
Example 1: Three-Group “Pipeline” . . . . . ... ... ... .... 285

Example 2: Three-Group “Ring” . . . . . . . . ... ... ... ... 287

6.7 Caching . . . . . . . e 288
6.7.1 Functionality . . . . . .. . . ... 289
6.7.2 Communicators . . . . . . . . ... 290
6.7.3 Windows . . . . ... 295
6.7.4 Datatypes . . . . . .. 298
6.7.5 Error Class for Invalid Keyval . . . . . ... ... ... ........ 301
6.7.6 Attributes Example . . . .. .. ... L 302

6.8 Naming Objects . . . . . . . . . . 304
6.9 Formalizing the Loosely Synchronous Model . . . . . . . .. ... ... ... 308
6.9.1 Basic Statements . . . . . ... ... 308
6.9.2 Models of Execution . . . . . ... ... oo 308
Static Communicator Allocation . . . . . ... ... .. .. ..... 309

Dynamic Communicator Allocation. . . . . .. ... ... ... ... 309

The General Case . . . . . . . . ... . 309

Process Topologies 311
7.1 Introduction . . . . . . . . .. e 311
7.2 Virtual Topologies . . . . . . . . . . . . e 312
7.3 Embedding in MPl . . . . . ... 312
7.4 Overview of the Functions . . . . . . ... ... ... ... .. ........ 312
7.5 Topology Constructors . . . . . . . . . . . . . . e 314
7.5.1 Cartesian Constructor . . . . . . . . . . . ... 314
7.5.2 Cartesian Convenience Function: MPI_DIMS_CREATE . . . . . . .. 314
7.5.3 Graph Constructor . . . . . . . . ... 316
7.5.4 Distributed Graph Constructor . . . . . . ... ... ... .. .... 318
7.5.5 Topology Inquiry Functions . . . . . . .. .. ... ... ... ..., 324
7.5.6 Cartesian Shift Coordinates . . . . . . . . ... ... ... .. .... 332
7.5.7 Partitioning of Cartesian Structures . . . . .. ... ... .. .... 333
7.5.8 Low-Level Topology Functions . . . .. ... ... ... ....... 334

7.6 Neighborhood Collective Communication . . . . . ... ... ... ..... 336
7.6.1 Neighborhood Gather . . . . .. .. ... ... ... ... .... 337
7.6.2 Neighbor Alltoall . . . . . . . ... ... ... .. . 340

7.7 Nonblocking Neighborhood Communication . . . . ... .. ... ... ... 345
7.7.1 Nonblocking Neighborhood Gather . . . . . .. ... ... ... .. 346
7.7.2 Nonblocking Neighborhood Alltoall . . . . . .. ... . ... ..... 348

7.8 Persistent Neighborhood Communication . . . . . ... ... ... ..... 351
7.8.1 Persistent Neighborhood Gather . . . . . ... ... ... ... ... 351
7.8.2 Persistent Neighborhood Alltoall . . . . . . ... ... ... ..... 353

7.9 An Application Example . . . . . . . .. ... o 356

X



8 MPI Environmental Management 361

8.1 Implementation Information . . . . . . . ... .. ... ... ... ... ... 361
8.1.1 Version Inquiries . . . . . . .. . ... 361
8.1.2 Environmental Inquiries . . . . . . . . ... o o0 362

Tag Values . . . . . . . . 363
Host Rank . . . . . . . . . . 363
IORank . . . . . . . o 363
Clock Synchronization . . . . . . .. ... .. ... ... 364
Inquire Processor Name . . . . . . . . .. ... ... .. ....... 364

8.2 Memory Allocation . . . . . . . . .. L 365

8.3 Error Handling . . . . . . .. .. . . 368
8.3.1 Error Handlers for Communicators . . . . . . .. ... ... ..... 370
8.3.2 Error Handlers for Windows . . . . . . . . ... ... ... ...... 372
8.3.3 Error Handlers for Files . . . . . . .. .. ... ... ... .. ..., 373
8.3.4  Freeing Errorhandlers and Retrieving Error Strings . . . . . . . . .. 375

8.4 FError Codes and Classes . . . . . . . . . . ... 376

8.5  Error Classes, Error Codes, and Error Handlers . . . . . . . ... ... ... 376

8.6 Timers and Synchronization . . . . . . . .. ... ... .0 382

8.7 Startup . . . . . . 383
8.7.1 Allowing User Functions at Process Termination . . . . . ... ... 389
8.7.2 Determining Whether MPI Has Finished . . . . . . . ... ... ... 389

8.8 Portable MPI Process Startup . . . . . . . ... .. ... ... .. ...... 390

9 The Info Object 393
10 Process Creation and Management 399

10.1 Introduction . . . . . . . ..o Lo 399

10.2 The Dynamic Process Model . . . . . . . .. ... . ... ... ... ... 400
10.2.1 Starting Processes . . . . . . . . .. o 400
10.2.2 The Runtime Environment . . . . . . .. .. .. ... ... ..... 400

10.3 Process Manager Interface . . . . . . . .. .. ... o oL 402
10.3.1 Processesin MPIl . . . . . . . . . ... 402
10.3.2 Starting Processes and Establishing Communication . . . . . . . .. 402
10.3.3 Starting Multiple Executables and Establishing Communication . . 407
10.3.4 Reserved Keys . . . . . . . . . . . 410
10.3.5 Spawn Example . . . . . ... oo 411

Manager-worker Example Using MPI_COMM_SPAWN . . . . . . .. 411

10.4 Establishing Communication . . . . . .. .. ... ... ... ........ 413
10.4.1 Names, Addresses, Ports, and All That . .. ... ... ....... 413
10.4.2 Server Routines . . . . . . . . . ... 414
10.4.3 Client Routines . . . . . . . . . . . . . 416
10.4.4 Name Publishing . . . . . . ... ... . oo 418
10.4.5 Reserved Key Values . . . . . . . ... ... ... . ... ....... 420
10.4.6 Client/Server Examples . . . . . ... . ... ... . .. ... 420

Simplest Example — Completely Portable. . . . .. ... ... ... 420
Ocean/Atmosphere — Relies on Name Publishing . . . . .. .. .. 421
Simple Client-Server Example . . . . . . . .. .. ... ... ... 421
10.5 Other Functionality . . . . . ... ... .. .. . 423



10.5.1 Universe Size . . . . . . . . e 423

10.5.2 Singleton MPI_INIT . . . . . . . . . ... . 424
10.5.3 MPI_APPNUM . . . . . . . . . e e 424
10.5.4 Releasing Connections . . . . . . . . . . . .. . 425
10.5.5 Another Way to Establish MPl Communication . . . . . . ... ... 427

11 One-Sided Communications 429
11.1 Introduction . . . . . . . . . . . e 429
11.2 Inmitialization . . . . . . . . . . . . 430
11.2.1 Window Creation . . . . . . . . . . . . . . . e 431
11.2.2 Window That Allocates Memory . . . . . . . . ... ... ...... 433
11.2.3 Window That Allocates Shared Memory . . . . . . . ... ... ... 435
11.2.4 Window of Dynamically Attached Memory . . . .. ... ... ... 438
11.2.5 Window Destruction . . . . . . . . . ... .. ... ... ... ..., 441
11.2.6 Window Attributes . . . . . . . . . . ... ... 442
11.2.7 Window Info . . . . . . . . . . . .. 443

11.3 Communication Calls . . . . . . . . ... ... ... ... ... ....... 445
11.3.1 Put .. . . e 446
11.3.2 Get . . . . o e 448
11.3.3 Examples for Communication Calls . . . . . . . ... ... ... ... 449
11.3.4 Accumulate Functions . . . . . ... ... ... ... ... ..., 451
Accumulate Function . . . . . ... .. ... L 452

Get Accumulate Function . . . . . ... ... ... ... ... .. .. 454

Fetch and Op Function . . . . ... .. ... ... ... ....... 455

Compare and Swap Function . . . . . .. .. .. ... ... ... 457

11.3.5 Request-based RMA Communication Operations . . . . . .. .. .. 458

11.4 Memory Model . . . . . . . .. o 463
11.5 Synchronization Calls . . . . .. . ... ... o 464
11.5.1 Fence . . . . . . . . . e 468
11.5.2 General Active Target Synchronization . . . . . . ... ... ... .. 469
11.5.3 Lock . . . . . . . e 473
11.5.4 Flush and Sync . . . . . . . . ... 476
11.5.5 Assertions . . . . . . . . . . 478
11.5.6 Miscellaneous Clarifications . . . . . . . . ... ... ... ...... 480

11.6 Error Handling . . . . . . . .. . L o 480
11.6.1 Error Handlers . . . . .. . . . ... ... .. ... . ... ...... 480
11.6.2 Error Classes . . . . . . . . . . i i it i e 480

11.7 Semantics and Correctness . . . . . . . . . . . . 481
11.7.1 Atomicity . . . . . . . . 489
11.7.2 Ordering . . . . . . . . . e 489
11.7.3 Progress . . . . . . . .. 490
11.7.4 Registers and Compiler Optimizations . . . . . . .. ... ... ... 492

11.8 Examples . . . . . o Lo 492

x1



12 External Interfaces

12.1
12.2

12.3
12.4

131/0
13.1

13.2

13.3
13.4

13.5

13.6

Introduction . . . . . . . . .
Generalized Requests . . . . . . . . . L
12.2.1 Examples . . . . . .
Associating Information with Status . . . . .. ... ... ... ...
MPIl and Threads . . . . . . . . . . . . . . e
12.4.1 General . . . . . . . . . e
12.4.2 Clarifications . . . . . . . . . . . .o
12.4.3 Initialization . . . . . . . . . . .. ... o

Introduction . . . . . . . . ..
13.1.1 Definitions . . . . . . . . . e
File Manipulation . . . . . . . . . .. ... .
13.2.1 Openinga File . . . . . . .. . .
13.2.2 Closing a File . . . . . . . . . . .
13.2.3 Deletinga File . . . .. . . ... oo
13.2.4 Resizinga File . . . . . . . . ..
13.2.5 Preallocating Space fora File . . . . . . . .. .. ... ...
13.2.6 Querying the Sizeof a File . . . . . .. .. .. ...
13.2.7 Querying File Parameters . . . . . . . . . ... ... ...
13.2.8 FileInfo . . . . . . . . . .

Reserved File Hints . . . . .. ... ... .. ... ... .......
File Views . . . . . . . . e
Data Access . . . . . . o e
13.4.1 Data Access Routines . . . . . . .. ... ... ... ... ......

Positioning . . . . . ..

Synchronism . . . . .. ... oo

Coordination . . . . . . . . . . ... ...

Data Access Conventions . . . . . . . . .. .. .. ... ... ..
13.4.2 Data Access with Explicit Offsets . . . . . . . .. .. ... ... ...
13.4.3 Data Access with Individual File Pointers . . . . . . ... .. .. ..
13.4.4 Data Access with Shared File Pointers . . . . .. .. ... ... ...

Noncollective Operations . . . . . . . . . ... ... ... ...

Collective Operations . . . . . . . . . . ... ... . ... ..

Seek . . . L
13.4.5 Split Collective Data Access Routines . . . . . ... ... ... ...
File Interoperability . . . . . . .. . . ... ...
13.5.1 Datatypes for File Interoperability . . . . .. .. .. ... ... ...
13.5.2 External Data Representation: “external32” . . . . .. .. .. .. ..
13.5.3 User-Defined Data Representations . . . . . . . .. ... .. .....

Extent Callback . . . . . ... ... ... ... . ...

Datarep Conversion Functions . . . .. ... ... ... .......
13.5.4 Matching Data Representations . . . . . . . .. ... ... ... ...
Consistency and Semantics . . . . . . . . . . ... ..
13.6.1 File Consistency . . . . . . . . . .
13.6.2 Random Access vs. Sequential Files . . . . ... ... ... ... ..
13.6.3 Progress . . . . . . ..

xii



13.6.4 Collective File Operations . . . . . . . ... .. ... ... ... ... 576

13.6.5 Nonblocking Collective File Operations . . . . . .. ... ... ... 576
13.6.6 Type Matching . . . . . . . . . . ... . 577
13.6.7 Miscellaneous Clarifications . . . . . . .. . . .. ... ... ... .. 577
13.6.8 MPI_Offset Type . . . . . . . . . . o 577
13.6.9 Logical vs. Physical File Layout . . . . . . ... ... ... .. .... 578
13.6.10File Size . . . . . . . .. 578
13.6.11Examples . . . . . . ..o 578
Asynchronous I/O . . . ... ... o Lo 581

13.7 I/O Error Handling . . . . . . . . .. . . ... 583
13.8 T/O Error Classes . . . . . . v v v v i i e 583
13.9 Examples . . . . ..o 583
13.9.1 Double Buffering with Split Collective I/O . . . . . .. ... .. .. 583
13.9.2 Subarray Filetype Constructor . . . . . .. .. .. ... ... .... 586

14 Tool Support 589
14.1 Introduction . . . . . . . . .. . Lo 589
14.2 Profiling Interface . . . . . . . .. .. oo 589
14.2.1 Requirements . . . . . . . . . . L Lo 589
14.2.2 Discussion . . . . . . . . . e 590
14.2.3 Logic of the Design . . . . . . . . . . . ... 590
14.2.4 Miscellaneous Control of Profiling . . . . .. .. ... ... ..... 591
14.2.5 Profiler Implementation Example . . . . . . . .. ... .. L. 592
14.2.6 MPI Library Implementation Example . . . . . . .. ... ... ... 592
Systems with Weak Symbols . . . . . .. .. .. ... 592

Systems Without Weak Symbols . . . . . ... ... ... ... ... 593

14.2.7 Complications . . . . . . . . . ..o 593
Multiple Counting . . . . . . . . . ... L 593

Linker Oddities . . . . . . . . .. . 594

Fortran Support Methods . . . . . . .. ... ... ... ....... 594

14.2.8 Multiple Levels of Interception . . . .. . .. ... .. ... ..... 594

14.3 The MPI Tool Information Interface . . . . . .. .. .. .. ... ... ... 595
14.3.1 Verbosity Levels . . . . . . . .. . oo 596
14.3.2 Binding MPI Tool Information Interface Variables to MPl Objects . 596
14.3.3 Convention for Returning Strings . . . . . . .. . .. ... ... ... 597
14.3.4 Imitialization and Finalization . . . . . . . ... ... ... ... ... 598
14.3.5 Datatype System . . . . . . . ... 599
14.3.6 Control Variables . . . . . . . . . .. ..o 601
Control Variable Query Functions . . . . . . ... ... ... .... 601

Example: Printing All Control Variables . . . . . . . ... ... ... 604

Handle Allocation and Deallocation . . . . ... ... ... ..... 605

Control Variable Access Functions . . . . . ... ... .. ... ... 606

Example: Reading the Value of a Control Variable . . . . . ... .. 607

14.3.7 Performance Variables . . . . . . . . ... ... . 608
Performance Variable Classes . . . . . . . . ... ... ... ..... 608
Performance Variable Query Functions . . . . . ... ... ... ... 610
Performance Experiment Sessions . . . . . . . . ... ... ... 613

Handle Allocation and Deallocation . . .. ... ... ... ..... 613

xiii



Starting and Stopping of Performance Variables . . . ... ... .. 615

Performance Variable Access Functions . . . . ... ... ... ... 616

Example: Tool to Detect Receives with Long Unexpected Message
Queues . . ... 618
14.3.8 Variable Categorization . . . . . . . .. .. ... .. ... ... 620
Category Query Functions . . . . . . . . . .. .. ... ... ... 621
Category Member Query Functions . . . . . . .. .. ... ... ... 623
14.3.9 Return Codes for the MPI Tool Information Interface . . . . .. .. 624
14.3.10 Profiling Interface . . . . . . . . . . .. . oo 625
15 Deprecated Interfaces 627
15.1 Deprecated since MPI-2.0 . . . . . . . ... oo oo 627
15.2 Deprecated since MPI-2.2 . . . . . . . . ... o o 630
15.3 Deprecated since MPI-3.2 . . . . . ... Lo oo 630
16 Removed Interfaces 631
16.1 Removed MPI-1 Bindings . . . . . . . .. .. . . . . 631
16.1.1 Overview . . . . . . . . e 631
16.1.2 Removed MPI-1 Functions . . . . . . . . . . ... ... ... ..... 631
16.1.3 Removed MPI-1 Datatypes . . . . . .. .. ... .. .. ... .... 631
16.1.4 Removed MPI-1 Constants . . . . . . . .. .. ... ... ... .... 631
16.1.5 Removed MPI-1 Callback Prototypes . . . . . . . .. ... ... ... 632
16.2 C+4+ Bindings . . . . . . . . . 632
17 Backward Incompatibilities 633
17.1 Backward Incompatible since MPI-3.2 . . . . . . .. ... ... ... ..., 633
18 Language Bindings 635
18.1 Fortran Support . . . . . . .. L L 635
18.1.1 Overview . . . . . . o e 635
18.1.2 Fortran Support Through the mpi_f08 Module . . . . .. .. .. .. 636
18.1.3 Fortran Support Through the mpi Module . . . . . . ... ... ... 639
18.1.4 Fortran Support Through the mpif.h Include File . . . . . ... .. 641
18.1.5 Interface Specifications, Procedure Names, and the Profiling Interface 642
18.1.6 MPI for Different Fortran Standard Versions . . . . . . .. .. .. .. 647
18.1.7 Requirements on Fortran Compilers . . . . . . ... ... ... ... 651
18.1.8 Additional Support for Fortran Register-Memory-Synchronization . 652
18.1.9 Additional Support for Fortran Numeric Intrinsic Types . . . . . . . 653
Parameterized Datatypes with Specified Precision and Exponent Range654
Support for Size-specific MPI Datatypes . . . . . .. ... ... ... 657
Communication With Size-specific Types . . . .. .. .. ... ... 659
18.1.10 Problems With Fortran Bindings for MPI . . . . . . ... .. .. .. 661
18.1.11 Problems Due to Strong Typing . . . . . . . . ... ... ... ... 662

18.1.12 Problems Due to Data Copying and Sequence Association with Sub-
script Triplets . . . . o o L oo 663

18.1.13 Problems Due to Data Copying and Sequence Association with Vector
Subscripts . . . ... 666
18.1.14 Special Constants . . . . . . . . . . . .. ... 666

Xiv



18.1.15 Fortran Derived Types . . . . . . . . . . ... o 666

18.1.16 Optimization Problems, an Overview . . . . . . . . . ... .. .. .. 668
18.1.17 Problems with Code Movement and Register Optimization . . . . . 669
Nonblocking Operations . . . . . . ... ... ... ... ..... 669

Persistent Operations . . . . .. .. ... ... . L. 670

One-sided Communication . . . . . . . . . ... .. ... ... .... 670
MPI_BOTTOM and Combining Independent Variables in Datatypes 671

Solutions . . . . . . . . .. 672

The Fortran ASYNCHRONOUS Attribute . . . .. ... ...... 672

Calling MPI_F_SYNC_REG . . .. ... ... ... .. ....... 673

A User Defined Routine Instead of MPI_F_SYNC_REG . . . . . .. 675

Module Variables and COMMON Blocks . . . ... ... ... ... 675

The (Poorly Performing) Fortran VOLATILE Attribute . . . . . .. 675

The Fortran TARGET Attribute . . . . . . ... ... ... ..... 676

18.1.18 Temporary Data Movement and Temporary Memory Modification . 676
18.1.19 Permanent Data Movement . . . . . . . . .. ... ... ... .... 677
18.1.20 Comparison with C . . . . . . . . . . . ... 678

18.2 Language Interoperability . . . . . .. .. .. .. o 0o 683
18.2.1 Introduction . . . . . . . . . . .. ... 683
18.2.2 Assumptions . . . . . . ... 683
18.2.3 Initialization . . . . . . .. .. ... o 683
18.2.4 Transfer of Handles . . . . . ... . ... ... .. ... ... ..., 684
18.2.5 Status . . . . . . . 686
18.2.6 MPI Opaque Objects . . . . . . . . . . . . . i 688
Datatypes . . . . . . . .o 689

Callback Functions . . . . . . . . . . ... ... 690

Error Handlers . . . . .. .. .. .. o 690

Reduce Operations . . . . . . . . . . . . . .. .. ... . 691

18.2.7 Attributes . . . . . .. 691
18.2.8 Extra-State . . . . . . . . ... .. 695
18.2.9 Constants . . . . . . . . .. 695
18.2.10 Interlanguage Communication . . . . . . . . . . . ... .. ... ... 696

A Language Bindings Summary 699
A.1 Defined Values and Handles . . . . . .. ... ... ... ... ........ 699
A.1.1 Defined Constants . . . . . . . . . ... ... 699
AL2 Types . . . oo 712
A.1.3 Prototype Definitions . . . . . . . ... ... 714
CBindings . . . . . . . 714

Fortran 2008 Bindings with the mpi_f08 Module . . . ... .. ... 714

Fortran Bindings with mpif.h or the mpi Module . . . . . . ... .. 717

A.1.4 Deprecated Prototype Definitions . . . . . . . ... ... ... .... 719
A15 InmfoKeys . . . . o 720
A1.6 Info Values . . . .. . ... .. .. 720

A.2 Summary of the Semantics of all Communicating Routines . . . . . . . . .. 721
A3 CBindings . . . . . . . e 724
A.3.1 Point-to-Point Communication C Bindings . . . ... ... ... .. 724
A.3.2 Datatypes C Bindings . . . . . . ... .. Lo oo 726

XV


puri
Highlight


A4

A5

A.3.3 Collective Communication C Bindings . . . . ... .. ... ..... 728

A.3.4 Groups, Contexts, Communicators, and Caching C Bindings . . .. 732
A.3.5 Process Topologies C Bindings . . . . . ... ... ... ....... 735
A.3.6 MPI Environmental Management C Bindings . . . . . ... ... .. 737
A.3.7 The Info Object C Bindings . . . . . . . . . . ... ... ... .... 738
A.3.8 Process Creation and Management C Bindings . . . . ... ... .. 739
A.3.9 One-Sided Communications C Bindings . . . . . ... ... ... .. 739
A.3.10 External Interfaces C Bindings . . . . . . . .. ... ... ... ... 741
A311T/OCBIndings . . . . . . .. ... 742
A.3.12 Language Bindings C Bindings . . . . . . ... ... ... ...... 744
A.3.13 Tools / Profiling Interface C Bindings . . . . . ... ... ... ... 746
A.3.14 Tools / MPI Tool Information Interface C Bindings . . . .. . ... 746
A.3.15 Deprecated C Bindings . . . . . . . . ... 747
Fortran 2008 Bindings with the mpi_fO8 Module . . . .. .. ... ... .. 748
A.4.1 Point-to-Point Communication Fortran 2008 Bindings . . . . .. .. 748
A.4.2 Datatypes Fortran 2008 Bindings . . . . . . . ... ... ... .... 753
A.4.3 Collective Communication Fortran 2008 Bindings . . . . . . . .. .. 758
A.4.4 Groups, Contexts, Communicators, and Caching Fortran 2008 Bindings769
A.4.5 Process Topologies Fortran 2008 Bindings . . . . . . .. ... .. .. 776
A.4.6 MPI Environmental Management Fortran 2008 Bindings . . . . . . . 782
A.4.7 The Info Object Fortran 2008 Bindings . . . . .. .. .. ... ... 784
A.4.8 Process Creation and Management Fortran 2008 Bindings . . . . . . 785
A.4.9 One-Sided Communications Fortran 2008 Bindings . . . . . . .. .. 787
A.4.10 External Interfaces Fortran 2008 Bindings . . . . . . . ... ... .. 792
A.4.11 I/O Fortran 2008 Bindings . . . . . . . ... ... ... ... ..., 793
A.4.12 Language Bindings Fortran 2008 Bindings . . . . . . .. .. ... .. 801
A.4.13 Tools / Profiling Interface Fortran 2008 Bindings . . . . . . . . . .. 801
A.4.14 Deprecated Fortran 2008 Bindings . . . . . ... ... ... ... .. 802
Fortran Bindings with mpif.h or the mpi Module . . . . . .. ... ... .. 803
A.5.1 Point-to-Point Communication Fortran Bindings . . . . .. ... .. 803
A.5.2 Datatypes Fortran Bindings . . . . . .. ... ... ... ... ..., 806
A.5.3 Collective Communication Fortran Bindings . . . . . . .. ... ... 808
A.5.4 Groups, Contexts, Communicators, and Caching Fortran Bindings . 814
A.5.5 Process Topologies Fortran Bindings . . . . . ... ... ... .... 818
A.5.6 MPI Environmental Management Fortran Bindings . . . . . . .. .. 822
A.5.7 The Info Object Fortran Bindings . . . . .. ... ... ... .... 824
A.5.8 Process Creation and Management Fortran Bindings . . . . . . . .. 824
A.5.9 One-Sided Communications Fortran Bindings . . . . . ... ... .. 825
A.5.10 External Interfaces Fortran Bindings . . . . . . ... ... ... ... 830
A.5.11 I/O Fortran Bindings . . . . . ... ... ... oL 830
A.5.12 Language Bindings Fortran Bindings . . . . . . .. ... ... . ... 835
A.5.13 Tools / Profiling Interface Fortran Bindings . . . . . . ... ... .. 835
A.5.14 Deprecated Fortran Bindings . . . . . ... ... ... ... ..... 835

xXvi



B Change-Log
B.1 Changes from Version 3.2 to Version 4.0 . . . . . ... ... ... . .....
B.1.1 Changesin MPI-4.0 . . . . . . . .. .. ..
B.2 Changes from Version 3.1 to Version 3.2 . . . . . ... ... . ... .....
B.2.1 Changesin MPI-3.2 . . . . . .. .. . Lo
B.3 Changes from Version 3.0 to Version 3.1 . . . . . . ... ... ... .....
B.3.1 Fixes to Errata in Previous Versionsof MPI . . . . . . .. .. .. ..
B.3.2 Changesin MPI-3.1 . . . . . .. .. L o
B.4 Changes from Version 2.2 to Version 3.0 . . . . . . . ... ... .. .....
B.4.1 Fixes to Errata in Previous Versionsof MPI . . . . . . ... ... ..

B.4.2 Changesin MPI-3.0 . . . . . . . ...
B.5 Changes from Version 2.1 to Version 2.2 . . . . . . .. ... ... ......
B.6 Changes from Version 2.0 to Version 2.1 . . . . . . ... ... ... .....

Bibliography

General Index

Examples Index

MPI Constant and Predefined Handle Index
MPI Declarations Index

MPI Callback Function Prototype Index

MPI Function Index

xXvii

837
837
837
838
838
839
839
841
841
841
842
847
850

855

860

865

868

873

874

875



List of Figures

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

6.1
6.2
6.3
6.4

7.1
7.2
7.3

7.4

7.5

11.1

11.2
11.3
11.4
11.5
11.6
11.7
11.8

13.1

Collective communications, an overview . . . . . . . . . . . . . . . .. ..
Intercommunicator allgather . . . . . . . . .. ... Lo 0oL
Intercommunicator reduce-scatter . . . . . . .. ... oL
Gather example . . . . . . .. e
Gatherv example with strides . . . . . . ... ... ... ... ... ... ..
Gatherv example, 2-dimensional . . . . . . . . ... o000
Gatherv example, 2-dimensional, subarrays with different sizes . . . . . ..
Gatherv example, 2-dimensional, subarrays with different sizes and strides .
Scatter example . . . . . . .. L
Scatterv example with strides . . . . . . .. ... o000
Scatterv example with different strides and counts . . . . . ... ... ...
Race conditions with point-to-point and collective communications . . . . .
Overlapping Communicators Example . . . . .. ... ... ... ......

Intercommunicator creation using MPI_COMM_CREATE . . . . . . ... ..
Intercommunicator construction with MPI_COMM_SPLIT . . . ... .. ..
Three-group pipeline . . . . . . . . . . ... ..
Three-group ring . . . . . . . . . L L

Neighborhood gather communication example. . . . .. . ... .. ... ..
Set-up of process structure for two-dimensional parallel Poisson solver. . . .
Communication routine with local data copying and sparse neighborhood
all-to-all. . . . . oL
Communication routine with sparse neighborhood all-to-all-w and without
local data copying. . . . . . . . . . ..
Two-dimensional parallel Poisson solver with persistent sparse neighborhood
all-to-all-w and without local data copying. . . . . .. . ... ... ... ..

Schematic description of the public/private window operations in the

MPI_WIN_SEPARATE memory model for two overlapping windows. . . . . . .
Active target communication . . . . .. ...
Active target communication, with weak synchronization. . . . . .. .. ..
Passive target communication . . . . ... ..o Lo oL
Active target communication with several processes. . . . . . .. .. .. ..
Symmetric communication . . . . .. ... oL 0oL oo
Deadlock situation . . . . . ... L L oo
Nodeadlock . . . . . . . . . .

Etypes and filetypes . . . . . . ...

359



13.2 Partitioning a file among parallel processes . . . . . . . .. ... ... ... 520

13.3 Displacements . . . . . . . . . .. 533
13.4 Example array file layout . . . . . . ... . oo oo 586
13.5 Example local array filetype for process 1 . . . . .. . ... ... ... ... 587
18.1 Status conversion routines . . . . . . . . . ... 687

Xix



© oo ~ =] ot - w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

List of Tables

2.1

3.1
3.2
3.3
3.4

4.1

6.1

8.1
8.2

11.1

11.2

13.1
13.2
13.3

14.1
14.2
14.3
14.4
14.5

16.1
16.2
16.3
16.4

18.1
18.2

Deprecated and Removed constructs . . . . . . ... ... ... ... ... .

Predefined MPI datatypes corresponding to Fortran datatypes . . . . . . ..
Predefined MPI datatypes corresponding to C datatypes . . . . . .. .. ..
Predefined MPI datatypes corresponding to both C and Fortran datatypes .
Predefined MPI datatypes corresponding to C++ datatypes . . . . . .. ..

combiner values returned from MPI_TYPE_GET_ENVELOPE . .. ... ..
MPI_COMM_* Function Behavior (in Inter-Communication Mode) . . . . .

Error classes (Part 1) . . . . . . . . . ...
Error classes (Part 2) . . . . . . . . ... L

C types of attribute value argument to MPI_WIN_GET_ATTR and

MPI_WIN_SET_ATTR. . . . . . e

Error classes in one-sided communication routines . . . . . . . . . .. ...

Data access routines . . . . . . ...
“external32” sizes of predefined datatypes . . . . .. .. .. .. .. .....
I/O Error Classes . . . . . . . o v v i i it i

MPI tool information interface verbosity levels . . . . . . .. ... ... ...
Constants to identify associations of variables . . . . . . . . ... ... ...
MPI datatypes that can be used by the MPI tool information interface . . .
Scopes for control variables . . . . .. . ... ... L
Return codes used in functions of the MPI tool information interface . . . .

Removed MPI-1 functions and their replacements . . . . . .. ... ... ..
Removed MPI-1 datatypes and their replacements . . . . . . . . ... .. ..
Removed MPI-1 constants . . . . . . ... ... ... ... ... . ......
Removed MPI-1 callback prototypes and their replacements . . . . . .. ..

Specific Fortran procedure names and related calling conventions . . . . . .
Occurrence of Fortran optimization problems . . . . ... ... ... ....

Unofficial Draft for Comment Only

121

282

377
378

535
568
584

596
097
599
603
626

631
632
632
632

643
669



Acknowledgments

This document is the product of a number of distinct efforts in three distinct phases:
one for each of MPI-1, MPI-2, and MPI-3. This section describes these in historical order,
starting with MPI-1. Some efforts, particularly parts of MPI-2, had distinct groups of
individuals associated with them, and these efforts are detailed separately.

This document represents the work of many people who have served on the MPI Forum.
The meetings have been attended by dozens of people from many parts of the world. It is
the hard and dedicated work of this group that has led to the MPI standard.

The technical development was carried out by subgroups, whose work was reviewed
by the full committee. During the period of development of the Message-Passing Interface
(MPI), many people helped with this effort.

Those who served as primary coordinators in MPI-1.0 and MPI-1.1 are:

e Jack Dongarra, David Walker, Conveners and Meeting Chairs

o Ewing Lusk, Bob Knighten, Minutes

e Marc Snir, William Gropp, Ewing Lusk, Point-to-Point Communication
e Al Geist, Marc Snir, Steve Otto, Collective Communication

e Steve Otto, Editor

e Rolf Hempel, Process Topologies

e Ewing Lusk, Language Binding

e William Gropp, Environmental Management

e James Cownie, Profiling

e Tony Skjellum, Lyndon Clarke, Marc Snir, Richard Littlefield, Mark Sears, Groups,
Contexts, and Communicators

e Steven Huss-Lederman, Initial Implementation Subset

The following list includes some of the active participants in the MPI-1.0 and MPI-1.1
process not mentioned above.

Unofficial Draft for Comment Only poel

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Ed Anderson
Scott Berryman
Jim Feeney
Daniel Frye
Leslie Hart
Alex Ho

James Kohl
Peter Madams
Charles Mosher
Paul Pierce
Erich Schikuta
Robert G. Voigt

Robert Babb
Rob Bjornson
Vince Fernando
Tan Glendinning
Tom Haupt

C.T. Howard Ho
Susan Krauss
Alan Mainwaring
Dan Nessett
Sanjay Ranka
Ambuj Singh
Dennis Weeks

Joe Baron
Nathan Doss
Sam Fineberg
Adam Greenberg
Don Heller
Gary Howell
Bob Leary
Oliver McBryan
Peter Pacheco
Peter Rigsbee
Alan Sussman
Stephen Wheat

Eric Barszcz
Anne Elster

Jon Flower
Robert Harrison
Tom Henderson
John Kapenga
Arthur Maccabe
Phil McKinley
Howard Palmer
Arch Robison

Robert Tomlinson

Steve Zenith

The University of Tennessee and Oak Ridge National Laboratory made the draft avail-

able by anonymous FTP mail servers and were instrumental in distributing the document.

The work on the MPI-1 standard was supported in part by ARPA and NSF under grant

ASC-9310330, the National Science Foundation Science and Technology Center Cooperative
Agreement No. CCR-8809615, and by the Commission of the European Community through
Esprit project P6643 (PPPE).

MPI-1.2 and MPI-2.0:

Those who served as primary coordinators in MPI-1.2 and MPI-2.0 are:

Ewing Lusk, Convener and Meeting Chair

Steve Huss-Lederman, Editor

Ewing Lusk, Miscellany

Bill Saphir, Process Creation and Management

Marc Snir, One-Sided Communications

Bill Gropp and Anthony Skjellum, Extended Collective Operations

Steve Huss-Lederman, External Interfaces

Bill Nitzberg, 1/O

Andrew Lumsdaine, Bill Saphir, and Jeff Squyres, Language Bindings

Anthony Skjellum and Arkady Kanevsky, Real-Time

meetings and are not mentioned above.

Unofficial Draft for Comment Only

The following list includes some of the active participants who attended MPI-2 Forum

xxii



Greg Astfalk
Pete Bradley
Eric Brunner
Ying Chen
Lyndon Clarke
Zhengian Cui
Judith Devaney
Terry Dontje
Karl Feind

Tan Foster
Robert George
Leslie Hart
Alex Ho

Karl Kesselman
Steve Landherr

Robert Babb
Peter Brennan
Greg Burns
Albert Cheng Yong Cho
Laurie Costello Dennis Cottel
Suresh Damodaran-Kamal

David DiNucci Doug Doefler
Nathan Doss Anne Elster
Sam Fineberg Craig Fischberg
Hubertus Franke Richard Frost
David Greenberg John Hagedorn
Shane Hebert Rolf Hempel
Hans-Christian Hoppe Joefon Jann
Koichi Konishi Susan Kraus
Mario Lauria Mark Law

Ed Benson
Ron Brightwell
Margaret Cahir

Lloyd Lewins Ziyang Lu Bob Madahar
John May Oliver McBryan Brian McCandless
Thom McMahon Harish Nag Nick Nevin

Ron Oldfield Peter Ossadnik Steve Otto

Yoonho Park
Paul Pierce
James Pruyve

Perry Partow Pratap Pattnaik

Heidi Poxon

Rolf Rabenseifner Joe Rieken

Tom Robey Anna Rounbehler Nobutoshi Sagawa
Eric Salo Darren Sanders Eric Sharakan
Fred Shirley Lance Shuler A. Gordon Smith
David Taylor Stephen Taylor Greg Tensa
Marydell Tholburn Dick Treumann Simon Tsang
David Walker Jerrell Watts Klaus Wolf

Dave Wright

The MPI Forum also acknowledges and appreciates the valuable input from people via

e-mail and in person.

The following institutions supported the MPI-2 effort through time and travel support

for the people listed above.

Argonne National Laboratory

Bolt, Beranek, and Newman
California Institute of Technology
Center for Computing Sciences
Convex Computer Corporation

Cray Research

Digital Equipment Corporation
Dolphin Interconnect Solutions, Inc.
Edinburgh Parallel Computing Centre
General Electric Company

German National Research Center for Information Technology

Hewlett-Packard
Hitachi
Hughes Aircraft Company

Unofficial Draft for Comment Only

Jean-Pierre Prost

Rajesh Bordawekar
Maciej Brodowicz
Pang Chen

Joel Clark

Jim Cownie

Raja Daoud

Jack Dongarra
Mark Fallon
Stephen Fleischman
Al Geist

Kei Harada

Tom Henderson
Terry Jones
Steve Kubica
Juan Leon

Peter Madams
Tyce McLarty
Jarek Nieplocha
Peter Pacheco
Elsie Pierce

Boris Protopopov
Peter Rigsbee
Arindam Saha
Andrew Sherman
Tan Stockdale
Rajeev Thakur
Manuel Ujaldon
Parkson Wong

xxiil

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Intel Corporation

International Business Machines

Khoral Research

Lawrence Livermore National Laboratory

Los Alamos National Laboratory

MPI Software Techology, Inc.

Mississippi State University

NEC Corporation

National Aeronautics and Space Administration
National Energy Research Scientific Computing Center
National Institute of Standards and Technology
National Oceanic and Atmospheric Adminstration
Oak Ridge National Laboratory

The Ohio State University

PALLAS GmbH

Pacific Northwest National Laboratory

Pratt & Whitney

San Diego Supercomputer Center

Sanders, A Lockheed-Martin Company

Sandia National Laboratories

Schlumberger

Scientific Computing Associates, Inc.

Silicon Graphics Incorporated

Sky Computers

Sun Microsystems Computer Corporation
Syracuse University

The MITRE Corporation

Thinking Machines Corporation

United States Navy

University of Colorado

University of Denver

University of Houston

University of Illinois

University of Maryland

University of Notre Dame

University of San Fransisco

University of Stuttgart Computing Center
University of Wisconsin

MPI-2 operated on a very tight budget (in reality, it had no budget when the first
meeting was announced). Many institutions helped the MPI-2 effort by supporting the
efforts and travel of the members of the MP| Forum. Direct support was given by NSF and
DARPA under NSF contract CDA-9115428 for travel by U.S. academic participants and
Esprit under project HPC Standards (21111) for European participants.

Unofficial Draft for Comment Only xxiv



MPI-1.3 and MPI-2.1:

The
[}

editors and organizers of the combined documents have been:
Richard Graham, Convener and Meeting Chair
Jack Dongarra, Steering Committee
Al Geist, Steering Committee
Bill Gropp, Steering Committee
Rainer Keller, Merge of MPI-1.3
Andrew Lumsdaine, Steering Committee

Ewing Lusk, Steering Committee, MPI-1.1-Errata (Oct. 12, 1998) MPI-2.1-Errata
Ballots 1, 2 (May 15, 2002)

Rolf Rabenseifner, Steering Committee, Merge of MPI-2.1 and MPI-2.1-Errata Ballots
3, 4 (2008)

All chapters have been revisited to achieve a consistent MPI-2.1 text. Those who served

as authors for the necessary modifications are:

Bill Gropp, Front matter, Introduction, and Bibliography
Richard Graham, Point-to-Point Communication

Adam Moody, Collective Communication

Richard Treumann, Groups, Contexts, and Communicators

Jesper Larsson Traff, Process Topologies, Info-Object, and One-Sided Communica-
tions

George Bosilca, Environmental Management

David Solt, Process Creation and Management

Bronis R. de Supinski, External Interfaces, and Profiling

Rajeev Thakur, I/O

Jeffrey M. Squyres, Language Bindings and MPI-2.1 Secretary
Rolf Rabenseifner, Deprecated Functions and Annex Change-Log
Alexander Supalov and Denis Nagorny, Annex Language Bindings

The following list includes some of the active participants who attended MPI-2 Forum

meetings and in the e-mail discussions of the errata items and are not mentioned above.

Unofficial Draft for Comment Only XXV

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Pavan Balaji
Richard Barrett
Gil Bloch
Darius Buntinas
Terry Dontje
Karl Feind
David Gingold
Robert Harrison
Torsten Hoefler
Matthew Koop
Miron Livny
Avneesh Pant
Craig Rasmussen Hubert Ritzdorf
Tony Skjellum Brian Smith
Jesper Larsson Traff Keith Underwood

Purushotham V. Bangalore
Christian Bell

Ron Brightwell
Jonathan Carter
Gabor Dozsa

Edgar Gabriel

Dave Goodell
Thomas Herault
Joshua Hursey
Quincey Koziol
Kannan Narasimhan
Steve Poole

Brian Barrett
Robert Blackmore
Jeffrey Brown
Nathan DeBardeleben
Edric Ellis

Patrick Geoffray
Erez Haba

Steve Hodson
Yann Kalemkarian
Sameer Kumar
Mark Pagel
Howard Pritchard
Rob Ross

Vinod Tipparaju

The MPI Forum also acknowledges and appreciates the valuable input from people via

e-mail and in person.

The following institutions supported the MPI-2 effort through time and travel support

for the people listed above.

Argonne National Laboratory
Bull

Cisco Systems, Inc.

Cray Inc.

The HDF Group
Hewlett-Packard

IBM T.J. Watson Research
Indiana University

Institut National de Recherche en Informatique et Automatique (INRIA)

Intel Corporation

Lawrence Berkeley National Laboratory
Lawrence Livermore National Laboratory
Los Alamos National Laboratory
Mathworks

Mellanox Technologies

Microsoft

Myricom

NEC Laboratories Europe, NEC Europe Ltd.
Oak Ridge National Laboratory

The Ohio State University

Pacific Northwest National Laboratory
QLogic Corporation

Sandia National Laboratories

SiCortex

Silicon Graphics Incorporated

Sun Microsystems, Inc.

University of Alabama at Birmingham
University of Houston

Unofficial Draft for Comment Only

XXVi



University of Illinois at Urbana-Champaign

University of Stuttgart, High Performance Computing Center Stuttgart (HLRS)
University of Tennessee, Knoxville

University of Wisconsin

Funding for the MPI Forum meetings was partially supported by award #CCF-0816909

from the National Science Foundation. In addition, the HDF Group provided travel support
for one U.S. academic.

MPI-2.2:

All chapters have been revisited to achieve a consistent MPI-2.2 text. Those who served as
authors for the necessary modifications are:

William Gropp, Front matter, Introduction, and Bibliography; MPI-2.2 chair.
Richard Graham, Point-to-Point Communication and Datatypes

Adam Moody, Collective Communication

Torsten Hoefler, Collective Communication and Process Topologies

Richard Treumann, Groups, Contexts, and Communicators

Jesper Larsson Traff, Process Topologies, Info-Object and One-Sided Communications
George Bosilca, Datatypes and Environmental Management

David Solt, Process Creation and Management

Bronis R. de Supinski, External Interfaces, and Profiling

Rajeev Thakur, I/O

Jeffrey M. Squyres, Language Bindings and MPI-2.2 Secretary

Rolf Rabenseifner, Deprecated Functions, Annex Change-Log, and Annex Language
Bindings

Alexander Supalov, Annex Language Bindings

The following list includes some of the active participants who attended MPI-2 Forum

meetings and in the e-mail discussions of the errata items and are not mentioned above.

Unofficial Draft for Comment Only xxvil

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



Pavan Balaji

Richard Barrett

Gil Bloch

Jeff Brown

Nathan DeBardeleben

Purushotham V. Bangalore
Christian Bell

Ron Brightwell

Darius Buntinas

Terry Dontje

Brian Barrett
Robert Blackmore
Greg Bronevetsky
Jonathan Carter
Gabor Dozsa

6 Edric Ellis Karl Feind Edgar Gabriel
7 Patrick Geoffray Johann George David Gingold
8 David Goodell Erez Haba Robert Harrison

10

11

12

13

Thomas Herault
Joshua Hursey
Hideyuki Jitsumoto
Ranier Keller
Manojkumar Krishnan

Marc-André Hermanns
Yutaka Ishikawa

Terry Jones

Matthew Koop
Sameer Kumar

Steve Hodson

Bin Jia

Yann Kalemkarian
Quincey Koziol
Miron Livny

14 Andrew Lumsdaine Miao Luo Ewing Lusk

15 Timothy I. Mattox Kannan Narasimhan Mark Pagel

16 Avneesh Pant Steve Poole Howard Pritchard
17 Craig Rasmussen Hubert Ritzdorf Rob Ross

20

Martin Schulz
Christian Siebert
Naoki Sueyasu

Pavel Shamis
Anthony Skjellum
Vinod Tipparaju

Galen Shipman
Brian Smith
Keith Underwood

21 Rolf Vandevaart Abhinav Vishnu Weikuan Yu
22

23 The MPI Forum also acknowledges and appreciates the valuable input from people via
24 e-mail and in person.

25 The following institutions supported the MPI-2.2 effort through time and travel support
26 for the people listed above.

2z Argonne National Laboratory

28 Auburn University

2 Bull

30 Cisco Systems, Inc.

31 Cray Inc.

32 Forschungszentrum Jiilich

33 Fujitsu

34 The HDF Group

35 Hewlett-Packard

36 International Business Machines

37 Indiana University

38 Institut National de Recherche en Informatique et Automatique (INRIA)
39 Institute for Advanced Science & Engineering Corporation

40 Intel Corporation

41 Lawrence Berkeley National Laboratory

42 Lawrence Livermore National Laboratory

43 Los Alamos National Laboratory

a4 Mathworks

45 Mellanox Technologies

46 Microsoft

47 Myricom

48 NEC Corporation

Unofficial Draft for Comment Only xxviil



and

Oak Ridge National Laboratory

The Ohio State University

Pacific Northwest National Laboratory
QLogic Corporation

RunTime Computing Solutions, LLC
Sandia National Laboratories

SiCortex, Inc.

Silicon Graphics Inc.

Sun Microsystems, Inc.

Tokyo Institute of Technology

University of Alabama at Birmingham
University of Houston

University of Illinois at Urbana-Champaign
University of Stuttgart, High Performance Computing Center Stuttgart (HLRS)
University of Tennessee, Knoxville
University of Tokyo

University of Wisconsin

Funding for the MPI Forum meetings was partially supported by awards #CCF-0816909
#CCF-1144042 from the National Science Foundation. In addition, the HDF Group

provided travel support for one U.S. academic.

MPI-3.0:
MPI-3.0 is a signficant effort to extend and modernize the MPI Standard.

The

editors and organizers of the MPI-3.0 have been:

William Gropp, Steering committee, Front matter, Introduction, Groups, Contexts,
and Communicators, One-Sided Communications, and Bibliography

Richard Graham, Steering committee, Point-to-Point Communication, Meeting Con-
vener, and MPI-3.0 chair

Torsten Hoefler, Collective Communication, One-Sided Communications, and Process
Topologies

George Bosilca, Datatypes and Environmental Management
David Solt, Process Creation and Management

Bronis R. de Supinski, External Interfaces and Tool Support
Rajeev Thakur, I/O and One-Sided Communications

Darius Buntinas, Info Object

Jeffrey M. Squyres, Language Bindings and MPI-3.0 Secretary

Rolf Rabenseifner, Steering committee, Terms and Definitions, and Fortran Bindings,
Deprecated Functions, Annex Change-Log, and Annex Language Bindings

Craig Rasmussen, Fortran Bindings

Unofficial Draft for Comment Only XXX

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

The following list includes some of the active participants who attended MPI-3 Forum

Tatsuya Abe

Reinhold Bader

Brian Barrett
Aurelien Bouteiller
Jed Brown

Arno Candel
Raghunath Raja Chandrasekar
Edgar Gabriel

David Goodell

Jeff Hammond
Jennifer Herrett-Skjellum
Joshua Hursey

Nysal Jan

Yann Kalemkarian
Chulho Kim

Alice Koniges
Manojkumar Krishnan
Jay Lofstead

Miao Luo

Nick M. Maclaren
Scott McMillan

Tim Murray

Steve Oyanagi
Sreeram Potluri
Hubert Ritzdorf
Martin Schulz
Anthony Skjellum
Raffaele Giuseppe Solca
Sayantan Sur

Vinod Tipparaju
Keith Underwood
Abhinav Vishnu

Tomoya Adachi
Pavan Balaji
Richard Barrett
Ron Brightwell
Darius Buntinas
George Carr
James Dinan
Balazs Gerofi
Manjunath Gorentla
Thomas Herault
Nathan Hjelm
Marty Itzkowitz
Bin Jia

Krishna Kandalla
Dries Kimpe
Quincey Koziol
Sameer Kumar
Bill Long

Ewing Lusk
Amith Mamidala
Douglas Miller
Tomotake Nakamura
Mark Pagel
Howard Pritchard
Kuninobu Sasaki
Gilad Shainer
Brian Smith
Shinji Sumimoto
Masamichi Takagi
Jesper Larsson Traff
Rolf Vandevaart
Min Xie

meetings or participated in the e-mail discussions and who are not mentioned above.

Sadaf Alam
Purushotham V. Bangalore
Robert Blackmore
Greg Bronevetsky
Devendar Bureddy
Mohamad Chaarawi
Terry Dontje

Brice Goglin

Erez Haba
Marc-André Hermanns
Atsushi Hori

Yutaka Ishikawa
Hideyuki Jitsumoto
Takahiro Kawashima
Christof Klausecker
Dieter Kranzlmueller
Eric Lantz

Andrew Lumsdaine
Adam Moody
Guillaume Mercier
Kathryn Mohror
Takeshi Nanri
Swann Perarnau
Rolf Riesen

Timo Schneider
Christian Siebert
Marc Snir
Alexander Supalov
Fabian Tillier
Richard Treumann
Anh Vo

Engiang Zhou

The MPI Forum also acknowledges and appreciates the valuable input from people via

e-mail and in person.

The MPI Forum also thanks those that provided feedback during the public comment
period. In particular, the Forum would like to thank Jeremiah Wilcock for providing detailed
comments on the entire draft standard.

The following institutions supported the MPI-3 effort through time and travel support
for the people listed above.

Argonne National Laboratory
Bull
Cisco Systems, Inc.

Cray Inc.
CSCS

Unofficial Draft for Comment Only XXX



ETH Zurich

Fujitsu Ltd.

German Research School for Simulation Sciences

The HDF Group

Hewlett-Packard

International Business Machines

IBM India Private Ltd

Indiana University

Institut National de Recherche en Informatique et Automatique (INRIA)
Institute for Advanced Science & Engineering Corporation
Intel Corporation

Lawrence Berkeley National Laboratory

Lawrence Livermore National Laboratory

Los Alamos National Laboratory

Mellanox Technologies, Inc.

Microsoft Corporation

NEC Corporation

National Oceanic and Atmospheric Administration, Global Systems Division
NVIDIA Corporation

Oak Ridge National Laboratory

The Ohio State University

Oracle America

Platform Computing

RIKEN AICS

RunTime Computing Solutions, LLC

Sandia National Laboratories

Technical University of Chemnitz

Tokyo Institute of Technology

University of Alabama at Birmingham

University of Chicago

University of Houston

University of Illinois at Urbana-Champaign

University of Stuttgart, High Performance Computing Center Stuttgart (HLRS)
University of Tennessee, Knoxville

University of Tokyo

Funding for the MPI Forum meetings was partially supported by awards #CCF-0816909

and #CCF-1144042 from the National Science Foundation. In addition, the HDF Group
and Sandia National Laboratories provided travel support for one U.S. academic each.
MPI-3.1:

MPI-3.1 is a minor update to the MPI Standard.
The editors and organizers of the MPI-3.1 have been:

e Martin Schulz, MPI-3.1 chair

e William Gropp, Steering committee, Front matter, Introduction, One-Sided Commu-
nications, and Bibliography; Overall editor

Unofficial Draft for Comment Only XxXX1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Rolf Rabenseifner, Steering committee, Terms and Definitions, and Fortran Bindings,
Deprecated Functions, Annex Change-Log, and Annex Language Bindings

Richard L. Graham, Steering committee, Meeting Convener

Jeffrey M. Squyres, Language Bindings and MPI-3.1 Secretary

Daniel Holmes, Point-to-Point Communication

George Bosilca, Datatypes and Environmental Management

Torsten Hoefler, Collective Communication and Process Topologies

Pavan Balaji, Groups, Contexts, and Communicators, and External Interfaces

Jeff Hammond, The Info Object

David Solt, Process Creation and Management

Quincey Koziol, I/O

Kathryn Mohror, Tool Support

Rajeev Thakur, One-Sided Communications

meetings or participated in the e-mail discussions.

Charles Archer
Brian Barrett
George Bosilca
Yohann Burette
James Dinan
Edgar Gabriel
Paddy Gillies
Richard L. Graham
Khaled Hamidouche
Marc-André Hermanns
Daniel Holmes
Hideyuki Jitsumoto
Christos Kavouklis
Michael Knobloch
Sameer Kumar
Huiwei Lu

Adam Moody
Steve Oyanagi
Howard Pritchard
Ken Raffenetti
Davide Rossetti
Sangmin Seo

Brian Smith

Pavan Balaji
Wesley Bland
Aurelien Bouteiller
Mohamad Chaarawi
Dmitry Durnov
Todd Gamblin
David Goodell
Ryan E. Grant

Jeff Hammond
Nathan Hjelm
Atsushi Hori

Jithin Jose
Takahiro Kawashima
Alice Koniges
Joshua Ladd
Guillaume Mercier
Tomotake Nakamura
Antonio J. Péna
Rolf Rabenseifner
Raghunath Raja
Kento Sato
Christian Siebert
David Solt

Purushotham V. Bangalore
Michael Blocksome
Devendar Bureddy
Alexey Cheptsov
Thomas Francois
Balazs Gerofi
Manjunath Gorentla Venkata
William Gropp
Amin Hassani
Torsten Hoefler
Yutaka Ishikawa
Krishna Kandalla
Chulho Kim
Quincey Koziol
Ignacio Laguna
Kathryn Mohror
Takeshi Nanri
Sreeram Potluri
Nicholas Radcliffe
Craig Rasmussen
Martin Schulz
Anthony Skjellum
Jeffrey M. Squyres

Unofficial Draft for Comment Only

The following list includes some of the active participants who attended MPI Forum

Xxx11



Hari Subramoni Shinji Sumimoto  Alexander Supalov

Bronis R. de Supinski Sayantan Sur Masamichi Takagi
Keita Teranishi Rajeev Thakur Fabian Tillier
Yuichi Tsujita Geoffroy Vallée Rolf vandeVaart
Akshay Venkatesh Jerome Vienne Venkat Vishwanath
Anh Vo Huseyin S. Yildiz Junchao Zhang
Xin Zhao

The MPI Forum also acknowledges and appreciates the valuable input from people via

e-mail and in person.

The following institutions supported the MPI-3.1 effort through time and travel support

for the people listed above.

Argonne National Laboratory

Auburn University

Cisco Systems, Inc.

Cray

EPCC, The University of Edinburgh

ETH Zurich

Forschungszentrum Jiilich

Fujitsu

German Research School for Simulation Sciences
The HDF Group

International Business Machines

INRIA

Intel Corporation

Jillich Aachen Research Alliance, High-Performance Computing (JARA-HPC)
Kyushu University

Lawrence Berkeley National Laboratory
Lawrence Livermore National Laboratory
Lenovo

Los Alamos National Laboratory

Mellanox Technologies, Inc.

Microsoft Corporation

NEC Corporation

NVIDIA Corporation

Oak Ridge National Laboratory

The Ohio State University

RIKEN AICS

Sandia National Laboratories

Texas Advanced Computing Center

Tokyo Institute of Technology

University of Alabama at Birmingham
University of Houston

University of Illinois at Urbana-Champaign
University of Oregon

University of Stuttgart, High Performance Computing Center Stuttgart (HLRS)
University of Tennessee, Knoxville
University of Tokyo

Unofficial Draft for Comment Only xxxiii

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48






Chapter 1

Introduction to MPI

1.1 Overview and Goals

MPI (Message-Passing Interface) is a message-passing library interface specification. All
parts of this definition are significant. MPI addresses primarily the message-passing parallel
programming model, in which data is moved from the address space of one process to
that of another process through cooperative operations on each process. Extensions to the
“classical” message-passing model are provided in collective operations, remote-memory
access operations, dynamic process creation, and parallel I/O. MPI is a specification, not
an implementation; there are multiple implementations of MPI. This specification is for a
library interface; MPI is not a language, and all MPI operations are expressed as functions,
subroutines, or methods, according to the appropriate language bindings which, for C and
Fortran, are part of the MPI standard. The standard has been defined through an open
process by a community of parallel computing vendors, computer scientists, and application
developers. The next few sections provide an overview of the history of MPI’s development.

The main advantages of establishing a message-passing standard are portability and
ease of use. In a distributed memory communication environment in which the higher level
routines and/or abstractions are built upon lower level message-passing routines the benefits
of standardization are particularly apparent. Furthermore, the definition of a message-
passing standard, such as that proposed here, provides vendors with a clearly defined base
set of routines that they can implement efficiently, or in some cases for which they can
provide hardware support, thereby enhancing scalability.

The goal of the Message-Passing Interface simply stated is to develop a widely used
standard for writing message-passing programs. As such the interface should establish a
practical, portable, efficient, and flexible standard for message passing.

A complete list of goals follows.

e Design an application programming interface (not necessarily for compilers or a system
implementation library).

e Allow efficient communication: Avoid memory-to-memory copying, allow overlap of
computation and communication, and offload to communication co-processors, where
available.

e Allow for implementations that can be used in a heterogeneous environment.

e Allow convenient C and Fortran bindings for the interface.

Unofficial Draft for Comment Only 1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2 CHAPTER 1. INTRODUCTION TO MPI

e Assume a reliable communication interface: the user need not cope with communica-
tion failures. Such failures are dealt with by the underlying communication subsystem.

Define an interface that can be implemented on many vendor’s platforms, with no
significant changes in the underlying communication and system software.

Semantics of the interface should be language independent.

The interface should be designed to allow for thread safety.

1.2 Background of MPI-1.0

MPI sought to make use of the most attractive features of a number of existing message-
passing systems, rather than selecting one of them and adopting it as the standard. Thus,
MPI was strongly influenced by work at the IBM T. J. Watson Research Center [1, 2],
Intel’s NX/2 [50], Express [13], nCUBE’s Vertex [46], p4 [8, 9], and PARMACS 5, 10].
Other important contributions have come from Zipcode [53, 54], Chimp [19, 20], PVM
[4, 17], Chameleon [27], and PICL [25].

The MPI standardization effort involved about 60 people from 40 organizations mainly
from the United States and Europe. Most of the major vendors of concurrent computers
were involved in MPI, along with researchers from universities, government laboratories, and
industry. The standardization process began with the Workshop on Standards for Message-
Passing in a Distributed Memory Environment, sponsored by the Center for Research on
Parallel Computing, held April 29-30, 1992, in Williamsburg, Virginia [60]. At this workshop
the basic features essential to a standard message-passing interface were discussed, and a
working group established to continue the standardization process.

A preliminary draft proposal, known as MPI-1, was put forward by Dongarra, Hempel,
Hey, and Walker in November 1992, and a revised version was completed in February
1993 [18]. MPI-1 embodied the main features that were identified at the Williamsburg
workshop as being necessary in a message passing standard. Since MPI-1 was primarily
intended to promote discussion and “get the ball rolling,” it focused mainly on point-to-point
communications. MPI-1 brought to the forefront a number of important standardization
issues, but did not include any collective communication routines and was not thread-safe.

In November 1992, a meeting of the MPI| working group was held in Minneapolis, at
which it was decided to place the standardization process on a more formal footing, and to
generally adopt the procedures and organization of the High Performance Fortran Forum.
Subcommittees were formed for the major component areas of the standard, and an email
discussion service established for each. In addition, the goal of producing a draft MPI
standard by the Fall of 1993 was set. To achieve this goal the MPI working group met every
6 weeks for two days throughout the first 9 months of 1993, and presented the draft MPI
standard at the Supercomputing 93 conference in November 1993. These meetings and the
email discussion together constituted the MPI Forum, membership of which has been open
to all members of the high performance computing community.

1.3 Background of MPI-1.1, MPI-1.2, and MPI-2.0

Beginning in March 1995, the MPI| Forum began meeting to consider corrections and exten-
sions to the original MPI Standard document [22]. The first product of these deliberations

Unofficial Draft for Comment Only



1.4. BACKGROUND OF MPI-1.3 AND MPI-2.1 3

was Version 1.1 of the MPI specification, released in June of 1995 [23] (see
http://www.mpi-forum.org for official MPI document releases). At that time, effort fo-
cused in five areas.

1. Further corrections and clarifications for the MPI-1.1 document.

2. Additions to MPI-1.1 that do not significantly change its types of functionality (new
datatype constructors, language interoperability, etc.).

3. Completely new types of functionality (dynamic processes, one-sided communication,
parallel I/O, etc.) that are what everyone thinks of as “MPI-2 functionality.”

4. Bindings for Fortran 90 and C+4. MPI-2 specifies C++ bindings for both MPI-1 and
MPI-2 functions, and extensions to the Fortran 77 binding of MPI-1 and MPI-2 to
handle Fortran 90 issues.

5. Discussions of areas in which the MPI process and framework seem likely to be useful,
but where more discussion and experience are needed before standardization (e.g.,
zero-copy semantics on shared-memory machines, real-time specifications).

Corrections and clarifications (items of type 1 in the above list) were collected in Chap-
ter 3 of the MPI-2 document: “Version 1.2 of MPI.” That chapter also contains the function
for identifying the version number. Additions to MPI-1.1 (items of types 2, 3, and 4 in the
above list) are in the remaining chapters of the MPI-2 document, and constitute the specifi-
cation for MPI-2. Items of type 5 in the above list have been moved to a separate document,
the “MPI Journal of Development” (JOD), and are not part of the MPI-2 Standard.

This structure makes it easy for users and implementors to understand what level of
MPI compliance a given implementation has:

e MPI-1 compliance will mean compliance with MPI-1.3. This is a useful level of com-
pliance. It means that the implementation conforms to the clarifications of MPI-1.1
function behavior given in Chapter 3 of the MPI-2 document. Some implementations
may require changes to be MPI-1 compliant.

e MPI-2 compliance will mean compliance with all of MPI-2.1.
e The MPI Journal of Development is not part of the MPI Standard.

It is to be emphasized that forward compatibility is preserved. That is, a valid MPI-1.1
program is both a valid MPI-1.3 program and a valid MPI-2.1 program, and a valid MPI-1.3
program is a valid MPI-2.1 program.

1.4 Background of MPI-1.3 and MPI-2.1

After the release of MPI-2.0, the MPI Forum kept working on errata and clarifications for
both standard documents (MPI-1.1 and MPI-2.0). The short document “Errata for MPI-1.1"
was released October 12, 1998. On July 5, 2001, a first ballot of errata and clarifications for
MPI-2.0 was released, and a second ballot was voted on May 22, 2002. Both votes were done
electronically. Both ballots were combined into one document: “Errata for MPI-2,” May
15, 2002. This errata process was then interrupted, but the Forum and its e-mail reflectors
kept working on new requests for clarification.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48


http://www.mpi-forum.org

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 CHAPTER 1. INTRODUCTION TO MPI

Restarting regular work of the MPI Forum was initiated in three meetings, at Fu-
roPVM/MPT’06 in Bonn, at EuroPVM/MPT’07 in Paris, and at SC’07 in Reno. In De-
cember 2007, a steering committee started the organization of new MPI| Forum meetings at
regular 8-weeks intervals. At the January 14-16, 2008 meeting in Chicago, the MPI Forum
decided to combine the existing and future MP| documents to one document for each ver-
sion of the MPI standard. For technical and historical reasons, this series was started with
MPI-1.3. Additional Ballots 3 and 4 solved old questions from the errata list started in 1995
up to new questions from the last years. After all documents (MPI-1.1, MPI-2, Errata for
MPI-1.1 (Oct. 12, 1998), and MPI-2.1 Ballots 1-4) were combined into one draft document,
for each chapter, a chapter author and review team were defined. They cleaned up the
document to achieve a consistent MPI-2.1 document. The final MPI-2.1 standard document
was finished in June 2008, and finally released with a second vote in September 2008 in
the meeting at Dublin, just before EuroPVM/MPT’08. The major work of the current MPI
Forum is the preparation of MPI-3.

1.5 Background of MPI-2.2

MPI-2.2 is a minor update to the MPI-2.1 standard. This version addresses additional errors
and ambiguities that were not corrected in the MPI-2.1 standard as well as a small number
of extensions to MPI-2.1 that met the following criteria:

e Any correct MPI-2.1 program is a correct MPI-2.2 program.
e Any extension must have significant benefit for users.

e Any extension must not require significant implementation effort. To that end, all
such changes are accompanied by an open source implementation.

The discussions of MPI-2.2 proceeded concurrently with the MPI-3 discussions; in some
cases, extensions were proposed for MPI-2.2 but were later moved to MPI-3.

1.6 Background of MPI-3.0

MPI-3.0 is a major update to the MPI standard. The updates include the extension of
collective operations to include nonblocking versions, extensions to the one-sided operations,
and a new Fortran 2008 binding. In addition, the deprecated C++ bindings have been
removed, as well as many of the deprecated routines and MPI objects (such as the MPI_UB
datatype).

1.7 Background of MPI-3.1

MPI-3.1 is a minor update to the MPI standard. Most of the updates are corrections
and clarifications to the standard, especially for the Fortran bindings. New functions added
include routines to manipulate MPI_Aint values in a portable manner, nonblocking collective
I/O routines, and routines to get the index value by name for MPI_T performance and
control variables. A general index was also added.

Unofficial Draft for Comment Only



1.8. WHO SHOULD USE THIS STANDARD? )

1.8 Who Should Use This Standard?

This standard is intended for use by all those who want to write portable message-passing
programs in Fortran and C (and access the C bindings from C++). This includes individual
application programmers, developers of software designed to run on parallel machines, and
creators of environments and tools. In order to be attractive to this wide audience, the
standard must provide a simple, easy-to-use interface for the basic user while not seman-
tically precluding the high-performance message-passing operations available on advanced
machines.

1.9 What Platforms Are Targets for Implementation?

The attractiveness of the message-passing paradigm at least partially stems from its wide
portability. Programs expressed this way may run on distributed-memory multiprocessors,
networks of workstations, and combinations of all of these. In addition, shared-memory
implementations, including those for multi-core processors and hybrid architectures, are
possible. The paradigm will not be made obsolete by architectures combining the shared-
and distributed-memory views, or by increases in network speeds. It thus should be both
possible and useful to implement this standard on a great variety of machines, including
those “machines” consisting of collections of other machines, parallel or not, connected by
a communication network.

The interface is suitable for use by fully general MIMD programs, as well as those writ-
ten in the more restricted style of SPMD. MPI provides many features intended to improve
performance on scalable parallel computers with specialized interprocessor communication
hardware. Thus, we expect that native, high-performance implementations of MPI will be
provided on such machines. At the same time, implementations of MPI on top of stan-
dard Unix interprocessor communication protocols will provide portability to workstation
clusters and heterogenous networks of workstations.

1.10 What Is Included in the Standard?

The standard includes:

e Point-to-point communication,

e Datatypes,

e Collective operations,

e Process groups,

e Communication contexts,

e Process topologies,

e Environmental management and inquiry,
e The Info object,

e Process creation and management,

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6 CHAPTER 1. INTRODUCTION TO MPI

One-sided communication,

External interfaces,

Parallel file I/0,

Language bindings for Fortran and C,

Tool support.

1.11  What Is Not Included in the Standard?
The standard does not specify:

e Operations that require more operating system support than is currently standard;
for example, interrupt-driven receives, remote execution, or active messages,

e Program construction tools,

e Debugging facilities.

There are many features that have been considered and not included in this standard.
This happened for a number of reasons, one of which is the time constraint that was self-
imposed in finishing the standard. Features that are not included can always be offered as
extensions by specific implementations. Perhaps future versions of MPI| will address some
of these issues.

1.12  Organization of This Document

The following is a list of the remaining chapters in this document, along with a brief
description of each.

e Chapter 2, MP| Terms and Conventions, explains notational terms and conventions
used throughout the MPI document.

e Chapter 3, Point-to-Point Communication, defines the basic, pairwise communication
subset of MPI. Send and receive are found here, along with many associated functions
designed to make basic communication powerful and efficient.

e Chapter 4, Datatypes, defines a method to describe any data layout, e.g., an array of
structures in the memory, which can be used as message send or receive buffer.

e Chapter 5, Collective Communication, defines process-group collective communication
operations. Well known examples of this are barrier and broadcast over a group of
processes (not necessarily all the processes). With MPI-2, the semantics of collective
communication was extended to include intercommunicators. It also adds two new
collective operations. MPI-3 adds nonblocking collective operations.

e Chapter 6, Groups, Contexts, Communicators, and Caching, shows how groups of pro-
cesses are formed and manipulated, how unique communication contexts are obtained,
and how the two are bound together into a communicator.

Unofficial Draft for Comment Only



1.12.

ORGANIZATION OF THIS DOCUMENT 7

Chapter 7, Process Topologies, explains a set of utility functions meant to assist in
the mapping of process groups (a linearly ordered set) to richer topological structures
such as multi-dimensional grids.

Chapter 8, MPI| Environmental Management, explains how the programmer can man-
age and make inquiries of the current MP| environment. These functions are needed
for the writing of correct, robust programs, and are especially important for the con-
struction of highly-portable message-passing programs.

Chapter 9, The Info Object, defines an opaque object, that is used as input in several
MPI routines.

Chapter 10, Process Creation and Management, defines routines that allow for cre-
ation of processes.

Chapter 11, One-Sided Communications, defines communication routines that can be
completed by a single process. These include shared-memory operations (put/get)
and remote accumulate operations.

Chapter 12, External Interfaces, defines routines designed to allow developers to layer
on top of MPI. This includes generalized requests, routines that decode MPI opaque
objects, and threads.

Chapter 13, I/0, defines MPI support for parallel I/O.

Chapter 14, Tool Support, covers interfaces that allow debuggers, performance ana-
lyzers, and other tools to obtain data about the operation of MPI processes. This
chapter includes Section 14.2 (Profiling Interface), which was a chapter in previous
versions of MPI.

Chapter 15, Deprecated Interfaces, describes routines that are kept for reference.
However usage of these functions is discouraged, as they may be deleted in future
versions of the standard.

Chapter 16, Removed Interfaces, describes routines and constructs that have been
removed from MPI. These were deprecated in MPI-2, and the MPI Forum decided to
remove these from the MPI-3 standard.

Chapter 17, Backward Incompatibilities, describes incompatibilities with previous ver-
sions of MPI.

Chapter 18, Language Bindings, discusses Fortran issues, and describes language in-
teroperability aspects between C and Fortran.

The Appendices are:

Annex A, Language Bindings Summary, gives specific syntax in C and Fortran, for
all MPI functions, constants, and types.

Annex B, Change-Log, summarizes some changes since the previous version of the
standard.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8 CHAPTER 1. INTRODUCTION TO MPI

e Several Index pages show the locations of examples, constants and predefined handles,
callback routine prototypes, and all MPI functions.

MPI provides various interfaces to facilitate interoperability of distinct MPI imple-
mentations. Among these are the canonical data representation for MPI I/O and for
MPI_PACK_EXTERNAL and MPI_UNPACK_EXTERNAL. The definition of an actual bind-
ing of these interfaces that will enable interoperability is outside the scope of this document.

A separate document consists of ideas that were discussed in the MPI Forum during the
MPI-2 development and deemed to have value, but are not included in the MPI Standard.
They are part of the “Journal of Development” (JOD), lest good ideas be lost and in order
to provide a starting point for further work. The chapters in the JOD are

e Chapter 2, Spawning Independent Processes, includes some elements of dynamic pro-
cess management, in particular management of processes with which the spawning
processes do not intend to communicate, that the Forum discussed at length but
ultimately decided not to include in the MPI Standard.

e Chapter 3, Threads and MPI, describes some of the expected interaction between an
MPI implementation and a thread library in a multi-threaded environment.

e Chapter 4, Communicator ID, describes an approach to providing identifiers for com-
municators.

e Chapter 5, Miscellany, discusses Miscellaneous topics in the MPI JOD, in particu-
lar single-copy routines for use in shared-memory environments and new datatype
constructors.

e Chapter 6, Toward a Full Fortran 90 Interface, describes an approach to providing a
more elaborate Fortran 90 interface.

e Chapter 7, Split Collective Communication, describes a specification for certain non-
blocking collective operations.

e Chapter 8, Real-Time MPI, discusses MPI support for real time processing.

Unofficial Draft for Comment Only



Chapter 2

MPIl Terms and Conventions

This chapter explains notational terms and conventions used throughout the MPI document,
some of the choices that have been made, and the rationale behind those choices.

2.1

Document Notation

Rationale. Throughout this document, the rationale for the design choices made in
the interface specification is set off in this format. Some readers may wish to skip
these sections, while readers interested in interface design may want to read them
carefully. (End of rationale.)

Advice to users. Throughout this document, material aimed at users and that
illustrates usage is set off in this format. Some readers may wish to skip these sections,
while readers interested in programming in MPI may want to read them carefully. (End
of advice to users.)

Advice to implementors. Throughout this document, material that is primarily
commentary to implementors is set off in this format. Some readers may wish to skip
these sections, while readers interested in MPI implementations may want to read
them carefully. (End of advice to implementors.)

2.2 Naming Conventions

In many cases MPI names for C functions are of the form MPI_Class_action_subset. This
convention originated with MPI-1. Since MPI-2 an attempt has been made to standardize
the names of MPI functions according to the following rules.

1. In C, all routines associated with a particular type of MPI object should be of the

form MPI_Class_action_subset or, if no subset exists, of the form MPI_Class_action.

In Fortran, all routines associated with a particular type of MPI object should be of
the form MPI_CLASS_ACTION_SUBSET or, if no subset exists, of the form
MPI_CLASS_ACTION.

. If the routine is not associated with a class, the name should be of the form

MPI_Action_subset in C and MPI_ACTION_SUBSET in Fortran.

Unofficial Draft for Comment Only 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10 CHAPTER 2. MPI TERMS AND CONVENTIONS

3. The names of certain actions have been standardized. In particular, Create creates
a new object, Get retrieves information about an object, set sets this information,
Delete deletes information, Is asks whether or not an object has a certain property.

C and Fortran names for some MPI functions (that were defined during the MPI-1
process) violate these rules in several cases. The most common exceptions are the omission
of the Class name from the routine and the omission of the Action where one can be
inferred.

MPI identifiers are limited to 30 characters (31 with the profiling interface). This is
done to avoid exceeding the limit on some compilation systems.

2.3 Procedure Specification

MPI procedures are specified using a language-independent notation. The arguments of
procedure calls are marked as IN, OUT, or INOUT. The meanings of these are:

e IN: the call may use the input value but does not update the argument from the
perspective of the caller at any time during the call’s execution,

e OUT: the call may update the argument but does not use its input value,
e INOUT: the call may both use and update the argument.

There is one special case — if an argument is a handle to an opaque object (these
terms are defined in Section 2.5.1), and the object is updated by the procedure call, then
the argument is marked INOUT or OUT. It is marked this way even though the handle itself
is not modified — we use the INOUT or OUT attribute to denote that what the handle
references is updated.

Rationale. The definition of MPI tries to avoid, to the largest possible extent, the use
of INOUT arguments, because such use is error-prone, especially for scalar arguments.
(End of rationale.)

MPI’s use of IN, OUT, and INOUT is intended to indicate to the user how an argument
is to be used, but does not provide a rigorous classification that can be translated directly
into all language bindings (e.g., INTENT in Fortran 90 bindings or const in C bindings).
For instance, the “constant” MPI_BOTTOM can usually be passed to OUT buffer arguments.
Similarly, MPI_STATUS_IGNORE can be passed as the OUT status argument.

A common occurrence for MPI functions is an argument that is used as IN by some pro-
cesses and OUT by other processes. Such an argument is, syntactically, an INOUT argument
and is marked as such, although, semantically, it is not used in one call both for input and
for output on a single process.

Another frequent situation arises when an argument value is needed only by a subset
of the processes. When an argument is not significant at a process then an arbitrary value
can be passed as an argument.

Unless specified otherwise, an argument of type OUT or type INOUT cannot be aliased
with any other argument passed to an MPI procedure. An example of argument aliasing in
C appears below. If we define a C procedure like this,

Unofficial Draft for Comment Only



2.4. SEMANTIC TERMS 11

void copyIntBuffer( int *pin, int *pout, int len )
{ int i;
for (i=0; i<len; ++i) *pout++ = *pin++;

}

then a call to it in the following code fragment has aliased arguments.

int a[10];
copyIntBuffer( a, at+3, 7);

Although the C language allows this, such usage of MPI procedures is forbidden unless
otherwise specified. Note that Fortran prohibits aliasing of arguments.

All MPI functions are first specified in the language-independent notation. Immediately
below this, language dependent bindings follow:

e The ISO C version of the function.
e The Fortran version used with USE mpi_f£08.
e The Fortran version of the same function used with USE mpi or INCLUDE ’mpif.h’.

An exception is Section 14.3 “The MPI Tool Information Interface”, which only provides
ISO C interfaces.

“Fortran” in this document refers to Fortran 90 and higher; see Section 2.6.

The words function, routine, procedure, procedure call, and call are used as synonyms
within this standard.

2.4 Semantic Terms

When discussing MPI procedures the following semantic terms are used.

An MPI operation is a set of one or more MPI procedures leading from a well-defined input
state to a well-defined output state. An operation consists of four stages: initialization,
starting, completion, and freeing;:

Initialization hands over the argument list to the operation but not the content of the
message data buffers. The specification of an operation may state that array argu-
ments must not be changed until the operation is freed.

Starting hands over the control of the message data buffer to the associated operation.

Note that initiation refers to the combination of the initialization and starting stages.

Completion returns control of the content of the message data buffer to the application
and indicates that any output buffers have been updated.

Freeing returns control of the rest of the argument list (e.g., the buffer address and array
arguments).

MPI procedures can be either incomplete, or completing and/or freeing:

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48


puri
Highlight

puri
Highlight


10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12 CHAPTER 2. MPI TERMS AND CONVENTIONS

incomplete procedure An MPI procedure is incomplete if it may return before the
associated operation has finished its completion stage, which implies that the user
is not allowed to reuse parameters (such as buffers) specified when initializing the
operation. An incomplete procedure only includes the initialization and/or starting
stages.

completing procedure An MPI procedure is completing if return from the procedure
indicates that the associated operation has finished its completion stage, which implies
that the user can rely on the content of the output message data buffers and modify
the content of input and output message data buffers. If a completing procedure is
not also a freeing procedure (see below) then the user is not permitted to deallocate
the message data buffers or to modify the array arguments. Procedures not associated
with an operation are also defined to be completing.

freeing procedure An MPI procedure is freeing if return from the procedure indicates
that the associated operation has finished its freeing stage, which implies that the user
can reuse all parameters specified when initializing the associated operation.

Furthermore, initializing, starting, and initiating procedures are defined as having the
corresponding stages included.

In addition to the concept of incomplete, completing and freeing, procedures have an
orthogonal concept of locality:

local procedure An MPI procedure is local if it returns control to the calling MPI
process based only on the state of the local MPI process that invoked it. Local
procedures are also characterized as immediate.

non-local procedure An MPI procedure is non-local if returning may require the
execution by some MPI procedure on another MPI process. Such a procedure may
require communication occurring with another MPI process.

MPI procedures can be blocking or nonblocking;:

blocking procedure An MPI procedure is blocking if it is completing, freeing, and/or
non-local.

nonblocking procedure An MPI procedure is nonblocking if it is incomplete and
local.

Advice to users.  Note that for communication-related procedures, in most cases
incomplete procedures are local and completing procedures are non-local. Exceptions
are noted where such procedures are defined. In many cases, in the procedure name,
an additional prefix letter | as an abbreviation of the words incomplete and imme-
diate marks nonblocking procedures. Some examples for in/complete and non/local
procedures are listed here.

Nonblocking procedures:

e incomplete and local: MPI_ISEND, MPI_IRECV, MPI_IBCAST,
MPI_PUT, MPI_GET, MPI_ACCUMULATE, MPI_IMPROBE, MPI_SEND_INIT,
MPI_RECV_INIT, ...

Unofficial Draft for Comment Only


puri
Highlight


2.4. SEMANTIC TERMS 13

Blocking procedures:

e complete and nonlocal: MPI_SEND, MPI_RECV, MPI_BCAST, MPI_PROBE, ...

e incomplete and nonlocal: MPI_MPROBE, MPI_BCAST_INIT, ...,
MPI_FILE_{READ|WRITE}_{AT_ALL|ALL|ORDERED}_BEGIN.

e complete and local: MPI_BSEND, MPI_RSEND, MPI_IPROBE, MPI_MRECV.

(End of advice to users.)
MPI operations can be blocking, nonblocking, or persistent:

blocking operation For a blocking operation, all four stages are combined in a single
procedure call.

nonblocking operation For a nonblocking operation, the initialization and starting
stages are combined into a single nonblocking procedure call and the completion and
freeing stages are combined into a separate, single procedure call, which can be block-
ing or nonblocking.

persistent operation For a persistent operation, all four stages are done with separate
procedure calls, each of which may be blocking or nonblocking.

Additionally, an MPI operation is complete when the completion stage returns.

Furthermore, a procedure can be collective:

collective procedure An MPI procedure is collective if all processes in a process group
need to invoke the procedure.

collective operations Collective MPI operations are also available as blocking, non-
blocking and persistent operations as defined above.

Initialization procedures of collective operations over the same process group must be
executed in the same order by all members of the process group.

The procedures for blocking collective operations and the initialization procedures for
persistent collective operations may or may not be synchronizing. That is, they may or
may not return before all processes in the group have called the procedure.

The initiation procedures for nonblocking collective operations and the starting proce-
dures for persistent collective operations are local and shall not be synchronizing.

In case of nonblocking or persistent collective operations, the completion stage may or
may not finish before all processes in the group have started the operation.

Advice to users. Calling any synchronizing function when there is no possibility of
corresponding calls at all other processes in the associated process group is erroneous
because it can cause deadlock.

Waiting for completion of any operation when there is no possibility that all other
processes in the associated group will be able to start the corresponding operation is
erroneous because it can cause deadlock. (End of advice to users.)

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48


puri
Highlight


10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14 CHAPTER 2. MPI TERMS AND CONVENTIONS

When the words operation and procedure are used, usually MPI operation and MPI
procedure are meant.
Annex A.2 summarizes the semantics of all communicating MPI routines.

For datatypes, the following terms are defined:

predefined A predefined datatype is a datatype with a predefined (constant) name (such
as MPI_INT, MPI_FLOAT_INT, or MPI_PACKED) or a datatype constructed with
MPI_TYPE_CREATE_F90_INTEGER, MPI_TYPE_CREATE_F90_REAL, or
MPI_TYPE_CREATE_F90_COMPLEX. The former are named whereas the latter are
unnamed.

derived A derived datatype is any datatype that is not predefined.

portable A datatype is portable if it is a predefined datatype, or it is derived from
a portable datatype using only the type constructors MPI_TYPE_CONTIGUOUS,
MPI_TYPE_VECTOR, MPI_TYPE_INDEXED,
MPI_TYPE_CREATE_INDEXED_BLOCK, MPI_TYPE_CREATE_SUBARRAY,
MPI_TYPE_DUP, and MPI_TYPE_CREATE_DARRAY. Such a datatype is portable
because all displacements in the datatype are in terms of extents of one predefined
datatype. Therefore, if such a datatype fits a data layout in one memory, it will
fit the corresponding data layout in another memory, if the same declarations were
used, even if the two systems have different architectures. On the other hand, if a
datatype was constructed using MPI_TYPE_CREATE_HINDEXED,
MPI_TYPE_CREATE_HINDEXED_BLOCK, MPI_TYPE_CREATE_HVECTOR or
MPI_TYPE_CREATE_STRUCT, then the datatype contains explicit byte displace-
ments (e.g., providing padding to meet alignment restrictions). These displacements
are unlikely to be chosen correctly if they fit data layout on one memory, but are
used for data layouts on another process, running on a processor with a different
architecture.

equivalent Two datatypes are equivalent if they appear to have been created with the same
sequence of calls (and arguments) and thus have the same typemap. Two equivalent
datatypes do not necessarily have the same cached attributes or the same names.

2.5 Data Types

2.5.1 Opaque Objects

MPI manages system memory that is used for buffering messages and for storing internal
representations of various MPI objects such as groups, communicators, datatypes, etc. This
memory is not directly accessible to the user, and objects stored there are opaque: their
size and shape is not visible to the user. Opaque objects are accessed via handles, which
exist in user space. MPI procedures that operate on opaque objects are passed handle
arguments to access these objects. In addition to their use by MPI calls for object access,
handles can participate in assignments and comparisons.

In Fortran with USE mpi or INCLUDE ’mpif.h’, all handles have type INTEGER. In
Fortran with USE mpi_£08, and in C, a different handle type is defined for each category of
objects. With Fortran USE mpi_f08, the handles are defined as Fortran BIND(C) derived

Unofficial Draft for Comment Only


puri
Highlight


2.5. DATA TYPES 15

types that consist of only one element INTEGER :: MPI_VAL. The internal handle value is
identical to the Fortran INTEGER value used in the mpi module and mpif.h. The operators
.EQ., .NE., == and /= are overloaded to allow the comparison of these handles. The type
names are identical to the names in C, except that they are not case sensitive. For example:

TYPE, BIND(C) :: MPI_Comm
INTEGER :: MPI_VAL
END TYPE MPI_Comm

The C types must support the use of the assignment and equality operators.

Advice to implementors.  In Fortran, the handle can be an index into a table of
opaque objects in a system table; in C it can be such an index or a pointer to the
object. (End of advice to implementors.)

Rationale.  Since the Fortran integer values are equivalent, applications can easily
convert MPI handles between all three supported Fortran methods. For example, an
integer communicator handle COMM can be converted directly into an exactly equivalent
mpi_f08 communicator handle named comm_f08 by comm_f08%MPI_VAL=COMM, and
vice versa. The use of the INTEGER defined handles and the BIND(C) derived type
handles is different: Fortran 2003 (and later) define that BIND(C) derived types can
be used within user defined common blocks, but it is up to the rules of the companion
C compiler how many numerical storage units are used for these BIND(C) derived type
handles. Most compilers use one unit for both, the INTEGER handles and the handles
defined as BIND(C) derived types. (End of rationale.)

Advice to users. If a user wants to substitute mpif.h or the mpi module by the
mpi_£f08 module and the application program stores a handle in a Fortran common
block then it is necessary to change the Fortran support method in all application
routines that use this common block, because the number of numerical storage units
of such a handle can be different in the two modules. (End of advice to users.)

Opaque objects are allocated and deallocated by calls that are specific to each object
type. These are listed in the sections where the objects are described. The calls accept a
handle argument of matching type. In an allocate call this is an OUT argument that returns
a valid reference to the object. In a call to deallocate this is an INOUT argument which
returns with an “invalid handle” value. MPI provides an “invalid handle” constant for each
object type. Comparisons to this constant are used to test for validity of the handle.

A call to a deallocate routine invalidates the handle and marks the object for deal-
location. The object is not accessible to the user after the call. However, MPI need not
deallocate the object immediately. Any operation pending (at the time of the deallocate)
that involves this object will complete normally; the object will be deallocated afterwards.

An opaque object and its handle are significant only at the process where the object
was created and cannot be transferred to another process.

MPI provides certain predefined opaque objects and predefined, static handles to these
objects. The user must not free such objects.

Rationale. This design hides the internal representation used for MPI data structures,
thus allowing similar calls in C and Fortran. It also avoids conflicts with the typing

Unofficial Draft for Comment Only

10

11

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16 CHAPTER 2. MPI TERMS AND CONVENTIONS

rules in these languages, and easily allows future extensions of functionality. The
mechanism for opaque objects used here loosely follows the POSIX Fortran binding
standard.

The explicit separation of handles in user space and objects in system space allows
space-reclaiming and deallocation calls to be made at appropriate points in the user
program. If the opaque objects were in user space, one would have to be very careful
not to go out of scope before any pending operation requiring that object completed.
The specified design allows an object to be marked for deallocation, the user program
can then go out of scope, and the object itself still persists until any pending operations
are complete.

The requirement that handles support assignment/comparison is made since such op-
erations are common. This restricts the domain of possible implementations. The
alternative in C would have been to allow handles to have been an arbitrary, opaque
type. This would force the introduction of routines to do assignment and compar-
ison, adding complexity, and was therefore ruled out. In Fortran, the handles are
defined such that assignment and comparison are available through the operators of
the language or overloaded versions of these operators. (End of rationale.)

Advice to users. A user may accidentally create a dangling reference by assigning to a
handle the value of another handle, and then deallocating the object associated with
these handles. Conversely, if a handle variable is deallocated before the associated
object is freed, then the object becomes inaccessible (this may occur, for example, if
the handle is a local variable within a subroutine, and the subroutine is exited before
the associated object is deallocated). It is the user’s responsibility to avoid adding or
deleting references to opaque objects, except as a result of MPI calls that allocate or
deallocate such objects. (End of advice to users.)

Advice to implementors. The intended semantics of opaque objects is that opaque
objects are separate from one another; each call to allocate such an object copies
all the information required for the object. Implementations may avoid excessive
copying by substituting referencing for copying. For example, a derived datatype
may contain references to its components, rather then copies of its components; a
call to MPI_COMM_GROUP may return a reference to the group associated with the
communicator, rather than a copy of this group. In such cases, the implementation
must maintain reference counts, and allocate and deallocate objects in such a way that
the visible effect is as if the objects were copied. (End of advice to implementors.)

2.5.2 Array Arguments

An MPI call may need an argument that is an array of opaque objects, or an array of
handles. The array-of-handles is a regular array with entries that are handles to objects
of the same type in consecutive locations in the array. Whenever such an array is used,
an additional len argument is required to indicate the number of valid entries (unless this
number can be derived otherwise). The valid entries are at the beginning of the array;
len indicates how many of them there are, and need not be the size of the entire array.
The same approach is followed for other array arguments. In some cases NULL handles are
considered valid entries. When a NULL argument is desired for an array of statuses, one
uses MPI_STATUSES_IGNORE.

Unofficial Draft for Comment Only



2.5. DATA TYPES 17

2.5.3 State

MPI procedures use at various places arguments with state types. The values of such a data
type are all identified by names, and no operation is defined on them. For example, the
MPI_TYPE_CREATE_SUBARRAY routine has a state argument order with values
MPI_ORDER_C and MPI_ORDER_FORTRAN.

2.5.4 Named Constants

MPI procedures sometimes assign a special meaning to a special value of a basic type argu-
ment; e.g., tag is an integer-valued argument of point-to-point communication operations,
with a special wild-card value, MPI_ANY_TAG. Such arguments will have a range of regular
values, which is a proper subrange of the range of values of the corresponding basic type;
special values (such as MPI_ANY_TAG) will be outside the regular range. The range of regu-
lar values, such as tag, can be queried using environmental inquiry functions, see Chapter 8.
The range of other values, such as source, depends on values given by other MPI routines
(in the case of source it is the communicator size).

MPI also provides predefined named constant handles, such as MPI_COMM_WORLD.

All named constants, with the exceptions noted below for Fortran, can be used in
initialization expressions or assignments, but not necessarily in array declarations or as
labels in C switch or Fortran select/case statements. This implies named constants
to be link-time but not necessarily compile-time constants. The named constants listed
below are required to be compile-time constants in both C and Fortran. These constants
do not change values during execution. Opaque objects accessed by constant handles are
defined and do not change value between MPI initialization (MPI_INIT) and MPI completion
(MPI_FINALIZE). The handles themselves are constants and can be also used in initialization
expressions or assignments.

The constants that are required to be compile-time constants (and can thus be used
for array length declarations and labels in C switch and Fortran case/select statements)
are:

MPI_MAX_PROCESSOR_NAME

MPI_MAX_LIBRARY _VERSION_STRING

MPI_MAX_ERROR_STRING

MPI_MAX_DATAREP_STRING

MPI_MAX_INFO_KEY

MPI_MAX_INFO_VAL

MPI_MAX_OBJECT_NAME

MPI_MAX_PORT_NAME

MPI_VERSION

MPI_SUBVERSION

MPI_STATUS_SIZE (Fortran only)

MPI_ADDRESS_KIND (Fortran only)

MPI_COUNT_KIND (Fortran only)

MPI_INTEGER_KIND (Fortran only)

MPI_OFFSET_KIND (Fortran only)

MPI_SUBARRAYS_SUPPORTED (Fortran only)

MPI_ASYNC_PROTECTS_NONBLOCKING (Fortran only)

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

18 CHAPTER 2. MPI TERMS AND CONVENTIONS

The constants that cannot be used in initialization expressions or assignments in For-

tran are as follows:
MPI_BOTTOM
MPI_STATUS_IGNORE
MPI_STATUSES_IGNORE
MPI_ERRCODES_IGNORE
MPI_IN_PLACE
MPI_ARGV_NULL
MPI_ARGVS_NULL
MPI_UNWEIGHTED
MPI_WEIGHTS_EMPTY

Advice to implementors. In Fortran the implementation of these special constants
may require the use of language constructs that are outside the Fortran standard.
Using special values for the constants (e.g., by defining them through PARAMETER
statements) is not possible because an implementation cannot distinguish these val-
ues from valid data. Typically, these constants are implemented as predefined static
variables (e.g., a variable in an MPI-declared COMMON block), relying on the fact that
the target compiler passes data by address. Inside the subroutine, this address can
be extracted by some mechanism outside the Fortran standard (e.g., by Fortran ex-
tensions or by implementing the function in C). (End of advice to implementors.)

2.5.5 Choice

MPI functions sometimes use arguments with a choice (or union) data type. Distinct calls to
the same routine may pass by reference actual arguments of different types. The mechanism
for providing such arguments will differ from language to language. For Fortran with the
include file mpif.h or the mpi module, the document uses <type> to represent a choice
variable; with the Fortran mpi_£08 module, such arguments are declared with the Fortran
2008 + TR 29113 syntax TYPE(*), DIMENSION(..); for C, we use void *.

Advice to implementors. Implementors can freely choose how to implement choice
arguments in the mpi module, e.g., with a non-standard compiler-dependent method
that has the quality of the call mechanism in the implicit Fortran interfaces, or with
the method defined for the mpi_f£08 module. See details in Section 18.1.1. (End of
advice to implementors.)

2.5.6 Absolute Addresses and Relative Address Displacements

Some MPI procedures use address arguments that represent an absolute address in the call-
ing program, or relative displacement arguments that represent differences of two absolute
addresses. The datatype of such arguments is MPI_Aint in C and INTEGER (KIND=
MPI_ADDRESS_KIND) in Fortran. These types must have the same width and encode address
values in the same manner such that address values in one language may be passed directly
to another language without conversion. There is the MPI constant MPI_BOTTOM to in-
dicate the start of the address range. For retrieving absolute addresses or any calculation
with absolute addresses, one should use the routines and functions provided in Section 4.1.5.
Section 4.1.12 provides additional rules for the correct use of absolute addresses. For ex-
pressions with relative displacements or other usage without absolute addresses, intrinsic
operators (e.g., +, =, *¥) can be used.

Unofficial Draft for Comment Only



2.6. LANGUAGE BINDING 19

2.5.7 File Offsets

For I/0 there is a need to give the size, displacement, and offset into a file. These quantities
can easily be larger than 32 bits which can be the default size of a Fortran integer. To
overcome this, these quantities are declared to be INTEGER (KIND=MPI_OFFSET_KIND) in
Fortran. In C one uses MPI_Offset. These types must have the same width and encode
address values in the same manner such that offset values in one language may be passed
directly to another language without conversion.

2.5.8 Counts

As described above, MPI defines types (e.g., MPI_Aint) to address locations within memory
and other types (e.g., MPI_Offset) to address locations within files. In addition, some MPI
procedures use count arguments that represent a number of MPI datatypes on which to
operate. At times, one needs a single type that can be used to address locations within
either memory or files as well as express count values, and that type is MPI_Count in C
and INTEGER (KIND=MPI_COUNT_KIND) in Fortran. These types must have the same width
and encode values in the same manner such that count values in one language may be
passed directly to another language without conversion. The size of the MPI_Count type
is determined by the MPI implementation with the restriction that it must be minimally
capable of encoding any value that may be stored in a variable of type int, MPI_Aint, or
MPI_Offset in C and of type INTEGER, INTEGER (KIND=MPI_ADDRESS_KIND), or

INTEGER (KIND=MPI_OFFSET_KIND) in Fortran.

Rationale. Count values logically need to be large enough to encode any value used
for expressing element counts, type maps in memory, type maps in file views, etc. For
backward compatibility reasons, many MPI routines still use int in C and INTEGER
in Fortran as the type of count arguments. (End of rationale.)

2.6 Language Binding

This section defines the rules for MPI language binding in general and for Fortran, and ISO
C, in particular. (Note that ANSI C has been replaced by ISO C.) Defined here are various
object representations, as well as the naming conventions used for expressing this standard.
The actual calling sequences are defined elsewhere.

MPI bindings are for Fortran 90 or later, though they were originally designed to be
usable in Fortran 77 environments. With the mpi_f08 module, two new Fortran features,
assumed type and assumed rank, are also required, see Section 2.5.5.

Since the word PARAMETER is a keyword in the Fortran language, we use the word
“argument” to denote the arguments to a subroutine. These are normally referred to
as parameters in C, however, we expect that C programmers will understand the word
“argument” (which has no specific meaning in C), thus allowing us to avoid unnecessary
confusion for Fortran programmers.

Since Fortran is case insensitive, linkers may use either lower case or upper case when
resolving Fortran names. Users of case sensitive languages should avoid any prefix of the
form “MPI_” and “PMPI_", where any of the letters are either upper or lower case.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

20 CHAPTER 2. MPI TERMS AND CONVENTIONS

2.6.1 Deprecated and Removed Interfaces

A number of chapters refer to deprecated or replaced MPI constructs. These are constructs
that continue to be part of the MPI standard, as documented in Chapter 15, but that users
are recommended not to continue using, since better solutions were provided with newer
versions of MPI. For example, the Fortran binding for MPI-1 functions that have address
arguments uses INTEGER. This is not consistent with the C binding, and causes problems on
machines with 32 bit INTEGERs and 64 bit addresses. In MPI-2, these functions were given
new names with new bindings for the address arguments. The use of the old functions was
declared as deprecated. For consistency, here and in a few other cases, new C functions are
also provided, even though the new functions are equivalent to the old functions. The old
names are deprecated.

Some of the deprecated constructs are now removed, as documented in Chapter 16.
They may still be provided by an implementation for backwards compatibility, but are not
required.

Table 2.1 shows a list of all of the deprecated and removed constructs. Note that some
C typedefs and Fortran subroutine names are included in this list; they are the types of
callback functions.

2.6.2 Fortran Binding Issues

Originally, MPI-1.1 provided bindings for Fortran 77. These bindings are retained, but they
are now interpreted in the context of the Fortran 90 standard. MPI can still be used with
most Fortran 77 compilers, as noted below. When the term “Fortran” is used it means
Fortran 90 or later; it means Fortran 2008 + TR 29113 and later if the mpi_£08 module is
used.

All MPI names have an MPI_ prefix, and all characters are capitals. Programs must
not declare names, e.g., for variables, subroutines, functions, parameters, derived types,
abstract interfaces, or modules, beginning with the prefix MPI_. To avoid conflicting with
the profiling interface, programs must also avoid subroutines and functions with the prefix
PMPI_. This is mandated to avoid possible name collisions.

All MPI Fortran subroutines have a return code in the last argument. With USE
mpi_£08, this last argument is declared as OPTIONAL, except for user-defined callback func-
tions (e.g., COMM_COPY_ATTR_FUNCTION) and their predefined callbacks (e.g.,
MPI_NULL_COPY_FN). A few MPI operations which are functions do not have the return
code argument. The return code value for successful completion is MPI_SUCCESS. Other
error codes are implementation dependent; see the error codes in Chapter 8 and Annex A.

Constants representing the maximum length of a string are one smaller in Fortran than
in C as discussed in Section 18.2.9.

Handles are represented in Fortran as INTEGERSs, or as a BIND(C) derived type with the
mpi_f08 module; see Section 2.5.1. Binary-valued variables are of type LOGICAL.

Array arguments are indexed from one.

The older MPI Fortran bindings (mpif.h and use mpi) are inconsistent with the For-
tran standard in several respects. These inconsistencies, such as register optimization prob-
lems, have implications for user codes that are discussed in detail in Section 18.1.16.

Unofficial Draft for Comment Only



2.7. PROCESSES 21

2.6.3 C Binding Issues

We use the ISO C declaration format. All MPI names have an MPI_ prefix, defined constants
are in all capital letters, and defined types and functions have one capital letter after
the prefix. Programs must not declare names (identifiers), e.g., for variables, functions,
constants, types, or macros, beginning with any prefix of the form MPI_, where any of the
letters are either upper or lower case. To support the profiling interface, programs must
not declare functions with names beginning with any prefix of the form PMPI_, where any
of the letters are either upper or lower case.

The definition of named constants, function prototypes, and type definitions must be
supplied in an include file mpi.h.

Almost all C functions return an error code. The successful return code will be
MPI_SUCCESS, but failure return codes are implementation dependent.

Type declarations are provided for handles to each category of opaque objects.

Array arguments are indexed from zero.

Logical flags are integers with value 0 meaning “false” and a non-zero value meaning
“true.”

Choice arguments are pointers of type void x*.

2.6.4 Functions and Macros

An implementation is allowed to implement MPI_WTIME, PMPI_WTIME, MPI_WTICK,
PMPI_WTICK, MPI_AINT_ADD, PMPI_AINT_ADD, MPI_AINT_DIFF, PMPI_AINT_DIFF,
and the handle-conversion functions (MPI_Group_f2c, etc.) in Section 18.2.4, and no others,
as macros in C.

Advice to implementors. Implementors should document which routines are imple-
mented as macros. (End of advice to implementors.)

Advice to users. If these routines are implemented as macros, they will not work
with the MPI profiling interface. (End of advice to users.)

2.7 Processes

An MPI program consists of autonomous processes, executing their own code, in an MIMD
style. The codes executed by each process need not be identical. The processes communicate
via calls to MPIl communication primitives. Typically, each process executes in its own
address space, although shared-memory implementations of MPI are possible.

This document specifies the behavior of a parallel program assuming that only MPI
calls are used. The interaction of an MPI program with other possible means of commu-
nication, I/O, and process management is not specified. Unless otherwise stated in the
specification of the standard, MPI places no requirements on the result of its interaction
with external mechanisms that provide similar or equivalent functionality. This includes,
but is not limited to, interactions with external mechanisms for process control, shared and
remote memory access, file system access and control, interprocess communication, process
signaling, and terminal I/O. High quality implementations should strive to make the results
of such interactions intuitive to users, and attempt to document restrictions where deemed
necessary.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

22 CHAPTER 2. MPI TERMS AND CONVENTIONS

Advice to implementors. Implementations that support such additional mechanisms
for functionality supported within MPI are expected to document how these interact
with MPL. (End of advice to implementors.)

The interaction of MPI and threads is defined in Section 12.4.

2.8 Error Handling

MPI provides the user with reliable message transmission. A message sent is always received
correctly, and the user does not need to check for transmission errors, time-outs, or other
error conditions. In other words, MPI does not provide mechanisms for dealing with failures
in the communication system. If the MPI implementation is built on an unreliable underly-
ing mechanism, then it is the job of the implementor of the MPI subsystem to insulate the
user from this unreliability, or to reflect unrecoverable errors as failures. Whenever possible,
such failures will be reflected as errors in the relevant communication call. Similarly, MPI
itself provides no mechanisms for handling processor failures.

Of course, MPI programs may still be erroneous. A program error can occur when
an MPI call is made with an incorrect argument (non-existing destination in a send oper-
ation, buffer too small in a receive operation, etc.). This type of error would occur in any
implementation. In addition, a resource error may occur when a program exceeds the
amount of available system resources (number of pending messages, system buffers, etc.).
The occurrence of this type of error depends on the amount of available resources in the
system and the resource allocation mechanism used; this may differ from system to system.
A high-quality implementation will provide generous limits on the important resources so
as to alleviate the portability problem this represents.

In C and Fortran, almost all MPI calls return a code that indicates successful completion
of the operation. Whenever possible, MPI calls return an error code if an error occurred
during the call. By default, an error detected during the execution of the MPI library
causes the parallel computation to abort, except for file operations. However, MPI provides
mechanisms for users to change this default and to handle recoverable errors. The user may
specify that no error is fatal, and handle error codes returned by MPI calls by himself or
herself. Also, the user may provide his or her own error-handling routines, which will be
invoked whenever an MPI call returns abnormally. The MPI error handling facilities are
described in Section 8.3.

Several factors limit the ability of MPI calls to return with meaningful error codes
when an error occurs. MPI may not be able to detect some errors; other errors may be too
expensive to detect in normal execution mode; finally some errors may be “catastrophic”
and may prevent MPI from returning control to the caller. On the other hand, some errors
may be detected after the associated operation has completed; some errors may not have a
communicator, window, or file on which an error may be raised. In such cases, these errors
will be raised on the communicator MPI_COMM_SELF.

An example of such a case arises because of the nature of asynchronous communications:
MPI calls may initiate operations that continue asynchronously after the call returned. Thus,
the operation may return with a code indicating successful completion, yet later cause an
error exception to be raised. If there is a subsequent call that relates to the same operation
(e.g., a call that verifies that an asynchronous operation has completed) then the error
argument associated with this call will be used to indicate the nature of the error. In a
few cases, the error may occur after all calls that relate to the operation have completed,

Unofficial Draft for Comment Only



2.9. IMPLEMENTATION ISSUES 23

so that no error value can be used to indicate the nature of the error (e.g., an error on the
receiver in a send with the ready mode).

This document does not specify the state of a computation after an erroneous MPI call
has occurred. The desired behavior is that a relevant error code be returned, and the effect
of the error be localized to the greatest possible extent. E.g., it is highly desirable that an
erroneous receive call will not cause any part of the receiver’s memory to be overwritten,
beyond the area specified for receiving the message.

Implementations may go beyond this document in supporting in a meaningful manner
MPI calls that are defined here to be erroneous. For example, MPI specifies strict type
matching rules between matching send and receive operations: it is erroneous to send a
floating point variable and receive an integer. Implementations may go beyond these type
matching rules, and provide automatic type conversion in such situations. It will be helpful
to generate warnings for such non-conforming behavior.

MPI defines a way for users to create new error codes as defined in Section 8.5.

2.9 Implementation Issues

There are a number of areas where an MP| implementation may interact with the operating
environment and system. While MPI does not mandate that any services (such as signal
handling) be provided, it does strongly suggest the behavior to be provided if those services
are available. This is an important point in achieving portability across platforms that
provide the same set of services.

2.9.1 Independence of Basic Runtime Routines

MPI programs require that library routines that are part of the basic language environment
(such as write in Fortran and printf and malloc in ISO C) and are executed after
MPI_INIT and before MPI_FINALIZE operate independently and that their completion is
independent of the action of other processes in an MPI program.

Note that this in no way prevents the creation of library routines that provide parallel
services whose operation is collective. However, the following program is expected to com-
plete in an ISO C environment regardless of the size of MPI_COMM_WORLD (assuming that
printf is available at the executing nodes).

int rank;

MPI_Init((void *)0, (void *)0);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

if (rank == 0) printf("Starting program\n");
MPI_Finalize();

The corresponding Fortran programs are also expected to complete.

An example of what is mot required is any particular ordering of the action of these
routines when called by several tasks. For example, MPl makes neither requirements nor
recommendations for the output from the following program (again assuming that I/0 is
available at the executing nodes).

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
printf ("Output from task rank %d\n", rank);

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

24 CHAPTER 2. MPI TERMS AND CONVENTIONS

In addition, calls that fail because of resource exhaustion or other error are not con-
sidered a violation of the requirements here (however, they are required to complete, just
not to complete successfully).

2.9.2 Interaction with Signals

MPI does not specify the interaction of processes with signals and does not require that MPI
be signal safe. The implementation may reserve some signals for its own use. It is required
that the implementation document which signals it uses, and it is strongly recommended
that it not use SIGALRM, SIGFPE, or SIGIO. Implementations may also prohibit the use of
MPI calls from within signal handlers.

In multithreaded environments, users can avoid conflicts between signals and the MPI
library by catching signals only on threads that do not execute MPI calls. High quality
single-threaded implementations will be signal safe: an MPI call suspended by a signal will
resume and complete normally after the signal is handled.

2.10 Examples

The examples in this document are for illustration purposes only. They are not intended
to specify the standard. Furthermore, the examples have not been carefully checked or
verified.

Unofficial Draft for Comment Only



2.10. EXAMPLES

25

Deprecated or removed deprecated removed Replacement

construct since since

MPI_ADDRESS MPI-2.0 MPI-3.0 MPI_GET_ADDRESS
MPI_TYPE_HINDEXED MPI-2.0 MPI-3.0 MPI_TYPE_CREATE_HINDEXED
MPI_TYPE_HVECTOR MPI-2.0 MPI-3.0 MPI_TYPE_CREATE_HVECTOR
MPI_TYPE_STRUCT MPI-2.0 MPI-3.0 MPI_TYPE_CREATE_STRUCT
MPI_TYPE_EXTENT MPI-2.0 MPI-3.0 MPI_TYPE_GET_EXTENT
MPI_TYPE_UB MPI-2.0 MPI-3.0 MPI_TYPE_GET_EXTENT
MPI_TYPE_LB MPI-2.0 MPI-3.0 MPI_TYPE_GET_EXTENT
MPI_LB! MPI-2.0 MPI-3.0 MPI_TYPE_CREATE_RESIZED
MPI_UB! MPI-2.0 MPI-3.0 MPI_TYPE_CREATE_RESIZED
MPI_ERRHANDLER_CREATE MPI-2.0 MPI-3.0 MPI_COMM_CREATE_ERRHANDLER
MPI_ERRHANDLER_GET MPI-2.0 MPI-3.0 MPI_COMM_GET_ERRHANDLER
MPI_ERRHANDLER_SET MPI-2.0 MPI-3.0 MPI_COMM_SET_ERRHANDLER
MPI_Handler_function® MPI-2.0 MPI-3.0 MPI_Comm_errhandler_function®
MPI_KEYVAL_CREATE MPI-2.0 MPI_COMM_CREATE_KEYVAL
MPI_KEYVAL_FREE MPI-2.0 MPI_COMM_FREE_KEYVAL
MPI_DUP_FN? MPI-2.0 MPI_COMM_DUP_FN?
MPI_NULL_COPY_FN? MPI-2.0 MPI_COMM_NULL_COPY_FN?
MPI_NULL_DELETE_FN? MPI-2.0 MPI_COMM_NULL_DELETE_FN?
MPI_Copy_function? MPI-2.0 MPI_Comm_copy_attr_function?
COPY_FUNCTION? MPI-2.0 COMM_COPY_ATTR_FUNCTION?
MPI_Delete_function® MPI-2.0 MPI_Comm_delete_attr_function?
DELETE_FUNCTION? MPI-2.0 COMM_DELETE_ATTR_FUNCTION?
MPI_ATTR_DELETE MPI-2.0 MPI_COMM_DELETE_ATTR
MPI_ATTR_GET MPI-2.0 MPI_COMM_GET_ATTR
MPI_ATTR_PUT MPI-2.0 MPI_COMM_SET_ATTR
MPI_COMBINER_HVECTOR_INTEGER? - MPI-3.0 MPI_COMBINER_HVECTOR?
MF‘I_COMBINER_HINDEXED_INTEGER4 - MPI-3.0 MPI_COMBINER_HINDEXED4
MF’I_COMBINER_STRUCT_INTEGER4 - MPI-3.0 MPI_COMBINER_STRUCT4

MPI::. .. MPI-2.2 MPI-3.0  C language binding

MPI_CANCEL for send requests MPI-3.2 no direct replacement
MPI_T_ERR_INVALID_ITEM MPI-3.2 MPI_T_ERR_INVALID_INDEX

T Predefined datatype.

2 Callback prototype definition.
3 Predefined callback routine.

4 Constant.

Other entries are regular MPI routines.

Table 2.1: Deprecated and Removed constructs

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

26

CHAPTER 2. MPI TERMS AND CONVENTIONS

Unofficial Draft for Comment Only



Chapter 3

Point-to-Point Communication

3.1 Introduction

Sending and receiving of messages by processes is the basic MPl communication mechanism.
The basic point-to-point communication operations are send and receive. Their use is
illustrated in the example below.

#include "mpi.h"
int main( int argc, char *argv[])
{
char message[20];
int myrank;
MPI_Status status;
MPI_Init( &argc, &argv );
MPI_Comm_rank( MPI_COMM_WORLD, &myrank );
if (myrank == 0) /* code for process zero */
{
strcpy(message, "Hello, there");
MPI_Send(message, strlen(message)+1, MPI_CHAR, 1, 99, MPI_COMM_WORLD) ;

}

else if (myrank == 1) /* code for process one */

{
MPI_Recv(message, 20, MPI_CHAR, O, 99, MPI_COMM_WORLD, &status);
printf("received :%s:\n", message);

}

MPI_Finalize();

return O;

}

In this example, process zero (myrank = 0) sends a message to process one using the
send operation MPI_SEND. The operation specifies a send buffer in the sender memory
from which the message data is taken. In the example above, the send buffer consists of
the storage containing the variable message in the memory of process zero. The location,
size and type of the send buffer are specified by the first three parameters of the send
operation. The message sent will contain the 13 characters of this variable. In addition,
the send operation associates an envelope with the message. This envelope specifies the

Unofficial Draft for Comment Only 27

11

12

13

14

15

16

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

28 CHAPTER 3. POINT-TO-POINT COMMUNICATION

message destination and contains distinguishing information that can be used by the receive
operation to select a particular message. The last three parameters of the send operation,
along with the rank of the sender, specify the envelope for the message sent. Process one
(myrank = 1) receives this message with the receive operation MPI_RECV. The message to
be received is selected according to the value of its envelope, and the message data is stored
into the receive buffer. In the example above, the receive buffer consists of the storage
containing the string message in the memory of process one. The first three parameters
of the receive operation specify the location, size and type of the receive buffer. The next
three parameters are used for selecting the incoming message. The last parameter is used
to return information on the message just received.

The next sections describe the blocking send and receive operations. We discuss send,
receive, blocking communication semantics, type matching requirements, type conversion in
heterogeneous environments, and more general communication modes. Nonblocking com-
munication is addressed next, followed by probing and canceling a message, channel-like
constructs and send-receive operations, ending with a description of the “dummy” process,
MPI_PROC_NULL.

3.2 Blocking Send and Receive Operations
3.2.1 Blocking Send

The syntax of the blocking send operation is given below.

MPI_SEND(buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

int MPI_Send(const void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

MPI_Send(buf, count, datatype, dest, tag, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF ()
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

The blocking semantics of this call are described in Section 3.4.

Unofficial Draft for Comment Only



3.2. BLOCKING SEND AND RECEIVE OPERATIONS 29

3.2.2 Message Data

The send buffer specified by the MPI_SEND operation consists of count successive entries of
the type indicated by datatype, starting with the entry at address buf. Note that we specify
the message length in terms of number of elements, not number of bytes. The former is
machine independent and closer to the application level.

The data part of the message consists of a sequence of count values, each of the type
indicated by datatype. count may be zero, in which case the data part of the message is
empty. The basic datatypes that can be specified for message data values correspond to the
basic datatypes of the host language. Possible values of this argument for Fortran and the
corresponding Fortran types are listed in Table 3.1.

MPI datatype Fortran datatype
MPI_INTEGER INTEGER
MPI_REAL REAL
MPI_DOUBLE_PRECISION | DOUBLE PRECISION
MPI_COMPLEX COMPLEX
MPI_LOGICAL LOGICAL
MPI_CHARACTER CHARACTER (1)
MPI_BYTE

MPI_PACKED

Table 3.1: Predefined MPI datatypes corresponding to Fortran datatypes

Possible values for this argument for C and the corresponding C types are listed in
Table 3.2.

The datatypes MPI_BYTE and MPI_PACKED do not correspond to a Fortran or C
datatype. A value of type MPI_BYTE consists of a byte (8 binary digits). A byte is
uninterpreted and is different from a character. Different machines may have different
representations for characters, or may use more than one byte to represent characters. On
the other hand, a byte has the same binary value on all machines. The use of the type
MPI_PACKED is explained in Section 4.2.

MPI requires support of these datatypes, which match the basic datatypes of Fortran
and ISO C. Additional MPI datatypes should be provided if the host language has additional
data types: MPI_DOUBLE_COMPLEX for double precision complex in Fortran declared
to be of type DOUBLE COMPLEX; MPI_REAL2, MPI_REAL4, and MPI_REALS8 for Fortran
reals, declared to be of type REAL*2, REAL*4 and REAL*8, respectively; MPI_INTEGER1,
MPI_INTEGER2, and MPI_INTEGER4 for Fortran integers, declared to be of type
INTEGER*1, INTEGER*2, and INTEGER*4, respectively; etc.

Rationale. One goal of the design is to allow for MPI to be implemented as a
library, with no need for additional preprocessing or compilation. Thus, one cannot
assume that a communication call has information on the datatype of variables in the
communication buffer; this information must be supplied by an explicit argument.
The need for such datatype information will become clear in Section 3.3.2. (End of
rationale.)

The datatypes MPI_AINT, MPI_OFFSET, and MPI_COUNT correspond to the MPI-
defined C types MPI_Aint, MPI_Offset, and MPI_Count and their Fortran equivalents

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



© 4] ~ =] ot - w [ =

[ [ [ e~ ~ > - [ w w w w w w w w w w [ [ M [ N ) N N [V [ = = [ = = = [ [ [ =
~ =] (o)) - w N - o © oo ~ [=2] ot [ w N - o © oo ~ =] o - w %) - (=) © oo ~ (=2} ot = w [ - o

'S
oo

30

INTEGER (KIND=MPI_ADDRESS_KIND), INTEGER (KIND=MPI_OFFSET_KIND) , and INTEGER
(KIND=MPI_COUNT_KIND) . This is described in Table 3.3. All predefined datatype handles
are available in all language bindings. See Sections 18.2.6 and 18.2.10 on page 688 and 696

CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI datatype C datatype
MPI_CHAR char
(treated as printable character)
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int

MPI_LONG_LONGL_INT
MPI_LONG_LONG (as a synonym)
MPI_SIGNED_CHAR

MPI_UNSIGNED_CHAR

MPI_UNSIGNED_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_UNSIGNED_LONG_LONG
MPI_FLOAT

MPI_DOUBLE
MPI_LONG_DOUBLE
MPI_WCHAR

MPI_C_BOOL
MPI_INT8_T
MPI_INT16_T
MPI_INT32_T
MPI_INT64_T
MPI_UINT8_T
MPI_UINT16_T
MPI_UINT32_T
MPI_UINT64_T
MPI_C_COMPLEX

MPI_C_FLOAT_COMPLEX (as a synonym)

MPI_C_DOUBLE_COMPLEX
MPI_C_LONG_DOUBLE_COMPLEX
MPI_BYTE

MPI_PACKED

signed long long int
signed long long int
signed char
(treated as integral value)
unsigned char

(treated as integral value)
unsigned short int
unsigned int

unsigned long int
unsigned long long int
float

double

long double

wchar_t
(defined in <stddef.h>)
(treated as printable character)
_Bool

int8_t

intl6_t

int32_t

int64_t

uint8_t

uintl6_t

uint32_t

uint64_t

float _Complex

float _Complex

double _Complex

long double _Complex

Table 3.2: Predefined MPI datatypes corresponding to C datatypes

for information on interlanguage communication with these types.

supported in C and Fortran.

If there is an accompanying C++ compiler then the datatypes in Table 3.4 are also

Unofficial Draft for Comment Only




3.2. BLOCKING SEND AND RECEIVE OPERATIONS 31

MPI datatype | C datatype | Fortran datatype

MPI_AINT MPI_Aint INTEGER (KIND=MPI_ADDRESS_KIND)
MPI_OFFSET | MPI_Offset | INTEGER (KIND=MPI_OFFSET_KIND)
MPI_COUNT MPI_Count INTEGER (KIND=MPI_COUNT_KIND)

Table 3.3: Predefined MPI datatypes corresponding to both C and Fortran datatypes

MPI datatype C++ datatype
MPI_CXX_BOOL bool
MPI_CXX_FLOAT_COMPLEX std::complex<float>
MPI_CXX_DOUBLE_COMPLEX std::complex<double>
MPI_CXX_LONG_DOUBLE_COMPLEX | std::complex<long double>

Table 3.4: Predefined MPI datatypes corresponding to C++ datatypes

3.2.3 Message Envelope

In addition to the data part, messages carry information that can be used to distinguish
messages and selectively receive them. This information consists of a fixed number of fields,
which we collectively call the message envelope. These fields are

source
destination
tag
communicator

The message source is implicitly determined by the identity of the message sender. The
other fields are specified by arguments in the send operation.

The message destination is specified by the dest argument.

The integer-valued message tag is specified by the tag argument. This integer can be
used by the program to distinguish different types of messages. The range of valid tag
values is 0, . .., UB, where the value of UB is implementation dependent. It can be found by
querying the value of the attribute MPI_TAG_UB, as described in Chapter 8. MPI requires
that UB be no less than 32767.

The comm argument specifies the communicator that is used for the send operation.
Communicators are explained in Chapter 6; below is a brief summary of their usage.

A communicator specifies the communication context for a communication operation.
Each communication context provides a separate “communication universe”: messages are
always received within the context they were sent, and messages sent in different contexts
do not interfere.

The communicator also specifies the set of processes that share this communication
context. This process group is ordered and processes are identified by their rank within
this group. Thus, the range of valid values for dest is 0, ..., n—1U{MPI_PROC_NULL}, where
n is the number of processes in the group. (If the communicator is an inter-communicator,
then destinations are identified by their rank in the remote group. See Chapter 6.)

A predefined communicator MPI_COMM_WORLD is provided by MPI. It allows com-
munication with all processes that are accessible after MPI initialization and processes are
identified by their rank in the group of MPI_COMM_WORLD.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

23

24

25

26

27

28

29

30

31

32

33

35

36

38

39

40

41

42

43

45

46

47

48

32

CHAPTER 3. POINT-TO-POINT COMMUNICATION

Advice to users. Users that are comfortable with the notion of a flat name space
for processes, and a single communication context, as offered by most existing com-
munication libraries, need only use the predefined variable MPI_COMM_WORLD as the
comm argument. This will allow communication with all the processes available at
initialization time.

Users may define new communicators, as explained in Chapter 6. Communicators
provide an important encapsulation mechanism for libraries and modules. They allow
modules to have their own disjoint communication universe and their own process
numbering scheme. (End of advice to users.)

Advice to implementors. The message envelope would normally be encoded by a
fixed-length message header. However, the actual encoding is implementation depen-
dent. Some of the information (e.g., source or destination) may be implicit, and need
not be explicitly carried by messages. Also, processes may be identified by relative
ranks, or absolute ids, etc. (End of advice to implementors.)

3.2.4 Blocking Receive

The syntax of the blocking receive operation is given below.

MPI_RECV (buf, count, datatype, source, tag, comm, status)

ouT buf initial address of receive buffer (choice)
IN count number of elements in receive buffer (non-negative in-
teger)
IN datatype datatype of each receive buffer element (handle)
IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
ouT status status object (Status)
int MPI_Recv(void* buf, int count, MPI_Datatype datatype, int source,

MPI_

MPI_

int tag, MPI_Comm comm, MPI_Status *status)

Recv(buf, count, datatype, source, tag, comm, status, ierror)

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count, source, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)

<type> BUF ()

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE),
IERROR

Unofficial Draft for Comment Only



3.2. BLOCKING SEND AND RECEIVE OPERATIONS 33

The blocking semantics of this call are described in Section 3.4.

The receive buffer consists of the storage containing count consecutive elements of the
type specified by datatype, starting at address buf. The length of the received message must
be less than or equal to the length of the receive buffer. An overflow error occurs if all
incoming data does not fit, without truncation, into the receive buffer.

If a message that is shorter than the receive buffer arrives, then only those locations
corresponding to the (shorter) message are modified.

Advice to users. The MPI_PROBE function described in Section 3.8 can be used to
receive messages of unknown length. (End of advice to users.)

Advice to implementors. Even though no specific behavior is mandated by MPI for
erroneous programs, the recommended handling of overflow situations is to return in
status information about the source and tag of the incoming message. The receive
operation will return an error code. A quality implementation will also ensure that
no memory that is outside the receive buffer will ever be overwritten.

In the case of a message shorter than the receive buffer, MPI is quite strict in that it
allows no modification of the other locations. A more lenient statement would allow
for some optimizations but this is not allowed. The implementation must be ready to
end a copy into the receiver memory exactly at the end of the receive buffer, even if
it is an odd address. (End of advice to implementors.)

The selection of a message by a receive operation is governed by the value of the
message envelope. A message can be received by a receive operation if its envelope matches
the source, tag and comm values specified by the receive operation. The receiver may
specify a wildcard MPI_ANY_SOURCE value for source, and/or a wildcard MPI_ANY_TAG
value for tag, indicating that any source and/or tag are acceptable. It cannot specify a
wildcard value for comm. Thus, a message can be received by a receive operation only
if it is addressed to the receiving process, has a matching communicator, has matching
source unless source=MPI_ANY_SOURCE in the pattern, and has a matching tag unless
tag=MPI_ANY_TAG in the pattern.

The message tag is specified by the tag argument of the receive operation. The argu-
ment source, if different from MPI_ANY_SOURCE, is specified as a rank within the process
group associated with that same communicator (remote process group, for intercommu-
nicators). Thus, the range of valid values for the source argument is {0,...,n — 1} U
{MPI_ANY_SOURCE} U{MPI_PROC_NULL}, where n is the number of processes in this group.

Note the asymmetry between send and receive operations: A receive operation may
accept messages from an arbitrary sender, on the other hand, a send operation must specify
a unique receiver. This matches a “push” communication mechanism, where data transfer
is effected by the sender (rather than a “pull” mechanism, where data transfer is effected
by the receiver).

Source = destination is allowed, that is, a process can send a message to itself. (How-
ever, it is unsafe to do so with the blocking send and receive operations described above,
since this may lead to deadlock. See Section 3.5.)

Advice to implementors. Message context and other communicator information can
be implemented as an additional tag field. It differs from the regular message tag
in that wild card matching is not allowed on this field, and that value setting for

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

41

43

44

45

46

47

48

34 CHAPTER 3. POINT-TO-POINT COMMUNICATION

this field is controlled by communicator manipulation functions. (End of advice to
implementors.)

The use of dest or source=MPI_PROC_NULL to define a “dummy” destination or source
in any send or receive call is described in Section 3.11.

3.2.5 Return Status

The source or tag of a received message may not be known if wildcard values were used
in the receive operation. Also, if multiple requests are completed by a single MPI function
(see Section 3.7.5), a distinct error code may need to be returned for each request. The
information is returned by the status argument of MPI_RECV. The type of status is MPI-
defined. Status variables need to be explicitly allocated by the user, that is, they are not
system objects.

In C, status is a structure that contains three fields named MPI_SOURCE, MPI_TAG,
and MPI_ERROR; the structure may contain additional fields. Thus,
status.MPI_SOURCE, status.MPI_TAG and status.MPI_ERROR contain the source, tag, and
error code, respectively, of the received message.

In Fortran with USE mpi or INCLUDE ’mpif.h’, status is an array of INTEGERs of size
MPI_STATUS_SIZE. The constants MPI_SOURCE, MPI_TAG and MPI_ERROR are the indices
of the entries that store the source, tag and error fields. Thus, status(MPI_SOURCE),
status(MPI_TAG) and status(MPI_ERROR) contain, respectively, the source, tag and error
code of the received message.

With Fortran USE mpi_£08, status is defined as the Fortran BIND(C) derived type
TYPE(MPI_Status) containing three public INTEGER fields named MPI_SOURCE, MPI_TAG,
and MPI_ERROR. TYPE(MPI_Status) may contain additional, implementation-specific fields.
Thus, status%MPI_SOURCE, status%MPI_TAG and status%MPI_ERROR contain the source,
tag, and error code of a received message respectively. Additionally, within both the mpi
and the mpi_£08 modules, the constants MPI_STATUS_SIZE, MPI_SOURCE, MPI_TAG,
MPI_ERROR, and TYPE(MPI_Status) are defined to allow conversion between both status
representations. Conversion routines are provided in Section 18.2.5.

Rationale. The Fortran TYPE(MPI_Status) is defined as a BIND(C) derived type so
that it can be used at any location where the status integer array representation can
be used, e.g., in user defined common blocks. (End of rationale.)

Rationale. It is allowed to have the same name (e.g., MPI_SOURCE) defined as a
constant (e.g., Fortran parameter) and as a field of a derived type. (End of rationale.)

In general, message-passing calls do not modify the value of the error code field of
status variables. This field may be updated only by the functions in Section 3.7.5 which
return multiple statuses. The field is updated if and only if such function returns with an
error code of MPI_ERR_IN_STATUS.

Rationale. The error field in status is not needed for calls that return only one status,
such as MPI_WAIT, since that would only duplicate the information returned by the
function itself. The current design avoids the additional overhead of setting it, in such
cases. The field is needed for calls that return multiple statuses, since each request
may have had a different failure. (End of rationale.)

Unofficial Draft for Comment Only



3.2. BLOCKING SEND AND RECEIVE OPERATIONS 35

The status argument also returns information on the length of the message received.
However, this information is not directly available as a field of the status variable and a call
to MPI_GET_COUNT is required to “decode” this information.

MPI_GET_COUNT (status, datatype, count)

IN status return status of receive operation (Status)
IN datatype datatype of each receive buffer entry (handle)
ouT count number of received entries (integer)

int MPI_Get_count(const MPI_Status *status, MPI_Datatype datatype,
int *count)

MPI_Get_count(status, datatype, count, ierror)

TYPE(MPI_Status), INTENT(IN) :: status
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(OUT) :: count

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GET_COUNT (STATUS, DATATYPE, COUNT, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

Returns the number of entries received. (Again, we count entries, each of type datatype,
not bytes.) The datatype argument should match the argument provided by the receive call
that set the status variable. If the number of entries received exceeds the limits of the count
parameter, then MPI_GET_COUNT sets the value of count to MPI_UNDEFINED. There are
other situations where the value of count can be set to MPI_UNDEFINED; see Section 4.1.11.

Rationale.  Some message-passing libraries use INOUT count, tag and

source arguments, thus using them both to specify the selection criteria for incoming
messages and return the actual envelope values of the received message. The use of a
separate status argument prevents errors that are often attached with INOUT argument
(e.g., using the MPI_ANY_TAG constant as the tag in a receive). Some libraries use
calls that refer implicitly to the “last message received.” This is not thread safe.

The datatype argument is passed to MPI_GET_COUNT so as to improve performance.
A message might be received without counting the number of elements it contains,
and the count value is often not needed. Also, this allows the same function to be
used after a call to MPI_PROBE or MPI_IPROBE. With a status from MPI_PROBE
or MPI_IPROBE, the same datatypes are allowed as in a call to MPI_RECV to receive
this message. (End of rationale.)

The value returned as the count argument of MPI_GET_COUNT for a datatype of length
zero where zero bytes have been transferred is zero. If the number of bytes transferred is
greater than zero, MPI_UNDEFINED is returned.

Rationale. Zero-length datatypes may be created in a number of cases. An important

case is MPI_TYPE_CREATE_DARRAY, where the definition of the particular darray
results in an empty block on some MPI process. Programs written in an SPMD style

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

36 CHAPTER 3. POINT-TO-POINT COMMUNICATION

will not check for this special case and may want to use MPI_GET_COUNT to check
the status. (End of rationale.)

Advice to users. The buffer size required for the receive can be affected by data con-
versions and by the stride of the receive datatype. In most cases, the safest approach
is to use the same datatype with MPI_GET_COUNT and the receive. (End of advice
to users.)

All send and receive operations use the buf, count, datatype, source, dest, tag, comm,
and status arguments in the same way as the blocking MPI_SEND and MPI_RECV operations
described in this section.

3.2.6 Passing MPI_STATUS_IGNORE for Status

Every call to MPI_RECV includes a status argument, wherein the system can return details
about the message received. There are also a number of other MPI calls where status
is returned. An object of type MPI_Status is not an MPI opaque object; its structure
is declared in mpi.h and mpif.h, and it exists in the user’s program. In many cases,
application programs are constructed so that it is unnecessary for them to examine the
status fields. In these cases, it is a waste for the user to allocate a status object, and it is
particularly wasteful for the MPI implementation to fill in fields in this object.

To cope with this problem, there are two predefined constants, MPI_STATUS_IGNORE
and MPI_STATUSES_IGNORE, which when passed to a receive, probe, wait, or test function,
inform the implementation that the status fields are not to be filled in. Note that
MPI_STATUS_IGNORE is not a special type of MPI_Status object; rather, it is a special value
for the argument. In C one would expect it to be NULL, not the address of a special
MPI_Status.

MPI_STATUS_IGNORE, and the array version MPI_STATUSES_IGNORE, can be used every-
where a status argument is passed to a receive, wait, or test function. MPI_STATUS_IGNORE
cannot be used when status is an IN argument. Note that in Fortran MPI_STATUS_IGNORE
and MPI_STATUSES_IGNORE are objects like MPI_BOTTOM (not usable for initialization or
assignment). See Section 2.5.4.

In general, this optimization can apply to all functions for which status or an array of
statuses is an OUT argument. Note that this converts status into an INOUT argument. The
functions that can be passed MPI_STATUS_IGNORE are all the various forms of MPI_RECV,
MPI_PROBE, MPI_TEST, and MPI_WAIT, as well as MPI_REQUEST _GET_STATUS. When
an array is passed, as in the MPI_{TEST|WAIT }{ALL|SOME} functions, a separate constant,
MPI_STATUSES_IGNORE, is passed for the array argument. It is possible for an MPI function
to return MPI_ERR_IN_STATUS even when MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE
has been passed to that function.

MPI_STATUS_IGNORE and MPI_STATUSES_IGNORE are not required to have the same
values in C and Fortran.

It is not allowed to have some of the statuses in an array of statuses for
MPI_{TEST|WAIT }{ALL|SOME} functions set to MPI_STATUS_IGNORE; one either specifies
ignoring all of the statuses in such a call with MPI_STATUSES_IGNORE, or none of them by
passing normal statuses in all positions in the array of statuses.

Unofficial Draft for Comment Only



3.3. DATA TYPE MATCHING AND DATA CONVERSION 37

3.3 Data Type Matching and Data Conversion

3.3.1 Type Matching Rules

One can think of message transfer as consisting of the following three phases.
1. Data is pulled out of the send buffer and a message is assembled.
2. A message is transferred from sender to receiver.
3. Data is pulled from the incoming message and disassembled into the receive buffer.

Type matching has to be observed at each of these three phases: The type of each
variable in the sender buffer has to match the type specified for that entry by the send
operation; the type specified by the send operation has to match the type specified by the
receive operation; and the type of each variable in the receive buffer has to match the type
specified for that entry by the receive operation. A program that fails to observe these three
rules is erroneous.

To define type matching more precisely, we need to deal with two issues: matching of
types of the host language with types specified in communication operations; and matching
of types at sender and receiver.

The types of a send and receive match (phase two) if both operations use identical
names. That is, MPI_INTEGER matches MPI_INTEGER, MPI_REAL matches MPI_REAL,
and so on. There is one exception to this rule, discussed in Section 4.2: the type
MPI_PACKED can match any other type.

The type of a variable in a host program matches the type specified in the commu-
nication operation if the datatype name used by that operation corresponds to the basic
type of the host program variable. For example, an entry with type name MPI_INTEGER
matches a Fortran variable of type INTEGER. A table giving this correspondence for Fortran
and C appears in Section 3.2.2. There are two exceptions to this last rule: an entry with
type name MPI_BYTE or MPI_PACKED can be used to match any byte of storage (on a
byte-addressable machine), irrespective of the datatype of the variable that contains this
byte. The type MPI_PACKED is used to send data that has been explicitly packed, or
receive data that will be explicitly unpacked, see Section 4.2. The type MPI_BYTE allows
one to transfer the binary value of a byte in memory unchanged.

To summarize, the type matching rules fall into the three categories below.

e Communication of typed values (e.g., with datatype different from MPI_BYTE), where
the datatypes of the corresponding entries in the sender program, in the send call, in
the receive call and in the receiver program must all match.

e Communication of untyped values (e.g., of datatype MPI_BYTE), where both sender
and receiver use the datatype MPI_BYTE. In this case, there are no requirements on
the types of the corresponding entries in the sender and the receiver programs, nor is
it required that they be the same.

e Communication involving packed data, where MPI_PACKED is used.

The following examples illustrate the first two cases.

Example 3.1 Sender and receiver specify matching types.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

38 CHAPTER 3. POINT-TO-POINT COMMUNICATION

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
CALL MPI_SEND(a(1), 10, MPI_REAL, 1, tag, comm, ierr)
ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(b(1), 15, MPI_REAL, O, tag, comm, status, ierr)
END IF

This code is correct if both a and b are real arrays of size > 10. (In Fortran, it might be
correct to use this code even if a or b have size < 10: e.g., when a(1) can be equivalenced
to an array with ten reals.)

Example 3.2 Sender and receiver do not specify matching types.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
CALL MPI_SEND(a(1), 10, MPI_REAL, 1, tag, comm, ierr)
ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(b(1), 40, MPI_BYTE, O, tag, comm, status, ierr)
END IF

This code is erroneous, since sender and receiver do not provide matching datatype
arguments.

Example 3.3 Sender and receiver specify communication of untyped values.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
CALL MPI_SEND(a(1), 40, MPI_BYTE, 1, tag, comm, ierr)
ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(b(1), 60, MPI_BYTE, O, tag, comm, status, ierr)
END IF

This code is correct, irrespective of the type and size of a and b (unless this results in
an out of bounds memory access).

Adwvice to users. If a buffer of type MPI_BYTE is passed as an argument to MPI_SEND,
then MPI will send the data stored at contiguous locations, starting from the address
indicated by the buf argument. This may have unexpected results when the data
layout is not as a casual user would expect it to be. For example, some Fortran
compilers implement variables of type CHARACTER as a structure that contains the
character length and a pointer to the actual string. In such an environment, sending
and receiving a Fortran CHARACTER variable using the MPI_BYTE type will not have
the anticipated result of transferring the character string. For this reason, the user is
advised to use typed communications whenever possible. (End of advice to users.)

Type MPI_CHARACTER

The type MPI_CHARACTER matches one character of a Fortran variable of type CHARACTER,
rather than the entire character string stored in the variable. Fortran variables of type
CHARACTER or substrings are transferred as if they were arrays of characters. This is
illustrated in the example below.

Unofficial Draft for Comment Only



3.3. DATA TYPE MATCHING AND DATA CONVERSION 39

Example 3.4
Transfer of Fortran CHARACTERs.

CHARACTER*10 a
CHARACTER*10 b

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
CALL MPI_SEND(a, 5, MPI_CHARACTER, 1, tag, comm, ierr)
ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(b(6:10), 5, MPI_CHARACTER, 0O, tag, comm, status, ierr)
END IF

The last five characters of string b at process 1 are replaced by the first five characters
of string a at process 0.

Rationale. The alternative choice would be for MPI_CHARACTER to match a char-
acter of arbitrary length. This runs into problems.

A Fortran character variable is a constant length string, with no special termina-
tion symbol. There is no fixed convention on how to represent characters, and how
to store their length. Some compilers pass a character argument to a routine as a
pair of arguments, one holding the address of the string and the other holding the
length of string. Consider the case of an MPIl communication call that is passed a
communication buffer with type defined by a derived datatype (Section 4.1). If this
communicator buffer contains variables of type CHARACTER then the information on
their length will not be passed to the MPI routine.

This problem forces us to provide explicit information on character length with the
MPI call. One could add a length parameter to the type MPI_CHARACTER, but this
does not add much convenience and the same functionality can be achieved by defining
a suitable derived datatype. (End of rationale.)

Advice to implementors. Some compilers pass Fortran CHARACTER arguments as a
structure with a length and a pointer to the actual string. In such an environment,
the MPI call needs to dereference the pointer in order to reach the string. (End of
advice to implementors.)

3.3.2 Data Conversion

One of the goals of MPI is to support parallel computations across heterogeneous environ-
ments. Communication in a heterogeneous environment may require data conversions. We
use the following terminology.

type conversion changes the datatype of a value, e.g., by rounding a REAL to an INTEGER.

representation conversion changes the binary representation of a value, e.g., from Hex
floating point to IEEE floating point.

The type matching rules imply that MPl communication never entails type conversion.
On the other hand, MPI requires that a representation conversion be performed when a

Unofficial Draft for Comment Only

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

40 CHAPTER 3. POINT-TO-POINT COMMUNICATION

typed value is transferred across environments that use different representations for the
datatype of this value. MPI does not specify rules for representation conversion. Such
conversion is expected to preserve integer, logical and character values, and to convert a
floating point value to the nearest value that can be represented on the target system.

Overflow and underflow exceptions may occur during floating point conversions. Con-
version of integers or characters may also lead to exceptions when a value that can be
represented in one system cannot be represented in the other system. An exception occur-
ring during representation conversion results in a failure of the communication. An error
occurs either in the send operation, or the receive operation, or both.

If a value sent in a message is untyped (i.e., of type MPI_BYTE), then the binary
representation of the byte stored at the receiver is identical to the binary representation
of the byte loaded at the sender. This holds true, whether sender and receiver run in the
same or in distinct environments. No representation conversion is required. (Note that
representation conversion may occur when values of type MPI_CHARACTER or MPI_CHAR
are transferred, for example, from an EBCDIC encoding to an ASCII encoding.)

No conversion need occur when an MPI program executes in a homogeneous system,
where all processes run in the same environment.

Consider the three examples, 3.1-3.3. The first program is correct, assuming that a and
b are REAL arrays of size > 10. If the sender and receiver execute in different environments,
then the ten real values that are fetched from the send buffer will be converted to the
representation for reals on the receiver site before they are stored in the receive buffer.
While the number of real elements fetched from the send buffer equal the number of real
elements stored in the receive buffer, the number of bytes stored need not equal the number
of bytes loaded. For example, the sender may use a four byte representation and the receiver
an eight byte representation for reals.

The second program is erroneous, and its behavior is undefined.

The third program is correct. The exact same sequence of forty bytes that were loaded
from the send buffer will be stored in the receive buffer, even if sender and receiver run in
a different environment. The message sent has exactly the same length (in bytes) and the
same binary representation as the message received. If a and b are of different types, or if
they are of the same type but different data representations are used, then the bits stored
in the receive buffer may encode values that are different from the values they encoded in
the send buffer.

Data representation conversion also applies to the envelope of a message: source, des-
tination and tag are all integers that may need to be converted.

Advice to implementors. The current definition does not require messages to carry
data type information. Both sender and receiver provide complete data type infor-
mation. In a heterogeneous environment, one can either use a machine independent
encoding such as XDR, or have the receiver convert from the sender representation
to its own, or even have the sender do the conversion.

Additional type information might be added to messages in order to allow the sys-
tem to detect mismatches between datatype at sender and receiver. This might be
particularly useful in a slower but safer debug mode. (End of advice to implementors.)

MPI requires support for inter-language communication, i.e., if messages are sent by a
C or C++ process and received by a Fortran process, or vice-versa. The behavior is defined
in Section 18.2.

Unofficial Draft for Comment Only



3.4. COMMUNICATION MODES 41

3.4 Communication Modes

The send call described in Section 3.2.1 is blocking: it does not return until the message
data and envelope have been safely stored away so that the sender is free to modify the
send buffer. The message might be copied directly into the matching receive buffer, or it
might be copied into a temporary system buffer.

Message buffering decouples the send and receive operations. A blocking send can com-
plete as soon as the message was buffered, even if no matching receive has been executed by
the receiver. On the other hand, message buffering can be expensive, as it entails additional
memory-to-memory copying, and it requires the allocation of memory for buffering. MPI
offers the choice of several communication modes that allow one to control the choice of the
communication protocol.

The send call described in Section 3.2.1 uses the standard communication mode. In
this mode, it is up to MPI to decide whether outgoing messages will be buffered. MPI may
buffer outgoing messages. In such a case, the send call may complete before a matching
receive is invoked. On the other hand, buffer space may be unavailable, or MPI may choose
not to buffer outgoing messages, for performance reasons. In this case, the send call will
not complete until a matching receive has been posted, and the data has been moved to the
receiver.

Thus, a send in standard mode can be started whether or not a matching receive has
been posted. It may complete before a matching receive is posted. The standard mode send
is non-local: successful completion of the send operation may depend on the occurrence of
a matching receive.

Rationale. The reluctance of MPI to mandate whether standard sends are buffering
or not stems from the desire to achieve portable programs. Since any system will run
out of buffer resources as message sizes are increased, and some implementations may
want to provide little buffering, MPI takes the position that correct (and therefore,
portable) programs do not rely on system buffering in standard mode. Buffering may
improve the performance of a correct program, but it doesn’t affect the result of the
program. If the user wishes to guarantee a certain amount of buffering, the user-
provided buffer system of Section 3.6 should be used, along with the buffered-mode
send. (End of rationale.)

There are three additional communication modes.

A buffered mode send operation can be started whether or not a matching receive
has been posted. It may complete before a matching receive is posted. However, unlike the
standard send, this operation is local, and its completion does not depend on the occurrence
of a matching receive. Thus, if a send is executed and no matching receive is posted, then
MPI must buffer the outgoing message, so as to allow the send call to complete. An error will
occur if there is insufficient buffer space. The amount of available buffer space is controlled
by the user — see Section 3.6. Buffer allocation by the user may be required for the buffered
mode to be effective.

According to the definitions in Section 2.4, MPI_BSEND is a blocking procedure and
the user can re-use all resources given as arguments, including the message data buffer. It is
also a local procedure because it returns immediately without depending on the execution
of any MPI procedure in any other MPI process. The same applies to MPI_RSEND because
it must not be called before its corresponding receive is not already called.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48


puri
Highlight


10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

43

44

45

46

47

48

42 CHAPTER 3. POINT-TO-POINT COMMUNICATION

Advice to users. These are two of the exceptions in which a blocking procedure are
local. (End of advice to users.)

A send that uses the synchronous mode can be started whether or not a matching
receive was posted. However, the send will complete successfully only if a matching receive is
posted, and the receive operation has started to receive the message sent by the synchronous
send. Thus, the completion of a synchronous send not only indicates that the send buffer
can be reused, but it also indicates that the receiver has reached a certain point in its
execution, namely that it has started executing the matching receive. If both sends and
receives are blocking operations then the use of the synchronous mode provides synchronous
communication semantics: a communication does not complete at either end before both
processes rendezvous at the communication. A send executed in this mode is non-local.

A send that uses the ready communication mode may be started only if the matching
receive is already posted. Otherwise, the operation is erroneous and its outcome is unde-
fined. On some systems, this allows the removal of a hand-shake operation that is otherwise
required and results in improved performance. The completion of the send operation does
not depend on the status of a matching receive, and merely indicates that the send buffer
can be reused. A send operation that uses the ready mode has the same semantics as a
standard send operation, or a synchronous send operation; it is merely that the sender
provides additional information to the system (namely that a matching receive is already
posted), that can save some overhead. In a correct program, therefore, a ready send could
be replaced by a standard send with no effect on the behavior of the program other than
performance.

Three additional send functions are provided for the three additional communication
modes. The communication mode is indicated by a one letter prefix: B for buffered, S for
synchronous, and R for ready.

MPI_BSEND (buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

int MPI_Bsend(const void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

MPI_Bsend(buf, count, datatype, dest, tag, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_ Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Unofficial Draft for Comment Only


puri
Highlight


3.4.

COMMUNICATION MODES 43

MPI_BSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

<type> BUF ()
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Send in buffered mode.

MPI_SSEND (buf, count, datatype, dest, tag, comm)

IN

int

buf initial address of send buffer (choice)

count number of elements in send buffer (non-negative inte-
ger)

datatype datatype of each send buffer element (handle)

dest rank of destination (integer)

tag message tag (integer)

comm communicator (handle)

MPI_Ssend(const void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

MPI_Ssend(buf, count, datatype, dest, tag, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_ Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Send in synchronous mode.

MPI_RSEND (buf, count, datatype, dest, tag, comm)

IN
IN

int

buf initial address of send buffer (choice)

count number of elements in send buffer (non-negative inte-
ger)

datatype datatype of each send buffer element (handle)

dest rank of destination (integer)

tag message tag (integer)

comm communicator (handle)

MPI_Rsend(const void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

MPI_Rsend(buf, count, datatype, dest, tag, comm, ierror)

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

44

CHAPTER 3. POINT-TO-POINT COMMUNICATION

TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_RSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

<type> BUF ()
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Send in ready mode.
There is only one receive operation, but it matches any of the send modes. The receive

operation described in the last section is blocking: it returns only after the receive buffer
contains the newly received message. A receive can complete before the matching send has
completed (of course, it can complete only after the matching send has started).

In a multithreaded implementation of MPI, the system may de-schedule a thread that

is blocked on a send or receive operation, and schedule another thread for execution in
the same address space. In such a case it is the user’s responsibility not to modify a
communication buffer until the communication completes. Otherwise, the outcome of the
computation is undefined.

Adwvice to implementors. Since a synchronous send cannot complete before a matching
receive is posted, one will not normally buffer messages sent by such an operation.

It is recommended to choose buffering over blocking the sender, whenever possible,
for standard sends. The programmer can signal his or her preference for blocking the
sender until a matching receive occurs by using the synchronous send mode.

A possible communication protocol for the various communication modes is outlined
below.

ready send: The message is sent as soon as possible.

synchronous send: The sender sends a request-to-send message. The receiver stores
this request. When a matching receive is posted, the receiver sends back a permission-
to-send message, and the sender now sends the message.

standard send: First protocol may be used for short messages, and second protocol
for long messages.

buffered send: The sender copies the message into a buffer and then sends it with a
nonblocking send (using the same protocol as for standard send).

Additional control messages might be needed for flow control and error recovery. Of
course, there are many other possible protocols.

Ready send can be implemented as a standard send. In this case there will be no
performance advantage (or disadvantage) for the use of ready send.

A standard send can be implemented as a synchronous send. In such a case, no data
buffering is needed. However, users may expect some buffering.

In a multithreaded environment, the execution of a blocking communication should
block only the executing thread, allowing the thread scheduler to de-schedule this
thread and schedule another thread for execution. (End of advice to implementors.)

Unofficial Draft for Comment Only



3.5. SEMANTICS OF POINT-TO-POINT COMMUNICATION 45

3.5 Semantics of Point-to-Point Communication

A valid MPI implementation guarantees certain general properties of point-to-point com-
munication, which are described in this section.

Order Messages are non-overtaking: If a sender sends two messages in succession to the
same destination, and both match the same receive, then this operation cannot receive the
second message if the first one is still pending. If a receiver posts two receives in succession,
and both match the same message, then the second receive operation cannot be satisfied
by this message, if the first one is still pending. This requirement facilitates matching of
sends to receives. It guarantees that message-passing code is deterministic, if processes are
single-threaded and the wildcard MPI_ANY_SOURCE is not used in receives. (Some of the
calls described later, such as MPI_CANCEL or MPI_WAITANY, are additional sources of
nondeterminism.)

If a process has a single thread of execution, then any two communications executed
by this process are ordered. On the other hand, if the process is multithreaded, then the
semantics of thread execution may not define a relative order between two send operations
executed by two distinct threads. The operations are logically concurrent, even if one
physically precedes the other. In such a case, the two messages sent can be received in
any order. Similarly, if two receive operations that are logically concurrent receive two
successively sent messages, then the two messages can match the two receives in either
order.

Example 3.5 An example of non-overtaking messages.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
CALL MPI_BSEND(bufl, count, MPI_REAL, 1, tag, comm, ierr)
CALL MPI_BSEND(buf2, count, MPI_REAL, 1, tag, comm, ierr)
ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(bufil, count, MPI_REAL, O, MPI_ANY_TAG, comm, status, ierr)
CALL MPI_RECV(buf2, count, MPI_REAL, O, tag, comm, status, ierr)
END IF

The message sent by the first send must be received by the first receive, and the message
sent by the second send must be received by the second receive.

Progress If a pair of matching send and receives have been initiated on two processes, then
at least one of these two operations will complete, independently of other actions in the
system: the send operation will complete, unless the receive is satisfied by another message,
and completes; the receive operation will complete, unless the message sent is consumed by
another matching receive that was posted at the same destination process.

Example 3.6 An example of two, intertwined matching pairs.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

46 CHAPTER 3. POINT-TO-POINT COMMUNICATION

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
CALL MPI_BSEND(bufl, count, MPI_REAL, 1, tagl, comm, ierr)
CALL MPI_SSEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)
ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(bufl, count, MPI_REAL, O, tag2, comm, status, ierr)
CALL MPI_RECV(buf2, count, MPI_REAL, O, tagl, comm, status, ierr)
END IF

Both processes invoke their first communication call. Since the first send of process zero
uses the buffered mode, it must complete, irrespective of the state of process one. Since
no matching receive is posted, the message will be copied into buffer space. (If insufficient
buffer space is available, then the program will fail.) The second send is then invoked. At
that point, a matching pair of send and receive operation is enabled, and both operations
must complete. Process one next invokes its second receive call, which will be satisfied by
the buffered message. Note that process one received the messages in the reverse order they
were sent.

Fairness MPI makes no guarantee of fairness in the handling of communication. Suppose
that a send is posted. Then it is possible that the destination process repeatedly posts a
receive that matches this send, yet the message is never received, because it is each time
overtaken by another message, sent from another source. Similarly, suppose that a receive
was posted by a multithreaded process. Then it is possible that messages that match this
receive are repeatedly received, yet the receive is never satisfied, because it is overtaken
by other receives posted at this node (by other executing threads). It is the programmer’s
responsibility to prevent starvation in such situations.

Resource limitations Any pending communication operation consumes system resources
that are limited. Errors may occur when lack of resources prevent the execution of an MPI
call. A quality implementation will use a (small) fixed amount of resources for each pending
send in the ready or synchronous mode and for each pending receive. However, buffer space
may be consumed to store messages sent in standard mode, and must be consumed to store
messages sent in buffered mode, when no matching receive is available. The amount of space
available for buffering will be much smaller than program data memory on many systems.
Then, it will be easy to write programs that overrun available buffer space.

MPI allows the user to provide buffer memory for messages sent in the buffered mode.
Furthermore, MPI specifies a detailed operational model for the use of this buffer. An MPI
implementation is required to do no worse than implied by this model. This allows users to
avoid buffer overflows when they use buffered sends. Buffer allocation and use is described
in Section 3.6.

A buffered send operation that cannot complete because of a lack of buffer space is
erroneous. When such a situation is detected, an error is signaled that may cause the
program to terminate abnormally. On the other hand, a standard send operation that
cannot complete because of lack of buffer space will merely block, waiting for buffer space
to become available or for a matching receive to be posted. This behavior is preferable in
many situations. Consider a situation where a producer repeatedly produces new values
and sends them to a consumer. Assume that the producer produces new values faster
than the consumer can consume them. If buffered sends are used, then a buffer overflow

Unofficial Draft for Comment Only



3.5. SEMANTICS OF POINT-TO-POINT COMMUNICATION 47

will result. Additional synchronization has to be added to the program so as to prevent
this from occurring. If standard sends are used, then the producer will be automatically
throttled, as its send operations will block when buffer space is unavailable.

In some situations, a lack of buffer space leads to deadlock situations. This is illustrated
by the examples below.

Example 3.7 An exchange of messages.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)
CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)
ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(recvbuf, count, MPI_REAL, O, tag, comm, status, ierr)
CALL MPI_SEND(sendbuf, count, MPI_REAL, O, tag, comm, ierr)
END IF

This program will succeed even if no buffer space for data is available. The standard send
operation can be replaced, in this example, with a synchronous send.

Example 3.8 An errant attempt to exchange messages.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN
CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)
CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(recvbuf, count, MPI_REAL, O, tag, comm, status, ierr)
CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)

END IF

The receive operation of the first process must complete before its send, and can complete
only if the matching send of the second processor is executed. The receive operation of the
second process must complete before its send and can complete only if the matching send
of the first process is executed. This program will always deadlock. The same holds for any
other send mode.

Example 3.9 An exchange that relies on buffering.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)

CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)
ELSE IF (rank.EQ.1) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, O, tag, comm, ierr)

CALL MPI_RECV(recvbuf, count, MPI_REAL, O, tag, comm, status, ierr)
END IF

The message sent by each process has to be copied out before the send operation returns
and the receive operation starts. For the program to complete, it is necessary that at least
one of the two messages sent be buffered. Thus, this program can succeed only if the
communication system can buffer at least count words of data.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

47

48

48

3.6

CHAPTER 3. POINT-TO-POINT COMMUNICATION

Advice to users. When standard send operations are used, then a deadlock situation
may occur where both processes are blocked because buffer space is not available. The
same will certainly happen, if the synchronous mode is used. If the buffered mode is
used, and not enough buffer space is available, then the program will not complete
either. However, rather than a deadlock situation, we shall have a buffer overflow
erTor.

A program is “safe” if no message buffering is required for the program to complete.
One can replace all sends in such program with synchronous sends, and the pro-
gram will still run correctly. This conservative programming style provides the best
portability, since program completion does not depend on the amount of buffer space
available or on the communication protocol used.

Many programmers prefer to have more leeway and opt to use the “unsafe” program-
ming style shown in Example 3.9. In such cases, the use of standard sends is likely
to provide the best compromise between performance and robustness: quality imple-
mentations will provide sufficient buffering so that “common practice” programs will
not deadlock. The buffered send mode can be used for programs that require more
buffering, or in situations where the programmer wants more control. This mode
might also be used for debugging purposes, as buffer overflow conditions are easier to
diagnose than deadlock conditions.

Nonblocking message-passing operations, as described in Section 3.7, can be used to
avoid the need for buffering outgoing messages. This prevents deadlocks due to lack
of buffer space, and improves performance, by allowing overlap of computation and
communication, and avoiding the overheads of allocating buffers and copying messages
into buffers. (End of advice to users.)

Buffer Allocation and Usage

A user may specify a buffer to be used for buffering messages sent in buffered mode. Buffer-
ing is done by the sender.

MPI_BUFFER_ATTACH(buffer, size)

IN
IN

int

MPI_

MPI_

buffer initial buffer address (choice)

size buffer size, in bytes (non-negative integer)

MPI_Buffer_attach(void* buffer, int size)

Buffer_attach(buffer, size, ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer
INTEGER, INTENT(IN) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

BUFFER_ATTACH(BUFFER, SIZE, IERROR)
<type> BUFFER (*)
INTEGER SIZE, IERROR

Unofficial Draft for Comment Only



3.6. BUFFER ALLOCATION AND USAGE 49

Provides to MPI a buffer in the user’s memory to be used for buffering outgoing mes-
sages. The buffer is used only by messages sent in buffered mode. Only one buffer can be
attached to a process at a time. In C, buffer is the starting address of a memory region. In
Fortran, one can pass the first element of a memory region or a whole array, which must be
‘simply contiguous’ (for ‘simply contiguous,” see also Section 18.1.12).

MPI_BUFFER_DETACH(buffer_addr, size)
ouT buffer_addr initial buffer address (choice)

ouT size buffer size, in bytes (non-negative integer)

int MPI_Buffer_detach(void* buffer_addr, int* size)

MPI_Buffer_detach(buffer_addr, size, ierror)
USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
TYPE(C_PTR), INTENT(OUT) :: Dbuffer_addr
INTEGER, INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_BUFFER_DETACH(BUFFER_ADDR, SIZE, IERROR)
<type> BUFFER_ADDR (%)
INTEGER SIZE, IERROR

Detach the buffer currently associated with MPI. The call returns the address and the
size of the detached buffer. This operation will block until all messages currently in the
buffer have been transmitted. Upon return of this function, the user may reuse or deallocate
the space taken by the buffer.

Example 3.10 Calls to attach and detach buffers.

#define BUFFSIZE 10000

int size;

char *xbuff;

MPI_Buffer_attach( malloc(BUFFSIZE), BUFFSIZE);

/* a buffer of 10000 bytes can now be used by MPI_Bsend */
MPI_Buffer_detach( &buff, &size);

/* Buffer size reduced to zero */

MPI_Buffer_attach( buff, size);

/* Buffer of 10000 bytes available again */

Advice to users. Even though the C functions MPI_Buffer_attach and
MPI_Buffer_detach both have a first argument of type void*, these arguments are used
differently: A pointer to the buffer is passed to MPI_Buffer_attach; the address of the
pointer is passed to MPI_Buffer_detach, so that this call can return the pointer value.
In Fortran with the mpi module or mpif.h, the type of the buffer_addr argument is
wrongly defined and the argument is therefore unused. In Fortran with the mpi_£08
module, the address of the buffer is returned as TYPE(C_PTR), see also Example 8.1
about the use of C_PTR pointers. (End of advice to users.)

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

50 CHAPTER 3. POINT-TO-POINT COMMUNICATION

Rationale.  Both arguments are defined to be of type void* (rather than

void* and void**, respectively), so as to avoid complex type casts. E.g., in the last
example, &buff, which is of type char**, can be passed as argument to
MPI_Buffer_detach without type casting. If the formal parameter had type void**
then we would need a type cast before and after the call. (End of rationale.)

The statements made in this section describe the behavior of MPI for buffered-mode
sends. When no buffer is currently associated, MPIl behaves as if a zero-sized buffer is
associated with the process.

MPI must provide as much buffering for outgoing messages as if outgoing message
data were buffered by the sending process, in the specified buffer space, using a circular,
contiguous-space allocation policy. We outline below a model implementation that defines
this policy. MPIl may provide more buffering, and may use a better buffer allocation algo-
rithm than described below. On the other hand, MPIl may signal an error whenever the
simple buffering allocator described below would run out of space. In particular, if no buffer
is explicitly associated with the process, then any buffered send may cause an error.

MPI does not provide mechanisms for querying or controlling buffering done by standard
mode sends. It is expected that vendors will provide such information for their implemen-
tations.

Rationale. There is a wide spectrum of possible implementations of buffered com-
munication: buffering can be done at sender, at receiver, or both; buffers can be
dedicated to one sender-receiver pair, or be shared by all communications; buffering
can be done in real or in virtual memory; it can use dedicated memory, or memory
shared by other processes; buffer space may be allocated statically or be changed dy-
namically; etc. It does not seem feasible to provide a portable mechanism for querying
or controlling buffering that would be compatible with all these choices, yet provide
meaningful information. (End of rationale.)

3.6.1 Model Implementation of Buffered Mode

The model implementation uses the packing and unpacking functions described in Sec-
tion 4.2 and the nonblocking communication functions described in Section 3.7.

We assume that a circular queue of pending message entries (PME) is maintained.
Each entry contains a communication request handle that identifies a pending nonblocking
send, a pointer to the next entry and the packed message data. The entries are stored in
successive locations in the buffer. Free space is available between the queue tail and the
queue head.

A buffered send call results in the execution of the following code.

e Traverse sequentially the PME queue from head towards the tail, deleting all entries
for communications that have completed, up to the first entry with an uncompleted
request; update queue head to point to that entry.

e Compute the number, n, of bytes needed to store an entry for the new message. An
upper bound on n can be computed as follows: A call to the function
MPI_PACK_SIZE(count, datatype, comm, size), with the count, datatype and comm
arguments used in the MPI_BSEND call, returns an upper bound on the amount
of space needed to buffer the message data (see Section 4.2). The MPI constant

Unofficial Draft for Comment Only



3.7. NONBLOCKING COMMUNICATION 51

MPI_BSEND_OVERHEAD provides an upper bound on the additional space consumed
by the entry (e.g., for pointers or envelope information).

e Find the next contiguous empty space of n bytes in buffer (space following queue tail,
or space at start of buffer if queue tail is too close to end of buffer). If space is not
found then raise buffer overflow error.

e Append to end of PME queue in contiguous space the new entry that contains request
handle, next pointer and packed message data; MPI_PACK is used to pack data.

e Post nonblocking send (standard mode) for packed data.

e Return

3.7 Nonblocking Communication

One can improve performance on many systems by overlapping communication and com-
putation. This is especially true on systems where communication can be executed au-
tonomously by an intelligent communication controller. Light-weight threads are one mech-
anism for achieving such overlap. An alternative mechanism that often leads to better
performance is to use nonblocking communication. A nonblocking send start call ini-
tiates the send operation, but does not complete it. The send start call can return before
the message was copied out of the send buffer. A separate send complete call is needed
to complete the communication, i.e., to verify that the data has been copied out of the send
buffer. With suitable hardware, the transfer of data out of the sender memory may proceed
concurrently with computations done at the sender after the send was initiated and before it
completed. Similarly, a nonblocking receive start call initiates the receive operation, but
does not complete it. The call can return before a message is stored into the receive buffer.
A separate receive complete call is needed to complete the receive operation and verify
that the data has been received into the receive buffer. With suitable hardware, the transfer
of data into the receiver memory may proceed concurrently with computations done after
the receive was initiated and before it completed. The use of nonblocking receives may also
avoid system buffering and memory-to-memory copying, as information is provided early
on the location of the receive buffer.

Nonblocking send start calls can use the same four modes as blocking sends: standard,
buffered, synchronous and ready. These carry the same meaning. Sends of all modes, ready
excepted, can be started whether a matching receive has been posted or not; a nonblocking
ready send can be started only if a matching receive is posted. In all cases, the send start
call is local: it returns immediately, irrespective of the status of other processes. If the call
causes some system resource to be exhausted, then it will fail and return an error code.
Quality implementations of MPI should ensure that this happens only in “pathological”
cases. That is, an MPI implementation should be able to support a large number of pending
nonblocking operations.

The send-complete call returns when data has been copied out of the send buffer. It
may carry additional meaning, depending on the send mode.

If the send mode is synchronous, then the send can complete only if a matching receive
has started. That is, a receive has been posted, and has been matched with the send. In
this case, the send-complete call is non-local. Note that a synchronous, nonblocking send
may complete, if matched by a nonblocking receive, before the receive complete call occurs.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

52 CHAPTER 3. POINT-TO-POINT COMMUNICATION

(It can complete as soon as the sender “knows” the transfer will complete, but before the
receiver “knows” the transfer will complete.)

If the send mode is buffered then the message must be buffered if there is no pending
receive. In this case, the send-complete call is local, and must succeed irrespective of the
status of a matching receive.

If the send mode is standard then the send-complete call may return before a matching
receive is posted, if the message is buffered. On the other hand, the receive-complete may
not complete until a matching receive is posted, and the message was copied into the receive
buffer.

Nonblocking sends can be matched with blocking receives, and vice-versa.

Advice to users. The completion of a send operation may be delayed, for standard
mode, and must be delayed, for synchronous mode, until a matching receive is posted.
The use of nonblocking sends in these two cases allows the sender to proceed ahead
of the receiver, so that the computation is more tolerant of fluctuations in the speeds
of the two processes.

Nonblocking sends in the buffered and ready modes have a more limited impact, e.g.,
the blocking version of buffered send is capable of completing regardless of when a
matching receive call is made. However, separating the start from the completion
of these sends still gives some opportunity for optimization within the MPI library.
For example, starting a buffered send gives an implementation more flexibility in
determining if and how the message is buffered. There are also advantages for both
nonblocking buffered and ready modes when data copying can be done concurrently
with computation.

The message-passing model implies that communication is initiated by the sender.
The communication will generally have lower overhead if a receive is already posted
when the sender initiates the communication (data can be moved directly to the
receive buffer, and there is no need to queue a pending send request). However, a
receive operation can complete only after the matching send has occurred. The use
of nonblocking receives allows one to achieve lower communication overheads without
blocking the receiver while it waits for the send. (End of advice to users.)

3.7.1 Communication Request Objects

Nonblocking communications use opaque request objects to identify communication oper-
ations and match the operation that initiates the communication with the operation that
terminates it. These are system objects that are accessed via a handle. A request object
identifies various properties of a communication operation, such as the send mode, the com-
munication buffer that is associated with it, its context, the tag and destination arguments
to be used for a send, or the tag and source arguments to be used for a receive. In addition,
this object stores information about the status of the pending communication operation.

3.7.2 Communication Initiation

We use the same naming conventions as for blocking communication: a prefix of B, S, or R is
used for buffered, synchronous or ready mode. In addition a prefix of | (for immediate
and incomplete) indicates that the call is nonblocking.

Unofficial Draft for Comment Only


puri
Highlight


3.7.

NONBLOCKING COMMUNICATION 93

MPI_ISEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)
IN count number of elements in send buffer (non-negative inte-
ger)
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)
ouT request communication request (handle)
int MPI_Isend(const void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request *request)

MPI_Isend(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Start a standard mode, nonblocking send.

MPI_IBSEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)
IN count number of elements in send buffer (non-negative inte-
ger)
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)
ouT request communication request (handle)
int MPI_Ibsend(const void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request *request)

MPI_Ibsend(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

54

CHAPTER 3. POINT-TO-POINT COMMUNICATION

TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

MPI_IBSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Start a buffered mode, nonblocking send.

MPI_ISSEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)
IN count number of elements in send buffer (non-negative inte-
ger)
IN datatype datatype of each send buffer element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)
ouT request communication request (handle)
int MPI_Issend(const void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request *request)

MPI_Issend(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONQUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TISSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Start a synchronous mode, nonblocking send.

Unofficial Draft for Comment Only



3.7. NONBLOCKING COMMUNICATION 95

MPI_IRSEND(buf, count, datatype, dest, tag, comm, request)

IN buf

IN count

IN datatype
IN dest

IN tag

IN comm
ouT request

initial address of send buffer (choice)

number of elements in send buffer (non-negative inte-
ger)

datatype of each send buffer element (handle)

rank of destination (integer)

message tag (integer)

communicator (handle)

communication request (handle)

int MPI_Irsend(const void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

MPI_Irsend(buf, count, datatype, dest, tag, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN)
TYPE(MPI_Datatype), INTENT(IN)
TYPE(MPI_Comm), INTENT(IN)

TYPE(MPI_Request), INTENT(OUT)
INTEGER, OPTIONAL, INTENT(QOUT)

count, dest, tag

datatype
comm

request

ierror

MPI_TIRSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF (%)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Start a ready mode nonblocking send.

MPI_IRECV (buf, count, datatype, source, tag, comm, request)

ouT buf

IN count

IN datatype
IN source
IN tag

IN comm

ouT request

initial address of receive buffer (choice)

number of elements in receive buffer (non-negative in-
teger)

datatype of each receive buffer element (handle)
rank of source or MPI_ANY _SOURCE (integer)
message tag or MPI_ANY_TAG (integer)
communicator (handle)

communication request (handle)

int MPI_Irecv(void* buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Request *request)

MPI_Irecv(buf, count, datatype, source, tag, comm, request, ierror)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN)
TYPE(MPI_Datatype), INTENT(IN)

count, source, tag

datatype

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

56 CHAPTER 3. POINT-TO-POINT COMMUNICATION

TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

Start a nonblocking receive.

These calls allocate a communication request object and associate it with the request
handle (the argument request). The request can be used later to query the status of the
communication or wait for its completion.

A nonblocking send call indicates that the system may start copying data out of the
send buffer. The sender should not modify any part of the send buffer after a nonblocking
send operation is called, until the send completes.

A nonblocking receive call indicates that the system may start writing data into the re-
ceive buffer. The receiver should not access any part of the receive buffer after a nonblocking
receive operation is called, until the receive completes.

Advice to users. To prevent problems with the argument copying and register
optimization done by Fortran compilers, please note the hints in Sections 18.1.10—
18.1.20. (End of advice to users.)

3.7.3 Communication Completion

The functions MPI_WAIT and MPI_TEST are used to complete a nonblocking communica-
tion. The completion of a send operation indicates that the sender is now free to update
the locations in the send buffer (the send operation itself leaves the content of the send
buffer unchanged). It does not indicate that the message has been received, rather, it may
have been buffered by the communication subsystem. However, if a synchronous mode
send was used, the completion of the send operation indicates that a matching receive was
initiated, and that the message will eventually be received by this matching receive.

The completion of a receive operation indicates that the receive buffer contains the
received message, the receiver is now free to access it, and that the status object is set. It
does not indicate that the matching send operation has completed (but indicates, of course,
that the send was initiated).

We shall use the following terminology: A null handle is a handle with value
MPI_REQUEST_NULL. A persistent request and the handle to it are inactive if the request
is not associated with any ongoing communication (see Section 3.9). A handle is active
if it is neither null nor inactive. An empty status is a status which is set to return tag
= MPI_ANY_TAG, source = MPI_ANY_SOURCE, error = MPI_SUCCESS, and is also internally
configured so that calls to MPI_GET_COUNT, MPI_GET_ELEMENTS, and
MPI_GET_ELEMENTS_X return count = 0 and MPI_TEST_CANCELLED returns false. We
set a status variable to empty when the value returned by it is not significant. Status is set
in this way so as to prevent errors due to accesses of stale information.

The fields in a status object returned by a call to MPI_WAIT, MPI_TEST, or any
of the other derived functions (MPI_{TEST|WAIT}{ALL|SOME|ANY}), where the request
corresponds to a send call, are undefined, with two exceptions: The error status field will

Unofficial Draft for Comment Only



3.7. NONBLOCKING COMMUNICATION o7

contain valid information if the wait or test call returned with MPI_ERR_IN_STATUS; and
the returned status can be queried by the call MPI_TEST_CANCELLED.

Error codes belonging to the error class MPI_ERR_IN_STATUS should be returned only
by the MPI completion functions that take arrays of MPI_Status. For the functions that
take a single MPI_Status argument, the error code is returned by the function, and the value
of the MPI_ERROR field in the MPI_Status argument is undefined (see 3.2.5).

MPI_WAIT (request, status)
INOUT  request request (handle)
ouT status status object (Status)

int MPI_Wait(MPI_Request *request, MPI_Status *status)

MPI_Wait(request, status, ierror)

TYPE(MPI_Request), INTENT(INOUT) :: request
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WAIT(REQUEST, STATUS, IERROR)
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

A call to MPI_WAIT returns when the operation identified by request is complete. If the
request is an active persistent request, it is marked inactive. Any other type of request is
deallocated and the request handle is set to MPI_REQUEST_NULL. MPI_WAIT is a non-local
operation.

The call returns, in status, information on the completed operation. The content of
the status object for a receive operation can be accessed as described in Section 3.2.5. The
status object for a send operation may be queried by a call to MPI_TEST_CANCELLED
(see Section 3.8).

One is allowed to call MPI_WAIT with a null or inactive request argument. In this case
the operation returns immediately with empty status.

Advice to users. Successful return of MPI_WAIT after a MPI_IBSEND implies that
the user send buffer can be reused — i.e., data has been sent out or copied into
a buffer attached with MPI_BUFFER_ATTACH. Note that, at this point, we can no
longer cancel the send (see Section 3.8). If a matching receive is never posted, then the
buffer cannot be freed. This runs somewhat counter to the stated goal of MPI_CANCEL
(always being able to free program space that was committed to the communication
subsystem). (End of advice to users.)

Advice to implementors. In a multithreaded environment, a call to MPI_WAIT should
block only the calling thread, allowing the thread scheduler to schedule another thread
for execution. (End of advice to implementors.)

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

o8 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_TEST (request, flag, status)

INOUT  request communication request (handle)
ouT flag true if operation completed (logical)
ouT status status object (Status)

int MPI_Test(MPI_Request *request, int *flag, MPI_Status #*status)

MPI_Test(request, flag, status, ierror)

TYPE(MPI_Request), INTENT(INOUT) :: request
LOGICAL, INTENT(OUT) :: flag
TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TEST(REQUEST, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

A call to MPI_TEST returns flag = true if the operation identified by request is complete.
In such a case, the status object is set to contain information on the completed operation.
If the request is an active persistent request, it is marked as inactive. Any other type of
request is deallocated and the request handle is set to MPI_REQUEST_NULL. The call returns
flag = false if the operation identified by request is not complete. In this case, the value of
the status object is undefined. MPI_TEST is a local operation.

The return status object for a receive operation carries information that can be accessed
as described in Section 3.2.5. The status object for a send operation carries information
that can be accessed by a call to MPI_TEST_CANCELLED (see Section 3.8).

One is allowed to call MPI_TEST with a null or inactive request argument. In such a
case the operation returns with flag = true and empty status.

The functions MPI_WAIT and MPI_TEST can be used to complete both sends and

receives.

Advice to users. ~ The use of the nonblocking MPI_TEST call allows the user to
schedule alternative activities within a single thread of execution. An event-driven
thread scheduler can be emulated with periodic calls to MPI_TEST. (End of advice to
users.)

Example 3.11 Simple usage of nonblocking operations and MPI_WAIT.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN
CALL MPI_ISEND(a(1), 10, MPI_REAL, 1, tag, comm, request, ierr)
*k*xx do some computation to mask latency ***x*
CALL MPI_WAIT(request, status, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_IRECV(a(1), 15, MPI_REAL, O, tag, comm, request, ierr)
**k*xx do some computation to mask latency **x*x*
CALL MPI_WAIT(request, status, ierr)

END IF

Unofficial Draft for Comment Only



3.7. NONBLOCKING COMMUNICATION 99

A request object can be deallocated by using the following operation.

MPI_REQUEST _FREE(request)

INOUT  request communication request (handle)

int MPI_Request_free(MPI_Request *request)

MPI_Request_free(request, ierror)
TYPE(MPI_Request), INTENT(INOUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_REQUEST_FREE (REQUEST, IERROR)
INTEGER REQUEST, IERROR

MPI_REQUEST _FREE is a local operation. Classes of operations described later in the
standard, such as nonblocking collective and persistent collective (see Chapters 5 and 7),
also use request objects. In the case of nonblocking operations or active persistent requests,
this routine marks the request object for completion and freeing. Ongoing communication,
if any, that is associated with the request will be allowed to continue until it is finished. The
request will be completed and freed only after its associated communication has finished. In
the case of inactive persistent requests it frees the operation, which implies that the user is
allowed to reuse all parameters specified in the initialization of the persistent request. The
use of this routine for generalized requests is described in Section 12.2. In all these cases, the
request is set to MPI_REQUEST_NULL. In the case of nonblocking collective operations and
in the case of persistent collective operations with an active request handle, it is erroneous
to call MPI_REQUEST _FREE.

Rationale.  For point-to-point operations, the MPI_REQUEST_FREE mechanism is
provided for reasons of performance and convenience on the sending side. (End of
rationale.)

Advice to users. Once a request is freed by a call to MPI_REQUEST _FREE, it is not
possible to check for the successful completion of the associated communication with
calls to MPI_WAIT or MPI_TEST. Also, if an error occurs subsequently during the
communication, an error code cannot be returned to the user — such an error must
be treated as fatal. An active receive request should never be freed as the receiver
will have no way to verify that the receive has completed and the receive buffer can
be reused. (End of advice to users.)

Example 3.12  An example using MPI_REQUEST _FREE.

CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
IF (rank.EQ.0) THEN
DO i=1, n
CALL MPI_ISEND(outval, 1, MPI_REAL, 1, O, MPI_COMM_WORLD, req, ierr)
CALL MPI_REQUEST_FREE(req, ierr)
CALL MPI_IRECV(inval, 1, MPI_REAL, 1, O, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48


puri
Highlight


10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

60 CHAPTER 3. POINT-TO-POINT COMMUNICATION

END DO
ELSE IF (rank.EQ.1) THEN
CALL MPI_IRECV(inval, 1, MPI_REAL, O, O, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)
DO I=1, n-1
CALL MPI_ISEND(outval, 1, MPI_REAL, O, 0, MPI_COMM_WORLD, req, ierr)
CALL MPI_REQUEST_FREE(req, ierr)
CALL MPI_IRECV(inval, 1, MPI_REAL, O, O, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)
END DO
CALL MPI_ISEND(outval, 1, MPI_REAL, 0, O, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)
END IF

3.7.4 Semantics of Nonblocking Communications

The semantics of nonblocking communication is defined by suitably extending the definitions
in Section 3.5.

Order Nonblocking communication operations are ordered according to the execution order
of the calls that initiate the communication. The non-overtaking requirement of Section 3.5
is extended to nonblocking communication, with this definition of order being used.

Example 3.13 Message ordering for nonblocking operations.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (RANK.EQ.O) THEN
CALL MPI_ISEND(a, 1, MPI_REAL, 1, O, comm, rl, ierr)
CALL MPI_ISEND(b, 1, MPI_REAL, 1, O, comm, r2, ierr)
ELSE IF (rank.EQ.1) THEN
CALL MPI_IRECV(a, 1, MPI_REAL, O, MPI_ANY_TAG, comm, rl, ierr)
CALL MPI_IRECV(b, 1, MPI_REAL, O, O, comm, r2, ierr)
END IF
CALL MPI_WAIT(rl, status, ierr)
CALL MPI_WAIT(r2, status, ierr)

The first send of process zero will match the first receive of process one, even if both messages
are sent before process one executes either receive.

Progress A call to MPI_WAIT that completes a receive will eventually terminate and return
if a matching send has been started, unless the send is satisfied by another receive. In
particular, if the matching send is nonblocking, then the receive should complete even if no
call is executed by the sender to complete the send. Similarly, a call to MPI_WAIT that
completes a send will eventually return if a matching receive has been started, unless the
receive is satisfied by another send, and even if no call is executed to complete the receive.

Example 3.14  An illustration of progress semantics.

Unofficial Draft for Comment Only



3.7. NONBLOCKING COMMUNICATION 61

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (RANK.EQ.O) THEN
CALL MPI_SSEND(a, 1, MPI_REAL, 1, O, comm, ierr)
CALL MPI_SEND(b, 1, MPI_REAL, 1, 1, comm, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_IRECV(a, 1, MPI_REAL, O, O, comm, r, ierr)
CALL MPI_RECV(b, 1, MPI_REAL, O, 1, comm, status, ierr)
CALL MPI_WAIT(r, status, ierr)

END IF

This code should not deadlock in a correct MPI implementation. The first synchronous
send of process zero must complete after process one posts the matching (nonblocking)
receive even if process one has not yet reached the completing wait call. Thus, process zero
will continue and execute the second send, allowing process one to complete execution.

If an MPI_TEST that completes a receive is repeatedly called with the same arguments,
and a matching send has been started, then the call will eventually return flag = true, unless
the send is satisfied by another receive. If an MPI_TEST that completes a send is repeatedly
called with the same arguments, and a matching receive has been started, then the call will
eventually return flag = true, unless the receive is satisfied by another send.

3.7.5 Multiple Completions

It is convenient to be able to wait for the completion of any, some, or all the operations
in a list, rather than having to wait for a specific message. A call to MPI_WAITANY or
MPI_TESTANY can be used to wait for the completion of one out of several operations. A
call to MPI_WAITALL or MPI_TESTALL can be used to wait for all pending operations in
a list. A call to MPI_WAITSOME or MPI_TESTSOME can be used to complete all enabled
operations in a list.

MPI_WAITANY (count, array_of _requests, index, status)

IN count list length (non-negative integer)

INOUT  array_of_requests array of requests (array of handles)

ouT index index of handle for operation that completed (integer)
ouT status status object (Status)

int MPI_Waitany(int count, MPI_Request array_of_requests[], int *index,
MPI_Status *status)

MPI_Waitany(count, array_of_requests, index, status, ierror)

INTEGER, INTENT(IN) :: count

TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
INTEGER, INTENT(OUT) :: index

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WAITANY(COUNT, ARRAY_OF_REQUESTS, INDEX, STATUS, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

62 CHAPTER 3. POINT-TO-POINT COMMUNICATION

IERROR

Blocks until one of the operations associated with the active requests in the array has
completed. If more than one operation is enabled and can terminate, one is arbitrarily
chosen. Returns in index the index of that request in the array and returns in status the
status of the completing operation. (The array is indexed from zero in C, and from one in
Fortran.) If the request is an active persistent request, it is marked inactive. Any other
type of request is deallocated and the request handle is set to MPI_REQUEST_NULL.

The array_of _requests list may contain null or inactive handles. If the list contains no
active handles (list has length zero or all entries are null or inactive), then the call returns
immediately with index = MPI_UNDEFINED, and an empty status.

The execution of MPI_WAITANY (count, array_of _requests, index, status) has the same
effect as the execution of MPI_WAIT (&array_of _requests|i], status), where i is the value
returned by index (unless the value of index is MPI_UNDEFINED). MPI_WAITANY with an
array containing one active entry is equivalent to MPI_WAIT.

MPI_TESTANY (count, array_of _requests, index, flag, status)

IN count list length (non-negative integer)

INOUT  array_of_requests array of requests (array of handles)

ouT index index of operation that completed, or
MPI_UNDEFINED if none completed (integer)

ouT flag true if one of the operations is complete (logical)

ouT status status object (Status)

int MPI_Testany(int count, MPI_Request array_of_requests[], int *index,
int *flag, MPI_Status *status)

MPI_Testany(count, array_of_requests, index, flag, status, ierror)

INTEGER, INTENT(IN) :: count

TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
INTEGER, INTENT(OUT) :: index

LOGICAL, INTENT(OUT) :: flag

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TESTANY(COUNT, ARRAY_OF_REQUESTS, INDEX, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),

TERROR

Tests for completion of either one or none of the operations associated with active
handles. In the former case, it returns flag = true, returns in index the index of this request
in the array, and returns in status the status of that operation. If the request is an active
persistent request, it is marked as inactive. Any other type of request is deallocated and
the handle is set to MPI_REQUEST_NULL. (The array is indexed from zero in C, and from
one in Fortran.) In the latter case (no operation completed), it returns flag = false, returns
a value of MPI_UNDEFINED in index and status is undefined.

Unofficial Draft for Comment Only



3.7. NONBLOCKING COMMUNICATION 63

The array may contain null or inactive handles. If the array contains no active handles
then the call returns immediately with flag = true, index = MPI_UNDEFINED, and an empty
status.

If the array of requests contains active handles then the execution of
MPI_TESTANY (count, array_of _requests, index, status) has the same effect as the execution
of MPI_TEST( &array_of _requestsi], flag, status), for i=0, 1 ,..., count-1, in some arbitrary
order, until one call returns flag = true, or all fail. In the former case, index is set to the
last value of i, and in the latter case, it is set to MPI_UNDEFINED. MPI_TESTANY with an
array containing one active entry is equivalent to MPI_TEST.

MPI_WAITALL(count, array_of _requests, array_of _statuses)

IN count lists length (non-negative integer)
INOUT  array_of _requests array of requests (array of handles)
ouT array_of _statuses array of status objects (array of Status)

int MPI_Waitall(int count, MPI_Request array_of_requestsl[],
MPI_Status array_of_statuses[])

MPI_Waitall(count, array_of_requests, array_of_statuses, ierror)

INTEGER, INTENT(IN) :: count

TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
TYPE(MPI_Status) :: array_of_statuses(*)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WAITALL(COUNT, ARRAY_OF_REQUESTS, ARRAY_OF_STATUSES, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS (%)
INTEGER ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

Blocks until all communication operations associated with active handles in the list
complete, and return the status of all these operations (this includes the case where no
handle in the list is active). Both arrays have the same number of valid entries. The
i-th entry in array_of_statuses is set to the return status of the i-th operation. Active
persistent requests are marked inactive. Requests of any other type are deallocated and the
corresponding handles in the array are set to MPI_REQUEST_NULL. The list may contain
null or inactive handles. The call sets to empty the status of each such entry.

The error-free execution of MPI_WAITALL(count, array_of _requests, array_of _statuses)
has the same effect as the execution of
MPI_WAIT (&array_of _request(i], &array_of_statuses[i]), for i=0 ,..., count-1, in some arbi-
trary order. MPI_WAITALL with an array of length one is equivalent to MPI_WAIT.

When one or more of the communications completed by a call to MPI_WAITALL fail,
it is desirable to return specific information on each communication. The function
MPI_WAITALL will return in such case the error code MPI_ERR_IN_STATUS and will set the
error field of each status to a specific error code. This code will be MPI_SUCCESS, if the
specific communication completed; it will be another specific error code, if it failed; or it can
be MPI_ERR_PENDING if it has neither failed nor completed. The function MPI_WAITALL
will return MPI_SUCCESS if no request had an error, or will return another error code if it
failed for other reasons (such as invalid arguments). In such cases, it will not update the

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

64 CHAPTER 3. POINT-TO-POINT COMMUNICATION

error fields of the statuses.

Rationale. This design streamlines error handling in the application. The application
code need only test the (single) function result to determine if an error has occurred. It
needs to check each individual status only when an error occurred. (End of rationale.)

MPI_TESTALL(count, array_of _requests, flag, array_of _statuses)

IN count lists length (non-negative integer)
INOUT  array_of_requests array of requests (array of handles)
ouT flag (logical)

ouT array_of _statuses array of status objects (array of Status)

int MPI_Testall(int count, MPI_Request array_of_requests[], int x*flag,
MPI_Status array_of_statuses[])

MPI_Testall(count, array_of_requests, flag, array_of_statuses, ierror)

INTEGER, INTENT(IN) :: count

TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
LOGICAL, INTENT(OUT) :: flag

TYPE(MPI_Status) :: array_of_statuses(*)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TESTALL(COUNT, ARRAY_OF_REQUESTS, FLAG, ARRAY_OF_STATUSES, IERROR)
LOGICAL FLAG
INTEGER COUNT, ARRAY_OF_REQUESTS(x),
ARRAY_OF_STATUSES (MPI_STATUS_SIZE,*), IERROR

Returns flag = true if all communications associated with active handles in the array
have completed (this includes the case where no handle in the list is active). In this case, each
status entry that corresponds to an active request is set to the status of the corresponding
operation. Active persistent requests are marked inactive. Requests of any other type are
deallocated and the corresponding handles in the array are set to MPI_REQUEST_NULL.
Each status entry that corresponds to a null or inactive handle is set to empty.

Otherwise, flag = false is returned, no request is modified and the values of the status
entries are undefined. This is a local operation.

Errors that occurred during the execution of MPI_TESTALL are handled in the same
manner as errors in MPI_WAITALL.

Unofficial Draft for Comment Only



3.7. NONBLOCKING COMMUNICATION 65

MPI_WAITSOME(incount, array_of_requests, outcount, array_of_indices, array_of _statuses)

IN incount length of array_of_requests (non-negative integer)

INOUT  array_of _requests array of requests (array of handles)

ouT outcount number of completed requests (integer)

ouT array_of _indices array of indices of operations that completed (array of
integers)

ouT array_of _statuses array of status objects for operations that completed

(array of Status)

int MPI_Waitsome(int incount, MPI_Request array_of_requestsl[],
int *outcount, int array_of_indices[],
MPI_Status array_of_statuses[])

MPI_Waitsome(incount, array_of_requests, outcount, array_of_indices,
array_of_statuses, ierror)

INTEGER, INTENT(IN) :: incount

TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(incount)
INTEGER, INTENT(OUT) :: outcount, array_of_indices(*)
TYPE(MPI_Status) :: array_of_statuses(*)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WAITSOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,
ARRAY_OF_STATUSES, IERROR)
INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*),
ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

Waits until at least one of the operations associated with active handles in the list have
completed. Returns in outcount the number of requests from the list array_of _requests that
have completed. Returns in the first outcount locations of the array array_of_indices the
indices of these operations (index within the array array_of _requests; the array is indexed
from zero in C and from one in Fortran). Returns in the first outcount locations of the
array array_of _status the status for these completed operations. Completed active persistent
requests are marked as inactive. Any other type or request that completed is deallocated,
and the associated handle is set to MPI_REQUEST_NULL.

If the list contains no active handles, then the call returns immediately with outcount
= MPI_UNDEFINED.

When one or more of the communications completed by MPI_WAITSOME fails, then
it is desirable to return specific information on each communication. The arguments
outcount, array_of _indices and array_of _statuses will be adjusted to indicate completion of
all communications that have succeeded or failed. The call will return the error code
MPI_ERR_IN_STATUS and the error field of each status returned will be set to indicate
success or to indicate the specific error that occurred. The call will return MPI_SUCCESS
if no request resulted in an error, and will return another error code if it failed for other
reasons (such as invalid arguments). In such cases, it will not update the error fields of the
statuses.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

66 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_TESTSOME(incount, array_of _requests, outcount, array_of_indices, array_of _statuses)

IN incount length of array_of_requests (non-negative integer)

INOUT  array_of _requests array of requests (array of handles)

ouT outcount number of completed requests (integer)

ouT array_of _indices array of indices of operations that completed (array of
integers)

ouT array_of _statuses array of status objects for operations that completed

(array of Status)

int MPI_Testsome(int incount, MPI_Request array_of_requestsl[],
int *outcount, int array_of_indices[],
MPI_Status array_of_statuses[])

MPI_Testsome(incount, array_of_requests, outcount, array_of_indices,
array_of_statuses, ierror)

INTEGER, INTENT(IN) :: incount

TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(incount)
INTEGER, INTENT(OUT) :: outcount, array_of_indices(*)
TYPE(MPI_Status) :: array_of_statuses(*)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TESTSOME (INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,
ARRAY_OF_STATUSES, IERROR)
INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*),
ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

Behaves like MPI_WAITSOME, except that it returns immediately. If no operation has
completed it returns outcount = 0. If there is no active handle in the list it returns outcount
= MPI_UNDEFINED.

MPI_TESTSOME is a local operation, which returns immediately, whereas
MPI_WAITSOME will block until a communication completes, if it was passed a list that
contains at least one active handle. Both calls fulfill a fairness requirement: If a request
for a receive repeatedly appears in a list of requests passed to MPI_WAITSOME or
MPI_TESTSOME, and a matching send has been posted, then the receive will eventually
succeed, unless the send is satisfied by another receive; and similarly for send requests.

Errors that occur during the execution of MPI_TESTSOME are handled as for
MPI_WAITSOME.

Advice to users. The use of MPI_TESTSOME is likely to be more efficient than the use
of MPI_TESTANY. The former returns information on all completed communications,
with the latter, a new call is required for each communication that completes.

A server with multiple clients can use MPI_WAITSOME so as not to starve any client.
Clients send messages to the server with service requests. The server calls
MPI_WAITSOME with one receive request for each client, and then handles all receives
that completed. If a call to MPI_WAITANY is used instead, then one client could starve
while requests from another client always sneak in first. (End of advice to users.)

Unofficial Draft for Comment Only



3.7. NONBLOCKING COMMUNICATION

Advice to implementors. MPI_TESTSOME should complete as many pending com-

munications as possible. (End of advice to implementors.)

Example 3.15  Client-server code (starvation can occur).

CALL MPI_COMM_SIZE(comm, size, ierr)
CALL MPI_COMM_RANK(comm, rank, ierr)
IF(rank .GT. 0) THEN I client code
DO WHILE(.TRUE.)
CALL MPI_ISEND(a, n, MPI_REAL, O, tag, comm, request, ierr)
CALL MPI_WAIT(request, status, ierr)
END DO
ELSE I rank=0 -- server code
DO i=1, size-1
CALL MPI_TIRECV(a(1l,i), n, MPI_REAL, i, tag,
comm, request_list(i), ierr)
END DO
DO WHILE(.TRUE.)
CALL MPI_WAITANY(size-1, request_list, index, status, ierr)
CALL DO_SERVICE(a(1,index)) ! handle one message
CALL MPI_TIRECV(a(l, index), n, MPI_REAL, index, tag,
comm, request_list(index), ierr)
END DO
END IF

Example 3.16  Same code, using MPI_WAITSOME.

CALL MPI_COMM_SIZE(comm, size, ierr)
CALL MPI_COMM_RANK(comm, rank, ierr)
IF(rank .GT. 0) THEN ! client code
DO WHILE(.TRUE.)
CALL MPI_ISEND(a, n, MPI_REAL, O, tag, comm, request, ierr)
CALL MPI_WAIT(request, status, ierr)
END DO
ELSE I rank=0 —-- server code
DO i=1, size-1
CALL MPI_IRECV(a(1,i), n, MPI_REAL, i, tag,
comm, request_list(i), ierr)
END DO
DO WHILE(.TRUE.)
CALL MPI_WAITSOME(size, request_list, numdone,
indices, statuses, ierr)
DO i=1, numdone
CALL DO_SERVICE(a(1l, indices(i)))
CALL MPI_TRECV(a(1, indices(i)), n, MPI_REAL, O, tag,
comm, request_list(indices(i)), ierr)

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

68 CHAPTER 3. POINT-TO-POINT COMMUNICATION

END DO
END DO
END IF

3.7.6 Non-destructive Test of status

This call is useful for accessing the information associated with a request, without freeing
the request (in case the user is expected to access it later). It allows one to layer libraries
more conveniently, since multiple layers of software may access the same completed request
and extract from it the status information.

MPI_REQUEST _GET _STATUS(request, flag, status)

IN request request (handle)
ouT flag boolean flag, same as from MPI_TEST (logical)
ouT status status object if flag is true (Status)

int MPI_Request_get_status(MPI_Request request, int *flag,
MPI_Status *status)

MPI_Request_get_status(request, flag, status, ierror)

TYPE(MPI_Request), INTENT(IN) :: request
LOGICAL, INTENT(OUT) :: flag
TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_REQUEST_GET_STATUS(REQUEST, FLAG, STATUS, IERROR)
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG

Sets flag=true if the operation is complete, and, if so, returns in status the request
status. However, unlike test or wait, it does not deallocate or inactivate the request; a
subsequent call to test, wait or free should be executed with that request. It sets flag=false
if the operation is not complete.

One is allowed to call MPI_REQUEST_GET_STATUS with a null or inactive request
argument. In such a case the operation returns with flag=true and empty status.

3.8 Probe and Cancel

The MPI_PROBE, MPI_IPROBE, MPI_MPROBE, and MPI_IMPROBE operations allow in-
coming messages to be checked for, without actually receiving them. The user can then
decide how to receive them, based on the information returned by the probe (basically, the
information returned by status). In particular, the user may allocate memory for the receive
buffer, according to the length of the probed message.

The MPI_CANCEL operation allows pending communications to be cancelled. This is
required for cleanup. Posting a send or a receive ties up user resources (send or receive
buffers), and a cancel may be needed to free these resources gracefully.

Cancelling a send request by calling MPI_CANCEL is deprecated.

Unofficial Draft for Comment Only



3.8. PROBE AND CANCEL 69

3.8.1 Probe

MPI_IPROBE(source, tag, comm, flag, status)

IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

ouT flag (logical)

ouT status status object (Status)

int MPI_Iprobe(int source, int tag, MPI_Comm comm, int *flag,
MPI_Status *status)

MPI_Iprobe(source, tag, comm, flag, status, ierror)

INTEGER, INTENT(IN) :: source, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
LOGICAL, INTENT(OUT) :: flag
TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IPROBE(SOURCE, TAG, COMM, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_IPROBE(source, tag, comm, flag, status) returns flag = true if there is a message
that can be received and that matches the pattern specified by the arguments source, tag,
and comm. The call matches the same message that would have been received by a call to
MPI_RECV(.. ., source, tag, comm, status) executed at the same point in the program, and
returns in status the same value that would have been returned by MPI_RECV(). Otherwise,
the call returns flag = false, and leaves status undefined.

If MPI_IPROBE returns flag = true, then the content of the status object can be sub-
sequently accessed as described in Section 3.2.5 to find the source, tag and length of the
probed message.

MPI_IPROBE is a local procedure since its return does not depend on MPI calls in
other MPI processes. It is not associated with an operation. According to the definitions
in Section 2.4, it is a blocking procedure although it returns immediately, which is marked
with the prefix I.

Advice to users. This is one of the exceptions in which a blocking procedure is local.
(End of advice to users.)

A subsequent receive executed with the same communicator, and the source and tag re-
turned in status by MPI_IPROBE will receive the message that was matched by the probe, if
no other intervening receive occurs after the probe, and the send is not successfully cancelled
before the receive. If the receiving process is multithreaded, it is the user’s responsibility
to ensure that the last condition holds.

The source argument of MPI_PROBE can be MPI_ANY_SOURCE, and the tag argument
can be MPI_ANY_TAG, so that one can probe for messages from an arbitrary source and/or

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48


puri
Highlight


10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

70 CHAPTER 3. POINT-TO-POINT COMMUNICATION

with an arbitrary tag. However, a specific communication context must be provided with
the comm argument.

It is not necessary to receive a message immediately after it has been probed for, and
the same message may be probed for several times before it is received.

A probe with MPI_PROC_NULL as source returns flag = true, and the status object
returns source = MPI_PROC_NULL, tag = MPI_ANY_TAG, and count = 0; see Section 3.11.

MPI_PROBE(source, tag, comm, status)

IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

ouT status status object (Status)

int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status)

MPI_Probe(source, tag, comm, status, ierror)

INTEGER, INTENT(IN) :: source, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_PROBE(SOURCE, TAG, COMM, STATUS, IERROR)
INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_PROBE behaves like MPI_IPROBE except that it is a blocking call that returns
only after a matching message has been found.

The MPI implementation of MPI_PROBE and MPI_IPROBE needs to guarantee progress:
if a call to MPI_PROBE has been issued by a process, and a send that matches the probe
has been initiated by some process, then the call to MPI_PROBE will return, unless the
message is received by another concurrent receive operation (that is executed by another
thread at the probing process). Similarly, if a process busy waits with MPI_IPROBE and a
matching message has been issued, then the call to MPI_IPROBE will eventually return flag
= true unless the message is received by another concurrent receive operation or matched
by a concurrent matched probe.

Example 3.17
Use blocking probe to wait for an incoming message.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(i, 1, MPI_INTEGER, 2, O, comm, ierr)
ELSE IF (rank.EQ.1) THEN

CALL MPI_SEND(x, 1, MPI_REAL, 2, O, comm, ierr)
ELSE IF (rank.EQ.2) THEN

DO i=1, 2

CALL MPI_PROBE(MPI_ANY_SOURCE, O,
comm, status, ierr)

Unofficial Draft for Comment Only



3.8. PROBE AND CANCEL 71

IF (status(MPI_SOURCE) .EQ. 0) THEN

100 CALL MPI_RECV(i, 1, MPI_INTEGER, O, O, comm, status, ierr)
ELSE
200 CALL MPI_RECV(x, 1, MPI_REAL, 1, O, comm, status, ierr)
END IF
END DO
END IF

Each message is received with the right type.
Example 3.18 A similar program to the previous example, but now it has a problem.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
CALL MPI_SEND(i, 1, MPI_INTEGER, 2, O, comm, ierr)
ELSE IF (rank.EQ.1) THEN
CALL MPI_SEND(x, 1, MPI_REAL, 2, 0O, comm, ierr)
ELSE IF (rank.EQ.2) THEN
DO i=1, 2
CALL MPI_PROBE(MPI_ANY_SOURCE, O,
comm, status, ierr)
IF (status(MPI_SOURCE) .EQ. 0) THEN
100 CALL MPI_RECV(i, 1, MPI_INTEGER, MPI_ANY_SOURCE,
0, comm, status, ierr)

ELSE
200 CALL MPI_RECV(x, 1, MPI_REAL, MPI_ANY_SOURCE,
0, comm, status, ierr)
END IF
END DO
END IF

In Example 3.18, the two receive calls in statements labeled 100 and 200 in Example 3.17
slightly modified, using MPI_ANY_SOURCE as the source argument. The program is now
incorrect: the receive operation may receive a message that is distinct from the message
probed by the preceding call to MPI_PROBE.

Advice to users. In a multithreaded MPI program, MPI_PROBE and
MPI_IPROBE might need special care. If a thread probes for a message and then
immediately posts a matching receive, the receive may match a message other than
that found by the probe since another thread could concurrently receive that original
message [29]. MPI_MPROBE and MPI_IMPROBE solve this problem by matching the
incoming message so that it may only be received with MPI_MRECV or MPI_IMRECV
on the corresponding message handle. (End of advice to users.)

Advice to implementors. A call to MPI_PROBE(source, tag, comm, status) will match
the message that would have been received by a call to MPI_RECV(..., source, tag,
comm, status) executed at the same point. Suppose that this message has source s,
tag t and communicator c. If the tag argument in the probe call has value

MPI_ANY_TAG then the message probed will be the earliest pending message from

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

72 CHAPTER 3. POINT-TO-POINT COMMUNICATION

source s with communicator ¢ and any tag; in any case, the message probed will be
the earliest pending message from source s with tag t and communicator ¢ (this is the
message that would have been received, so as to preserve message order). This message
continues as the earliest pending message from source s with tag t and communicator
¢, until it is received. A receive operation subsequent to the probe that uses the
same communicator as the probe and uses the tag and source values returned by
the probe, must receive this message, unless it has already been received by another
receive operation. (End of advice to implementors.)

3.8.2 Matching Probe

The function MPI_PROBE checks for incoming messages without receiving them. Since the
list of incoming messages is global among the threads of each MPI process, it can be hard
to use this functionality in threaded environments [29, 26].

Like MPI_PROBE and MPI_IPROBE, the MPI_MPROBE and MPI_IMPROBE opera-
tions allow incoming messages to be queried without actually receiving them, except that
MPI_MPROBE and MPI_IMPROBE provide a mechanism to receive the specific message
that was matched regardless of other intervening probe or receive operations. This gives
the application an opportunity to decide how to receive the message, based on the infor-
mation returned by the probe. In particular, the user may allocate memory for the receive
buffer, according to the length of the probed message.

MPI_IMPROBE(source, tag, comm, flag, message, status)

IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

ouT flag flag (logical)

ouT message returned message (handle)

ouT status status object (Status)

int MPI_Improbe(int source, int tag, MPI_Comm comm, int *flag,
MPI_Message *message, MPI_Status *status)

MPI_Improbe(source, tag, comm, flag, message, status, ierror)
INTEGER, INTENT(IN) :: source, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
LOGICAL, INTENT(OUT) :: flag
TYPE(MPI_Message), INTENT(OUT) :: message
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IMPROBE(SOURCE, TAG, COMM, FLAG, MESSAGE, STATUS, IERROR)
INTEGER SOURCE, TAG, COMM, MESSAGE, STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG

MPI_IMPROBE(source, tag, comm, flag, message, status) returns flag = true if there is
a message that can be received and that matches the pattern specified by the arguments

Unofficial Draft for Comment Only



3.8. PROBE AND CANCEL 73

source, tag, and comm. The call matches the same message that would have been received
by a call to MPI_RECV(..., source, tag, comm, status) executed at the same point in the
program and returns in status the same value that would have been returned by MPI_RECV.
In addition, it returns in message a handle to the matched message. Otherwise, the call
returns flag = false, and leaves status and message undefined.

MPI_IMPROBE is a local procedure. According to the definitions in Section 2.4 and in
contrast to MPI_IPROBE, it is a nonblocking procedure because it is the initialization of a
matched receive operation.

A matched receive (MPI_MRECV or MPI_IMRECV) executed with the message han-
dle will receive the message that was matched by the probe. Unlike MPI_IPROBE, no
other probe or receive operation may match the message returned by MPI_IMPROBE.
Each message returned by MPI_IMPROBE must be received with either MPI_MRECV or
MPI_IMRECV.

The source argument of MPI_IMPROBE can be MPI_ANY_SOURCE, and the tag argu-
ment can be MPI_ANY_TAG, so that one can probe for messages from an arbitrary source
and/or with an arbitrary tag. However, a specific communication context must be provided
with the comm argument.

A synchronous send operation that is matched with MPI_IMPROBE or MPI_MPROBE
will complete successfully only if both a matching receive is posted with MPI_MRECV or
MPI_IMRECV, and the receive operation has started to receive the message sent by the
synchronous send.

There is a special predefined message: MPI_MESSAGE_NO_PROC, which is a message
which has MPI_PROC_NULL as its source process. The predefined constant
MPI_MESSAGE_NULL is the value used for invalid message handles.

A matching probe with MPI_PROC_NULL as source returns flag = true, message =
MPI_MESSAGE_NO_PROC, and the status object returns source = MPI_PROC_NULL, tag
= MPI_ANY_TAG, and count = 0; see Section 3.11. It is not necessary to call MPI_MRECV
or MPI_IMRECV with MPI_MESSAGE_NO_PROC, but it is not erroneous to do so.

Rationale. MPI_MESSAGE_NO_PROC was chosen instead of
MPI_MESSAGE_PROC_NULL to avoid possible confusion as another null handle con-
stant. (End of rationale.)

MPI_MPROBE(source, tag, comm, message, status)

IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

ouT message returned message (handle)

ouT status status object (Status)

int MPI_Mprobe(int source, int tag, MPI_Comm comm, MPI_Message *message,
MPI_Status *status)

MPI_Mprobe(source, tag, comm, message, status, ierror)
INTEGER, INTENT(IN) :: source, tag

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48


puri
Highlight


10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

34

35

36

37

38

39

40

41

42

43

44

46

47

48

74 CHAPTER 3. POINT-TO-POINT COMMUNICATION

TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Message), INTENT(OUT) :: message
TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_MPROBE(SOURCE, TAG, COMM, MESSAGE, STATUS, IERROR)
INTEGER SOURCE, TAG, COMM, MESSAGE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_MPROBE behaves like MPI_IMPROBE except that it is a blocking call that returns
only after a matching message has been found.

The implementation of MPI_MPROBE and MPI_IMPROBE needs to guarantee progress
in the same way as in the case of MPI_PROBE and MPI_IPROBE.

According to the definitions in Section 2.4, MPI_MPROBE is incomplete. It is also a
non-local procedure.

Advice to users. This is one of the exceptions in which incomplete procedures are
non-local. (End of advice to users.)

3.8.3 Matched Receives

The functions MPI_MRECV and MPI_IMRECV receive messages that have been previously
matched by a matching probe (Section 3.8.2).

MPI_MRECV(buf, count, datatype, message, status)

ouT buf initial address of receive buffer (choice)

IN count number of elements in receive buffer (non-negative in-
teger)

IN datatype datatype of each receive buffer element (handle)

INOUT  message message (handle)

ouT status status object (Status)

int MPI_Mrecv(void* buf, int count, MPI_Datatype datatype,
MPI_Message *message, MPI_Status *status)

MPI_Mrecv(buf, count, datatype, message, status, ierror)

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Message), INTENT(INOUT) :: message
TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_MRECV(BUF, COUNT, DATATYPE, MESSAGE, STATUS, IERROR)
<type> BUF ()
INTEGER COUNT, DATATYPE, MESSAGE, STATUS(MPI_STATUS_SIZE), IERROR

This call receives a message matched by a matching probe operation (Section 3.8.2).

Unofficial Draft for Comment Only


puri
Highlight


3.8. PROBE AND CANCEL 75

The receive buffer consists of the storage containing count consecutive elements of the
type specified by datatype, starting at address buf. The length of the received message must
be less than or equal to the length of the receive buffer. An overflow error occurs if all
incoming data does not fit, without truncation, into the receive buffer.

If the message is shorter than the receive buffer, then only those locations corresponding
to the (shorter) message are modified.

On return from this function, the message handle is set to MPI_MESSAGE_NULL. All
errors that occur during the execution of this operation are handled according to the error
handler set for the communicator used in the matching probe call that produced the message
handle.

If MPI_MRECV is called with MPI_MESSAGE_NO_PROC as the message argument, the
call returns immediately with the status object set to source = MPI_PROC_NULL, tag =
MPI_ANY_TAG, and count = 0, as if a receive from MPI_PROC_NULL was issued (see Sec-
tion 3.11). A call to MPI_MRECV with MPI_MESSAGE_NULL is erroneous.

According to the definitions in Section 2.4, MPI_MRECV is a blocking procedure and
the user can re-use all resources given as arguments, including the message data buffer. It is
also a local procedure because it returns immediately without depending on the execution
of any MPI procedure in any other MPI process.

Aduvice to users. This is one of the exceptions in which a blocking procedure is local.
(End of advice to users.)

MPI_IMRECV(buf, count, datatype, message, request)

ouT buf initial address of receive buffer (choice)

IN count number of elements in receive buffer (non-negative in-
teger)

IN datatype datatype of each receive buffer element (handle)

INOUT  message message (handle)

ouT request communication request (handle)

int MPI_Imrecv(void* buf, int count, MPI_Datatype datatype,
MPI_Message *message, MPI_Request *request)

MPI_Imrecv(buf, count, datatype, message, request, ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Message), INTENT(INOUT) :: message
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IMRECV(BUF, COUNT, DATATYPE, MESSAGE, REQUEST, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, MESSAGE, REQUEST, IERROR

MPI_IMRECV is the nonblocking variant of MPI_MRECV and starts a nonblocking
receive of a matched message. Completion semantics are similar to MPI_IRECV as described

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46


puri
Highlight


10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

76 CHAPTER 3. POINT-TO-POINT COMMUNICATION

in Section 3.7.2. On return from this function, the message handle is set to
MPI_MESSAGE_NULL.

If MPI_IMRECYV is called with MPI_MESSAGE_NO_PROC as the message argument, the
call returns immediately with a request object which, when completed, will yield a status
object set to source = MPI_PROC_NULL, tag = MPI_ANY_TAG, and count = 0, as if a
receive from MPI_PROC_NULL was issued (see Section 3.11). A call to MPI_IMRECV with
MPI_MESSAGE_NULL is erroneous.

Advice to implementors. If reception of a matched message is started with
MPI_IMRECV, then it is possible to cancel the returned request with MPI_CANCEL. If
MPI_CANCEL succeeds, the matched message must be found by a subsequent message
probe (MPI_PROBE, MPI_IPROBE, MPI_MPROBE, or MPI_IMPROBE), received by
a subsequent receive operation or cancelled by the sender. See Section 3.8.4 for details
about MPI_CANCEL. The cancellation of operations initiated with MPI_IMRECV may
fail. (End of advice to implementors.)

3.8.4 Cancel

MPI_CANCEL(request)

IN request communication request (handle)

int MPI_Cancel (MPI_Request *request)

MPI_Cancel(request, ierror)
TYPE(MPI_Request), INTENT(IN) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_CANCEL (REQUEST, IERROR)
INTEGER REQUEST, IERROR

A call to MPI_CANCEL marks for cancellation a pending, nonblocking communica-
tion operation (send or receive). Cancelling a send request by calling MPI_CANCEL is
deprecated. The cancel call is local. It returns immediately, possibly before the communi-
cation is actually cancelled. It is still necessary to call MPI_REQUEST_FREE, MPI_WAIT or
MPI_TEST (or any of the derived operations) with the cancelled request as argument after
the call to MPI_CANCEL. If a communication is marked for cancellation, then a MPI_WAIT
call for that communication is guaranteed to return, irrespective of the activities of other
processes (i.e., MPI_WAIT behaves as a local function); similarly if MPI_TEST is repeatedly
called in a busy wait loop for a cancelled communication, then MPI_TEST will eventually
be successful.

MPI_CANCEL can be used to cancel a communication that uses a persistent request (see
Section 3.9), in the same way it is used for nonpersistent requests. Cancelling a persistent
send request by calling MPI_CANCEL is deprecated. A successful cancellation cancels the
active communication, but not the request itself. After the call to MPI_CANCEL and the
subsequent call to MPI_WAIT or MPI_TEST, the request becomes inactive and can be
activated for a new communication.

The successful cancellation of a buffered send frees the buffer space occupied by the
pending message. Cancelling a buffered send request by calling MPI_CANCEL is deprecated.

Unofficial Draft for Comment Only



3.8. PROBE AND CANCEL 7

Either the cancellation succeeds, or the communication succeeds, but not both. If a
send is marked for cancellation, which is deprecated, then it must be the case that either
the send completes normally, in which case the message sent was received at the destination
process, or that the send is successfully cancelled, in which case no part of the message
was received at the destination. Then, any matching receive has to be satisfied by another
send. If a receive is marked for cancellation, then it must be the case that either the receive
completes normally, or that the receive is successfully cancelled, in which case no part of the
receive buffer is altered. Then, any matching send has to be satisfied by another receive.

If the operation has been cancelled, then information to that effect will be returned in
the status argument of the operation that completes the communication.

Rationale. Although the IN request handle parameter should not need to be passed
by reference, the C binding has listed the argument type as MPI_Request* since MPI-
1.0. This function signature therefore cannot be changed without breaking existing
MPI applications. (End of rationale.)

MPI_TEST_CANCELLED(status, flag)

IN status status object (Status)
ouT flag (logical)

int MPI_Test_cancelled(const MPI_Status *status, int *flag)

MPI_Test_cancelled(status, flag, ierror)

TYPE(MPI_Status), INTENT(IN) :: status
LOGICAL, INTENT(OUT) :: flag
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TEST_CANCELLED(STATUS, FLAG, IERROR)
LOGICAL FLAG
INTEGER STATUS(MPI_STATUS_SIZE), IERROR

Returns flag = true if the communication associated with the status object was cancelled
successfully. In such a case, all other fields of status (such as count or tag) are undefined.
Returns flag = false, otherwise. If a receive operation might be cancelled then one should

call MPI_TEST_CANCELLED first, to check whether the operation was cancelled, before
checking on the other fields of the return status.

Advice to users. Cancel can be an expensive operation that should be used only
exceptionally. (End of advice to users.)

Advice to implementors. If a send operation uses an “eager” protocol (data is
transferred to the receiver before a matching receive is posted), then the cancellation
of this send may require communication with the intended receiver in order to free
allocated buffers. On some systems this may require an interrupt to the intended
receiver. Note that, while communication may be needed to implement
MPI_CANCEL, this is still a local operation, since its completion does not depend on
the code executed by other processes. If processing is required on another process,
this should be transparent to the application (hence the need for an interrupt and an
interrupt handler). (End of advice to implementors.)

Unofficial Draft for Comment Only

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

38

39

40

41

42

43

44

45

47

48

78 CHAPTER 3. POINT-TO-POINT COMMUNICATION

3.9 Persistent Communication Requests

Often a communication with the same argument list (with the exception of the buffer con-
tents) is repeatedly executed within the inner loop of a parallel computation. In such a
situation, it may be possible to optimize the communication by binding the list of com-
munication arguments to a persistent communication request once and, then, repeatedly
using the request to initiate and complete operations. In the case of point-to-point commu-
nication, the persistent request thus created can be thought of as a communication port or
a “half-channel.” It does not provide the full functionality of a conventional channel, since
there is no binding of the send port to the receive port. This construct allows reduction
of the overhead for communication between the process and communication controller, but
not of the overhead for communication between one communication controller and another.
It is not necessary that messages sent with a persistent point-to-point request be received
by a receive operation using a persistent point-to-point request, or vice versa.

There are also collective communication persistent operations defined in Section 5.13
and Section 7.8. The remainder of this section covers the point-to-point persistent initializa-
tion operations and the start routines, which are used for both point-to-point and collective
persistent communication.

A persistent point-to-point communication request is created using one of the five
following calls. These point-to-point persistent calls involve no communication.

MPI_SEND_INIT (buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements sent (non-negative integer)
IN datatype type of each element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

ouT request communication request (handle)

int MPI_Send_init(const void* buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request *request)

MPI_Send_init(buf, count, datatype, dest, tag, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONQUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Unofficial Draft for Comment Only



3.9. PERSISTENT COMMUNICATION REQUESTS 79

Creates a persistent communication request for a standard mode send operation, and
binds to it all the arguments of a send operation.

MPI_BSEND_INIT(buf, count, datatype, dest, tag, comm, request)

buf
count
datatype
dest

tag
comm

request

initial address of send buffer (choice)

number of elements sent (non-negative integer)
type of each element (handle)

rank of destination (integer)

message tag (integer)

communicator (handle)

communication request (handle)

int MPI_Bsend_init(const void* buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request *request)

MPI_Bsend_init(buf, count, datatype, dest, tag, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN)
TYPE(MPI_Datatype), INTENT(IN)
TYPE(MPI_Comm), INTENT(IN)

TYPE(MPI_Request), INTENT(OUT)
INTEGER, OPTIONAL,

INTENT (OUT)

count, dest, tag

datatype
comm

request

ierror

MPI_BSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF ()
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Creates a persistent communication request for a buffered mode send.

MPI_SSEND_INIT (buf, count, datatype, dest, tag, comm, request)

buf
count
datatype
dest

tag
comm

request

initial address of send buffer (choice)

number of elements sent (non-negative integer)
type of each element (handle)

rank of destination (integer)

message tag (integer)

communicator (handle)

communication request (handle)

int MPI_Ssend_init(const void* buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request *request)

MPI_Ssend_init(buf, count, datatype, dest, tag, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

80

CHAPTER 3. POINT-TO-POINT COMMUNICATION

INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF ()
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Creates a persistent communication object for a synchronous mode send operation.

MPI_RSEND_INIT(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)
IN count number of elements sent (non-negative integer)
IN datatype type of each element (handle)
IN dest rank of destination (integer)
IN tag message tag (integer)
IN comm communicator (handle)
ouT request communication request (handle)
int MPI_Rsend_init(const void* buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm, MPI_Request *request)

MPI_Rsend_init(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSIONC(..), INTENT(IN), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_ Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_RSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF ()
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Creates a persistent communication object for a ready mode send operation.

Unofficial Draft for Comment Only



3.9. PERSISTENT COMMUNICATION REQUESTS 81

MPI_RECV_INIT (buf, count, datatype, source, tag, comm, request)

ouT buf initial address of receive buffer (choice)

IN count number of elements received (non-negative integer)
IN datatype type of each element (handle)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

ouT request communication request (handle)

int MPI_Recv_init(void* buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Request *request)

MPI_Recv_init(buf, count, datatype, source, tag, comm, request, ierror)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, source, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_RECV_INIT(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
<type> BUF (%)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

Creates a persistent communication request for a receive operation. The argument buf
is marked as OUT because the user gives permission to write on the receive buffer by passing
the argument to MPI_RECV_INIT.

A persistent communication request is inactive after it was created — no active com-
munication is attached to the request.

A communication (send or receive) that uses a persistent request is initiated by the
function MPI_START.

MPI_START (request)

INOUT  request communication request (handle)

int MPI_Start(MPI_Request *request)

MPI_Start(request, ierror)
TYPE(MPI_Request), INTENT(INOUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_START (REQUEST, IERROR)
INTEGER REQUEST, IERROR

The argument, request, is a handle returned by one of the previous five calls. The
associated request should be inactive. The request becomes active once the call is made.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

82 CHAPTER 3. POINT-TO-POINT COMMUNICATION

If the request is for a send with ready mode, then a matching receive should be posted
before the call is made. The communication buffer should not be modified after the call,
and until the operation completes.

The call is local, with similar semantics to the nonblocking communication operations
described in Section 3.7. That is, a call to MPI_START with a request created by
MPI_SEND_INIT starts a communication in the same manner as a call to MPI_ISEND; a
call to MPI_START with a request created by MPI_BSEND_INIT starts a communication
in the same manner as a call to MPI_IBSEND; and so on.

MPI_STARTALL(count, array_of _requests)

IN count list length (non-negative integer)

INOUT  array_of _requests array of requests (array of handle)

int MPI_Startall(int count, MPI_Request array_of_requests[])

MPI_Startall(count, array_of_requests, ierror)

INTEGER, INTENT(IN) :: count
TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

MPI_STARTALL(COUNT, ARRAY_OF_REQUESTS, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(x), IERROR

Start all communications associated with requests in array_of _requests. A call to
MPI_STARTALL(count, array_of_requests) has the same effect as calls to
MPI_START (&array_of _requests][i]), executed for i=0 ,.. ., count-1, in some arbitrary order.

A communication started with a call to MPI_START or MPI_STARTALL is completed
by a call to MPI_WAIT, MPI_TEST, or one of the derived functions described in Sec-
tion 3.7.5. The request becomes inactive after successful completion of such call. The re-
quest is not deallocated and it can be activated anew by an MPI_START or MPI_STARTALL
call.

A persistent request is deallocated by a call to MPI_REQUEST _FREE (Section 3.7.3).

The call to MPI_REQUEST_FREE can occur at any point in the program after the per-
sistent request was created. However, the request will be deallocated only after it becomes
inactive. Active receive requests should not be freed. Otherwise, it will not be possible to
check that the receive has completed. Collective operation requests (defined in Section 5.12
and Section 7.7 for nonblocking collective operations, and Section 5.13 and Section 7.8 for
persistent collective operations) must not be freed while active. It is preferable, in general,
to free requests when they are inactive. If this rule is followed, then the functions described
in this section will be invoked in a sequence of the form,

Create (Start Complete)* Free

where * indicates zero or more repetitions. If the same communication object is used in
several concurrent threads, it is the user’s responsibility to coordinate calls so that the
correct sequence is obeyed.

A send operation initiated with MPI_START can be matched with any receive operation
and, likewise, a receive operation initiated with MPI_START can receive messages generated
by any send operation.

Unofficial Draft for Comment Only



3.10. SEND-RECEIVE 83

Advice to users. To prevent problems with the argument copying and register
optimization done by Fortran compilers, please note the hints in Sections 18.1.10—
18.1.20. (End of advice to users.)

3.10 Send-Receive

The send-receive operations combine in one call the sending of a message to one desti-
nation and the receiving of another message, from another process. The two (source and
destination) are possibly the same. A send-receive operation is very useful for executing
a shift operation across a chain of processes. If blocking sends and receives are used for
such a shift, then one needs to order the sends and receives correctly (for example, even
processes send, then receive, odd processes receive first, then send) so as to prevent cyclic
dependencies that may lead to deadlock. When a send-receive operation is used, the com-
munication subsystem takes care of these issues. The send-receive operation can be used
in conjunction with the functions described in Chapter 7 in order to perform shifts on var-
ious logical topologies. Also, a send-receive operation is useful for implementing remote
procedure calls.

A message sent by a send-receive operation can be received by a regular receive oper-
ation or probed by a probe operation; a send-receive operation can receive a message sent
by a regular send operation.

MPI_SENDRECV (sendbuf, sendcount, sendtype, dest, sendtag, recvbuf, recvcount, recvtype,
source, recvtag, comm, status)

IN sendbuf initial address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-
ger)

IN sendtype type of elements in send buffer (handle)

IN dest rank of destination (integer)

IN sendtag send tag (integer)

ouT recvbuf initial address of receive buffer (choice)

IN recvcount number of elements in receive buffer (non-negative in-
teger)

IN recvtype type of elements in receive buffer (handle)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN recvtag receive tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

ouT status status object (Status)

int MPI_Sendrecv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
int dest, int sendtag, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int source, int recvtag, MPI_Comm comm,
MPI_Status *status)

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

84 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_Sendrecv(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf,
recvcount, recvtype, source, recvtag, comm, status, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, dest, sendtag, recvcount, source,
recvtag

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SENDRECV (SENDBUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVBUF,
RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM, STATUS, IERROR)
<type> SENDBUF (x), RECVBUF (%)
INTEGER SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVCOUNT, RECVTYPE,
SOURCE, RECVTAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

Execute a blocking send and receive operation. Both send and receive use the same
communicator, but possibly different tags. The send buffer and receive buffers must be
disjoint, and may have different lengths and datatypes.

The semantics of a send-receive operation is what would be obtained if the caller forked
two concurrent threads, one to execute the send, and one to execute the receive, followed
by a join of these two threads.

MPI_SENDRECV_REPLACE(buf, count, datatype, dest, sendtag, source, recvtag, comm,

status)
INOUT  buf initial address of send and receive buffer (choice)
IN count number of elements in send and receive buffer (non-
negative integer)
IN datatype type of elements in send and receive buffer (handle)
IN dest rank of destination (integer)
IN sendtag send message tag (integer)
IN source rank of source or MPI_ANY_SOURCE (integer)
IN recvtag receive message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
ouT status status object (Status)

int MPI_Sendrecv_replace(void* buf, int count, MPI_Datatype datatype,
int dest, int sendtag, int source, int recvtag, MPI_Comm comm,
MPI_Status *status)

MPI_Sendrecv_replace(buf, count, datatype, dest, sendtag, source, recvtag,
comm, status, ierror)
TYPE(*), DIMENSION(..) :: buf
INTEGER, INTENT(IN) :: count, dest, sendtag, source, recvtag

Unofficial Draft for Comment Only



3.11. NULL PROCESSES 85

TYPE(MPI Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SENDRECV_REPLACE (BUF, COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG,
COMM, STATUS, IERROR)
<type> BUF ()
INTEGER COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG, COMM,
STATUS(MPI_STATUS_SIZE), IERROR

Execute a blocking send and receive. The same buffer is used both for the send and
for the receive, so that the message sent is replaced by the message received.

Advice to implementors. Additional intermediate buffering is needed for the “replace”
variant. (End of advice to implementors.)

3.11 Null Processes

In many instances, it is convenient to specify a “dummy” source or destination for commu-
nication. This simplifies the code that is needed for dealing with boundaries, for example,
in the case of a non-circular shift done with calls to send-receive.

The special value MPI_PROC_NULL can be used instead of a rank wherever a source or a
destination argument is required in a call. A communication with process MPI_PROC_NULL
has no effect. A send to MPI_PROC_NULL succeeds and returns as soon as possible. A receive
from MPI_PROC_NULL succeeds and returns as soon as possible with no modifications to
the receive buffer. When a receive with source = MPI_PROC_NULL is executed then the
status object returns source = MPI_PROC_NULL, tag = MPI_ANY_TAG and count = 0. A
probe or matching probe with source = MPI_PROC_NULL succeeds and returns as soon as
possible, and the status object returns source = MPI_PROC_NULL, tag = MPI_ANY_TAG and
count = 0. A matching probe (cf. Section 3.8.2) with MPI_PROC_NULL as source returns
flag = true, message = MPI_MESSAGE_NO_PROC, and the status object returns source =
MPI_PROC_NULL, tag = MPI_ANY_TAG, and count = 0.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

86

CHAPTER 3. POINT-TO-POINT COMMUNICATION

Unofficial Draft for Comment Only



Chapter 4

Datatypes

Basic datatypes were introduced in Section 3.2.2 and in Section 3.3. In this chapter, this
model is extended to describe any data layout. We consider general datatypes that allow
one to transfer efficiently heterogeneous and noncontiguous data. We conclude with the
description of calls for explicit packing and unpacking of messages.

4.1 Derived Datatypes

Up to here, all point to point communications have involved only buffers containing a
sequence of identical basic datatypes. This is too constraining on two accounts. One
often wants to pass messages that contain values with different datatypes (e.g., an integer
count, followed by a sequence of real numbers); and one often wants to send noncontiguous
data (e.g., a sub-block of a matrix). One solution is to pack noncontiguous data into
a contiguous buffer at the sender site and unpack it at the receiver site. This has the
disadvantage of requiring additional memory-to-memory copy operations at both sites, even
when the communication subsystem has scatter-gather capabilities. Instead, MPI provides
mechanisms to specify more general, mixed, and noncontiguous communication buffers. It
is up to the implementation to decide whether data should be first packed in a contiguous
buffer before being transmitted, or whether it can be collected directly from where it resides.

The general mechanisms provided here allow one to transfer directly, without copying,
objects of various shapes and sizes. It is not assumed that the MPI library is cognizant of
the objects declared in the host language. Thus, if one wants to transfer a structure, or an
array section, it will be necessary to provide in MPI a definition of a communication buffer
that mimics the definition of the structure or array section in question. These facilities can
be used by library designers to define communication functions that can transfer objects
defined in the host language — by decoding their definitions as available in a symbol table
or a dope vector. Such higher-level communication functions are not part of MPI.

More general communication buffers are specified by replacing the basic datatypes that
have been used so far with derived datatypes that are constructed from basic datatypes using
the constructors described in this section. These methods of constructing derived datatypes
can be applied recursively.

A general datatype is an opaque object that specifies two things:

e A sequence of basic datatypes

e A sequence of integer (byte) displacements

Unofficial Draft for Comment Only 87

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

88 CHAPTER 4. DATATYPES

The displacements are not required to be positive, distinct, or in increasing order.
Therefore, the order of items need not coincide with their order in store, and an item may
appear more than once. We call such a pair of sequences (or sequence of pairs) a type
map. The sequence of basic datatypes (displacements ignored) is the type signature of
the datatype.

Let

T'ypemap = {(typeo, dispo), - - - , (typen—1, dispn—1)},

be such a type map, where type; are basic types, and disp; are displacements. Let

Typesig = {typeo, - . ., typen—1}

be the associated type signature. This type map, together with a base address buf, specifies
a communication buffer: the communication buffer that consists of n entries, where the
i-th entry is at address buf + disp; and has type type;. A message assembled from such a
communication buffer will consist of n values, of the types defined by Typesig.

Most datatype constructors have replication count or block length arguments. Allowed
values are non-negative integers. If the value is zero, no elements are generated in the type
map and there is no effect on datatype bounds or extent.

We can use a handle to a general datatype as an argument in a send or receive operation,
instead of a basic datatype argument. The operation MPI_SEND(buf, 1, datatype,...) will
use the send buffer defined by the base address buf and the general datatype associated
with datatype; it will generate a message with the type signature determined by the datatype
argument. MPI_RECV(buf, 1, datatype,...) will use the receive buffer defined by the base
address buf and the general datatype associated with datatype.

General datatypes can be used in all send and receive operations. We discuss, in
Section 4.1.11, the case where the second argument count has value > 1.

The basic datatypes presented in Section 3.2.2 are particular cases of a general datatype,
and are predefined. Thus, MPI_INT is a predefined handle to a datatype with type map
{(int,0)}, with one entry of type int and displacement zero. The other basic datatypes
are similar.

The extent of a datatype is defined to be the span from the first byte to the last byte
occupied by entries in this datatype, rounded up to satisfy alignment requirements. That
is, if

Typemap = {(typeo, dispo), . - - , (typen—1, dispn-1)},

then
Ib(Typemap) = mjin dispj,
ub(Typemap) = mjax(dispj + sizeof(type;)) + €, and
extent(Typemap) = ub(Typemap) — Ib(Typemap). (4.1)

If type; requires alignment to a byte address that is a multiple of k;, then € is the least
non-negative increment needed to round extent(Typemap) to the next multiple of max; k;.
In Fortran, it is implementation dependent whether the MPI implementation computes
the alignments k; according to the alignments used by the compiler in common blocks,
SEQUENCE derived types, BIND(C) derived types, or derived types that are neither SEQUENCE
nor BIND(C). The complete definition of extent is given by Equation 4.1 Section 4.1.

Unofficial Draft for Comment Only



4.1. DERIVED DATATYPES 89

Example 4.1 Assume that T'ype = {(double,0), (char,8)} (a double at displacement
zero, followed by a char at displacement eight). Assume, furthermore, that doubles have
to be strictly aligned at addresses that are multiples of eight. Then, the extent of this
datatype is 16 (9 rounded to the next multiple of 8). A datatype that consists of a character
immediately followed by a double will also have an extent of 16.

Rationale. The definition of extent is motivated by the assumption that the amount
of padding added at the end of each structure in an array of structures is the least
needed to fulfill alignment constraints. More explicit control of the extent is provided
in Section 4.1.6. Such explicit control is needed in cases where the assumption does not
hold, for example, where union types are used. In Fortran, structures can be expressed
with several language features, e.g., common blocks, SEQUENCE derived types, or
BIND(C) derived types. The compiler may use different alignments, and therefore,
it is recommended to use MPI_TYPE_CREATE_RESIZED for arrays of structures if
an alignment may cause an alignment-gap at the end of a structure as described in
Section 4.1.6 and in Section 18.1.15. (End of rationale.)

4.1.1 Type Constructors with Explicit Addresses

In Fortran, the functions MPI_TYPE_CREATE_HVECTOR,
MPI_TYPE_CREATE_HINDEXED, MPI_TYPE_CREATE_HINDEXED_BLOCK,
MPI_TYPE_CREATE_STRUCT, and MPI_GET_ADDRESS accept arguments of type
INTEGER (KIND=MPI_ADDRESS_KIND), wherever arguments of type MPI_Aint are used in C.
On Fortran 77 systems that do not support the Fortran 90 KIND notation, and where
addresses are 64 bits whereas default INTEGERs are 32 bits, these arguments will be of type
INTEGER*8.

4.1.2 Datatype Constructors

Contiguous The simplest datatype constructor is MPI_TYPE_CONTIGUOUS which allows
replication of a datatype into contiguous locations.

MPI_TYPE_CONTIGUOUS(count, oldtype, newtype)

IN count replication count (non-negative integer)
IN oldtype old datatype (handle)
ouT newtype new datatype (handle)

int MPI_Type_contiguous(int count, MPI_Datatype oldtype,
MPI_Datatype *newtype)

MPI_Type_contiguous(count, oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

90 CHAPTER 4. DATATYPES

newtype is the datatype obtained by concatenating count copies of
oldtype. Concatenation is defined using extent as the size of the concatenated copies.

Example 4.2 Let oldtype have type map {(double,0), (char, 8)}, with extent 16, and let
count = 3. The type map of the datatype returned by newtype is
{(double,0), (char, 8), (double, 16), (char, 24), (double, 32), (char, 40)};
i.e., alternating double and char elements, with displacements 0, 8, 16, 24, 32, 40.
In general, assume that the type map of oldtype is
{(typeo, dispo), . . ., (typen—1, dispn-1)},
with extent ex. Then newtype has a type map with count - n entries defined by:
{(typeo, dispg), - - -, (typen—1, dispn—_1), (typeo, dispg + ex), ..., (typen—1, dispn—1 + ex),
..., (typeg, dispy + ex - (count — 1)),..., (typen—1,disp,—1 + ex - (count — 1)) }.
Vector The function MPI_TYPE_VECTOR is a more general constructor that allows repli-
cation of a datatype into locations that consist of equally spaced blocks. Each block is

obtained by concatenating the same number of copies of the old datatype. The spacing
between blocks is a multiple of the extent of the old datatype.

MPI_TYPE_VECTOR(count, blocklength, stride, oldtype, newtype)

IN count number of blocks (non-negative integer)

IN blocklength number of elements in each block (non-negative inte-
ger)

IN stride number of elements between start of each block (inte-
ger)

IN oldtype old datatype (handle)

ouT newtype new datatype (handle)

int MPI_Type_vector(int count, int blocklength, int stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_Type_vector(count, blocklength, stride, oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: count, blocklength, stride
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

Example 4.3 Assume, again, that oldtype has type map {(double,0), (char,8)}, with
extent 16. A call to MPI_TYPE_VECTOR(2, 3, 4, oldtype, newtype) will create the datatype
with type map,

{(double, 0), (char, 8), (double, 16), (char, 24), (double, 32), (char, 40),

Unofficial Draft for Comment Only



4.1. DERIVED DATATYPES 91

(double, 64), (char, 72), (double, 80), (char, 88), (double, 96), (char, 104)}.

That is, two blocks with three copies each of the old type, with a stride of 4 elements (4-16
bytes) between the the start of each block.

Example 4.4 A call to MPI_TYPE_VECTOR(3, 1, -2, oldtype, newtype) will create the

datatype,

{(double, 0), (char, 8), (double, —32), (char, —24), (double, —64), (char, —56)}.

In general, assume that oldtype has type map,

{(typ607 d’iSp()), ey (typen—lv diSpn_l)},

with extent ex. Let bl be the blocklength. The newly created datatype has a type map with

count - bl -

n entries:

{(type()a dispO)a ey (typen—lv dispn—l)v

typeo, dispo + ex), ..., (typen—1,disp,—1 +ex),.. .,

typeo, dispo + (bl — 1) - ex), ..., (typen—1, dispp—1 + (bl = 1) - ex),

typeg, dispg + stride - ex), . .., (typen—1,disp,—1 + stride - ex), .. .,

typeo, dispg + stride - (count — 1) - ex), ...,

typen—1,dispn—1 + stride - (count — 1) - ex), .. .,

typeo, dispp + (stride - (count — 1) + bl — 1) - ex), ...,

(
(
(
(typeo, dispo + (stride + bl — 1) - ex), ..., (typen—1, dispp—1 + (stride + bl — 1) - ex), . ..
(
(
(
(

typen—1,dispn—1 + (stride - (count — 1) + bl — 1) - ex)}.

A call to MPI_TYPE_CONTIGUOUS(count, oldtype, newtype) is equivalent to a call to
MPI_TYPE_VECTOR(count, 1, 1, oldtype, newtype), or to a call to MPI_TYPE_VECTOR(1,
count, n, oldtype, newtype), n arbitrary.

Hvector

The function MPI_TYPE_CREATE_HVECTOR is identical to

MPI_TYPE_VECTOR, except that stride is given in bytes, rather than in elements. The
use for both types of vector constructors is illustrated in Section 4.1.14. (H stands for
“heterogeneous”).

MPI_TYPE_CREATE_HVECTOR(count, blocklength, stride, oldtype, newtype)

IN

count

blocklength

stride
oldtype

newtype

number of blocks (non-negative integer)

number of elements in each block (non-negative inte-
ger)

number of bytes between start of each block (integer)

old datatype (handle)
new datatype (handle)

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

31

32

33

34

36

37

38

39

40

41

42

43

45

46

47

48



21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

92 CHAPTER 4. DATATYPES

int MPI_Type_create_hvector(int count, int blocklength, MPI_Aint stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_Type_create_hvector(count, blocklength, stride, oldtype, newtype,

ierror)
INTEGER, INTENT(IN) :: count, blocklength
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(IN) :: stride
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_CREATE_HVECTOR (COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE,
IERROR)
INTEGER COUNT, BLOCKLENGTH, OLDTYPE, NEWTYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) STRIDE

Assume that oldtype has type map,

{(typ607 d/isp())a ey (typen—lv dispn—l)}7

with extent ex. Let bl be the blocklength. The newly created datatype has a type map with
count - bl - n entries:

{(typeo, dispo), ..., (typen—1, dispp—1),

(typeg, dispy + ex), ..., (typen—1,dispp—1 + ex), ...,

(typeo, dispo + (bl — 1) - ex), ..., (typen—1, dispp—1 + (bl — 1) - ex),

(typeo, dispy + stride), . .., (typen—1, disp,—1 + stride), .. .,

(typeg, dispy + stride 4+ (bl — 1) - ex), ...,

(typen—1,dispp—1 + stride + (bl — 1) - ex), ...,

(typeo, dispy + stride - (count — 1)), ..., (typen—1, dispn—1 + stride - (count — 1)),...,
(typeq, dispg + stride - (count — 1) + (bl — 1) - ex), ...,

(typen—1,dispy—1 + stride - (count — 1) + (bl — 1) - ex)}.

Indexed The function MPI_TYPE_INDEXED allows replication of an old datatype into a
sequence of blocks (each block is a concatenation of the old datatype), where each block
can contain a different number of copies and have a different displacement. All block
displacements are multiples of the old type extent.

Unofficial Draft for Comment Only



4.1. DERIVED DATATYPES 93

MPI_TYPE_INDEXED(count, array_of _blocklengths, array_of _displacements, oldtype,

newtype)

IN count number of blocks — also number of entries in
array_of _displacements and array_of _blocklengths (non-
negative integer)

IN array_of _blocklengths number of elements per block (array of non-negative
integers)

IN array_of _displacements displacement for each block, in multiples of oldtype
extent (array of integer)

IN oldtype old datatype (handle)

ouT newtype new datatype (handle)

int MPI_Type_indexed(int count, const int array_of_blocklengths([],
const int array_of_displacements[], MPI_Datatype oldtype,
MPI_Datatype *newtype)

MPI_Type_indexed(count, array_of_blocklengths, array_of_displacements,
oldtype, newtype, ierror)
INTEGER, INTENT(IN) :: count, array_of_blocklengths(count),
array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: mnewtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_INDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,
OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),
OLDTYPE, NEWTYPE, IERROR

Example 4.5
Let oldtype have type map {(double,0), (char,8)}, with extent 16. Let B = (3, 1)
and let D = (4, 0). A call to MPI_TYPE_INDEXED(2, B, D, oldtype, newtype) returns a

datatype with type map,

{(double, 64), (char, 72), (double, 80), (char, 83), (double, 96), (char, 104),
(double,0), (char, 8)}.

That is, three copies of the old type starting at displacement 64, and one copy starting at
displacement 0.
In general, assume that oldtype has type map,

{(typeo, dispo), . .., (typen—1,disp,_1)},

with extent ex. Let B be the array_of _blocklengths argument and D be the

array_of _displacements argument. The newly created datatype has n - ngé‘ nt-1 B[i] entries:

{(typey, dispo + D[0] - ex), ..., (typen—1,dispn—1 + D[0] - ex), ...,

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

94

CHAPTER 4. DATATYPES

typeo, dispo + (D[0] + B[0] — 1) - ex), ...,

typen—1,dispn—1 + (D[0] + B[0] — 1) - ex), ...,

(
(
(typeg, dispg + D[count-1] - ex), ..., (typen—1, disp,—1 + D[count-1] - ex), . ..,
(typeg, dispy + (D[count-1] + B[count-1] — 1) - ex), .. .,

(

typen—_1,dispnp—1 + (D[count-1] 4 B[count-1] — 1) - ex)}.

A call to MPI_TYPE_VECTOR(count, blocklength, stride, oldtype, newtype) is equivalent

to a call to MPI_TYPE_INDEXED(count, B, D, oldtype, newtype) where

and

DD] = j-stride, 7 =0,...,count — 1,

B[j] = blocklength, j =0,...,count — 1.

Hindexed The function MPI_TYPE_CREATE_HINDEXED is identical to
MPI_TYPE_INDEXED, except that block displacements in array_of _displacements are spec-
ified in bytes, rather than in multiples of the oldtype extent.

MPI_TYPE_CREATE_HINDEXED(count, array_of _blocklengths, array_of _displacements,

oldtype, newtype)

IN count number of blocks — also number of entries in
array_of _displacements and array_of _blocklengths (non-
negative integer)

IN array_of _blocklengths number of elements in each block (array of non-negative
integers)

IN array_of _displacements byte displacement of each block (array of integer)

IN oldtype old datatype (handle)

ouT newtype new datatype (handle)

int MPI_Type_create_hindexed(int count, const int array_of_blocklengths[],

const MPI_Aint array_of_displacements[], MPI_Datatype oldtype,
MPI_Datatype *newtype)

MPI_Type_create_hindexed(count, array_of_blocklengths,

array_of_displacements, oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: count, array_of_blocklengths(count)
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(IN)

array_of_displacements(count)

TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_CREATE_HINDEXED (COUNT, ARRAY_OF_BLOCKLENGTHS,

ARRAY_OF_DISPLACEMENTS, OLDTYPE, NEWTYPE, IERROR)

Unofficial Draft for Comment Only



4.1. DERIVED DATATYPES 95

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), OLDTYPE, NEWTYPE, IERROR !
INTEGER (KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*) 2

Assume that oldtype has type map,

{(typ607 d/isp())a ey (typen—lv dispn—l)}7

with extent ex. Let B be the array_of_blocklengths argument and D be the 7
array_of _displacements argument. The newly created datatype has a type map with n - 8
ijg‘"t‘l BJi] entries: 9
10

{(typeo, dispo + D[0]), . .., (typen—1, dispn—1 + D[0]), ..., »

(typeo, dispo + D[0] + (B[0] — 1) - ex), ..., Z
(typen—1,dispn—1 + D[0] + (B[0] — 1) - ex), ..., 1:
(typeg, dispg + D[count-1]),. .., (typen—1, disp,—1 + D[count-1]),..., 10

17

(typeo, dispy + D[count-1] + (B[count-1] — 1) - ex), ..., 18

19

(typen—1,dispn—1 + D[count-1] 4+ (B[count-1] — 1) - ex)}. 20

21

Indexed_block This function is the same as MPI_TYPE_INDEXED except that the block- 22
length is the same for all blocks. There are many codes using indirect addressing arising
from unstructured grids where the blocksize is always 1 (gather/scatter). The following

convenience function allows for constant blocksize and arbitrary displacements. 25

26

27

MPI_TYPE_CREATE_INDEXED_BLOCK(count, blocklength, array_of _displacements, oldtype, 28

newtype) 29

IN count length of array of displacements (non-negative integer) 30
31

IN blocklength size of block (non-negative integer) .
IN array_of _displacements array of displacements (array of integer) 33
IN oldtype old datatype (handle) 3
35

ouT newtype new datatype (handle) s
37

int MPI_Type_create_indexed_block(int count, int blocklength, 38
const int array_of_displacements[], MPI_Datatype oldtype, 30
MPI_Datatype *newtype) 40

MPI_Type_create_indexed_block(count, blocklength, array_of_displacements, o

oldtype, newtype, ierror)
INTEGER, INTENT(IN) :: count, blocklength,
array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror 4

48

42
43
44
45

46

Unofficial Draft for Comment Only



10

11

12

13

14

15

16

20

21

22

23

24

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

96 CHAPTER 4. DATATYPES

MPI_TYPE_CREATE_INDEXED_BLOCK(COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS,
OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS(*), OLDTYPE,
NEWTYPE, IERROR

Hindexed_block The function MPI_TYPE_CREATE_HINDEXED_BLOCK is identical to
MPI_TYPE_CREATE_INDEXED_BLOCK, except that block displacements in
array_of _displacements are specified in bytes, rather than in multiples of the oldtype extent.

MPI_TYPE_CREATE_HINDEXED_BLOCK(count, blocklength, array_of _displacements,
oldtype, newtype)

IN count length of array of displacements (non-negative integer)
IN blocklength size of block (non-negative integer)

IN array_of _displacements byte displacement of each block (array of integer)

IN oldtype old datatype (handle)

ouT newtype new datatype (handle)

int MPI_Type_create_hindexed_block(int count, int blocklength,
const MPI_Aint array_of_displacements[], MPI_Datatype oldtype,
MPI_Datatype *newtype)

MPI_Type_create_hindexed_block(count, blocklength, array_of_displacements,
oldtype, newtype, ierror)
INTEGER, INTENT(IN) :: count, blocklength
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(IN)
array_of_displacements(count)

TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_CREATE_HINDEXED_BLOCK(COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS,
OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, BLOCKLENGTH, OLDTYPE, NEWTYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS (*)

Struct MPI_TYPE_CREATE_STRUCT is the most general type constructor. It further
generalizes MPI_TYPE_CREATE_HINDEXED in that it allows each block to consist of repli-
cations of different datatypes.

Unofficial Draft for Comment Only



4.1. DERIVED DATATYPES 97

MPI_TYPE_CREATE_STRUCT (count, array_of_blocklengths, array_of _displacements,
array_of _types, newtype)
IN count number of blocks (non-negative integer) — also num-
ber of entries in arrays array_of_types,
array_of _displacements and array_of _blocklengths

IN array_of _blocklength number of elements in each block (array of non-negative
integer)

IN array_of _displacements byte displacement of each block (array of integer)

IN array_of _types type of elements in each block (array of handles to

datatype objects)
ouT newtype new datatype (handle)

int MPI_Type_create_struct(int count, const int array_of_blocklengths[],
const MPI_Aint array_of_displacements[],
const MPI_Datatype array_of_types[], MPI_Datatype *newtype)

MPI_Type_create_struct(count, array_of_blocklengths,
array_of_displacements, array_of_types, newtype, ierror)
INTEGER, INTENT(IN) :: count, array_of_blocklengths(count)
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(IN)
array_of_displacements(count)

TYPE(MPI_Datatype), INTENT(IN) :: array_of_types(count)
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(QUT) :: ierror

MPI_TYPE_CREATE_STRUCT (COUNT, ARRAY_OF_BLOCKLENGTHS,
ARRAY_OF_DISPLACEMENTS, ARRAY_OF_TYPES, NEWTYPE, IERROR)
INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_TYPES(x), NEWTYPE,
IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS (*)

Example 4.6 Let typel have type map,
{(double, 0), (char, 8)},

with extent 16. Let B=(2, 1, 3), D = (0, 16, 26), and T = (MPI_FLOAT, typel, MPI_CHAR).
Then a call to MPI_TYPE_CREATE_STRUCT(3, B, D, T, newtype) returns a datatype with
type map,

{(float,0), (float,4), (double, 16), (char, 24), (char, 26), (char, 27), (char, 28)}.

That is, two copies of MPI_FLOAT starting at 0, followed by one copy of typel starting at
16, followed by three copies of MPI_CHAR, starting at 26. (We assume that a float occupies
four bytes.)

In general, let T be the array_of _types argument, where T[i] is a handle to,

typemap; = {(typep, disp}), . . ., (typel, 1, disp,, 1)},

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

42

43

44

45

46

47

48

98

CHAPTER 4. DATATYPES

with extent ex;. Let B be the array_of_blocklength argument and D be the
array_of _displacements argument. Let c be the count argument. Then the newly created
datatype has a type map with Zf;ol B[i] - n; entries:

{(typeg, dispg + D[0]), . . ., (typey,, disp),, + D[0]), ...,
(typ€87 dlspg + D[O] + (B[O] - 1) ' 6330), ceey (typegoa dlsp?zo + D[O] + (B[O]_l) : 61’0), R
(type§ ", dispG™" +Dle-1]), ..., (bypeS "y, dispS' _ +Dle-1]),..,

(type§™, dispS ™ + D[c-1] + (Blc-1] — 1) - exc_1), - - -,

(typeggil_l, dispggfl_l + D[c-1] + (B[c-1]-1) - exc—1)}-

A call to MPI_TYPE_CREATE_HINDEXED(count, B, D, oldtype, newtype) is equivalent

to a call to MPI_TYPE_CREATE_STRUCT(count, B, D, T, newtype), where each entry of T
is equal to oldtype.

4.1.3 Subarray Datatype Constructor

MPI_TYPE_CREATE_SUBARRAY (ndims, array_of_sizes, array_of_subsizes, array_of_starts,

order, oldtype, newtype)

IN ndims number of array dimensions (positive integer)

IN array_of _sizes number of elements of type oldtype in each dimension
of the full array (array of positive integers)

IN array_of _subsizes number of elements of type oldtype in each dimension
of the subarray (array of positive integers)

IN array_of _starts starting coordinates of the subarray in each dimension
(array of non-negative integers)

IN order array storage order flag (state)

IN oldtype array element datatype (handle)

ouT newtype new datatype (handle)

int MPI_Type_create_subarray(int ndims, const int array_of_sizes[],

MPI_

const int array_of_subsizes[], const int array_of_startsl[],
int order, MPI_Datatype oldtype, MPI_Datatype *newtype)

Type_create_subarray(ndims, array_of_sizes, array_of_subsizes,
array_of_starts, order, oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: ndims, array_of_sizes(ndims),
array_of_subsizes(ndims), array_of_starts(ndims), order

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: mnewtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Unofficial Draft for Comment Only



4.1. DERIVED DATATYPES 99

MPI_TYPE_CREATE_SUBARRAY(NDIMS, ARRAY_OF_SIZES, ARRAY_OF_SUBSIZES,
ARRAY_OF_STARTS, ORDER, OLDTYPE, NEWTYPE, IERROR)
INTEGER NDIMS, ARRAY_OF_SIZES(*), ARRAY_OF_SUBSIZES(*),
ARRAY_OF_STARTS(*), ORDER, OLDTYPE, NEWTYPE, IERROR

The subarray type constructor creates an MPI datatype describing an n-dimensional
subarray of an n-dimensional array. The subarray may be situated anywhere within the
full array, and may be of any nonzero size up to the size of the larger array as long as it
is confined within this array. This type constructor facilitates creating filetypes to access
arrays distributed in blocks among processes to a single file that contains the global array,
see MPI 1/0, especially Section 13.1.1.

This type constructor can handle arrays with an arbitrary number of dimensions and
works for both C and Fortran ordered matrices (i.e., row-major or column-major). Note
that a C program may use Fortran order and a Fortran program may use C order.

The ndims parameter specifies the number of dimensions in the full data array and
gives the number of elements in array_of _sizes, array_of _subsizes, and array_of _starts.

The number of elements of type oldtype in each dimension of the n-dimensional ar-
ray and the requested subarray are specified by array_of_sizes and array_of _subsizes, re-
spectively. For any dimension i, it is erroneous to specify array_of _subsizes[i] < 1 or
array_of _subsizes[i] > array_of _sizes]i].

The array_of _starts contains the starting coordinates of each dimension of the subarray.
Arrays are assumed to be indexed starting from zero. For any dimension %, it is erroneous to
specify array_of _starts[i] < 0 or array_of _starts[i] > (array_of _sizes[i] — array_of _subsizes][i]).

Advice to users. In a Fortran program with arrays indexed starting from 1, if the
starting coordinate of a particular dimension of the subarray is n, then the entry in
array_of _starts for that dimension is n-1. (End of advice to users.)

The order argument specifies the storage order for the subarray as well as the full array.
It must be set to one of the following:

MPI_ORDER_C The ordering used by C arrays, (i.e., row-major order)
MPI_ORDER_FORTRAN The ordering used by Fortran arrays, (i.e., column-major order)

A ndims-dimensional subarray (newtype) with no extra padding can be defined by the
function Subarray() as follows:

newtype = Subarray(ndims, {sizeg, size1, ..., Siz€ndims—1},
{subsizeg, subsizey, ..., subsizendims—1},

{starty, starty, ..., start,gims—1},oldtype)
Let the typemap of oldtype have the form:
{(typeo, dispo), (typer, disp), ..., (typen—1, dispn—1)}

where type; is a predefined MPI datatype, and let ex be the extent of oldtype. Then we define
the Subarray() function recursively using the following three equations. Equation 4.2 defines
the base step. Equation 4.3 defines the recursion step when order = MPI_ORDER_FORTRAN,
and Equation 4.4 defines the recursion step when order = MPI_ORDER_C. These equations
use the conceptual datatypes Ib_marker and ub_marker, see Section 4.1.6 for details.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

100 CHAPTER 4. DATATYPES

Subarray (1, {sizep}, {subsizeg}, {starty}, (4.2)

{(typeo, dispo), (typer, dispt), ..., (typen—1, dispn—1)})
= {(Ib_marker, 0),
(typeo, dispg + starty x ex), ..., (typen—1,disp,—1 + starty X ex),
(typeo, dispy + (startyg + 1) x ex), ..., (typen—1,
dispp—1 + (startg + 1) x ex), . ..
(typeo, dispo + (starty + subsizeg — 1) X ex), ...,
(typen—1,dispn—1 + (startg + subsizey — 1) X ex),

(ub_marker, sizeg x ex)}

Subarray (ndims, {sizey, size1, ..., Siz€ndims—1}, (4.3)
{subsizey, subsizey, ..., subsizendims—1}s
{starty, starty, ..., start,gims—1},oldtype)
= Subarray(ndims — 1, {sizey, sizes, . .., SizZ€ndims—1},
{subsizey, subsizes, ..., subsizendims—1},
{starty, starta, ..., start,gims—1},

Subarray (1, {sizep}, {subsizeg}, {starty}, oldtype))

Subarray (ndims, {sizey, size1, ..., Siz€ndims—1}, (4.4)
{subsizey, subsizey, ..., subsizendims—1}s
{starty, starty, ..., start,gims—1},oldtype)
= Subarray(ndims — 1, {sizeq, size1, ..., Siz€ndims—2}»
{subsizey, subsizey, ..., subsizendims—2}s
{starty, starty, ..., start,dgims—2},

Subarray (1, {sizendims—1}, { Subsizendgims—1}, {start,gims—1}, oldtype))

For an example use of MPI_TYPE_CREATE_SUBARRAY in the context of I/O see Sec-
tion 13.9.2.

4.1.4 Distributed Array Datatype Constructor

The distributed array type constructor supports HPF-like [42] data distributions. However,
unlike in HPF, the storage order may be specified for C arrays as well as for Fortran arrays.

Adwvice to users. One can create an HPF-like file view using this type constructor as
follows. Complementary filetypes are created by having every process of a group call
this constructor with identical arguments (with the exception of rank which should be
set appropriately). These filetypes (along with identical disp and etype) are then used
to define the view (via MPI_FILE_SET_VIEW), see MPI I/0O, especially Section 13.1.1
and Section 13.3. Using this view, a collective data access operation (with identical
offsets) will yield an HPF-like distribution pattern. (End of advice to users.)

Unofficial Draft for Comment Only



4.1. DERIVED DATATYPES 101
MPI_TYPE_CREATE_DARRAY( size, rank, ndims, array_of _gsizes, array_of _distribs,
array_of _dargs, array_of _psizes, order, oldtype, newtype)
IN size size of process group (positive integer)
IN rank rank in process group (non-negative integer)
IN ndims number of array dimensions as well as process grid
dimensions (positive integer)
IN array_of _gsizes number of elements of type oldtype in each dimension
of global array (array of positive integers)
IN array_of _distribs distribution of array in each dimension (array of state)
IN array_of _dargs distribution argument in each dimension (array of pos-
itive integers)
IN array_of _psizes size of process grid in each dimension (array of positive
integers)
IN order array storage order flag (state)
IN oldtype old datatype (handle)
ouT newtype new datatype (handle)

int MPI_Type_create_darray(int size, int rank, int ndims,

const int array_of_gsizes[], const int array_of_distribs[],
const int array_of_dargs[], const int array_of_psizes[],
int order, MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_Type_create_darray(size, rank, ndims, array_of_gsizes,

array_of_distribs, array_of_dargs, array_of_psizes, order,
oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: size, rank, ndims, array_of_gsizes(ndims),
array_of_distribs(ndims), array_of_dargs(ndims),
array_of_psizes(ndims), order

TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_CREATE_DARRAY(SIZE, RANK, NDIMS, ARRAY_QOF_GSIZES,

ARRAY_OF_DISTRIBS, ARRAY_OF_DARGS, ARRAY_OF_PSIZES, ORDER,
OLDTYPE, NEWTYPE, IERROR)

INTEGER SIZE, RANK, NDIMS, ARRAY_OF_GSIZES(x*), ARRAY_OF_DISTRIBS(x),
ARRAY_OF_DARGS(*), ARRAY_OF_PSIZES(*), ORDER, OLDTYPE,
NEWTYPE, IERROR

to the distribution of an ndims-dimensional array of oldtype elements onto an
ndims-dimensional grid of logical processes. Unused dimensions of array_of _psizes should be
set to 1. (See Example 4.7.) For a call to MPI_TYPE_CREATE_DARRAY to be correct, the

topologies.

Unofficial Draft for Comment Only

MPI_TYPE_CREATE_DARRAY can be used to generate the datatypes corresponding

equation H?ﬁ%ms_l array_of _psizes[i] = size must be satisfied. The ordering of processes
in the process grid is assumed to be row-major, as in the case of virtual Cartesian process

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

102 CHAPTER 4. DATATYPES

Advice to users. For both Fortran and C arrays, the ordering of processes in the
process grid is assumed to be row-major. This is consistent with the ordering used in
virtual Cartesian process topologies in MPI. To create such virtual process topologies,
or to find the coordinates of a process in the process grid, etc., users may use the
corresponding process topology functions, see Chapter 7. (End of advice to users.)

Each dimension of the array can be distributed in one of three ways:
e MPI_DISTRIBUTE_BLOCK - Block distribution
e MPI_DISTRIBUTE_CYCLIC - Cyclic distribution
e MPI_DISTRIBUTE_NONE - Dimension not distributed.

The constant MPI_DISTRIBUTE_DFLT_DARG specifies a default distribution argument.
The distribution argument for a dimension that is not distributed is ignored. For any
dimension i in which the distribution is MPI_DISTRIBUTE_BLOCK, it is erroneous to specify
array_of _dargs[i] * array_of _psizes[i| < array_of _gsizes][i].

For example, the HPF layout ARRAY(CYCLIC(15)) corresponds to
MPI_DISTRIBUTE_CYCLIC with a distribution argument of 15, and the HPF layout AR-
RAY(BLOCK) corresponds to MPI_DISTRIBUTE_BLOCK with a distribution argument of
MPI_DISTRIBUTE_DFLT _DARG.

The order argument is used as in MPI_TYPE_CREATE_SUBARRAY to specify the stor-
age order. Therefore, arrays described by this type constructor may be stored in Fortran
(column-major) or C (row-major) order. Valid values for order are MPI_ORDER_FORTRAN
and MPI_ORDER_C.

This routine creates a new MPI datatype with a typemap defined in terms of a function
called “cyclic()” (see below).

Without loss of generality, it suffices to define the typemap for the
MPI_DISTRIBUTE_CYCLIC case where MPI_DISTRIBUTE_DFLT_DARG is not used.

MPI_DISTRIBUTE_BLOCK and MPI_DISTRIBUTE_NONE can be reduced to the
MPI_DISTRIBUTE_CYCLIC case for dimension i as follows.

MPI_DISTRIBUTE_BLOCK with array_of_dargs|i] equal to MPI_DISTRIBUTE_DFLT_DARG
is equivalent to MPI_DISTRIBUTE_CYCLIC with array_of _dargs][i] set to

(array_of _gsizes|i] + array_of _psizes[i] — 1)/array_of _psizes][i].

If array_of _dargs][i] is not MPI_DISTRIBUTE_DFLT_DARG, then MPI_DISTRIBUTE_BLOCK and
MPI_DISTRIBUTE_CYCLIC are equivalent.

MPI_DISTRIBUTE_NONE is equivalent to MPI_DISTRIBUTE_CYCLIC with
array_of _dargs[i] set to array_of _gsizes]i].

Finally, MPI_DISTRIBUTE_CYCLIC with array_of_dargs[i] equal to
MPI_DISTRIBUTE_DFLT_DARG is equivalent to MPI_DISTRIBUTE_CYCLIC with
array_of _dargs|i] set to 1.

For MPI_ORDER_FORTRAN, an ndims-dimensional distributed array (newtype) is defined
by the following code fragment:

oldtypes[0] = oldtype;

for (i = 0; i < ndims; i++) {
oldtypes[i+1] = cyclic(array_of_dargs[i],

Unofficial Draft for Comment Only



4.1.

DERIVED DATATYPES 103
array_of_gsizes[i],
r[i],
array_of_psizes[il,
oldtypes[il);
}

newtype = oldtypes[ndims];
For MPI_ORDER_C, the code is:

oldtypes[0] = oldtype;
for (i = 0; i < ndims; i++) {
oldtypes[i + 1] = cyclic(array_of_dargs[ndims - i - 1],

array_of_gsizes[ndims - i - 1],
r[ndims - i - 1],
array_of_psizes[ndims - i - 1],
oldtypes[il);

}

newtype = oldtypes[ndims];

where r[i] is the position of the process (with rank rank) in the process grid at dimension i.
The values of r[i] are given by the following code fragment:

t_rank = rank;
t_size = 1;
for (i = 0; i < ndims; i++)
t_size *= array_of_psizes[i];
for (i = 0; i < ndims; i++) {
t_size = t_size / array_of_psizesl[i];
r[i] = t_rank / t_size;
t_rank = t_rank % t_size;

}

Let the typemap of oldtype have the form:

{(typeoa disp())a (typela d’iSpl), DRI (typen—lv dispn—l)}

where type; is a predefined MPI datatype, and let ex be the extent of
oldtype. The following function uses the conceptual datatypes Ib_marker and ub_marker, see
Section 4.1.6 for details.

Given the above, the function cyclic() is defined as follows:

cyclic(darg, gsize, r, psize, oldtype)
= {(Ib_marker, 0),
(typeo, dispy + r X darg X ex), ...,
(typen—1,dispn—1 + 1 x darg x ex),
(typeo, dispy + (r x darg + 1) x ex), ...,
(typen—1,dispp—1 + (r x darg + 1) x ex),

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

104 CHAPTER 4. DATATYPES

(typeo,dispg + ((r + 1) X darg — 1) x ex), ...,
(typen—1, dispn—1 + ((r + 1) x darg — 1) x ex),

(typeo, dispg + 1 x darg X ex + psize X darg X ex), ...,
(typen—1,disp,—1 + 1 x darg x ex + psize X darg X ex),

(typeo, dispy + (r x darg + 1) X ex + psize x darg X ex), ...,
(typen—1,dispp—1 + (r x darg + 1) X ex + psize X darg X ex),

(typeo, dispo + ((r + 1) X darg — 1) x ex + psize X darg x ex), ...,
(typen—1,dispp—1 + ((r +1) x darg — 1) x ex + psize X darg X ex),

(typeo, dispg + r x darg X ex + psize X darg X ex X (count — 1)),...,
(typen—1,dispp—1 + 1 x darg X ex + psize x darg X ex X (count — 1)),
(typeo, dispy + (r x darg + 1) x ex + psize X darg x ex X (count —1)),...,
(typen—1,dispp—1 + (r x darg + 1) x ex
+psize x darg x ex X (count — 1)),

(typeo, dispy + (r x darg + dargest — 1) X ex
+psize x darg x ex X (count — 1)),...,
(typen—1,dispp—1 + (r x darg + dargass — 1) X ex
+psize X darg X ex X (count — 1)),

(ub_marker, gsize x ex)}
where count is defined by this code fragment:

nblocks = (gsize + (darg - 1)) / darg;
count = nblocks / psize;
left_over = nblocks - count * psize;
if (r < left_over)

count = count + 1;

Here, nblocks is the number of blocks that must be distributed among the processors.
Finally, darg.st is defined by this code fragment:

if ((num_in_last_cyclic = gsize % (psize * darg)) == 0)
darg_last = darg;
else {

darg_last = num_in_last_cyclic - darg * r;
if (darg_last > darg)

darg_last = darg;
if (darg_last <= 0)
darg_last = darg;

}

Unofficial Draft for Comment Only



4.1. DERIVED DATATYPES 105

Example 4.7 Consider generating the filetypes corresponding to the HPF distribution:

<oldtype> FILEARRAY (100, 200, 300)
IHPF$ PROCESSORS PROCESSES(2, 3)
IHPF$ DISTRIBUTE FILEARRAY(CYCLIC(10), *, BLOCK) ONTO PROCESSES

This can be achieved by the following Fortran code, assuming there will be six processes
attached to the run:

ndims = 3

array_of_gsizes(1) = 100
array_of_distribs(1) = MPI_DISTRIBUTE_CYCLIC
array_of_dargs(1) = 10

array_of_gsizes(2) = 200
array_of_distribs(2) = MPI_DISTRIBUTE_NONE
array_of_dargs(2) = 0

array_of_gsizes(3) = 300
array_of_distribs(3) = MPI_DISTRIBUTE_BLOCK
array_of_dargs(3) = MPI_DISTRIBUTE_DFLT_DARG

array_of_psizes(1l) = 2
array_of_psizes(2) =1
array_of_psizes(3) = 3

call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

call MPI_TYPE_CREATE_DARRAY(size, rank, ndims, array_of_gsizes, &
array_of_distribs, array_of_dargs, array_of_psizes, &
MPI_ORDER_FORTRAN, oldtype, newtype, ierr)

4.1.5 Address and Size Functions

The displacements in a general datatype are relative to some initial buffer address. Abso-
lute addresses can be substituted for these displacements: we treat them as displacements
relative to “address zero,” the start of the address space. This initial address zero is in-
dicated by the constant MPI_BOTTOM. Thus, a datatype can specify the absolute address
of the entries in the communication buffer, in which case the buf argument is passed the
value MPI_BOTTOM. Note that in Fortran MPI_BOTTOM is not usable for initialization or
assignment, see Section 2.5.4.

The address of a location in memory can be found by invoking the function
MPI_GET_ADDRESS. The relative displacement between two absolute addresses can
be calculated with the function MPI_AINT_DIFF. A new absolute address as sum of an
absolute base address and a relative displacement can be calculated with the function
MPI_AINT_ADD. To ensure portability, arithmetic on absolute addresses should not be
performed with the intrinsic operators “-” and “+”. See also Sections 2.5.6 and 4.1.12 on
pages 18 and 119.

Rationale. Address sized integer values, i.e., MPI_Aint or

INTEGER (KIND=MPI_ADDRESS_KIND) values, are signed integers, while absolute ad-
dresses are unsigned quantities. Direct arithmetic on addresses stored in address
sized signed variables can cause overflows, resulting in undefined behavior. (End of
rationale.)

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

24

25

26

27

28

29

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

106 CHAPTER 4. DATATYPES

MPI_GET_ADDRESS(location, address)

IN location location in caller memory (choice)

ouT address address of location (integer)

int MPI_Get_address(const void *location, MPI_Aint *address)

MPI_Get_address(location, address, ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: 1location
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: address
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GET_ADDRESS(LOCATION, ADDRESS, IERROR)
<type> LOCATION (%)
INTEGER IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) ADDRESS

Returns the (byte) address of location.

Rationale. In the mpi_£f08 module, the location argument is not defined with
INTENT (IN) because existing applications may use MPI_GET_ADDRESS as a substi-
tute for MPI_F_SYNC_REG that was not defined before MPI-3.0. (End of rationale.)

Example 4.8 Using MPI_GET_ADDRESS for an array.

REAL A(100,100)

INTEGER (KIND=MPI_ADDRESS_KIND) I1, I2, DIFF

CALL MPI_GET_ADDRESS(A(1,1), I1, IERROR)

CALL MPI_GET_ADDRESS(A(10,10), I2, IERROR)

DIFF = MPI_AINT_DIFF(I2, I1)
! The value of DIFF is 909*sizeofreal; the values of I1 and I2 are
! implementation dependent.

Advice to users.  C users may be tempted to avoid the usage of
MPI_GET_ADDRESS and rely on the availability of the address operator &. Note,
however, that & cast-expression is a pointer, not an address. ISO C does not require
that the value of a pointer (or the pointer cast to int) be the absolute address of the
object pointed at — although this is commonly the case. Furthermore, referencing
may not have a unique definition on machines with a segmented address space. The
use of MPI_GET_ADDRESS to “reference” C variables guarantees portability to such
machines as well. (End of advice to users.)

Advice to users. To prevent problems with the argument copying and register
optimization done by Fortran compilers, please note the hints in Sections 18.1.10-

18.1.20. (End of advice to users.)

To ensure portability, arithmetic on MPI addresses must be performed using the
MPI_AINT_ADD and MPI_AINT_DIFF functions.

Unofficial Draft for Comment Only



4.1. DERIVED DATATYPES 107

MPI_AINT_ADD(base, disp)
IN base base address (integer)

IN disp displacement (integer)

MPI_Aint MPI_Aint_add(MPI_Aint base, MPI_Aint disp)

INTEGER (KIND=MPI_ADDRESS_KIND) MPI_Aint_add(base, disp)
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(IN) :: base, disp

INTEGER (KIND=MPI_ADDRESS_KIND) MPI_AINT_ADD(BASE, DISP)
INTEGER (KIND=MPI_ADDRESS_KIND) BASE, DISP

MPI_AINT_ADD produces a new MPI_Aint value that is equivalent to the sum of
the base and disp arguments, where base represents a base address returned by a call to
MPI_GET_ADDRESS and disp represents a signed integer displacement. The resulting ad-
dress is valid only at the process that generated base, and it must correspond to a location
in the same object referenced by base, as described in Section 4.1.12. The addition is per-
formed in a manner that results in the correct MPI_Aint representation of the output address,
as if the process that originally produced base had called:

MPI_Get_address((char *) base + disp, &result);

MPI_AINT_DIFF(addrl, addr2)
IN addrl minuend address (integer)
IN addr2 subtrahend address (integer)

MPI_Aint MPI_Aint_diff(MPI_Aint addrl, MPI_Aint addr2)

INTEGER (KIND=MPI_ADDRESS_KIND) MPI_Aint_diff(addrl, addr2)
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(IN) :: addrl, addr2

INTEGER (KIND=MPI_ADDRESS_KIND) MPI_AINT_DIFF(ADDR1, ADDR2)
INTEGER (KIND=MPI_ADDRESS_KIND) ADDR1, ADDR2

MPI_AINT_DIFF produces a new MPI_Aint value that is equivalent to the difference
between addrl and addr2 arguments, where addrl and addr2 represent addresses returned
by calls to MPI_GET_ADDRESS. The resulting address is valid only at the process that
generated addrl and addr2, and addrl and addr2 must correspond to locations in the same
object in the same process, as described in Section 4.1.12. The difference is calculated in
a manner that results in the signed difference from addrl to addr2, as if the process that
originally produced the addresses had called (char *) addrl - (char *) addr2 on the
addresses initially passed to MPI_GET_ADDRESS.

The following auxiliary functions provide useful information on derived datatypes.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

108 CHAPTER 4. DATATYPES

MPI_TYPE_SIZE(datatype, size)
IN datatype datatype (handle)
ouT size datatype size (integer)

int MPI_Type_size(MPI_Datatype datatype, int *size)

MPI_Type_size(datatype, size, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(QOUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_SIZE(DATATYPE, SIZE, IERROR)
INTEGER DATATYPE, SIZE, IERROR

MPI_TYPE_SIZE_ _X(datatype, size)
IN datatype datatype (handle)
ouT size datatype size (integer)

int MPI_Type_size_x(MPI_Datatype datatype, MPI_Count *size)

MPI_Type_size_x(datatype, size, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER (KIND=MPI_COUNT_KIND), INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_SIZE_X(DATATYPE, SIZE, IERROR)
INTEGER DATATYPE, IERROR
INTEGER (KIND=MPI_COUNT_KIND) SIZE

MPI_TYPE_SIZE and MPI_TYPE_SIZE_X set the value of size to the total size, in
bytes, of the entries in the type signature associated with datatype; i.e., the total size of the
data in a message that would be created with this datatype. Entries that occur multiple
times in the datatype are counted with their multiplicity. For both functions, if the OUT
parameter cannot express the value to be returned (e.g., if the parameter is too small to
hold the output value), it is set to MPI_UNDEFINED.

4.1.6 Lower-Bound and Upper-Bound Markers

It is often convenient to define explicitly the lower bound and upper bound of a type map,
and override the definition given on page 109. This allows one to define a datatype that has
“holes” at its beginning or its end, or a datatype with entries that extend above the upper
bound or below the lower bound. Examples of such usage are provided in Section 4.1.14.
Also, the user may want to overide the alignment rules that are used to compute upper
bounds and extents. E.g., a C compiler may allow the user to overide default alignment
rules for some of the structures within a program. The user has to specify explicitly the
bounds of the datatypes that match these structures.

Unofficial Draft for Comment Only



4.1. DERIVED DATATYPES 109

To achieve this, we add two additional conceptual datatypes, Ib_marker and
ub_marker, that represent the lower bound and upper bound of a datatype. These con-
ceptual datatypes occupy no space (extent(Ib_marker) = extent(ub_marker) = 0) . They do
not affect the size or count of a datatype, and do not affect the content of a message created
with this datatype. However, they do affect the definition of the extent of a datatype and,
therefore, affect the outcome of a replication of this datatype by a datatype constructor.

Example 4.9 A call to MPI_TYPE_CREATE_RESIZED(MPI_INT, -3, 9, typel) creates a
new datatype that has an extent of 9 (from -3 to 5, 5 included), and contains an integer
at displacement 0. This is the datatype defined by the typemap {(Ib_marker, -3), (int, 0),
(ub_marker, 6)}. If this type is replicated twice by a call to MPI_TYPE_CONTIGUOUS(2,
typel, type2) then the newly created type can be described by the typemap {(Ib_marker,
-3), (int, 0), (int,9), (ub_marker, 15)}. (An entry of type ub_marker can be deleted if there
is another entry of type ub_marker with a higher displacement; an entry of type lb_marker
can be deleted if there is another entry of type Ib_marker with a lower displacement.)
In general, if

T'ypemap = {(typeo, dispo), - - -, (typen—1, dispn—1)},
then the lower bound of Typemap is defined to be

if no entry has type

Ib_marker
min;j{disp; such that type; = Ib_marker} otherwise

min; disp;

Ib(Typemap) = {

Similarly, the upper bound of Typemap is defined to be

if no entry has type

ub_marker
max;{disp; such that type; = ub_marker} otherwise

ub(T'ypemap) = { max;(dispj + sizeof (type;)) + €

Then
extent(Typemap) = ub(Typemap) — Ib(Typemap)

If type; requires alignment to a byte address that is a multiple of k;, then € is the least
non-negative increment needed to round extent(Typemap) to the next multiple of max; ;.
In Fortran, it is implementation dependent whether the MPI implementation computes
the alignments k; according to the alignments used by the compiler in common blocks,
SEQUENCE derived types, BIND(C) derived types, or derived types that are neither SEQUENCE
nor BIND(C).

The formal definitions given for the various datatype constructors apply now, with the
amended definition of extent.

Rationale. Before Fortran 2003, MPI_TYPE_CREATE_STRUCT could be applied to
Fortran common blocks and SEQUENCE derived types. With Fortran 2003, this list
was extended by BIND(C) derived types and MPI| implementors have implemented the
alignments k; differently, i.e., some based on the alignments used in SEQUENCE derived
types, and others according to BIND(C) derived types. (End of rationale.)

Advice to implementors. In Fortran, it is generally recommended to use BIND(C)
derived types instead of common blocks or SEQUENCE derived types. Therefore it is
recommended to calculate the alignments k; based on BIND(C) derived types. (End
of advice to implementors.)

Unofficial Draft for Comment Only

10

11

12

13

14

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

41

42

43

44

45

46

47

48

110

CHAPTER 4. DATATYPES

Advice to users. Structures combining different basic datatypes should be defined
so that there will be no gaps based on alignment rules. If such a datatype is used
to create an array of structures, users should also avoid an alignment-gap at the
end of the structure. In MPI communication, the content of such gaps would not
be communicated into the receiver’s buffer. For example, such an alignment-gap
may occur between an odd number of floats or REALs before a double or DOUBLE
PRECISION data. Such gaps may be added explicitly to both the structure and the MPI
derived datatype handle because the communication of a contiguous derived datatype
may be significantly faster than the communication of one that is non-contiguous
because of such alignment-gaps.

Example: Instead of

TYPE, BIND(C) :: my_data
REAL, DIMENSION(3) :: x
! there may be a gap of the size of one REAL
I if the alignment of a DOUBLE PRECISION is
! two times the size of a REAL
DOUBLE PRECISION :: p

END TYPE

one should define

TYPE, BIND(C) :: my_data
REAL, DIMENSION(3) :: x

REAL :: gapil
DOUBLE PRECISION :: p
END TYPE

and also include gapl in the matching MPI derived datatype. It is required that all
processes in a communication add the same gaps, i.e., defined with the same basic
datatype. Both the original and the modified structures are portable, but may have
different performance implications for the communication and memory accesses during
computation on systems with different alignment values.

In principle, a compiler may define an additional alignment rule for structures, e.g., to
use at least 4 or 8 byte alignment, although the content may have a max;k; alignment
less than this structure alignment. To maintain portability, users should always resize
structure derived datatype handles if used in an array of structures, see the Example
in Section 18.1.15. (End of advice to users.)

4.1.7 Extent and Bounds of Datatypes

MPI_TYPE_GET_EXTENT (datatype, Ib, extent)

IN datatype datatype to get information on (handle)
ouT Ib lower bound of datatype (integer)
ouT extent extent of datatype (integer)

Unofficial Draft for Comment Only



4.1. DERIVED DATATYPES 111

int MPI_Type_get_extent (MPI_Datatype datatype, MPI_Aint *1b,
MPI_Aint =extent)

MPI_Type_get_extent(datatype, lb, extent, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: 1b, extent
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_GET_EXTENT(DATATYPE, LB, EXTENT, IERROR)
INTEGER DATATYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) LB, EXTENT

MPI_TYPE_GET_EXTENT _X(datatype, Ib, extent)

IN datatype datatype to get information on (handle)
ouT Ib lower bound of datatype (integer)
ouT extent extent of datatype (integer)

int MPI_Type_get_extent_x(MPI_Datatype datatype, MPI_Count *lb,
MPI_Count *extent)

MPI_Type_get_extent_x(datatype, lb, extent, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER (KIND=MPI_COUNT_KIND), INTENT(OUT) :: 1b, extent
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_GET_EXTENT_X(DATATYPE, LB, EXTENT, IERROR)
INTEGER DATATYPE, IERROR
INTEGER (KIND=MPI_COUNT_KIND) LB, EXTENT

Returns the lower bound and the extent of datatype (as defined in Equation 4.1).

For both functions, if either OUT parameter cannot express the value to be returned
(e.g., if the parameter is too small to hold the output value), it is set to MPI_UNDEFINED.

MPI allows one to change the extent of a datatype, using lower bound and upper bound
markers. This provides control over the stride of successive datatypes that are replicated
by datatype constructors, or are replicated by the count argument in a send or receive call.

MPI_TYPE_CREATE_RESIZED(oldtype, Ib, extent, newtype)

IN oldtype input datatype (handle)

IN Ib new lower bound of datatype (integer)
IN extent new extent of datatype (integer)

ouT newtype output datatype (handle)

int MPI_Type_create_resized(MPI_Datatype oldtype, MPI_Aint 1b,
MPI_Aint extent, MPI_Datatype *newtype)

MPI_Type_create_resized(oldtype, 1lb, extent, newtype, ierror)

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

112 CHAPTER 4. DATATYPES

INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(IN) :: 1b, extent
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_CREATE_RESIZED(OLDTYPE, LB, EXTENT, NEWTYPE, IERROR)
INTEGER OLDTYPE, NEWTYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) LB, EXTENT

Returns in newtype a handle to a new datatype that is identical to oldtype, except that
the lower bound of this new datatype is set to be Ib, and its upper bound is set to be Ib
+ extent. Any previous lb and ub markers are erased, and a new pair of lower bound and
upper bound markers are put in the positions indicated by the Ib and extent arguments.
This affects the behavior of the datatype when used in communication operations, with
count > 1, and when used in the construction of new derived datatypes.

4.1.8 True Extent of Datatypes

Suppose we implement gather (see also Section 5.5) as a spanning tree implemented on
top of point-to-point routines. Since the receive buffer is only valid on the root pro-
cess, one will need to allocate some temporary space for receiving data on intermedi-
ate nodes. However, the datatype extent cannot be used as an estimate of the amount
of space that needs to be allocated, if the user has modified the extent, for example
by using MPI_TYPE_CREATE_RESIZED. The functions MPI_TYPE_GET_TRUE_EXTENT
and MPI_TYPE_GET_TRUE_EXTENT_X are provided which return the true extent of the
datatype.

MPI_TYPE_GET_TRUE_EXTENT (datatype, true_lb, true_extent)

IN datatype datatype to get information on (handle)
ouT true_lb true lower bound of datatype (integer)
ouT true_extent true size of datatype (integer)

int MPI_Type_get_true_extent (MPI_Datatype datatype, MPI_Aint *true_lb,
MPI_Aint *true_extent)

MPI_Type_get_true_extent (datatype, true_lb, true_extent, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: true_lb, true_extent
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_GET_TRUE_EXTENT (DATATYPE, TRUE_LB, TRUE_EXTENT, IERROR)
INTEGER DATATYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) TRUE_LB, TRUE_EXTENT

Unofficial Draft for Comment Only



4.1. DERIVED DATATYPES

MPI_TYPE_GET_TRUE_EXTENT_X(datatype, true_Ib, true_extent)

IN datatype datatype to get information on (handle)
ouT true_lb true lower bound of datatype (integer)
ouT true_extent true size of datatype (integer)

int MPI_Type_get_true_extent_x(MPI_Datatype datatype, MPI_Count *true_lb,
MPI_Count *true_extent)

MPI_Type_get_true_extent_x(datatype, true_lb, true_extent, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER (KIND=MPI_COUNT_KIND), INTENT(OUT) :: +true_lb, true_extent
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_GET_TRUE_EXTENT_X(DATATYPE, TRUE_LB, TRUE_EXTENT, IERROR)
INTEGER DATATYPE, IERROR
INTEGER (KIND=MPI_COUNT_KIND) TRUE_LB, TRUE_EXTENT

true_Ib returns the offset of the lowest unit of store which is addressed by the datatype,
i.e., the lower bound of the corresponding typemap, ignoring explicit lower bound mark-
ers. true_extent returns the true size of the datatype, i.e., the extent of the correspond-
ing typemap, ignoring explicit lower bound and upper bound markers, and performing no

rounding for alignment. If the typemap associated with datatype is
Typemap = {(typeo, dispo), - - ., (typen—1,dispn—1)}
Then

true_lb(T'ypemap) = min;{disp; : type; # Ib_marker, ub_marker},

true_ub(Typemap) = maz;{disp; + sizeof (type;) : type; # Ib_marker,ub_marker},

and

true_extent(Typemap) = true_ub(Typemap) — true_lb(typemap).

(Readers should compare this with the definitions in Section 4.1.6 and Section 4.1.7, which

describe the function MPI_TYPE_GET_EXTENT.)

The true_extent is the minimum number of bytes of memory necessary to hold a

datatype, uncompressed.

For both functions, if either OUT parameter cannot express the value to be returned
(e.g., if the parameter is too small to hold the output value), it is set to MPI_UNDEFINED.

419 Commit and Free

A datatype object has to be committed before it can be used in a communication. As
an argument in datatype constructors, uncommitted and also committed datatypes can be

used. There is no need to commit basic datatypes. They are “pre-committed.”

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

37

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

48

114 CHAPTER 4. DATATYPES

MPI_TYPE_COMMIT (datatype)
INOUT  datatype datatype that is committed (handle)

int MPI_Type_commit (MPI_Datatype *datatype)

MPI_Type_commit(datatype, ierror)
TYPE(MPI_Datatype), INTENT(INOUT) :: datatype
INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

MPI_TYPE_COMMIT(DATATYPE, IERROR)
INTEGER DATATYPE, IERROR

The commit operation commits the datatype, that is, the formal description of a com-
munication buffer, not the content of that buffer. Thus, after a datatype has been commit-
ted, it can be repeatedly reused to communicate the changing content of a buffer or, indeed,
the content of different buffers, with different starting addresses.

Advice to implementors.  The system may “compile” at commit time an internal
representation for the datatype that facilitates communication, e.g., change from a
compacted representation to a flat representation of the datatype, and select the most
convenient transfer mechanism. (End of advice to implementors.)

MPI_TYPE_COMMIT will accept a committed datatype; in this case, it is equivalent
to a no-op.

Example 4.10 The following code fragment gives examples of using MPI_TYPE_COMMIT.

INTEGER typel, type2
CALL MPI_TYPE_CONTIGUOUS(5, MPI_REAL, typel, ierr)

! new type object created
CALL MPI_TYPE_COMMIT(typel, ierr)

! now typel can be used for communication
type2 = typel

| type2 can be used for communication

I (it is a handle to same object as typel)
CALL MPI_TYPE_VECTOR(3, 5, 4, MPI_REAL, typel, ierr)

! new uncommitted type object created
CALL MPI_TYPE_COMMIT(typel, ierr)

! now typel can be used anew for communication

MPI_TYPE_FREE(datatype)
INOUT  datatype datatype that is freed (handle)

int MPI_Type_free(MPI_Datatype *datatype)

MPI_Type_free(datatype, ierror)
TYPE(MPI_Datatype), INTENT(INQOUT) :: datatype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Unofficial Draft for Comment Only



4.1. DERIVED DATATYPES 115

MPI_TYPE_FREE(DATATYPE, IERROR)
INTEGER DATATYPE, IERROR

Marks the datatype object associated with datatype for deallocation and sets datatype
to MPI_DATATYPE_NULL. Any communication that is currently using this datatype will
complete normally. Freeing a datatype does not affect any other datatype that was built
from the freed datatype. The system behaves as if input datatype arguments to derived
datatype constructors are passed by value.

Advice to implementors. The implementation may keep a reference count of active
communications that use the datatype, in order to decide when to free it. Also, one
may implement constructors of derived datatypes so that they keep pointers to their
datatype arguments, rather then copying them. In this case, one needs to keep track
of active datatype definition references in order to know when a datatype object can
be freed. (End of advice to implementors.)

4.1.10 Duplicating a Datatype

MPI_TYPE_DUP(oldtype, newtype)
IN oldtype datatype (handle)
ouT newtype copy of oldtype (handle)

int MPI_Type_dup(MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_Type_dup(oldtype, newtype, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

MPI_TYPE_DUP(OLDTYPE, NEWTYPE, IERROR)
INTEGER OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_DUP is a type constructor which duplicates the existing

oldtype with associated key values. For each key value, the respective copy callback function
determines the attribute value associated with this key in the new communicator; one
particular action that a copy callback may take is to delete the attribute from the new
datatype. Returns in newtype a new datatype with exactly the same properties as oldtype
and any copied cached information, see Section 6.7.4. The new datatype has identical upper
bound and lower bound and yields the same net result when fully decoded with the functions
in Section 4.1.13. The newtype has the same committed state as the old oldtype.

4.1.11 Use of General Datatypes in Communication

Handles to derived datatypes can be passed to a communication call wherever a datatype
argument is required. A call of the form MPI_SEND(buf, count, datatype, ...), where count >
1, is interpreted as if the call was passed a new datatype which is the concatenation of count
copies of datatype. Thus, MPI_SEND(buf, count, datatype, dest, tag, comm) is equivalent to,

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

116 CHAPTER 4. DATATYPES

MPI_TYPE_CONTIGUOUS(count, datatype, newtype)
MPI_TYPE_COMMIT (newtype)

MPI_SEND(buf, 1, newtype, dest, tag, comm)
MPI_TYPE_FREE (newtype) .

Similar statements apply to all other communication functions that have a count and
datatype argument.

Suppose that a send operation MPI_SEND(buf, count, datatype, dest, tag, comm) is
executed, where datatype has type map,

{(typeo, dispo), . .., (typen—1,dispn—1)},

and extent extent. (Explicit lower bound and upper bound markers are not listed in the
type map, but they affect the value of extent.) The send operation sends n - count entries,
where entry i -n 4+ j is at location addr; ; = buf + extent - i + disp; and has type type;, for
i1=0,...,count—1and j =0,...,n—1. These entries need not be contiguous, nor distinct;
their order can be arbitrary.

The variable stored at address addr; ; in the calling program should be of a type that
matches type;, where type matching is defined as in Section 3.3.1. The message sent contains
n - count entries, where entry 7 - n + j has type type;.

Similarly, suppose that a receive operation MPI_RECV(buf, count, datatype, source, tag,
comm, status) is executed, where datatype has type map,

{(typeo, dispo), ..., (typen—1,dispn—1)},
with extent extent. (Again, explicit lower bound and upper bound markers are not listed in
the type map, but they affect the value of extent.) This receive operation receives n - count
entries, where entry ¢-n + j is at location buf + extent - i + disp; and has type type;. If the
incoming message consists of k elements, then we must have k < n - count; the i - n + j-th
element of the message should have a type that matches type;.

Type matching is defined according to the type signature of the corresponding
datatypes, that is, the sequence of basic type components. Type matching does not depend
on some aspects of the datatype definition, such as the displacements (layout in memory)
or the intermediate types used.

Example 4.11 This example shows that type matching is defined in terms of the basic
types that a derived type consists of.

CALL MPI_TYPE_CONTIGUOUS(2, MPI_REAL, type2, ...)
CALL MPI_TYPE_CONTIGUOUS(4, MPI_REAL, type4, ...)

CALL MPI_TYPE_CONTIGUOUS(2, type2, type22, ...)
CALL MPI_SEND(a, 4, MPI_REAL, ...)

CALL MPI_SEND(a, 2, type2, ...)

CALL MPI_SEND(a, 1, type22, ...)

CALL MPI_SEND(a, 1, type4, ...)

CALL MPI_RECV(a, 4, MPI_REAL, ...)

CALL MPI_RECV(a, 2, type2, ...)

CALL MPI_RECV(a, 1, type22, ...)

CALL MPI_RECV(a, 1, type4, ...)

Unofficial Draft for Comment Only



4.1. DERIVED DATATYPES 117

Each of the sends matches any of the receives.

A datatype may specify overlapping entries. The use of such a datatype in a receive
operation is erroneous. (This is erroneous even if the actual message received is short enough
not to write any entry more than once.)

Suppose that MPI_RECV(buf, count, datatype, dest, tag, comm, status) is executed,
where datatype has type map,

{(typeo, dispo), . . ., (typen—1, dispn—1)}.

The received message need not fill all the receive buffer, nor does it need to fill a number of
locations which is a multiple of n. Any number, k, of basic elements can be received, where
0 < k < count-n. The number of basic elements received can be retrieved from status using
the query functions MPI_GET_ELEMENTS or MPI_GET_ELEMENTS_X.

MPI_GET_ELEMENTS(status, datatype, count)

IN status return status of receive operation (Status)
IN datatype datatype used by receive operation (handle)
ouT count number of received basic elements (integer)

int MPI_Get_elements(const MPI_Status #*status, MPI_Datatype datatype,
int *count)

MPI_Get_elements(status, datatype, count, ierror)

TYPE(MPI_Status), INTENT(IN) :: status
TYPE(MPI Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(OUT) :: count

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GET_ELEMENTS (STATUS, DATATYPE, COUNT, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

MPI_GET_ELEMENTS_X(status, datatype, count)

IN status return status of receive operation (Status)
IN datatype datatype used by receive operation (handle)
ouT count number of received basic elements (integer)

int MPI_Get_elements_x(const MPI_Status *status, MPI_Datatype datatype,
MPI_Count *count)

MPI_Get_elements_x(status, datatype, count, ierror)

TYPE(MPI_Status), INTENT(IN) :: status
TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER (KIND=MPI_COUNT_KIND), INTENT(OUT) :: count
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GET_ELEMENTS_X(STATUS, DATATYPE, COUNT, IERROR)

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

118 CHAPTER 4. DATATYPES

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, IERROR
INTEGER (KIND=MPI_COUNT_KIND) COUNT

The datatype argument should match the argument provided by the receive call that
set the status variable. For both functions, if the OUT parameter cannot express the value
to be returned (e.g., if the parameter is too small to hold the output value), it is set to
MPI_UNDEFINED.

The previously defined function MPI_GET_COUNT (Section 3.2.5), has a different be-
havior. It returns the number of “top-level entries” received, i.e. the number of “copies” of
type datatype. In the previous example, MPI_GET_COUNT may return any integer value
k, where 0 < k < count. If MPI_GET_COUNT returns k, then the number of basic elements
received (and the value returned by MPI_GET_ELEMENTS or MPI_GET_ELEMENTS_X) is
n - k. If the number of basic elements received is not a multiple of n, that is, if the receive
operation has not received an integral number of datatype “copies,” then MPI_GET_COUNT
sets the value of count to MPI_UNDEFINED.

Example 4.12 Usage of MPI_GET_COUNT and MPI_GET_ELEMENTS.

CALL MPI_TYPE_CONTIGUOUS(2, MPI_REAL, Type2, ierr)
CALL MPI_TYPE_COMMIT(Type2, ierr)

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN
CALL MPI_SEND(a, 2, MPI_REAL, 1, O, comm, ierr)
CALL MPI_SEND(a, 3, MPI_REAL, 1, 0, comm, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(a, 2, Type2, O, O, comm, stat, ierr)
CALL MPI_GET_COUNT(stat, Type2, i, ierr) | returns
CALL MPI_GET_ELEMENTS(stat, Type2, i, ierr) ! returns
CALL MPI_RECV(a, 2, Type2, O, O, comm, stat, ierr)
CALL MPI_GET_COUNT(stat, Type2, 1i, ierr) ! returns i=MPI_UNDEFINED
CALL MPI_GET_ELEMENTS(stat, Type2, i, ierr) ! returns i=3

END IF

The functions MPI_GET_ELEMENTS and MPI_GET_ELEMENTS_X can also be used
after a probe to find the number of elements in the probed message. Note that the
MPI_GET_COUNT, MPI_GET_ELEMENTS, and MPI_GET_ELEMENTS_X return the same
values when they are used with basic datatypes as long as the limits of their respective
count arguments are not exceeded.

Rationale. The extension given to the definition of MPI_GET_COUNT seems natural:
one would expect this function to return the value of the count argument, when the
receive buffer is filled. Sometimes datatype represents a basic unit of data one wants
to transfer, for example, a record in an array of records (structures). One should be
able to find out how many components were received without bothering to divide by
the number of elements in each component. However, on other occasions, datatype
is used to define a complex layout of data in the receiver memory, and does not
represent a basic unit of data for transfers. In such cases, one needs to use the
function MPI_GET_ELEMENTS or MPI_GET_ELEMENTS_X. (End of rationale.)

Unofficial Draft for Comment Only



4.1. DERIVED DATATYPES 119

Advice to implementors.  The definition implies that a receive cannot change the
value of storage outside the entries defined to compose the communication buffer. In
particular, the definition implies that padding space in a structure should not be mod-
ified when such a structure is copied from one process to another. This would prevent
the obvious optimization of copying the structure, together with the padding, as one
contiguous block. The implementation is free to do this optimization when it does not
impact the outcome of the computation. The user can “force” this optimization by
explicitly including padding as part of the message. (End of advice to implementors.)

4.1.12 Correct Use of Addresses

Successively declared variables in C or Fortran are not necessarily stored at contiguous
locations. Thus, care must be exercised that displacements do not cross from one variable
to another. Also, in machines with a segmented address space, addresses are not unique
and address arithmetic has some peculiar properties. Thus, the use of addresses, that is,
displacements relative to the start address MPI_BOTTOM, has to be restricted.

Variables belong to the same sequential storage if they belong to the same array,
to the same COMMON block in Fortran, or to the same structure in C. Valid addresses are
defined recursively as follows:

1. The function MPI_GET_ADDRESS returns a valid address, when passed as argument
a variable of the calling program.

2. The buf argument of a communication function evaluates to a valid address, when
passed as argument a variable of the calling program.

3. If v is a valid address, and i is an integer, then v+i is a valid address, provided v and
v+i are in the same sequential storage.

A correct program uses only valid addresses to identify the locations of entries in
communication buffers. Furthermore, if u and v are two valid addresses, then the (integer)
difference u - v can be computed only if both u and v are in the same sequential storage.
No other arithmetic operations can be meaningfully executed on addresses.

The rules above impose no constraints on the use of derived datatypes, as long as
they are used to define a communication buffer that is wholly contained within the same
sequential storage. However, the construction of a communication buffer that contains
variables that are not within the same sequential storage must obey certain restrictions.
Basically, a communication buffer with variables that are not within the same sequential
storage can be used only by specifying in the communication call buf = MPI_BOTTOM,
count = 1, and using a datatype argument where all displacements are valid (absolute)
addresses.

Advice to users. It is not expected that MPI implementations will be able to detect
erroneous, “out of bound” displacements — unless those overflow the user address
space — since the MPI call may not know the extent of the arrays and records in the
host program. (End of advice to users.)

Advice to implementors. There is no need to distinguish (absolute) addresses and
(relative) displacements on a machine with contiguous address space: MPI_BOTTOM
is zero, and both addresses and displacements are integers. On machines where the

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

120 CHAPTER 4. DATATYPES

distinction is required, addresses are recognized as expressions that involve
MPI_BOTTOM. (End of advice to implementors.)

4.1.13 Decoding a Datatype

MPI datatype objects allow users to specify an arbitrary layout of data in memory. There
are several cases where accessing the layout information in opaque datatype objects would
be useful. The opaque datatype object has found a number of uses outside MPI. Further-
more, a number of tools wish to display internal information about a datatype. To achieve
this, datatype decoding functions are provided. The two functions in this section are used
together to decode datatypes to recreate the calling sequence used in their initial defini-
tion. These can be used to allow a user to determine the type map and type signature of a
datatype.

MPI_TYPE_GET_ENVELOPE(datatype, num_integers, num_addresses, num_datatypes,

combiner)

IN datatype datatype to access (handle)

ouT num_integers number of input integers used in the call constructing
combiner (non-negative integer)

ouT num_addresses number of input addresses used in the call construct-
ing combiner (non-negative integer)

ouT num_datatypes number of input datatypes used in the call construct-
ing combiner (non-negative integer)

ouT combiner combiner (state)

int MPI_Type_get_envelope(MPI_Datatype datatype, int *num_integers,
int *num_addresses, int *num_datatypes, int *combiner)

MPI_Type_get_envelope(datatype, num_integers, num_addresses, num_datatypes,
combiner, ierror)

TYPE(MPI Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(OUT) :: num_integers, num_addresses, num_datatypes,
combiner

INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

MPI_TYPE_GET_ENVELOPE(DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES,
COMBINER, IERROR)
INTEGER DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES, COMBINER,
IERROR

For the given datatype, MPI_TYPE_GET_ENVELOPE returns information on the num-
ber and type of input arguments used in the call that created the datatype. The number-of-
arguments values returned can be used to provide sufficiently large arrays in the decoding
routine MPI_TYPE_GET_CONTENTS. This call and the meaning of the returned values is
described below. The combiner reflects the MPI datatype constructor call that was used in
creating datatype.

Unofficial Draft for Comment Only



4.1.

DERIVED DATATYPES 121

Rationale. By requiring that the combiner reflect the constructor used in the creation
of the datatype, the decoded information can be used to effectively recreate the calling
sequence used in the original creation. This is the most useful information and was felt
to be reasonable even though it constrains implementations to remember the original
constructor sequence even if the internal representation is different.

The decoded information keeps track of datatype duplications. This is important as
one needs to distinguish between a predefined datatype and a dup of a predefined
datatype. The former is a constant object that cannot be freed, while the latter is a
derived datatype that can be freed. (End of rationale.)

The list in Table 4.1 has the values that can be returned in combiner on the left and

the call associated with them on the right.

MPI_COMBINER_NAMED a named predefined datatype
MPI_COMBINER_DUP MPI_TYPE_DUP
MPI_COMBINER_CONTIGUOUS MPI_TYPE_CONTIGUOUS
MPI_COMBINER_VECTOR MPI_TYPE_VECTOR
MPI_COMBINER_HVECTOR MPI_TYPE_CREATE_HVECTOR
MPI_COMBINER_INDEXED MPI_TYPE_INDEXED
MPI_COMBINER_HINDEXED MPI_TYPE_CREATE_HINDEXED

MPI_COMBINER_INDEXED_BLOCK MPI_TYPE_CREATE_INDEXED_BLOCK
MPI_COMBINER_HINDEXED_BLOCK MPI_TYPE_CREATE_HINDEXED_BLOCK

MPI_COMBINER_STRUCT MPI_TYPE_CREATE_STRUCT
MPI_COMBINER_SUBARRAY MPI_TYPE_CREATE_SUBARRAY
MPI_COMBINER_DARRAY MPI_TYPE_CREATE_DARRAY
MPI_COMBINER_F90_REAL MPI_TYPE_CREATE_F90_REAL
MPI_COMBINER_F90_COMPLEX MPI_TYPE_CREATE_F90_COMPLEX
MPI_COMBINER_F90_INTEGER MPI_TYPE_CREATE_F90_INTEGER
MPI_COMBINER_RESIZED MPI_TYPE_CREATE_RESIZED

Table 4.1: combiner values returned from MPI_TYPE_GET_ENVELOPE

If combiner is MPI_COMBINER_NAMED then datatype is a named predefined datatype.
The actual arguments used in the creation call for a datatype can be obtained using

MPI_TYPE_GET_CONTENTS.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

37

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

122

CHAPTER 4. DATATYPES

MPI_TYPE_GET_CONTENTS(datatype, max_integers, max_addresses, max_datatypes,

array_of _integers, array_of _addresses, array_of _datatypes)

IN datatype datatype to access (handle)

IN max_integers number of elements in array_of _integers (non-negative
integer)

IN max_addresses number of elements in array_of _addresses (non-negative
integer)

IN max_datatypes number of elements in array_of _datatypes (non-negative
integer)

ouT array_of _integers contains integer arguments used in constructing
datatype (array of integers)

ouT array_of _addresses contains address arguments used in constructing
datatype (array of integers)

ouT array_of _datatypes contains datatype arguments used in constructing
datatype (array of handles)

int MPI_Type_get_contents(MPI_Datatype datatype, int max_integers,

MPI_

MPI_

int max_addresses, int max_datatypes, int array_of_integersl[],
MPI_Aint array_of_addresses[],
MPI_Datatype array_of_datatypesl[])

Type_get_contents(datatype, max_integers, max_addresses, max_datatypes,
array_of_integers, array_of_addresses, array_of_datatypes,

ierror)
TYPE(MPI_ Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: max_integers, max_addresses, max_datatypes
INTEGER, INTENT(OUT) :: array_of_integers(max_integers)

INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(OUT)
array_of_addresses(max_addresses)

TYPE(MPI_Datatype), INTENT(OUT) :: array_of_datatypes(max_datatypes)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

TYPE_GET_CONTENTS (DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,
ARRAY_OF_INTEGERS, ARRAY_OF_ADDRESSES, ARRAY_OF_DATATYPES,
IERROR)

INTEGER DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,
ARRAY_OF_INTEGERS(*), ARRAY_OF_DATATYPES(*), IERROR

INTEGER (KIND=MPI_ADDRESS_KIND) ARRAY_OF_ADDRESSES (*)

datatype must be a predefined unnamed or a derived datatype; the call is erroneous if

datatype is a predefined named datatype.

The values given for max_integers, max_addresses, and max_datatypes must be at least as

large as the value returned in num_integers, num_addresses, and num_datatypes, respectively,
in the call MPI_TYPE_GET_ENVELOPE for the same datatype argument.

Rationale. The arguments max_integers, max_addresses, and max_datatypes allow for
error checking in the call. (End of rationale.)

Unofficial Draft for Comment Only



4.1. DERIVED DATATYPES 123

The datatypes returned in array_of_datatypes are handles to datatype objects that
are equivalent to the datatypes used in the original construction call. If these were derived
datatypes, then the returned datatypes are new datatype objects, and the user is responsible
for freeing these datatypes with MPI_TYPE_FREE. If these were predefined datatypes, then
the returned datatype is equal to that (constant) predefined datatype and cannot be freed.

The committed state of returned derived datatypes is undefined, i.e., the datatypes may
or may not be committed. Furthermore, the content of attributes of returned datatypes is
undefined.

Note that MPI_TYPE_GET_CONTENTS can be invoked with a
datatype argument that was constructed using MPI_TYPE_CREATE_F90_REAL,
MPI_TYPE_CREATE_F90_INTEGER, or MPI_TYPE_CREATE_F90_COMPLEX (an unnamed
predefined datatype). In such a case, an empty array_of _datatypes is returned.

Rationale. The definition of datatype equivalence implies that equivalent predefined
datatypes are equal. By requiring the same handle for named predefined datatypes,
it is possible to use the == or .EQ. comparison operator to determine the datatype
involved. (End of rationale.)

Advice to implementors. The datatypes returned in array_of _datatypes must appear
to the user as if each is an equivalent copy of the datatype used in the type constructor
call. Whether this is done by creating a new datatype or via another mechanism such
as a reference count mechanism is up to the implementation as long as the semantics
are preserved. (End of advice to implementors.)

Rationale.  The committed state and attributes of the returned datatype is delib-
erately left vague. The datatype used in the original construction may have been
modified since its use in the constructor call. Attributes can be added, removed, or
modified as well as having the datatype committed. The semantics given allow for
a reference count implementation without having to track these changes. (End of
rationale.)

In the deprecated datatype constructor calls, the address arguments in Fortran are
of type INTEGER. In the preferred calls, the address arguments are of type
INTEGER (KIND=MPI_ADDRESS_KIND). The call MPI_TYPE_GET_CONTENTS returns all ad-
dresses in an argument of type INTEGER (KIND=MPI_ADDRESS_KIND). This is true even if the
deprecated calls were used. Thus, the location of values returned can be thought of as being
returned by the C bindings. It can also be determined by examining the preferred calls for
datatype constructors for the deprecated calls that involve addresses.

Rationale. By having all address arguments returned in the

array_of _addresses argument, the result from a C and Fortran decoding of a datatype
gives the result in the same argument. It is assumed that an integer of type
INTEGER (KIND=MPI_ADDRESS_KIND) will be at least as large as the INTEGER argument
used in datatype construction with the old MPI-1 calls so no loss of information will
occur. (End of rationale.)

The following defines what values are placed in each entry of the returned arrays
depending on the datatype constructor used for datatype. It also specifies the size of the
arrays needed which is the values returned by MPI_TYPE_GET_ENVELOPE. In Fortran,
the following calls were made:

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

124 CHAPTER 4. DATATYPES

PARAMETER (LARGE = 1000)
INTEGER TYPE, NI, NA, ND, COMBINER, I(LARGE), D(LARGE), IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) A(LARGE)
! CONSTRUCT DATATYPE TYPE (NOT SHOWN)
CALL MPI_TYPE_GET_ENVELOPE(TYPE, NI, NA, ND, COMBINER, IERROR)
IF ((NI .GT. LARGE) .OR. (NA .GT. LARGE) .OR. (ND .GT. LARGE)) THEN
WRITE (*, *) "NI, NA, OR ND = ", NI, NA, ND, &

" RETURNED BY MPI_TYPE_GET_ENVELOPE IS LARGER THAN LARGE = ", LARGE

CALL MPI_ABORT(MPI_COMM_WORLD, 99, IERROR)
ENDIF
CALL MPI_TYPE_GET_CONTENTS(TYPE, NI, NA, ND, I, A, D, IERROR)

or in C the analogous calls of:

#define LARGE 1000

int ni, na, nd, combiner, i[LARGE];

MPI_Aint a[LARGE];

MPI_Datatype type, d[LARGE];

/* construct datatype type (not shown) */

MPI_Type_get_envelope(type, &ni, &na, &nd, &combiner);

if ((ni > LARGE) || (na > LARGE) || (nd > LARGE)) {
fprintf(stderr, "ni, na, or nd = %d %d %d returned by ", ni, na, nd);
fprintf(stderr, "MPI_Type_get_envelope is larger than LARGE = %d\n",

LARGE) ;

MPI_Abort (MPI_COMM_WORLD, 99);

};

MPI_Type_get_contents(type, ni, na, nd, i, a, d);

In the descriptions that follow, the lower case name of arguments is used.

If combiner is MPI_COMBINER_NAMED then it is erroneous to call
MPI_TYPE_GET_CONTENTS.

If combiner is MPI_COMBINER_DUP then

Constructor argument C  Fortran location
oldtype d[0] D(1)

and ni = 0, na =0, nd = 1.
If combiner is MPI_COMBINER_CONTIGUOUS then

Constructor argument C  Fortran location
count i[0] I(1)
oldtype d[0] D(1)

and ni=1,na=0,nd = 1.
If combiner is MPI_COMBINER_VECTOR then

Constructor argument C  Fortran location

count i[0] I(1)
blocklength i[1] I(2)
stride i[2] 1(3)
oldtype d[0] D(1)

Unofficial Draft for Comment Only



4.1. DERIVED DATATYPES

and ni = 3, na =0, nd = 1.
If combiner is MPI_COMBINER_HVECTOR then

Constructor argument C  Fortran location

count i[0] I(1)
blocklength i[1] I(2)
stride a[0] A1)
oldtype d[0] D(1)

and ni =2, na=1,nd = 1.
If combiner is MPI_COMBINER_INDEXED then

Constructor argument C Fortran location
count i[0] I(1)
array_of _blocklengths i[1] to i[i]0]] I(2) to I(I(1)+1)

array_of _displacements i[i[0]+1] to i[2*1[0]] I(I(1)+2) to I(2*I(1)+1)

oldtype d[0] D(1)

and ni = 2*count+1, na = 0, nd = 1.
If combiner is MPI_COMBINER_HINDEXED then

Constructor argument C Fortran location

count i[0] I(1)

array_of _blocklengths i[1] to i[i[0]]  I(2) to I(I(1)+1)
array_of_displacements a[0] to a[i[0]-1] A(1) to A(I(1))

oldtype d[0] D(1)

and ni = count+1, na = count, nd = 1.
If combiner is MPI_COMBINER_INDEXED_BLOCK then

Constructor argument C Fortran location
count i[0] I(1)
blocklength i[1] 1(2)
array_of _displacements i[2] to i[i[0]+1] I(3) to I(I(1)+2)

oldtype d[0] D(1)

and ni = count+2, na = 0, nd = 1.
If combiner is MPI_COMBINER_HINDEXED_BLOCK then

Constructor argument C Fortran location
count i[0] I(1)
blocklength i[1] 1(2)
array_of_displacements a[0] to a[i[0]-1] A(1) to A(I(1))

0
oldtype d[0] D(1)

and ni = 2, na = count, nd = 1.
If combiner is MPI_COMBINER_STRUCT then

Unofficial Draft for Comment Only

125

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

126

CHAPTER 4. DATATYPES
Constructor argument C Fortran location
count i[0] I(1)
array_of_blocklengths i[1] to i[i[0]]  I(2) to I(I(1)+1)
array_of _displacements a[0] to a[i[0]-1]  A(1) to A(I(1))
array_of _types d[0] to d[i[0]-1] D(1) to D(I(1))
and ni = count+1, na = count, nd = count.
If combiner is MPI_COMBINER_SUBARRAY then
Constructor argument C Fortran location
ndims i[0] I(1)
array_of _sizes i[1] to i[i[0]] I(2) to I(I(1)+1)
array _of _subsizes i[i[0]+1] to i[2*i[0]] I(I(1)+2) to I(2*I(1)+1)
array_of _starts i[2*1][0]+1] to 1[3*i[0]] I(2*I(1)+2) to I(3*I(1)+1)
order i[3*i[0]+1] I(3*I(1)+2]
oldtype d[0] D(1)
and ni = 3*ndims+2, na = 0, nd = 1.
If combiner is MPI_COMBINER_DARRAY then
Constructor argument C Fortran location
size i[0] I(1)
rank i[1] 1(2)
ndims i[2] I(3)
array _of _gsizes i[3] to i[i[2]42] I(4) to I(I(3)+3)
array _of _distribs i[i[2]+3] to i[2*i[2]+2] I(I(3)+4) to I(2*1(3)+3)
array_of _dargs i[2*i[2]+3] to i[3*1[2]+2] I(2*1(3)+4) to I(3*I(3)+3)
array_of _psizes i[3*1[2]+3] to i[4*i[2]+2] I(3*I(3)+4) to I(4*I(3)+3)
order i[4*i[2]+3] I(4*1(3)+4)

oldtype d[0] D(1)

and ni = 4*ndims+4, na = 0, nd = 1.

If combiner is MPI_COMBINER_F90_REAL then

Constructor argument C  Fortran location

p i[0] I(1)
r i1] 1(2)

and ni = 2, na =0, nd = 0.

If combiner is MPI_COMBINER_F90_COMPLEX then

Constructor argument C  Fortran location

p i[0] I(1)
r i[1] 1(2)

and ni = 2, na =0, nd = 0.

If combiner is MPI_COMBINER_F90_INTEGER then

Constructor argument C  Fortran location
r i[0] I(1)

Unofficial Draft for Comment Only



4.1. DERIVED DATATYPES

and ni = 1, na =0, nd = 0.
If combiner is MPI_COMBINER_RESIZED then

Constructor argument C  Fortran location

b a[0] A(1)
extent a[1] A(2)
oldtype d[0] D(1)

and ni = 0, na =2, nd = 1.

4.1.14 Examples

The following examples illustrate the use of derived datatypes.
Example 4.13 Send and receive a section of a 3D array.

REAL a(100,100,100), e(9,9,9)

INTEGER oneslice, twoslice, threeslice, myrank, ierr
INTEGER (KIND=MPI_ADDRESS_KIND) 1b, sizeofreal
INTEGER status(MPI_STATUS_SIZE)

C extract the section a(1:17:2, 3:11, 2:10)
C and store it in e(:,:,:).

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
CALL MPI_TYPE_GET_EXTENT(MPI_REAL, 1b, sizeofreal, ierr)

C create datatype for a 1D section
CALL MPI_TYPE_VECTOR(9, 1, 2, MPI_REAL, oneslice, ierr)

C create datatype for a 2D section
CALL MPI_TYPE_CREATE_HVECTOR(9, 1, 100*sizeofreal, oneslice,

twoslice, ierr)

C create datatype for the entire section

CALL MPI_TYPE_CREATE_HVECTOR(9, 1, 100%100*sizeofreal, twoslice,

threeslice, ierr)

CALL MPI_TYPE_COMMIT(threeslice, ierr)
CALL MPI_SENDRECV(a(1,3,2), 1, threeslice, myrank, 0, e, 9%9%9,

127

MPI_REAL, myrank, O, MPI_COMM_WORLD, status, ierr)

Example 4.14 Copy the (strictly) lower triangular part of a matrix.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

128

CHAPTER 4. DATATYPES

REAL a(100,100), b(100,100)
INTEGER disp(100), blocklen(100), ltype, myrank, ierr
INTEGER status(MPI_STATUS_SIZE)

copy lower triangular part of array a
onto lower triangular part of array b

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

compute start and size of each column
DO i=1, 100

disp(i) = 100%(i-1) + i

blocklen(i) = 100-i
END DO

create datatype for lower triangular part
CALL MPI_TYPE_INDEXED(100, blocklen, disp, MPI_REAL, ltype, ierr)

CALL MPI_TYPE_COMMIT(ltype, ierr)
CALL MPI_SENDRECV(a, 1, ltype, myrank, O, b, 1,
ltype, myrank, O, MPI_COMM_WORLD, status, ierr)

Example 4.15 Transpose a matrix.

REAL a(100,100), b(100,100)

INTEGER row, xpose, myrank, ierr

INTEGER (KIND=MPI_ADDRESS_KIND) 1lb, sizeofreal
INTEGER status(MPI_STATUS_SIZE)

transpose matrix a onto b

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, 1b, sizeofreal, ierr)

create datatype for one row
CALL MPI_TYPE_VECTOR(100, 1, 100, MPI_REAL, row, ierr)

create datatype for matrix in row-major order
CALL MPI_TYPE_CREATE_HVECTOR(100, 1, sizeofreal, row, xpose, ierr)

CALL MPI_TYPE_COMMIT (xpose, ierr)
send matrix in row-major order and receive in column major order

CALL MPI_SENDRECV(a, 1, xpose, myrank, O, b, 100%100,
MPI_REAL, myrank, O, MPI_COMM_WORLD, status, ierr)

Example 4.16 Another approach to the transpose problem:

Unofficial Draft for Comment Only



4.1.

DERIVED DATATYPES

REAL a(100,100), b(100,100)

INTEGER row, rowl

INTEGER (KIND=MPI_ADDRESS_KIND) disp(2), 1b, sizeofreal
INTEGER myrank, ierr

INTEGER status(MPI_STATUS_SIZE)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
transpose matrix a onto b
CALL MPI_TYPE_GET_EXTENT(MPI_REAL, 1b, sizeofreal, ierr)

create datatype for one row
CALL MPI_TYPE_VECTOR(100, 1, 100, MPI_REAL, row, ierr)

create datatype for one row, with the extent of one real number

b =0

CALL MPI_TYPE_CREATE_RESIZED(row, 1lb, sizeofreal, rowl, ierr)

CALL MPI_TYPE_COMMIT(rowl, ierr)

send 100 rows and receive in column major order
CALL MPI_SENDRECV(a, 100, rowl, myrank, O, b, 100%100,

129

MPI_REAL, myrank, O, MPI_COMM_WORLD, status, ierr)

Example 4.17 We manipulate an array of structures.

struct Partstruct

{

};

type; /* particle type */

double d[6]; /* particle coordinates */
char bl[7]; /* some additional information */

struct Partstruct particle[1000];

int

i, dest, tag;

MPI_Comm comm;

/* build datatype describing structure */

MPI_Datatype Particlestruct, Particletype;
MPI_Datatype typel[3] = {MPI_INT, MPI_DOUBLE, MPI_CHAR};

int blocklen[3] = {1, 6, 7};
MPI_Aint disp[3];
MPI_Aint base, 1b, sizeofentry;

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

130 CHAPTER 4. DATATYPES

/* compute displacements of structure components */

MPI_Get_address(particle, disp);
MPI_Get_address(particle[0].d, disp+1);
MPI_Get_address(particle[0].b, disp+2);

base = disp[0];

for (i=0; i < 3; i++) displi] = MPI_Aint_diff(disp[i], base);

MPI_Type_create_struct(3, blocklen, disp, type, &Particlestruct);

/* If compiler does padding in mysterious ways,
the following may be safer */

/* compute extent of the structure */

MPI_Get_address(particle+l, &sizeofentry);
sizeofentry = MPI_Aint_diff(sizeofentry, base);

/* build datatype describing structure */

MPI_Type_create_resized(Particlestruct, 0, sizeofentry, &Particletype);

/* 4.1:
send the entire array */

MPI_Type_commit (&Particletype);
MPI_Send(particle, 1000, Particletype, dest, tag, comm);

/x 4.2:
send only the entries of type zero particles,
preceded by the number of such entries */

MPI_Datatype Zparticles; /* datatype describing all particles
with type zero (needs to be recomputed
if types change) */

MPI_Datatype Ztype;

int zdisp[1000];

int zblock[1000], j, k;
int zzblock[2] = {1,1};
MPI_Aint zzdisp[2];

MPI_Datatype zztypel[2];

/* compute displacements of type zero particles */
3=0;

Unofficial Draft for Comment Only



4.1. DERIVED DATATYPES

for (i=0; i < 1000; i++)
if (particle[i] .type == 0)
{
zdisp[j] = i;
zblock[j] = 1;
jt+;

3

/* create datatype for type zero particles x/
MPI_Type_indexed(j, zblock, zdisp, Particletype, &Zparticles);

/* prepend particle count */

MPI_Get_address(&j, zzdisp);

MPI_Get_address(particle, zzdisp+1);

zztype[0] = MPI_INT;

zztype[1] = Zparticles;

MPI_Type_create_struct(2, zzblock, zzdisp, zztype, &Ztype);

MPI_Type_commit (&Ztype) ;
MPI_Send (MPI_BOTTOM, 1, Ztype, dest, tag, comm);

/* A probably more efficient way of defining Zparticles */

/* consecutive particles with index zero are handled as one block */
3=0;
for (i=0; i < 1000; i++)

if (particle[i].type == 0)

{
for (k=i+1; (k < 1000)&&(particlelk].type == 0); k++);
zdisp[jl = i;
zblock[j] = k-i;
jtts
i = k;
}

MPI_Type_indexed(j, zblock, zdisp, Particletype, &Zparticles);
/* 4.3:
send the first two coordinates of all entries */
MPI_Datatype Allpairs; /* datatype for all pairs of coordinates */
MPI_Type_get_extent(Particletype, &lb, &sizeofentry);
/* sizeofentry can also be computed by subtracting the address

of particle[0] from the address of particle[1] */

Unofficial Draft for Comment Only

131

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

132

CHAPTER 4. DATATYPES

MPI_Type_create_hvector (1000, 2, sizeofentry, MPI_DOUBLE, &Allpairs);
MPI_Type_commit (&Allpairs);

MPI_Send(particle[0].

d, 1, Allpairs, dest, tag, comm);

/* an alternative solution to 4.3 */

MPI_Datatype Twodouble;

MPI_Type_contiguous(2, MPI_DOUBLE, &Twodouble) ;

MPI_Datatype Onepair;

/* datatype for one pair of coordinates, with
the extent of one particle entry */

MPI_Type_create_resized(Twodouble, O, sizeofentry, &Onepair );
MPI_Type_commit (&0nepair) ;

MPI_Send(particle[0].

d, 1000, Onepair, dest, tag, comm);

Example 4.18 The same manipulations as in the previous example, but use absolute

addresses in datatypes.

struct Partstruct

{

int type;
double d[6];
char b[7];

};

struct Partstruct particle[1000];

/* build datatype describing first array entry */

MPI_Datatype Particletype;

MPI_Datatype typel3]
int block[3]
MPI_Aint disp([3];

= {MPI_INT, MPI_DOUBLE, MPI_CHAR};
= {1, 6, 7};

MPI_Get_address(particle, disp);
MPI_Get_address(particle[0].d, disp+1);
MPI_Get_address(particle[0].b, disp+2);
MPI_Type_create_struct(3, block, disp, type, &Particletype);

/* Particletype describes first array entry -- using absolute

addresses */

/%
send the

5.1:
entire array */

Unofficial Draft for Comment Only



4.1. DERIVED DATATYPES

MPI_Type_commit (&Particletype) ;
MPI_Send (MPI_BOTTOM, 1000, Particletype, dest, tag, comm);

/* 5.2:
send the entries of type zero,
preceded by the number of such entries */

MPI_Datatype Zparticles, Ztype;

int zdisp[1000];

int zblock[1000], i, j, k;
int zzblock[2] = {1,1};
MPI_Datatype zztypel2];

MPI_Aint zzdisp[2];

3=0;

for (i=0; i < 1000; i++)
if (particlel[i].type == 0)

{
for (k=i+1; (k < 1000)&&(particle[k].type == 0); k++);
zdisp[j] = 1i;
zblock([j] = k-i;
jt+s
i = k;
}

MPI_Type_indexed(j, zblock, zdisp, Particletype, &Zparticles);
/* Zparticles describe particles with type zero, using
their absolute addresses*/

/* prepend particle count */

MPI_Get_address(&j, zzdisp);

zzdisp[1] = (MPI_Aint)O0;

zztype[0] = MPI_INT;

zztypel[1l] = Zparticles;

MPI_Type_create_struct(2, zzblock, zzdisp, zztype, &Ztype);

MPI_Type_commit (&Ztype) ;
MPI_Send (MPI_BOTTOM, 1, Ztype, dest, tag, comm);

Example 4.19 Handling of unions.
union {

int ival;
float fval;

Unofficial Draft for Comment Only

133

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

134 CHAPTER 4. DATATYPES

} ul1000];
int utype;

/* All entries of u have identical type; variable
utype keeps track of their current type */

MPI_Datatype mpi_utypel2];
MPI_Aint i, extent;

/* compute an MPI datatype for each possible union type;
assume values are left-aligned in union storage. */

MPI_Get_address(u, &i);

MPI_Get_address(u+l, &extent);

extent = MPI_Aint_diff(extent, i);
MPI_Type_create_resized(MPI_INT, O, extent, &mpi_utypel[0]);
MPI_Type_create_resized (MPI_FLOAT, O, extent, &mpi_utypel1]);
for(i=0; i<2; i++) MPI_Type_commit (&mpi_utype[il);

/* actual communication */

MPI_Send(u, 1000, mpi_utypel[utypel], dest, tag, comm);

Example 4.20 This example shows how a datatype can be decoded. The routine
printdatatype prints out the elements of the datatype. Note the use of MPI_Type_free for

datatypes that are not predefined.

/%
Example of decoding a datatype.

Returns O if the datatype is predefined, 1 otherwise
*/
#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"
int printdatatype(MPI_Datatype datatype)
{
int *array_of_ints;
MPI_Aint *array_of_adds;
MPI_Datatype *array_of_dtypes;
int num_ints, num_adds, num_dtypes, combiner;
int 1i;

MPI_Type_get_envelope (datatype,

Unofficial Draft for Comment Only



4.1. DERIVED DATATYPES

&num_ints, &num_adds, &num_dtypes, &combiner);
switch (combiner) {
case MPI_COMBINER_NAMED:
printf ("Datatype is named:");
/* To print the specific type, we can match against the
predefined forms. We can NOT use a switch statement here
We could also use MPI_TYPE_GET_NAME if we prefered to use
names that the user may have changed.
*/
if (datatype == MPI_INT) printf( "MPI_INT\n" );
else if (datatype == MPI_DOUBLE) printf( "MPI_DOUBLE\n" );
else test for other types
return O;
break;
case MPI_COMBINER_STRUCT:
case MPI_COMBINER_STRUCT_INTEGER:
printf ("Datatype is struct containing");
array_of_ints (int *)malloc(num_ints * sizeof(int));
array_of_adds
(MPI_Aint *) malloc(num_adds * sizeof (MPI_Aint));
array_of_dtypes = (MPI_Datatype *)
malloc(num_dtypes * sizeof (MPI_Datatype));
MPI_Type_get_contents(datatype, num_ints, num_adds, num_dtypes,

135

array_of_ints, array_of_adds, array_of_dtypes);

printf (" %d datatypes:\n", array_of_ints[0]);
for (i=0; i<array_of_ints[0]; i++) {
printf("blocklength %d, displacement %1d, type:\n",
array_of_ints[i+1], (long)array_of_adds[i]);
if (printdatatype(array_of_dtypes[il)) {
/* Note that we free the type ONLY if it
is not predefined */
MPI_Type_free(&array_of_dtypes[i]);

}

free(array_of_ints);

free(array_of_adds) ;

free(array_of_dtypes);

break;

other combiner values ...

default:

printf ("Unrecognized combiner type\n");
}

return 1;

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

136 CHAPTER 4. DATATYPES

4.2 Pack and Unpack

Some existing communication libraries provide pack/unpack functions for sending noncon-
tiguous data. In these, the user explicitly packs data into a contiguous buffer before sending
it, and unpacks it from a contiguous buffer after receiving it. Derived datatypes, which are
described in Section 4.1, allow one, in most cases, to avoid explicit packing and unpacking.
The user specifies the layout of the data to be sent or received, and the communication
library directly accesses a noncontiguous buffer. The pack/unpack routines are provided
for compatibility with previous libraries. Also, they provide some functionality that is not
otherwise available in MPI. For instance, a message can be received in several parts, where
the receive operation done on a later part may depend on the content of a former part.
Another use is that outgoing messages may be explicitly buffered in user supplied space,
thus overriding the system buffering policy. Finally, the availability of pack and unpack
operations facilitates the development of additional communication libraries layered on top
of MPI.

MPI_PACK(inbuf, incount, datatype, outbuf, outsize, position, comm)

IN inbuf input buffer start (choice)

IN incount number of input data items (non-negative integer)
IN datatype datatype of each input data item (handle)

ouT outbuf output buffer start (choice)

IN outsize output buffer size, in bytes (non-negative integer)
INOUT position current position in buffer, in bytes (integer)

IN comm communicator for packed message (handle)

int MPI_Pack(const void* inbuf, int incount, MPI_Datatype datatype,
void *outbuf, int outsize, int *position, MPI_Comm comm)

MPI_Pack(inbuf, incount, datatype, outbuf, outsize, position, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: dinbuf
TYPE(*), DIMENSION(..) :: outbuf

INTEGER, INTENT(IN) :: incount, outsize
TYPE(MPI_ Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(INOUT) :: position
TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_PACK(INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE, POSITION, COMM, IERROR)
<type> INBUF (%), OUTBUF (%)
INTEGER INCOUNT, DATATYPE, QUTSIZE, POSITION, COMM, IERROR

Packs the message in the send buffer specified by inbuf, incount, datatype into the buffer
space specified by outbuf and outsize. The input buffer can be any communication buffer
allowed in MPI_SEND. The output buffer is a contiguous storage area containing outsize
bytes, starting at the address outbuf (length is counted in bytes, not elements, as if it were
a communication buffer for a message of type MPI_PACKED).

Unofficial Draft for Comment Only



4.2. PACK AND UNPACK 137

The input value of position is the first location in the output buffer to be used for
packing. position is incremented by the size of the packed message, and the output value
of position is the first location in the output buffer following the locations occupied by the
packed message. The comm argument is the communicator that will be subsequently used
for sending the packed message.

MPI_UNPACK(inbuf, insize, position, outbuf, outcount, datatype, comm)

IN inbuf input buffer start (choice)

IN insize size of input buffer, in bytes (non-negative integer)
INOUT  position current position in bytes (integer)

ouT outbuf output buffer start (choice)

IN outcount number of items to be unpacked (integer)

IN datatype datatype of each output data item (handle)

IN comm communicator for packed message (handle)

int MPI_Unpack(const void* inbuf, int insize, int *position, void *outbuf,
int outcount, MPI_Datatype datatype, MPI_Comm comm)

MPI_Unpack(inbuf, insize, position, outbuf, outcount, datatype, comm,

ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: dinbuf
TYPE(*), DIMENSION(..) :: outbuf
INTEGER, INTENT(IN) :: insize, outcount
INTEGER, INTENT(INOUT) :: position
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_UNPACK (INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT, DATATYPE, COMM,
IERROR)
<type> INBUF (%), OUTBUF ()
INTEGER INSIZE, POSITION, OUTCOUNT, DATATYPE, COMM, IERROR

Unpacks a message into the receive buffer specified by outbuf, outcount, datatype from
the buffer space specified by inbuf and insize. The output buffer can be any communication
buffer allowed in MPI_RECV. The input buffer is a contiguous storage area containing insize
bytes, starting at address inbuf. The input value of position is the first location in the input
buffer occupied by the packed message. position is incremented by the size of the packed
message, so that the output value of position is the first location in the input buffer after
the locations occupied by the message that was unpacked. comm is the communicator used
to receive the packed message.

Advice to users.  Note the difference between MPI_RECV and MPI_UNPACK: in
MPI_RECV, the count argument specifies the maximum number of items that can
be received. The actual number of items received is determined by the length of
the incoming message. In MPI_UNPACK, the count argument specifies the actual

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



oo

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

138 CHAPTER 4. DATATYPES

number of items that are unpacked; the “size” of the corresponding message is the
increment in position. The reason for this change is that the “incoming message size”
is not predetermined since the user decides how much to unpack; nor is it easy to
determine the “message size” from the number of items to be unpacked. In fact, in a
heterogeneous system, this number may not be determined a priori. (End of advice
to users.)

To understand the behavior of pack and unpack, it is convenient to think of the data
part of a message as being the sequence obtained by concatenating the successive values sent
in that message. The pack operation stores this sequence in the buffer space, as if sending
the message to that buffer. The unpack operation retrieves this sequence from buffer space,
as if receiving a message from that buffer. (It is helpful to think of internal Fortran files or
sscanf in C, for a similar function.)

Several messages can be successively packed into one packing unit. This is effected
by several successive related calls to MPI_PACK, where the first call provides position = 0,
and each successive call inputs the value of position that was output by the previous call,
and the same values for outbuf, outcount and comm. This packing unit now contains the
equivalent information that would have been stored in a message by one send call with a
send buffer that is the “concatenation” of the individual send buffers.

A packing unit can be sent using type MPI_PACKED. Any point to point or collective
communication function can be used to move the sequence of bytes that forms the packing
unit from one process to another. This packing unit can now be received using any receive
operation, with any datatype: the type matching rules are relaxed for messages sent with
type MPI_PACKED.

A message sent with any type (including MPI_PACKED) can be received using the type
MPI_PACKED. Such a message can then be unpacked by calls to MPI_UNPACK.

A packing unit (or a message created by a regular, “typed” send) can be unpacked into
several successive messages. This is effected by several successive related calls to
MPI_UNPACK, where the first call provides position = 0, and each successive call inputs the
value of position that was output by the previous call, and the same values for inbuf, insize
and comm.

The concatenation of two packing units is not necessarily a packing unit; nor is a
substring of a packing unit necessarily a packing unit. Thus, one cannot concatenate two
packing units and then unpack the result as one packing unit; nor can one unpack a substring
of a packing unit as a separate packing unit. Each packing unit, that was created by a related
sequence of pack calls, or by a regular send, must be unpacked as a unit, by a sequence of
related unpack calls.

Rationale. The restriction on “atomic” packing and unpacking of packing units
allows the implementation to add at the head of packing units additional information,
such as a description of the sender architecture (to be used for type conversion, in a
heterogeneous environment) (End of rationale.)

The following call allows the user to find out how much space is needed to pack a
message and, thus, manage space allocation for buffers.

Unofficial Draft for Comment Only



4.2. PACK AND UNPACK 139

MPI_PACK_SIZE(incount, datatype, comm, size)

IN incount count argument to packing call (non-negative integer)
IN datatype datatype argument to packing call (handle)

IN comm communicator argument to packing call (handle)
ouT size upper bound on size of packed message, in bytes (non-

negative integer)

int MPI_Pack_size(int incount, MPI_Datatype datatype, MPI_Comm comm,
int *size)

MPI_Pack_size(incount, datatype, comm, size, ierror)

INTEGER, INTENT(IN) :: incount
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_PACK_SIZE(INCOUNT, DATATYPE, COMM, SIZE, IERROR)
INTEGER INCOUNT, DATATYPE, COMM, SIZE, IERROR

A call to MPI_PACK_SIZE(incount, datatype, comm, size) returns in size an upper bound
on the increment in position that is effected by a call to MPI_PACK(inbuf, incount, datatype,
outbuf, outcount, position, comm). If the packed size of the datatype cannot be expressed
by the size parameter, then MPI_PACK_SIZE sets the value of size to MPI_UNDEFINED

Rationale. The call returns an upper bound, rather than an exact bound, since the
exact amount of space needed to pack the message may depend on the context (e.g.,
first message packed in a packing unit may take more space). (End of rationale.)

Example 4.21 An example using MPI_PACK.
int position, i, j, al2];

char buff [1000] ;

MPI_Comm_rank (MPI_COMM_WORLD, &myrank) ;
if (myrank == 0)

{
/* SENDER CODE */
position = O;
MPI_Pack(&i, 1, MPI_INT, buff, 1000, &position, MPI_COMM_WORLD) ;
MPI_Pack(&j, 1, MPI_INT, buff, 1000, &position, MPI_COMM_WORLD);
MPI_Send(buff, position, MPI_PACKED, 1, 0, MPI_COMM_WORLD) ;

}

else /* RECEIVER CODE */
MPI_Recv(a, 2, MPI_INT, O, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

Example 4.22 An elaborate example.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

41

42

43

44

45

46

47

48

140

int

position, 1i;

float a[1000];
char buff[1000];

MPI_Comm_rank (MPI_COMM_WORLD, &myrank);
if (myrank == 0)

CHAPTER 4. DATATYPES

MPI_Pack (MPI_BOTTOM, 1, newtype, buff, 1000, &position, MPI_COMM_WORLD) ;

{
/* SENDER CODE */
int len[2];
MPI_Aint displ[2];
MPI_Datatype typel[2], newtype;
/* build datatype for i followed by al[O]...al[i-1] */
len[0] = 1;
len[1] = i;
MPI_Get_address(&i, disp);
MPI_Get_address(a, disp+1);
type[0] = MPI_INT;
typel[1] = MPI_FLOAT;
MPI_Type_create_struct(2, len, disp, type, &newtype);
MPI_Type_commit (&newtype) ;
/* Pack i followed by al0]...a[i-1]1x*/
position = O;
/* Send */
MPI_Send(buff, position, MPI_PACKED, 1, O,
MPI_COMM_WORLD) ;
/% kokkokk
One can replace the last three lines with
MPI_Send(MPI_BOTTOM, 1, newtype, 1, O, MPI_COMM_WORLD) ;
K*kkkk *x/
b

else if (myrank == 1)

{

/* RECEIVER CODE =/

MPI_Status status;

/* Receive */

MPI_Recv(buff, 1000, MPI_PACKED, 0, O, MPI_COMM_WORLD, &status);

Unofficial Draft for Comment Only



4.2. PACK AND UNPACK

/* Unpack i */

position = O;

MPI_Unpack(buff, 1000, &position, &i, 1, MPI_INT, MPI_COMM_WORLD) ;

/* Unpack a[0]...a[i-1] */

MPI_Unpack(buff, 1000, &position, a, i, MPI_FLOAT, MPI_COMM_WORLD) ;

Example 4.23 Each process sends a count, followed by count characters to the root; the

root concatenates all characters into one string.

int count, gsize, counts[64], totalcount, k1, k2, k,
displs[64], position, concat_pos;
char chr[100], *1lbuf, *rbuf, *cbuf;

MPI_Comm_size(comm, &gsize);
MPI_Comm_rank(comm, &myrank) ;

/* allocate local pack buffer */
MPI_Pack_size(1, MPI_INT, comm, &ki);
MPI_Pack_size(count, MPI_CHAR, comm, &k2);
k = k1+k2;
l1buf = (char *)malloc(k);

/* pack count, followed by count characters */
position = O;
MPI_Pack(&count, 1, MPI_INT, lbuf, k, &position, comm);
MPI_Pack(chr, count, MPI_CHAR, 1lbuf, k, &position, comm);

if (myrank != root) {
/* gather at root sizes of all packed messages */
MPI_Gather (&position, 1, MPI_INT, NULL, O,
MPI_DATATYPE_NULL, root, comm);

/* gather at root packed messages */
MPI_Gatherv(lbuf, position, MPI_PACKED, NULL,
NULL, NULL, MPI_DATATYPE_NULL, root, comm);

} else { /* root code */
/* gather sizes of all packed messages */
MPI_Gather (&position, 1, MPI_INT, counts, 1,
MPI_INT, root, comm);

/* gather all packed messages */
displs[0] = 0;

for (i=1; i < gsize; i++)

Unofficial Draft for Comment Only

141

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

142 CHAPTER 4. DATATYPES

displs[i] = displs[i-1] + counts[i-1];
totalcount = displs[gsize-1] + counts[gsize-1];
rbuf = (char *)malloc(totalcount);
cbuf = (char *)malloc(totalcount);
MPI_Gatherv(lbuf, position, MPI_PACKED, rbuf,
counts, displs, MPI_PACKED, root, comm);

/* unpack all messages and concatenate strings */
concat_pos = 0;
for (i=0; i < gsize; i++) {
position = 0;
MPI_Unpack(rbuf+displs[i], totalcount-displs[i],
&position, &count, 1, MPI_INT, comm);
MPI_Unpack(rbuf+displs[i], totalcount-displs[i],
&position, cbuf+concat_pos, count, MPI_CHAR, comm);
concat_pos += count;
+
cbuf [concat_pos] = ’\0’;

4.3 Canonical MPI_PACK and MPI_UNPACK

These functions read/write data to/from the buffer in the “external32” data format specified
in Section 13.5.2, and calculate the size needed for packing. Their first arguments specify
the data format, for future extensibility, but currently the only valid value of the datarep
argument is “external32.”

Advice to users. These functions could be used, for example, to send typed data in a
portable format from one MPI implementation to another. (End of advice to users.)

The buffer will contain exactly the packed data, without headers. MPI_BYTE should
be used to send and receive data that is packed using MPI_PACK_EXTERNAL.

Rationale. MPI_PACK_EXTERNAL specifies that there is no header on the message
and further specifies the exact format of the data. Since MPI_PACK may (and is
allowed to) use a header, the datatype MPI_PACKED cannot be used for data packed
with MPI_PACK_EXTERNAL. (End of rationale.)

Unofficial Draft for Comment Only



4.3.

CANONICAL MPI_PACK AND MPI_UNPACK

MPI_PACK_EXTERNAL (datarep, inbuf, incount, datatype, outbuf, outsize, position)

IN datarep data representation (string)

IN inbuf input buffer start (choice)

IN incount number of input data items (integer)

IN datatype datatype of each input data item (handle)
ouT outbuf output buffer start (choice)

IN outsize output buffer size, in bytes (integer)
INOUT position current position in buffer, in bytes (integer)

143

int MPI_Pack_external(const char datarep[], const void *inbuf, int incount,

MPI_Pack_external(datarep, inbuf, incount, datatype, outbuf, outsize,

MPI_PACK_EXTERNAL (DATAREP, INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE,

MPI_Datatype datatype, void *outbuf, MPI_Aint outsize,
MPI_Aint *position)

position, ierror)

CHARACTER (LEN=*), INTENT(IN) :: datarep

TYPE(*), DIMENSION(..), INTENT(IN) :: dinbuf

TYPE(*), DIMENSION(..) :: outbuf

INTEGER, INTENT(IN) :: incount

TYPE(MPI_ Datatype), INTENT(IN) :: datatype

INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(IN) :: outsize
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(INQUT) :: position
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

POSITION, IERROR)
INTEGER INCOUNT, DATATYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) OQUTSIZE, POSITION
CHARACTER* (*) DATAREP
<type> INBUF (%), OUTBUF (%)

MPI_UNPACK_EXTERNAL(datarep, inbuf, insize, position, outbuf, outsize, position)

IN datarep data representation (string)
IN inbuf input buffer start (choice)
IN insize input buffer size, in bytes (integer)
INOUT position current position in buffer, in bytes (integer)
ouT outbuf output buffer start (choice)
IN outcount number of output data items (integer)
IN datatype datatype of output data item (handle)
int MPI_Unpack_external(const char datarep[], const void *inbuf,

MPI_Aint insize, MPI_Aint *position, void *outbuf,
int outcount, MPI_Datatype datatype)

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48



20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

144 CHAPTER 4. DATATYPES

MPI_Unpack_external (datarep, inbuf, insize, position, outbuf, outcount,
datatype, ierror)

CHARACTER (LEN=*), INTENT(IN) :: datarep

TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf

TYPE(*), DIMENSION(..) :: outbuf

INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(IN) :: insize
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(INOUT) :: position
INTEGER, INTENT(IN) :: outcount

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_UNPACK_EXTERNAL (DATAREP, INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT,
DATATYPE, IERROR)
INTEGER OUTCOUNT, DATATYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) INSIZE, POSITION
CHARACTER* (*) DATAREP
<type> INBUF (%), OUTBUF (%)

MPI_PACK_EXTERNAL_SIZE(datarep, incount, datatype, size)

IN datarep data representation (string)

IN incount number of input data items (integer)

IN datatype datatype of each input data item (handle)
ouT size output buffer size, in bytes (integer)

int MPI_Pack_external_size(const char datarep[], int incount,
MPI_Datatype datatype, MPI_Aint *size)

MPI_Pack_external_size(datarep, incount, datatype, size, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: incount

CHARACTER (LEN=%), INTENT(IN) :: datarep

INTEGER (KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(QUT) :: ierror

MPI_PACK_EXTERNAL_SIZE(DATAREP, INCOUNT, DATATYPE, SIZE, IERROR)
INTEGER INCOUNT, DATATYPE, IERROR
INTEGER (KIND=MPI_ADDRESS_KIND) SIZE
CHARACTER* (x) DATAREP

Unofficial Draft for Comment Only



Chapter 5

Collective Communication

5.1 Introduction and Overview

Collective communication is defined as communication that involves a group or groups of
processes. The functions of this type provided by MPI are the following:

e MPI_BARRIER, MPI_IBARRIER: Barrier synchronization across all members of a group
(Section 5.3 and Section 5.12.1).

e MPI_BCAST, MPI_IBCAST: Broadcast from one member to all members of a group
(Section 5.4 and Section 5.12.2). This is shown as “broadcast” in Figure 5.1.

e MPI_GATHER, MPI_IGATHER, MPI_GATHERV, MPI_IGATHERV: Gather data from
all members of a group to one member (Section 5.5 and Section 5.12.3). This is shown
as “gather” in Figure 5.1.

e MPI_SCATTER, MPI_ISCATTER, MPI_SCATTERV, MPI_ISCATTERV: Scatter data
from one member to all members of a group (Section 5.6 and Section 5.12.4). This is
shown as “scatter” in Figure 5.1.

e MPI_ALLGATHER, MPI_IALLGATHER, MPI_ALLGATHERV, MPI_IALLGATHERV: A
variation on Gather where all members of a group receive the result (Section 5.7 and
Section 5.12.5). This is shown as “allgather” in Figure 5.1.

e MPI_ALLTOALL, MPI_IALLTOALL, MPI_ALLTOALLV, MPI_IALLTOALLV,
MPI_ALLTOALLW, MPI_IALLTOALLW: Scatter/Gather data from all members to all
members of a group (also called complete exchange) (Section 5.8 and Section 5.12.6).
This is shown as “complete exchange” in Figure 5.1.

e MPI_ALLREDUCE, MPI_IALLREDUCE, MPI_REDUCE, MPI_IREDUCE: Global reduc-
tion operations such as sum, max, min, or user-defined functions, where the result is
returned to all members of a group (Section 5.9.6 and Section 5.12.8) and a variation
where the result is returned to only one member (Section 5.9 and Section 5.12.7).

e MPI_REDUCE_SCATTER_BLOCK, MPI_IREDUCE_SCATTER_BLOCK,
MPI_REDUCE_SCATTER, MPI_IREDUCE_SCATTER: A combined reduction and scat-
ter operation (Section 5.10, Section 5.12.9, and Section 5.12.10).

Unofficial Draft for Comment Only 145

© o0 -~ =] ot - w [ =

> - > - Lo - = - w w w w w w w w w w [ [ %) [ [ [} (%) [} N N [ - - - = — = - = - =
~ =] w - w M) - o © oo ~ [=2] ot = w S - o © oo ~ =] (o)) - w ) - o © oo ~ (=2} ot - w [ - o

'
oo



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

146 CHAPTER 5. COLLECTIVE COMMUNICATION

e MPI_SCAN, MPI_ISCAN, MPI_EXSCAN, MPI_IEXSCAN: Scan across all members of
a group (also called prefix) (Section 5.11, Section 5.11.2, Section 5.12.11, and Sec-
tion 5.12.12).

One of the key arguments in a call to a collective routine is a communicator that
defines the group or groups of participating processes and provides a context for the oper-
ation. This is discussed further in Section 5.2. The syntax and semantics of the collective
operations are defined to be consistent with the syntax and semantics of the point-to-point
operations. Thus, general datatypes are allowed and must match between sending and re-
ceiving processes as specified in Chapter 4. Several collective routines such as broadcast
and gather have a single originating or receiving process. Such a process is called the root.
Some arguments in the collective functions are specified as “significant only at root,” and
are ignored for all participants except the root. The reader is referred to Chapter 4 for
information concerning communication buffers, general datatypes and type matching rules,
and to Chapter 6 for information on how to define groups and create communicators.

The type-matching conditions for the collective operations are more strict than the cor-
responding conditions between sender and receiver in point-to-point. Namely, for collective
operations, the amount of data sent must exactly match the amount of data specified by
the receiver. Different type maps (the layout in memory, see Section 4.1) between sender
and receiver are still allowed.

Collective operations can (but are not required to) complete as soon as the caller’s
participation in the collective communication is finished. A blocking operation is complete
as soon as the call returns. A nonblocking (immediate) call requires a separate completion
call (cf. Section 3.7). The completion of a collective operation indicates that the caller is free
to modify locations in the communication buffer. It does not indicate that other processes
in the group have completed or even started the operation (unless otherwise implied by the
description of the operation). Thus, a collective communication operation may, or may not,
have the effect of synchronizing all calling processes. This statement excludes, of course,
the barrier operation.

Collective communication calls may use the same communicators as point-to-point
communication; MPI guarantees that messages generated on behalf of collective communi-
cation calls will not be confused with messages generated by point-to-point communication.
The collective operations do not have a message tag argument. A more detailed discussion
of correct use of collective routines is found in Section 5.14.

Rationale. The equal-data restriction (on type matching) was made so as to avoid
the complexity of providing a facility analogous to the status argument of MPI_RECV
for discovering the amount of data sent. Some of the collective routines would require
an array of status values.

The statements about synchronization are made so as to allow a variety of implemen-
tations of the collective functions.

(End of rationale.)

Advice to users. It is dangerous to rely on synchronization side-effects of the col-
lective operations for program correctness. For example, even though a particular
implementation may provide a broadcast routine with a side-effect of synchroniza-
tion, the standard does not require this, and a program that relies on this will not be
portable.

Unofficial Draft for Comment Only



5.1. INTRODUCTION AND OVERVIEW

data —

(7]

21 %0

(7p]

(O]

(]

(@]

S

o
Aol ALl As| Ag| Ayl Ag
Ao
Bo
Co
Do
Eo
Fo
Aol ALl As| Agl Ayl Ag
Bo|B1|B,|Bs| Byl Bs
Col €1l Cy|CalCulCs
Do[D;|D,|Ds| D, Ds
Eol E1| Eo| E3| E4| Es
Fol F1| Fol F5| Fal Fs

Figure 5.1:

broadcast

—>

scatter

—>

gather

<

allgather

—>

complete
exchange

—>

Ag
Ao
Ag
Ag
Ao
Ag
Ag
Aq
Ay
As
Ag
Ag
Ag €o| Po| Eo
Ag €o| Po| Eo
Ag Co| Po| Eo
Ag €o| Po| Eo
Ag €o| Po| Eo
Ag Co| Po| Eo
Ag €o| Po| Eo
Aq €1]P1| By
Ay €| Da| B>
As C3| D3| B3
Ag C4|P4| B4
Ag C5|Ds| Es

147

Collective move functions illustrated for a group of six processes. In each case,
each row of boxes represents data locations in one process. Thus, in the broadcast, initially
just the first process contains the data Ag, but after the broadcast all processes contain it.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

148 CHAPTER 5. COLLECTIVE COMMUNICATION

On the other hand, a correct, portable program must allow for the fact that a collective
call may be synchronizing. Though one cannot rely on any synchronization side-effect,
one must program so as to allow it. These issues are discussed further in Section 5.14.
(End of advice to users.)

Advice to implementors. ~ While vendors may write optimized collective routines
matched to their architectures, a complete library of the collective communication
routines can be written entirely using the MPI point-to-point communication func-
tions and a few auxiliary functions. If implementing on top of point-to-point, a hidden,
special communicator might be created for the collective operation so as to avoid inter-
ference with any on-going point-to-point communication at the time of the collective
call. This is discussed further in Section 5.14. (End of advice to implementors.)

Many of the descriptions of the collective routines provide illustrations in terms of
blocking MPI point-to-point routines. These are intended solely to indicate what data is
sent or received by what process. Many of these examples are not correct MPI programs;
for purposes of simplicity, they often assume infinite buffering.

5.2 Communicator Argument

The key concept of the collective functions is to have a group or groups of participating
processes. The routines do not have group identifiers as explicit arguments. Instead, there
is a communicator argument. Groups and communicators are discussed in full detail in
Chapter 6. For the purposes of this chapter, it is sufficient to know that there are two types
of communicators: intra-communicators and inter-communicators. An intracommunicator
can be thought of as an identifier for a single group of processes linked with a context. An
intercommunicator identifies two distinct groups of processes linked with a context.

5.2.1 Specifics for Intracommunicator Collective Operations

All processes in the group identified by the intracommunicator must call the collective
routine.

In many cases, collective communication can occur “in place” for intracommunicators,
with the output buffer being identical to the input buffer. This is specified by providing
a special argument value, MPI_IN_PLACE, instead of the send buffer or the receive buffer
argument, depending on the operation performed.

Rationale. The “in place” operations are provided to reduce unnecessary memory
motion by both the MPI implementation and by the user. Note that while the simple
check of testing whether the send and receive buffers have the same address will
work for some cases (e.g., MPI_ALLREDUCE), they are inadequate in others (e.g.,
MPI_GATHER, with root not equal to zero). Further, Fortran explicitly prohibits
aliasing of arguments; the approach of using a special value to denote “in place”
operation eliminates that difficulty. (End of rationale.)

Advice to users. By allowing the “in place” option, the receive buffer in many of the
collective calls becomes a send-and-receive buffer. For this reason, a Fortran binding
that includes INTENT must mark these as INOUT, not OUT.

Note that MPI_IN_PLACE is a special kind of value; it has the same restrictions on its
use that MPI_BOTTOM has. (End of advice to users.)

Unofficial Draft for Comment Only



5.2. COMMUNICATOR ARGUMENT 149

5.2.2  Applying Collective Operations to Intercommunicators

To understand how collective operations apply to intercommunicators, we can view most
MPI intracommunicator collective operations as fitting one of the following categories (see,
for instance, [56]):

All-To-All All processes contribute to the result. All processes receive the result.
e MPI_ALLGATHER, MPI_IALLGATHER, MPI_ALLGATHERV,

MPI_IALLGATHERV

e MPI_ALLTOALL, MPI_IALLTOALL, MPI_ALLTOALLV, MPI_IALLTOALLV,
MPI_ALLTOALLW, MPI_IALLTOALLW

e MPI_ALLREDUCE, MPI_IALLREDUCE, MPI_REDUCE_SCATTER_BLOCK,
MPI_IREDUCE_SCATTER_BLOCK, MPI_REDUCE_SCATTER,
MPI_IREDUCE_SCATTER

e MPI_BARRIER, MPI_IBARRIER
All-To-One All processes contribute to the result. One process receives the result.

e MPI_GATHER, MPI_IGATHER, MPI_GATHERV, MPI_IGATHERV
e MPI_REDUCE, MPI_IREDUCE

One-To-All One process contributes to the result. All processes receive the result.

e MPI_BCAST, MPI_IBCAST
e MPI_SCATTER, MPI_ISCATTER, MPI_SCATTERV, MPI_ISCATTERV

Other Collective operations that do not fit into one of the above categories.
e MPI_SCAN, MPI_ISCAN, MPI_EXSCAN, MPI_IEXSCAN

The data movement patterns of MPI_SCAN, MPI_ISCAN, MPI_EXSCAN, and
MPI_IEXSCAN do not fit this taxonomy.

The application of collective communication to intercommunicators is best described
in terms of two groups. For example, an all-to-all MPI_ALLGATHER operation can be
described as collecting data from all members of one group with the result appearing in all
members of the other group (see Figure 5.2). As another example, a one-to-all
MPI_BCAST operation sends data from one member of one group to all members of the
other group. Collective computation operations such as MPI_REDUCE_SCATTER have a
similar interpretation (see Figure 5.3). For intracommunicators, these two groups are the
same. For intercommunicators, these two groups are distinct. For the all-to-all operations,
each such operation is described in two phases, so that it has a symmetric, full-duplex
behavior.

The following collective operations also apply to intercommunicators:

e MPI_BARRIER, MPI_IBARRIER

e MPI_BCAST, MPI_IBCAST

e MPI_GATHER, MPI_IGATHER, MPI_GATHERV, MPI_IGATHERYV,

e MPI_SCATTER, MPI_ISCATTER, MPI_SCATTERV, MPI_ISCATTERV,

Unofficial Draft for Comment Only

© o] -~ =] t - w [ =

W - [t - Lo - = - w w w w w w w w w w [ [ [ [ N [ %) [} N [V} [ - - - = —- = —- = - =
~ =] (o)) - w M) - o © oo ~ [=2] ot = w S} - o © oo ~ =] (o)) - w ) - [=] © oo ~ (=2} ot - w [} - o

'
oo



IS

© oo ~ =] ot

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

150 CHAPTER 5. COLLECTIVE COMMUNICATION

e MPI_ALLGATHER, MPI_IALLGATHER, MPI_ALLGATHERV, MPI_IALLGATHERYV,

e MPI_ALLTOALL, MPI_IALLTOALL, MPI_ALLTOALLV, MPI_IALLTOALLYV,
MPI_ALLTOALLW, MPI_IALLTOALLW,

e MPI_ALLREDUCE, MPI_IALLREDUCE, MPI_REDUCE, MPI_IREDUCE,

e MPI_REDUCE_SCATTER_BLOCK, MPI_IREDUCE_SCATTER_BLOCK,
MPI_REDUCE_SCATTER, MPI_IREDUCE_SCATTER.

4 M\

Lcomm Rcomm

Lcomm Rcomm

AN J/

Figure 5.2: Intercommunicator allgather. The focus of data to one process is represented,
not mandated by the semantics. The two phases do allgathers in both directions.

5.2.3 Specifics for Intercommunicator Collective Operations

All processes in both groups identified by the intercommunicator must call the collective
routine.

Note that the “in place” option for intracommunicators does not apply to intercom-
municators since in the intercommunicator case there is no communication from a process
to itself.

For intercommunicator collective communication, if the operation is in the All-To-One
or One-To-All categories, then the transfer is unidirectional. The direction of the transfer is
indicated by a special value of the root argument. In this case, for the group containing the
root process, all processes in the group must call the routine using a special argument for
the root. For this, the root process uses the special root value MPI_ROOT; all other processes
in the same group as the root use MPI_PROC_NULL. All processes in the other group (the
group that is the remote group relative to the root process) must call the collective routine
and provide the rank of the root. If the operation is in the All-To-All category, then the
transfer is bidirectional.

Rationale. Operations in the All-To-One and One-To-All categories are unidirectional
by nature, and there is a clear way of specifying direction. Operations in the All-To-All

Unofficial Draft for Comment Only



5.3. BARRIER SYNCHRONIZATION 151

4 N\

Lcomm Rcomm

Lcomm Rcomm

- J

Figure 5.3: Intercommunicator reduce-scatter. The focus of data to one process is rep-
resented, not mandated by the semantics. The two phases do reduce-scatters in both
directions.

category will often occur as part of an exchange, where it makes sense to communicate
in both directions at once. (End of rationale.)

5.3 Barrier Synchronization

MPI_BARRIER(comm)

IN comm communicator (handle)

int MPI_Barrier (MPI_Comm comm)

MPI_Barrier(comm, ierror)
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_BARRIER(COMM, IERROR)
INTEGER COMM, IERROR

If comm is an intracommunicator, MPI_BARRIER blocks the caller until all group mem-
bers have called it. The call returns at any process only after all group members have entered
the call.

If comm is an intercommunicator, MPI_BARRIER involves two groups. The call returns
at processes in one group (group A) of the intercommunicator only after all members of the
other group (group B) have entered the call (and vice versa). A process may return from
the call before all processes in its own group have entered the call.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



-

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

152 CHAPTER 5. COLLECTIVE COMMUNICATION

5.4 Broadcast

MPI_BCAST (buffer, count, datatype, root, comm)

INOUT  buffer starting address of buffer (choice)

IN count number of entries in buffer (non-negative integer)
IN datatype data type of buffer (handle)

IN root rank of broadcast root (integer)

IN comm communicator (handle)

int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype, int root,
MPI_Comm comm)

MPI_Bcast (buffer, count, datatype, root, comm, ierror)
TYPE(*), DIMENSION(..) :: buffer
INTEGER, INTENT(IN) :: count, root
TYPE(MPI_ Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_BCAST (BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)
<type> BUFFER(*)
INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

If comm is an intracommunicator, MPI_BCAST broadcasts a message from the process
with rank root to all processes of the group, itself included. It is called by all members of
the group using the same arguments for comm and root. On return, the content of root’s
buffer is copied to all other processes.

General, derived datatypes are allowed for datatype. The type signature of count,
datatype on any process must be equal to the type signature of count, datatype at the root.
This implies that the amount of data sent must be equal to the amount received, pairwise
between each process and the root. MPI_BCAST and all other data-movement collective
routines make this restriction. Distinct type maps between sender and receiver are still
allowed.

The “in place” option is not meaningful here.

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Data is broadcast from the root to all processes
in group B. The buffer arguments of the processes in group B must be consistent with the
buffer argument of the root.

5.4.1 Example using MPI_BCAST

The examples in this section use intracommunicators.

Unofficial Draft for Comment Only



5.5. GATHER 153

Example 5.1
Broadcast 100 ints from process 0 to every process in the group.

MPI_Comm comm;
int array[100];
int root=0;

MPI_Bcast(array, 100, MPI_INT, root, comm);

As in many of our example code fragments, we assume that some of the variables (such as
comnm in the above) have been assigned appropriate values.

5.5 Gather

MPI_GATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-
ger)

IN sendtype data type of send buffer elements (handle)

ouT recvbuf address of receive buffer (choice, significant only at
root)

IN recvcount number of elements for any single receive (non-negative

integer, significant only at root)

IN recvtype data type of recv buffer elements (significant only at
root) (handle)

IN root rank of receiving process (integer)

IN comm communicator (handle)

int MPI_Gather(const void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm)

MPI_Gather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
root, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount, root
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GATHER (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
ROOT, COMM, IERROR)
<type> SENDBUF (*), RECVBUF (%)

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

154 CHAPTER 5. COLLECTIVE COMMUNICATION

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

If comm is an intracommunicator, each process (root process included) sends the con-
tents of its send buffer to the root process. The root process receives the messages and stores
them in rank order. The outcome is as if each of the n processes in the group (including
the root process) had executed a call to

MPI_Send(sendbuf, sendcount, sendtype, root , ...),
and the root had executed n calls to
MPI_Recv(recvbuf+i- recvcount- extent(recvtype), recvcount, recvtype, i,...),

where extent(recvtype) is the type extent obtained from a call to MPI_Type_get_extent.

An alternative description is that the n messages sent by the processes in the group
are concatenated in rank order, and the resulting message is received by the root as if by a
call to MPI_RECV(recvbuf, recvcount-n, recvtype, ...).

The receive buffer is ignored for all non-root processes.

General, derived datatypes are allowed for both sendtype and recvtype. The type signa-
ture of sendcount, sendtype on each process must be equal to the type signature of recvcount,
recvtype at the root. This implies that the amount of data sent must be equal to the amount
of data received, pairwise between each process and the root. Distinct type maps between
sender and receiver are still allowed.

All arguments to the function are significant on process root, while on other processes,
only arguments sendbuf, sendcount, sendtype, root, and comm are significant. The arguments
root and comm must have identical values on all processes.

The specification of counts and types should not cause any location on the root to be
written more than once. Such a call is erroneous.

Note that the recvcount argument at the root indicates the number of items it receives
from each process, not the total number of items it receives.

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE as
the value of sendbuf at the root. In such a case, sendcount and sendtype are ignored, and
the contribution of the root to the gathered vector is assumed to be already in the correct
place in the receive buffer.

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Data is gathered from all processes in group B to
the root. The send buffer arguments of the processes in group B must be consistent with
the receive buffer argument of the root.

Unofficial Draft for Comment Only



5.5. GATHER 155

MPI_GATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root,

comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-
ger)

IN sendtype data type of send buffer elements (handle)

ouT recvbuf address of receive buffer (choice, significant only at
root)

IN recvcounts non-negative integer array (of length group size) con-
taining the number of elements that are received from
each process (significant only at root)

IN displs integer array (of length group size). Entry i specifies
the displacement relative to recvbuf at which to place
the incoming data from process i (significant only at
root)

IN recvtype data type of recv buffer elements (significant only at
root) (handle)

IN root rank of receiving process (integer)

IN comm communicator (handle)

int MPI_Gatherv(const void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, const int recvcounts[], const int displsl[],
MPI_Datatype recvtype, int root, MPI_Comm comm)

MPI_Gatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
recvtype, root, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcounts(*), displs(*), root
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GATHERV (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
RECVTYPE, ROOT, COMM, IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(x), DISPLS(x), RECVTYPE, ROOT,
COMM, IERROR

MPI_GATHERYV extends the functionality of MPI_GATHER by allowing a varying count
of data from each process, since recvcounts is now an array. It also allows more flexibility
as to where the data is placed on the root, by providing the new argument, displs.

If comm is an intracommunicator, the outcome is as if each process, including the root
process, sends a message to the root,

MPI_Send(sendbuf, sendcount, sendtype, root, ...),

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

156 CHAPTER 5. COLLECTIVE COMMUNICATION

and the root executes n receives,
MPI_Recv(recvbuf+displs[j]- extent(recvtype), recvcounts[j], recvtype, i, ...).

The data received from process j is placed into recvbuf of the root process beginning at
offset displs[j] elements (in terms of the recvtype).

The receive buffer is ignored for all non-root processes.

The type signature implied by sendcount, sendtype on process i must be equal to the
type signature implied by recvcounts|i], recvtype at the root. This implies that the amount
of data sent must be equal to the amount of data received, pairwise between each process
and the root. Distinct type maps between sender and receiver are still allowed, as illustrated
in Example 5.6.

All arguments to the function are significant on process root, while on other processes,
only arguments sendbuf, sendcount, sendtype, root, and comm are significant. The arguments
root and comm must have identical values on all processes.

The specification of counts, types, and displacements should not cause any location on
the root to be written more than once. Such a call is erroneous.

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE as
the value of sendbuf at the root. In such a case, sendcount and sendtype are ignored, and
the contribution of the root to the gathered vector is assumed to be already in the correct
place in the receive buffer.

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Data is gathered from all processes in group B to
the root. The send buffer arguments of the processes in group B must be consistent with
the receive buffer argument of the root.

5.5.1 Examples using MPI_GATHER, MPI_GATHERV
The examples in this section use intracommunicators.

Example 5.2
Gather 100 ints from every process in group to root. See Figure 5.4.

MPI_Comm comm;
int gsize,sendarray[100];
int root, *rbuf;

MPI_Comm_size(comm, &gsize);

rbuf = (int *)malloc(gsize*100*sizeof (int));
MPI_Gather(sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);

Example 5.3
Previous example modified — only the root allocates memory for the receive buffer.

Unofficial Draft for Comment Only



5.5. GATHER 157

|

100 100

100 100 100
i i
100

at root

rbuf

Figure 5.4: The root process gathers 100 ints from each process in the group.

MPI_Comm comm;
int gsize,sendarray[100];
int root, myrank, *rbuf;

MPI_Comm_rank(comm, &myrank) ;
if (myrank == root) {
MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*100*sizeof (int));
}
MPI_Gather(sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);

Example 5.4

Do the same as the previous example, but use a derived datatype. Note that the type

cannot be the entire set of gsize*100 ints since type matching is defined pairwise between
the root and each process in the gather.

MPI_Comm comm;

int gsize,sendarray[100];
int root, *rbuf;
MPI_Datatype rtype;

MPI_Comm_size(comm, &gsize);

MPI_Type_contiguous(100, MPI_INT, &rtype);

MPI_Type_commit (&rtype) ;

rbuf = (int *)malloc(gsize*100*sizeof (int));

MPI_Gather (sendarray, 100, MPI_INT, rbuf, 1, rtype, root, comm);

Example 5.5

Now have each process send 100 ints to root, but place each set (of 100) stride ints

apart at receiving end. Use MPI_GATHERV and the displs argument to achieve this effect.
Assume stride > 100. See Figure 5.5.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

37

38

39

40

41

42

43

44

45

46

47

48

CHAPTER 5. COLLECTIVE COMMUNICATION

100 100 100
- - all processes
100 100 100
stride
rbuf

Figure 5.5: The root process gathers 100 ints from each process in the group, each set is
placed stride ints apart.

MPI_Comm comm;

int gsize,sendarray[100];
int root, *rbuf, stride;
int *displs,i,*rcounts;

MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*stridexsizeof (int));
displs = (int *)malloc(gsizexsizeof(int));
rcounts = (int *)malloc(gsizex*sizeof(int));
for (i=0; i<gsize; ++i) {
displs[i] = i*stride;
rcounts[i] = 100;
}
MPI_Gatherv(sendarray, 100, MPI_INT, rbuf, rcounts, displs, MPI_INT,
root, comm);

Note that the program is erroneous if stride < 100.

Example 5.6

Same as Example 5.5 on the receiving side, but send the 100 ints from the Oth column

of a 100x150 int array, in C. See Figure 5.6.

MPI_Comm comm;

int gsize,sendarray[100] [150];
int root, *rbuf, stride;
MPI_Datatype stype;

int *displs,i,*rcounts;

MPI_Comm_size(comm, &gsize);

rbuf = (int *)malloc(gsize*stride*sizeof (int));
displs = (int *)malloc(gsizexsizeof(int));
rcounts = (int *)malloc(gsize*sizeof (int));

for (i=0; i<gsize; ++i) {

Unofficial Draft for Comment Only



5.5. GATHER 159

150 150 150

100 I 100 I 100 I all processes

100 100 100

at root
- =
stride

rbuf

Figure 5.6: The root process gathers column 0 of a 100x150 C array, and each set is placed
stride ints apart.

displs[i] = i*stride;
rcounts[i] = 100;
}
/* Create datatype for 1 column of array
*/
MPI_Type_vector(100, 1, 150, MPI_INT, &stype);
MPI_Type_commit (&stype) ;
MPI_Gatherv(sendarray, 1, stype, rbuf, rcounts, displs, MPI_INT,
root, comm);

Example 5.7
Process i sends (100-i) ints from the i-th column of a 100 x 150 int array, in C.
It is received into a buffer with stride, as in the previous two examples. See Figure 5.7.

MPI_Comm comm;

int gsize,sendarray[100] [150],*sptr;
int root, *rbuf, stride, myrank;
MPI_Datatype stype;

int *displs,i,*rcounts;

MPI_Comm_size(comm, &gsize);
MPI_Comm_rank(comm, &myrank) ;
rbuf = (int *)malloc(gsize*stridexsizeof (int));
displs = (int *)malloc(gsizexsizeof(int));
rcounts = (int *)malloc(gsizex*sizeof(int));
for (i=0; i<gsize; ++i) {
displs[i] = i*stride;
rcounts[i] = 100-i; /* note change from previous example */
}
/* Create datatype for the column we are sending
*/
MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &stype);
MPI_Type_commit (&stype) ;

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

160 CHAPTER 5. COLLECTIVE COMMUNICATION

150 150

150

100 I all processes

at root
- =
stride

rbuf

Figure 5.7: The root process gathers 100-i ints from column i of a 100x150 C array, and

each set is placed stride ints apart.

/* sptr is the address of start of "myrank" column

*/
sptr = &sendarray[0] [myrank];

MPI_Gatherv(sptr, 1, stype, rbuf, rcounts, displs, MPI_INT,

root, comm);

Note that a different amount of data is received from each process.

Example 5.8
Same as Example 5.7, but done in a differ
datatype that causes the correct striding at the

ent way at the sending end. We create a
sending end so that we read a column of a

C array. A similar thing was done in Example 4.16, Section 4.1.14.

MPI_Comm comm;

int gsize, sendarray[100][150], *sptr;

int root, *rbuf, stride, myrank;
MPI_Datatype stype;
int *displs, i, *rcounts;

MPI_Comm_size(comm, &gsize);
MPI_Comm_rank(comm, &myrank) ;

rbuf = (int *)malloc(gsize*stride*sizeof (int));
displs = (int *)malloc(gsizexsizeof(int));

rcounts = (int *)malloc(gsize*sizeof
for (i=0; i<gsize; ++i) {
displs[i] = i*stride;
rcounts[i] = 100-i;
}
/* Create datatype for one int, with
*/

MPI_Type_create_resized( MPI_INT, O,
MPI_Type_commit (&stype) ;

sptr = &sendarray[0] [myrank] ;
MPI_Gatherv(sptr, 100-myrank, stype,

(int));

extent of entire row

150*sizeof (int), &stype);

rbuf, rcounts, displs, MPI_INT,

Unofficial Draft for Comment Only



5.5. GATHER 161

root, comm);

Example 5.9

Same as Example 5.7 at sending side, but at receiving side we make the stride between

received blocks vary from block to block. See Figure 5.8.

MPI_Comm comm;

int gsize,sendarray[100] [150],*sptr;

int root, *rbuf, *stride, myrank, bufsize;
MPI_Datatype stype;

int *displs,i,*rcounts,offset;

MPI_Comm_size(comm, &gsize);
MPI_Comm_rank(comm, &myrank) ;

stride = (int *)malloc(gsize*sizeof (int));

/* stride[i] for i = 0 to gsize-1 is set somehow

*/

/* set up displs and rcounts vectors first
*/
displs = (int *)malloc(gsizexsizeof(int));
rcounts = (int *)malloc(gsizex*sizeof(int));
offset = 0;
for (i=0; i<gsize; ++i) {
displs[i] = offset;
offset += strideli]l;
rcounts[i] = 100-i;
}
/* the required buffer size for rbuf is now easily obtained
*/
bufsize = displs[gsize-1]+rcounts[gsize-1];
rbuf = (int *)malloc(bufsize*sizeof (int));
/* Create datatype for the column we are sending
*/
MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &stype);
MPI_Type_commit (&stype) ;
sptr = &sendarray[0] [myrank] ;
MPI_Gatherv(sptr, 1, stype, rbuf, rcounts, displs, MPI_INT,
root, comm);

Example 5.10

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

162 CHAPTER 5. COLLECTIVE COMMUNICATION

ﬁF
F

all processes

T
-

/.
.

%mde[l

rbuf

Figure 5.8: The root process gathers 100-i ints from column i of a 100x150 C array, and
each set is placed stride[i] ints apart (a varying stride).

Process i sends num ints from the i-th column of a 100 x 150 int array, in C. The
complicating factor is that the various values of num are not known to root, so a separate
gather must first be run to find these out. The data is placed contiguously at the receiving
end.

MPI_Comm comm;

int gsize,sendarray[100] [150],*sptr;
int root, *rbuf, myrank;
MPI_Datatype stype;

int *displs,i,*rcounts,num;

MPI_Comm_size(comm, &gsize);
MPI_Comm_rank(comm, &myrank) ;

/* First, gather nums to root
*/
rcounts = (int *)malloc(gsizex*sizeof(int));
MPI_Gather (&num, 1, MPI_INT, rcounts, 1, MPI_INT, root, comm);
/* root now has correct rcounts, using these we set displs[] so
* that data is placed contiguously (or concatenated) at receive end
*/
displs = (int *)malloc(gsize*sizeof(int));
displs[0] = 0;
for (i=1; i<gsize; ++i) {
displs[i] = displs[i-1]+rcounts[i-1];
b
/* And, create receive buffer
*/
rbuf = (int *)malloc(gsizex*(displs[gsize-1]+rcounts[gsize-1])
*sizeof (int));
/* Create datatype for one int, with extent of entire row
*/
MPI_Type_create_resized( MPI_INT, O, 150%*sizeof(int), &stype);

Unofficial Draft for Comment Only



5.6. SCATTER 163

MPI_Type_commit (&stype) ;
sptr = &sendarray[0] [myrank] ;
MPI_Gatherv(sptr, num, stype, rbuf, rcounts, displs, MPI_INT,

5.6 Scatter

root, comm);

MPI_SCATTER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

IN sendbuf address of send buffer (choice, significant only at root)

IN sendcount number of elements sent to each process (non-negative

integer, significant only at root)

IN sendtype data type of send buffer elements (significant only at
root) (handle)

ouT recvbuf address of receive buffer (choice)

IN recvcount number of elements in receive buffer (non-negative in-
teger)

IN recvtype data type of receive buffer elements (handle)

IN root rank of sending process (integer)

IN comm communicator (handle)

int MPI_Scatter(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm)

MPI_Scatter(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,

root, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount, root
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SCATTER (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF (*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

MPI_SCATTER is the inverse operation to MPI_GATHER.
If comm is an intracommunicator, the outcome is as if the root executed n send oper-

ations,

MPI_Send(sendbuf+i- sendcount- extent(sendtype), sendcount, sendtype, i,...),

and each process executed a receive,

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

164 CHAPTER 5. COLLECTIVE COMMUNICATION

MPI_Recv(recvbuf, recvcount, recvtype, i,...).

An alternative description is that the root sends a message with MPI_Send(sendbuf,
sendcount-n, sendtype, ...). This message is split into n equal segments, the i-th segment is
sent to the i-th process in the group, and each process receives this message as above.

The send buffer is ignored for all non-root processes.

The type signature associated with sendcount, sendtype at the root must be equal to
the type signature associated with recvcount, recvtype at all processes (however, the type
maps may be different). This implies that the amount of data sent must be equal to the
amount of data received, pairwise between each process and the root. Distinct type maps
between sender and receiver are still allowed.

All arguments to the function are significant on process root, while on other processes,
only arguments recvbuf, recvcount, recvtype, root, and comm are significant. The arguments
root and comm must have identical values on all processes.

The specification of counts and types should not cause any location on the root to be
read more than once.

Rationale. Though not needed, the last restriction is imposed so as to achieve
symmetry with MPI_GATHER, where the corresponding restriction (a multiple-write
restriction) is necessary. (End of rationale.)

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE as
the value of recvbuf at the root. In such a case, recvcount and recvtype are ignored, and
root “sends” no data to itself. The scattered vector is still assumed to contain n segments,
where n is the group size; the root-th segment, which root should “send to itself,” is not
moved.

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Data is scattered from the root to all processes in
group B. The receive buffer arguments of the processes in group B must be consistent with
the send buffer argument of the root.

Unofficial Draft for Comment Only



5.6. SCATTER 165

MPI_SCATTERV(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype, root,

comm)

IN sendbuf address of send buffer (choice, significant only at root)

IN sendcounts non-negative integer array (of length group size) spec-
ifying the number of elements to send to each rank

IN displs integer array (of length group size). Entry i specifies
the displacement (relative to sendbuf) from which to
take the outgoing data to process i

IN sendtype data type of send buffer elements (handle)

ouT recvbuf address of receive buffer (choice)

IN recvcount number of elements in receive buffer (non-negative in-
teger)

IN recvtype data type of receive buffer elements (handle)

IN root rank of sending process (integer)

IN comm communicator (handle)

int MPI_Scatt

MPI_Scatterv(

TYPE (%),
TYPE (%),
INTEGER,
TYPE (MPI_
TYPE (MPI_
INTEGER,

MPI_SCATTERV(

<type> SE
INTEGER S

MPI_SCAT
MPI_SCAT

erv(const void* sendbuf, const int sendcounts[],
const int displs[], MPI_Datatype sendtype, void* recvbuf,
int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount,
recvtype, root, comm, ierror)

DIMENSIONC(..), INTENT(IN) :: sendbuf

DIMENSION(..) :: recvbuf

INTENT(IN) :: sendcounts(*), displs(*), recvcount, root
Datatype), INTENT(IN) :: sendtype, recvtype

Comm) , INTENT(IN) :: comm

OPTIONAL, INTENT(QOUT) :: ierror

SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,
RECVTYPE, ROOT, COMM, IERROR)

NDBUF (%), RECVBUF ()

ENDCOUNTS (*) , DISPLS(x), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,
COMM, IERROR

TERV is the inverse operation to MPI_GATHERV.
TERV extends the functionality of MPI_SCATTER by allowing a varying

count of data to be sent to each process, since sendcounts is now an array. It also allows

more flexibility

as to where the data is taken from on the root, by providing an additional

argument, displs.

If comm is
ations,

an intracommunicator, the outcome is as if the root executed n send oper-

MPI_Send(sendbuf+displs|i]- extent(sendtype), sendcounts][i], sendtype, i,...)

and each process executed a receive,

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

166 CHAPTER 5. COLLECTIVE COMMUNICATION

MPI_Recv(recvbuf, recvcount, recvtype, i,...).

The send buffer is ignored for all non-root processes.

The type signature implied by sendcount[i], sendtype at the root must be equal to the
type signature implied by recvcount, recvtype at process i (however, the type maps may be
different). This implies that the amount of data sent must be equal to the amount of data
received, pairwise between each process and the root. Distinct type maps between sender
and receiver are still allowed.

All arguments to the function are significant on process root, while on other processes,
only arguments recvbuf, recvcount, recvtype, root, and comm are significant. The arguments
root and comm must have identical values on all processes.

The specification of counts, types, and displacements should not cause any location on
the root to be read more than once.

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE as
the value of recvbuf at the root. In such a case, recvcount and recvtype are ignored, and
root “sends” no data to itself. The scattered vector is still assumed to contain n segments,
where n is the group size; the root-th segment, which root should “send to itself,” is not
moved.

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Data is scattered from the root to all processes in
group B. The receive buffer arguments of the processes in group B must be consistent with
the send buffer argument of the root.

5.6.1 Examples using MPI_SCATTER, MPI_SCATTERV

The examples in this section use intracommunicators.

Example 5.11
The reverse of Example 5.2. Scatter sets of 100 ints from the root to each process in
the group. See Figure 5.9.

MPI_Comm comm;
int gsize,*sendbuf;
int root, rbuf[100];

MPI_Comm_size(comm, &gsize);
sendbuf = (int *)malloc(gsize*100*sizeof (int));

MPI_Scatter(sendbuf, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);

Example 5.12
The reverse of Example 5.5. The root process scatters sets of 100 ints to the other

processes, but the sets of 100 are stride ints apart in the sending buffer. Requires use of
MPI_SCATTERV. Assume stride > 100. See Figure 5.10.

Unofficial Draft for Comment Only



5.6. SCATTER 167

i i

at root

sendbuf

Figure 5.9: The root process scatters sets of 100 ints to each process in the group.

100 100 100
"N
100 \100 1 ZO
stride
sendbuf

Figure 5.10: The root process scatters sets of 100 ints, moving by stride ints from send
to send in the scatter.

MPI_Comm comm;
int gsize,*sendbuf;
int root, rbuf[100], i, *displs, *scounts;

MPI_Comm_size(comm, &gsize);
sendbuf = (int *)malloc(gsize*stridex*sizeof (int));

displs = (int *)malloc(gsize*sizeof(int));
scounts = (int *)malloc(gsize*sizeof (int));
for (i=0; i<gsize; ++i) {
displs[i] = i*stride;
scounts[i] = 100;
}
MPI_Scatterv(sendbuf, scounts, displs, MPI_INT, rbuf, 100, MPI_INT,
root, comm);

Example 5.13

The reverse of Example 5.9. We have a varying stride between blocks at sending (root)
side, at the receiving side we receive into the i-th column of a 100x150 C array. See
Figure 5.11.

MPI_Comm comm;
int gsize,recvarray[100] [150],*rptr;

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

168

CHAPTER 5. COLLECTIVE COMMUNICATION

150 150

150
100 I 100 I 100 I all processes

—

sendbuf

Figure 5.11: The root scatters blocks of 100-i ints into column i of a 100x 150 C array.
At the sending side, the blocks are stride[i] ints apart.

int root, *sendbuf, myrank, *stride;
MPI_Datatype rtype;
int i, *displs, *scounts, offset;

MPI_Comm_size(comm, &gsize);
MPI_Comm_rank(comm, &myrank) ;

stride = (int *)malloc(gsize*sizeof (int));

/* stride[i] for i = 0 to gsize-1 is set somehow
* sendbuf comes from elsewhere

*/

displs = (int *)malloc(gsize*sizeof(int));
scounts = (int *)malloc(gsizexsizeof (int));
offset = 0;
for (i=0; i<gsize; ++i) {
displs[i] = offset;
offset += stridelil];
scounts[i] = 100 - 1i;
}
/* Create datatype for the column we are receiving
*/
MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &rtype);
MPI_Type_commit (&rtype) ;
rptr = &recvarray[0] [myrank] ;
MPI_Scatterv(sendbuf, scounts, displs, MPI_INT, rptr, 1, rtype,
root, comm);

Unofficial Draft for Comment Only



5.7. GATHER-TO-ALL 169

5.7 Gather-to-all

MPI_ALLGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-
ger)

IN sendtype data type of send buffer elements (handle)

ouT recvbuf address of receive buffer (choice)

IN recvcount number of elements received from any process (non-

negative integer)
IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

int MPI_Allgather(const void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm)

MPI_Allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ALLGATHER (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
COMM, IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVIYPE, COMM, IERROR

MPI_ALLGATHER can be thought of as MPI_GATHER, but where all processes receive
the result, instead of just the root. The block of data sent from the j-th process is received
by every process and placed in the j-th block of the buffer recvbuf.

The type signature associated with sendcount, sendtype, at a process must be equal to
the type signature associated with recvcount, recvtype at any other process.

If comm is an intracommunicator, the outcome of a call to MPI_ALLGATHER(...) is as
if all processes executed n calls to

MPI_Gather (sendbuf,sendcount,sendtype,recvbuf,recvcount,
recvtype,root,comm)

forroot = 0 , ..., n-1. The rules for correct usage of MPI_ALLGATHER are easily found
from the corresponding rules for MPI_GATHER

The “in place” option for intracommunicators is specified by passing the value
MPI_IN_PLACE to the argument sendbuf at all processes. sendcount and sendtype are ignored.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

18

20

21

23

24

25

26

27

28

29

30

31

32

33

34

35

37

38

39

40

41

43

44

45

46

47

48

170

CHAPTER 5. COLLECTIVE COMMUNICATION

Then the input data of each process is assumed to be in the area where that process would
receive its own contribution to the receive buffer.

If comm is an intercommunicator, then each process of one group (group A) contributes

sendcount data items; these data are concatenated and the result is stored at each process
in the other group (group B). Conversely the concatenation of the contributions of the
processes in group B is stored at each process in group A. The send buffer arguments in
group A must be consistent with the receive buffer arguments in group B, and vice versa.

Advice to users.

The communication pattern of MPI_ALLGATHER executed on an

intercommunication domain need not be symmetric. The number of items sent by
processes in group A (as specified by the arguments sendcount, sendtype in group A
and the arguments recvcount, recvtype in group B), need not equal the number of
items sent by processes in group B (as specified by the arguments sendcount, sendtype
in group B and the arguments recvcount, recvtype in group A). In particular, one can
move data in only one direction by specifying sendcount = 0 for the communication
in the reverse direction. (End of advice to users.)

MPI_ALLGATHERV((sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, comm)

IN sendbuf
IN sendcount
IN sendtype
ouT recvbuf

IN recvcounts
IN displs

IN recvtype
IN comm

starting address of send buffer (choice)

number of elements in send buffer (non-negative inte-
ger)

data type of send buffer elements (handle)

address of receive buffer (choice)

non-negative integer array (of length group size) con-
taining the number of elements that are received from
each process

integer array (of length group size). Entry i specifies
the displacement (relative to recvbuf) at which to place
the incoming data from process i

data type of receive buffer elements (handle)

communicator (handle)

int MPI_Allgatherv(const void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, const int recvcounts[],
const int displs[], MPI_Datatype recvtype, MPI_Comm comm)

MPI_Allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,

recvtype, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSIONC..) recvbuf

INTEGER, INTENT(IN)
TYPE(MPI_Datatype), INTENT(IN)
TYPE(MPI_Comm), INTENT(IN)

sendcount, recvcounts(*), displs(*)

sendtype, recvtype
comm

Unofficial Draft for Comment Only



5.7. GATHER-TO-ALL 171

INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

MPI_ALLGATHERV (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
RECVTYPE, COMM, IERROR)
<type> SENDBUF (x), RECVBUF (%)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(x), RECVTYPE, COMM,
IERROR

MPI_ALLGATHERYV can be thought of as MPI_GATHERYV, but where all processes re-
ceive the result, instead of just the root. The block of data sent from the j-th process is
received by every process and placed in the j-th block of the buffer recvbuf. These blocks
need not all be the same size.

The type signature associated with sendcount, sendtype, at process j must be equal to
the type signature associated with recvcountslj], recvtype at any other process.

If comm is an intracommunicator, the outcome is as if all processes executed calls to

MPI_Gatherv(sendbuf,sendcount,sendtype,recvbuf,recvcounts,displs,
recvtype,root,comm) ,

for root = 0 , ..., n-1. The rules for correct usage of MPI_ALLGATHERYV are easily
found from the corresponding rules for MPI_GATHERV.

The “in place” option for intracommunicators is specified by passing the value
MPI_IN_PLACE to the argument sendbuf at all processes. In such a case, sendcount and
sendtype are ignored, and the input data of each process is assumed to be in the area where
that process would receive its own contribution to the receive buffer.

If comm is an intercommunicator, then each process of one group (group A) contributes
sendcount data items; these data are concatenated and the result is stored at each process
in the other group (group B). Conversely the concatenation of the contributions of the
processes in group B is stored at each process in group A. The send buffer arguments in
group A must be consistent with the receive buffer arguments in group B, and vice versa.

5.7.1 Example using MPI_ALLGATHER

The example in this section uses intracommunicators.

Example 5.14
The all-gather version of Example 5.2. Using MPI_ALLGATHER, we will gather 100
ints from every process in the group to every process.

MPI_Comm comm;

int gsize,sendarray[100];

int *rbuf;

MPI_Comm_size(comm, &gsize);

rbuf = (int *)malloc(gsize*100*sizeof (int));

MPI_Allgather(sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, comm);

After the call, every process has the group-wide concatenation of the sets of data.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

172 CHAPTER 5. COLLECTIVE COMMUNICATION

5.8 All-to-All Scatter/Gather

MPI_ALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each process (non-negative
integer)

IN sendtype data type of send buffer elements (handle)

ouT recvbuf address of receive buffer (choice)

IN recvcount number of elements received from any process (non-

negative integer)
IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

int MPI_Alltoall(const void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

MPI_Alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ALLTOALL (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
COMM, IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI_ALLTOALL is an extension of MPI_ALLGATHER to the case where each process
sends distinct data to each of the receivers. The j-th block sent from process i is received
by process j and is placed in the i-th block of recvbuf

The type signature associated with sendcount, sendtype, at a process must be equal to
the type signature associated with recvcount, recvtype at any other process. This implies
that the amount of data sent must be equal to the amount of data received, pairwise between
every pair of processes. As usual, however, the type maps may be different.

If comm is an intracommunicator, the outcome is as if each process executed a send to
each process (itself included) with a call to,

MPI_Send(sendbuf+i- sendcount- extent(sendtype),sendcount,sendtype,i, ...),
and a receive from every other process with a call to,

MPI_Recv(recvbuf+i- recvcount- extent(recvtype),recvcount,recvtype,i,...).

Unofficial Draft for Comment Only



5.8. ALL-TO-ALL SCATTER/GATHER 173

All arguments on all processes are significant. The argument comm must have identical
values on all processes.

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE to
the argument sendbuf at all processes. In such a case, sendcount and sendtype are ignored.
The data to be sent is taken from the recvbuf and replaced by the received data. Data sent
and received must have the same type map as specified by recvcount and recvtype.

Rationale.  For large MPI_ALLTOALL instances, allocating both send and receive
buffers may consume too much memory. The “in place” option effectively halves the
application memory consumption and is useful in situations where the data to be sent
will not be used by the sending process after the MPI_ALLTOALL exchange (e.g., in
parallel Fast Fourier Transforms). (End of rationale.)

Advice to implementors.  Users may opt to use the “in place” option in order to
conserve memory. Quality MPI implementations should thus strive to minimize system
buffering. (End of advice to implementors.)

If comm is an intercommunicator, then the outcome is as if each process in group A
sends a message to each process in group B, and vice versa. The j-th send buffer of process
i in group A should be consistent with the i-th receive buffer of process j in group B, and
vice versa.

Advice to users. When a complete exchange is executed on an intercommunication
domain, then the number of data items sent from processes in group A to processes
in group B need not equal the number of items sent in the reverse direction. In
particular, one can have unidirectional communication by specifying sendcount = 0 in
the reverse direction. (End of advice to users.)

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

174

CHAPTER 5. COLLECTIVE COMMUNICATION

MPI_ALLTOALLV(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts, rdispls,

recvtype, comm)
sendbuf starting address of send buffer (choice)

sendcounts non-negative integer array (of length group size) spec-
ifying the number of elements to send to each rank

sdispls integer array (of length group size). Entry j specifies
the displacement (relative to sendbuf) from which to
take the outgoing data destined for process j

sendtype data type of send buffer elements (handle)
recvbuf address of receive buffer (choice)
recvcounts non-negative integer array (of length group size) spec-

ifying the number of elements that can be received
from each rank

rdispls integer array (of length group size). Entry i specifies
the displacement (relative to recvbuf) at which to place
the incoming data from process i

recvtype data type of receive buffer elements (handle)

comm communicator (handle)

int MPI_Alltoallv(const void* sendbuf, const int sendcounts[],

const int sdispls[], MPI_Datatype sendtype, void* recvbuf,
const int recvcounts[], const int rdisplsl[],
MPI_Datatype recvtype, MPI_Comm comm)

MPI_Alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts,

rdispls, recvtype, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcounts(*), sdispls(*), recvcounts(x),
rdispls (*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS,

RDISPLS, RECVTYPE, COMM, IERROR)

<type> SENDBUF (*), RECVBUF (*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),

RECVTYPE, COMM, IERROR

MPI_ALLTOALLV adds flexibility to MPI_ALLTOALL in that the location of data for

the send is specified by sdispls and the location of the placement of the data on the receive
side is specified by rdispls.

If comm is an intracommunicator, then the j-th block sent from process i is received by

process j and is placed in the i-th block of recvbuf. These blocks need not all have the same
size.

Unofficial Draft for Comment Only



5.8. ALL-TO-ALL SCATTER/GATHER 175

The type signature associated with sendcounts[j], sendtype at process i must be equal
to the type signature associated with recvcounts]i], recvtype at process j. This implies that
the amount of data sent must be equal to the amount of data received, pairwise between
every pair of processes. Distinct type maps between sender and receiver are still allowed.

The outcome is as if each process sent a message to every other process with,

MPI_Send(sendbuf+sdispls[i]- extent(sendtype),sendcounts]i],sendtype,i,...),
and received a message from every other process with a call to
MPI_Recv(recvbuf+rdispls[i]- extent(recvtype),recvcounts|i],recvtype,i,...).

All arguments on all processes are significant. The argument comm must have identical
values on all processes.

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE to
the argument sendbuf at all processes. In such a case, sendcounts, sdispls and sendtype are
ignored. The data to be sent is taken from the recvbuf and replaced by the received data.
Data sent and received must have the same type map as specified by the recvcounts array
and the recvtype, and is taken from the locations of the receive buffer specified by rdispls.

Advice to users. Specifying the “in place” option (which must be given on all
processes) implies that the same amount and type of data is sent and received between
any two processes in the group of the communicator. Different pairs of processes can
exchange different amounts of data. Users must ensure that recvcounts[j] and recvtype
on process i match recvcounts[i] and recvtype on process j. This symmetric exchange
can be useful in applications where the data to be sent will not be used by the sending
process after the MPI_ALLTOALLV exchange. (End of advice to users.)

If comm is an intercommunicator, then the outcome is as if each process in group A
sends a message to each process in group B, and vice versa. The j-th send buffer of process
i in group A should be consistent with the i-th receive buffer of process j in group B, and
vice versa.

Rationale. The definitions of MPI_ALLTOALL and MPI_ALLTOALLV give as much
flexibility as one would achieve by specifying n independent, point-to-point communi-
cations, with two exceptions: all messages use the same datatype, and messages are
scattered from (or gathered to) sequential storage. (End of rationale.)

Advice to implementors.  Although the discussion of collective communication in
terms of point-to-point operation implies that each message is transferred directly
from sender to receiver, implementations may use a tree communication pattern.
Messages can be forwarded by intermediate nodes where they are split (for scatter) or
concatenated (for gather), if this is more efficient. (End of advice to implementors.)

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

176

CHAPTER 5. COLLECTIVE COMMUNICATION

MPI_ALLTOALLW(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts, rdispls,

recvtypes, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcounts non-negative integer array (of length group size) spec-
ifying the number of elements to send to each rank

IN sdispls integer array (of length group size). Entry j specifies
the displacement in bytes (relative to sendbuf) from
which to take the outgoing data destined for process j
(array of integers)

IN sendtypes array of datatypes (of length group size). Entry j spec-
ifies the type of data to send to process j (array of
handles)

ouT recvbuf address of receive buffer (choice)

IN recvcounts non-negative integer array (of length group size) spec-
ifying the number of elements that can be received
from each rank

IN rdispls integer array (of length group size). Entry i specifies
the displacement in bytes (relative to recvbuf) at which
to place the incoming data from process i (array of
integers)

IN recvtypes array of datatypes (of length group size). Entry i spec-
ifies the type of data received from process i (array of
handles)

IN comm communicator (handle)

int MPI_Alltoallw(const void* sendbuf, const int sendcounts[],

MPI_

MPI_

const int sdispls[], const MPI_Datatype sendtypesl[],
void* recvbuf, const int recvcounts[], const int rdisplsl[],
const MPI_Datatype recvtypes[], MPI_Comm comm)

Alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts,
rdispls, recvtypes, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcounts(*), sdispls(*), recvcounts(x),
rdispls(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtypes(*)

TYPE(MPI_Datatype), INTENT(IN) :: recvtypes(*)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

ALLTOALLW (SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF, RECVCOUNTS,
RDISPLS, RECVTYPES, COMM, IERROR)

<type> SENDBUF (x), RECVBUF (%)

INTEGER SENDCOUNTS (%), SDISPLS(%*), SENDTYPES(*), RECVCOUNTS(x),
RDISPLS(*), RECVTYPES(*), COMM, IERROR

Unofficial Draft for Comment Only



5.9. GLOBAL REDUCTION OPERATIONS 177

MPI_ALLTOALLW is the most general form of complete exchange. Like
MPI_TYPE_CREATE_STRUCT, the most general type constructor, MPI_ALLTOALLW al-
lows separate specification of count, displacement and datatype. In addition, to allow max-
imum flexibility, the displacement of blocks within the send and receive buffers is specified
in bytes.

If comm is an intracommunicator, then the j-th block sent from process i is received by
process j and is placed in the i-th block of recvbuf. These blocks need not all have the same
size.

The type signature associated with sendcounts[j], sendtypes[j] at process i must be equal
to the type signature associated with recvcounts|i], recvtypes|i] at process j. This implies that
the amount of data sent must be equal to the amount of data received, pairwise between
every pair of processes. Distinct type maps between sender and receiver are still allowed.

The outcome is as if each process sent a message to every other process with

MPI_Send(sendbuf+sdispls[i],sendcounts|i],sendtypes]i] ,i,...),
and received a message from every other process with a call to
MPI_Recv(recvbuf+rdispls]i],recvcounts[i] ,recvtypesi] ,i,...).

All arguments on all processes are significant. The argument comm must describe the
same communicator on all processes.

Like for MPI_ALLTOALLV, the “in place” option for intracommunicators is specified by
passing MPI_IN_PLACE to the argument sendbuf at all processes. In such a case, sendcounts,
sdispls and sendtypes are ignored. The data to be sent is taken from the recvbuf and replaced
by the received data. Data sent and received must have the same type map as specified
by the recvcounts and recvtypes arrays, and is taken from the locations of the receive buffer
specified by rdispls.

If comm is an intercommunicator, then the outcome is as if each process in group A
sends a message to each process in group B, and vice versa. The j-th send buffer of process
i in group A should be consistent with the i-th receive buffer of process j in group B, and
vice versa.

Rationale.  The MPI_ALLTOALLW function generalizes several MPI functions by
carefully selecting the input arguments. For example, by making all but one process
have sendcounts[i] = 0, this achieves an MPI_SCATTERW function. (End of rationale.)

5.9 Global Reduction Operations

The functions in this section perform a global reduce operation (for example sum, maximum,
and logical and) across all members of a group. The reduction operation can be either one of
a predefined list of operations, or a user-defined operation. The global reduction functions
come in several flavors: a reduce that returns the result of the reduction to one member of a
group, an all-reduce that returns this result to all members of a group, and two scan (parallel
prefix) operations. In addition, a reduce-scatter operation combines the functionality of a
reduce and of a scatter operation.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

178 CHAPTER 5. COLLECTIVE COMMUNICATION

5.9.1 Reduce

MPI_REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm)

IN sendbuf address of send buffer (choice)

ouT recvbuf address of receive buffer (choice, significant only at
root)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype data type of elements of send buffer (handle)

IN op reduce operation (handle)

IN root rank of root process (integer)

IN comm communicator (handle)

int MPI_Reduce(const void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

MPI_Reduce(sendbuf, recvbuf, count, datatype, op, root, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: count, root

TYPE(MPI_ Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_REDUCE (SENDBUF, RECVBUF, COUNT, DATATYPE, 0P, ROOT, COMM, IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER COUNT, DATATYPE, 0P, ROOT, COMM, IERROR

If comm is an intracommunicator, MPI_REDUCE combines the elements provided in the
input buffer of each process in the group, using the operation op, and returns the combined
value in the output buffer of the process with rank root. The input buffer is defined by
the arguments sendbuf, count and datatype; the output buffer is defined by the arguments
recvbuf, count and datatype; both have the same number of elements, with the same type.
The routine is called by all group members using the same arguments for count, datatype, op,
root and comm. Thus, all processes provide input buffers of the same length, with elements
of the same type as the output buffer at the root. Each process can provide one element, or a
sequence of elements, in which case the combine operation is executed element-wise on each
entry of the sequence. For example, if the operation is MPI_MAX and the send buffer contains
two elements that are floating point numbers (count = 2 and datatype = MPI_FLOAT), then
recvbuf(1) = global max(sendbuf(1)) and recvbuf(2) = global max(sendbuf(2)).

Section 5.9.2, lists the set of predefined operations provided by MPI. That section also
enumerates the datatypes to which each operation can be applied.

In addition, users may define their own operations that can be overloaded to operate
on several datatypes, either basic or derived. This is further explained in Section 5.9.5.

Unofficial Draft for Comment Only



5.9. GLOBAL REDUCTION OPERATIONS 179

The operation op is always assumed to be associative. All predefined operations are also
assumed to be commutative. Users may define operations that are assumed to be associative,
but not commutative. The “canonical” evaluation order of a reduction is determined by the
ranks of the processes in the group. However, the implementation can take advantage of
associativity, or associativity and commutativity in order to change the order of evaluation.
This may change the result of the reduction for operations that are not strictly associative
and commutative, such as floating point addition.

Advice to implementors. It is strongly recommended that MPI_REDUCE be im-
plemented so that the same result be obtained whenever the function is applied on
the same arguments, appearing in the same order. Note that this may prevent op-
timizations that take advantage of the physical location of ranks. (End of advice to
implementors.)

Advice to users. Some applications may not be able to ignore the non-associative na-
ture of floating-point operations or may use user-defined operations (see Section 5.9.5)
that require a special reduction order and cannot be treated as associative. Such
applications should enforce the order of evaluation explicitly. For example, in the
case of operations that require a strict left-to-right (or right-to-left) evaluation or-
der, this could be done by gathering all operands at a single process (e.g., with
MPI_GATHER), applying the reduction operation in the desired order (e.g., with
MPI_REDUCE_LOCAL), and if needed, broadcast or scatter the result to the other
processes (e.g., with MPI_BCAST). (End of advice to users.)

The datatype argument of MPI_REDUCE must be compatible with op. Predefined op-
erators work only with the MPI types listed in Section 5.9.2 and Section 5.9.4. Furthermore,
the datatype and op given for predefined operators must be the same on all processes.

Note that it is possible for users to supply different user-defined operations to
MPI_REDUCE in each process. MPI does not define which operations are used on which
operands in this case. User-defined operators may operate on general, derived datatypes.
In this case, each argument that the reduce operation is applied to is one element described
by such a datatype, which may contain several basic values. This is further explained in
Section 5.9.5.

Advice to users.  Users should make no assumptions about how MPI_REDUCE is
implemented. It is safest to ensure that the same function is passed to MPI_REDUCE
by each process. (End of advice to users.)

Overlapping datatypes are permitted in “send” buffers. Overlapping datatypes in “re-
ceive” buffers are erroneous and may give unpredictable results.

The “in place” option for intracommunicators is specified by passing the value
MPI_IN_PLACE to the argument sendbuf at the root. In such a case, the input data is taken
at the root from the receive buffer, where it will be replaced by the output data.

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Only send buffer arguments are significant in group
B and only receive buffer arguments are significant at the root.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



© oo ~ =] ot E w [ =

> B~ [ =~ =~ o - [ w w w w w w w w w w [ [ M [ N ) N N [V [ = = [ = = = = = [ =
~ =] (o)) - w N - o © oo ~ (=] ot [ w N - o © oo ~ (=] o - w %) - (=] © oo ~ (=2} ot [ w N - o

'S
oo

180

5.9.2 Predefined Reduction Operations

CHAPTER 5. COLLECTIVE COMMUNICATION

The following predefined operations are supplied for MPI_REDUCE and related functions
MPI_ALLREDUCE, MPI_REDUCE_SCATTER_BLOCK, MPI_REDUCE_SCATTER,
MPI_SCAN, MPI_EXSCAN, all nonblocking variants of those (see Section 5.12), and
MPI_REDUCE_LOCAL. These operations are invoked by placing the following in op.

Name

MPI_MAX
MPI_MIN
MPI_SUM
MPI_PROD
MPI_LAND
MPI_BAND
MPI_LOR
MPI_BOR
MPI_LXOR
MPI_BXOR
MPI_MAXLOC
MPI_MINLOC

Meaning

maximuim

minimum

sum

product

logical and

bit-wise and

logical or

bit-wise or

logical exclusive or (xor)
bit-wise exclusive or (xor)
max value and location
min value and location

The two operations MPI_MINLOC and MPI_MAXLOC are discussed separately in Sec-
tion 5.9.4. For the other predefined operations, we enumerate below the allowed combi-
nations of op and datatype arguments. First, define groups of MPI basic datatypes in the

following way.

C integer:

Fortran integer:

Floating point:

MPI_INT, MPI_LONG, MPI_SHORT,
MPI_UNSIGNED_SHORT, MPI_UNSIGNED,
MPI_UNSIGNED_LONG,
MPI_LONG_LONG_INT,
MPI_LONG_LONG (as synonym),
MPI_UNSIGNED_LONG_LONG,
MPI_SIGNED_CHAR,
MPI_UNSIGNED_CHAR,

MPI_INT8_T, MPI_INT16_T,
MPI_INT32_T, MPI_INT64_T,
MPI_UINT8_T, MPI_UINT16_T,
MPI_UINT32_T, and MPI_UINT64_T
MPI_INTEGER

and handles returned from
MPI_TYPE_CREATE_F90_INTEGER
and, if available, MPI_INTEGER1,
MPI_INTEGER2, MPI_INTEGER4,
MPI_INTEGERS, and MPI_INTEGER16
MPI_FLOAT, MPI_DOUBLE, MPI_REAL,
MPI_DOUBLE_PRECISION,
MPI_LONG_DOUBLE,

and handles returned from

Unofficial Draft for Comment Only



5.9. GLOBAL REDUCTION OPERATIONS 181

Logical:

Complex:

Byte:
Multi-language types:

MPI_TYPE_CREATE_F90_REAL

and, if available, MPI_REAL2,

MPI_REAL4, MPI_REALS8, and MPI_REAL16
MPI_LOGICAL, MPI_C_BOOL,

and MPI_CXX_BOOL

MPI_COMPLEX, MPI_C_COMPLEX,
MPI_C_FLOAT_COMPLEX (as synonym),
MPI_C_DOUBLE_COMPLEX,
MPI_C_LONG_DOUBLE_COMPLEX,
MPI_CXX_FLOAT_COMPLEX,
MPI_CXX_DOUBLE_COMPLEX,
MPI_CXX_LONG_DOUBLE_COMPLEX,

and handles returned from
MPI_TYPE_CREATE_F90_COMPLEX

and, if available, MPI_DOUBLE_COMPLEX,
MPI_COMPLEX4, MPI_COMPLEXS,
MPI_COMPLEX16, and MPI_COMPLEX32
MPI_BYTE

MPI_AINT, MPI_OFFSET, and MPI_COUNT

Now, the valid datatypes for each operation are specified below.

Op
MPI_MAX, MPI_MIN
MPI_SUM, MPI_PROD

MPI_LAND, MPI_LOR, MPI_LXOR
MPI_BAND, MPI_BOR, MPI_BXOR

Allowed Types

C integer, Fortran integer, Floating point,
Multi-language types

C integer, Fortran integer, Floating point, Complex,
Multi-language types

C integer, Logical

C integer, Fortran integer, Byte, Multi-language types

These operations together with all listed datatypes are valid in all supported program-
ming languages, see also Reduce Operations on page 688 in Section 18.2.6.
The following examples use intracommunicators.

Example 5.15

A routine that computes the dot product of two vectors that are distributed across a
group of processes and returns the answer at node zero.

Unofficial Draft for Comment Only

© oo -~ =] t - w [ =

> - > - Lo - = - w w w w w w w w w w [ [ [ [ [} (%) [} N N [ - - - = — = — - - =
~ =] (S - w M) = o © oo ~ [=2] ot = w N - o © oo ~ =] (o)) - w Y] - (=] © oo ~ (=2} ot > w [ - o

'
oo



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

182 CHAPTER 5. COLLECTIVE COMMUNICATION

SUBROUTINE PAR_BLAS1(m, a, b, c, comm)

REAL a(m), b(m) I local slice of array
REAL c | result (at node zero)
REAL sum

INTEGER m, comm, i, ierr

I local sum
sum = 0.0
DOi=1, m
sum = sum + a(i)*b(i)
END DO

! global sum

CALL MPI_REDUCE(sum, c, 1, MPI_REAL, MPI_SUM, O, comm, ierr)
RETURN

END

Example 5.16
A routine that computes the product of a vector and an array that are distributed
across a group of processes and returns the answer at node zero.

SUBROUTINE PAR_BLAS2(m, n, a, b, c, comm)
REAL a(m), b(m,n) ! local slice of array
REAL c(n) ! result

REAL sum(n)

INTEGER n, comm, i, j, ierr

I local sum
DO j= 1, n
sum(j) = 0.0
DOi=1, m
sum(j) = sum(j) + a(i)*b(i,j)
END DO
END DO

I global sum
CALL MPI_REDUCE(sum, c, n, MPI_REAL, MPI_SUM, O, comm, ierr)

| return result at node zero (and garbage at the other nodes)
RETURN
END

5.9.3 Signed Characters and Reductions

The types MPI_SIGNED_CHAR and MPI_UNSIGNED_CHAR can be used in reduction opera-
tions. MPI_CHAR, MPI_WCHAR, and MPI_CHARACTER (which represent printable charac-

ters) cannot be used in reduction operations. In a heterogeneous environment, MPI_CHAR,
MPI_WCHAR, and MPI_CHARACTER will be translated so as to preserve the printable

Unofficial Draft for Comment Only



5.9. GLOBAL REDUCTION OPERATIONS 183

character, whereas MPI_SIGNED_CHAR and MPI_UNSIGNED_CHAR will be translated so
as to preserve the integer value.

Advice to users. The types MPI_CHAR, MPI_WCHAR, and MPI_CHARACTER are
intended for characters, and so will be translated to preserve the printable representa-
tion, rather than the integer value, if sent between machines with different character
codes. The types MPI_SIGNED_CHAR and MPI_UNSIGNED_CHAR should be used in
C if the integer value should be preserved. (End of advice to users.)

5.9.4 MINLOC and MAXLOC

The operator MPI_MINLOC is used to compute a global minimum and also an index attached
to the minimum value. MPI_MAXLOC similarly computes a global maximum and index. One
application of these is to compute a global minimum (maximum) and the rank of the process
containing this value.

The operation that defines MPI_MAXLOC is:

(1)(5)-(F)

w = max(u, v)

where

and
i ifu>w
k=< min(i,j) ifu=wv
J ifu<w
MPI_MINLOC is defined similarly:
u) (v )_(w
i i) T\ k
where
w = min(u, v)
and
i ifu<w
k=< min(i,j) ifu=v
7 ifu>w

Both operations are associative and commutative. Note that if MPI_MAXLOC is applied
to reduce a sequence of pairs (ug,0), (u1,1),..., (up—1,n — 1), then the value returned is
(u,r), where u = max; u; and r is the index of the first global maximum in the sequence.
Thus, if each process supplies a value and its rank within the group, then a reduce operation
with op = MPI_MAXLOC will return the maximum value and the rank of the first process with
that value. Similarly, MPI_MINLOC can be used to return a minimum and its index. More
generally, MPI_MINLOC computes a lexicographic minimum, where elements are ordered

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

184 CHAPTER 5. COLLECTIVE COMMUNICATION

according to the first component of each pair, and ties are resolved according to the second
component.

The reduce operation is defined to operate on arguments that consist of a pair: value
and index. For both Fortran and C, types are provided to describe the pair. The potentially
mixed-type nature of such arguments is a problem in Fortran. The problem is circumvented,
for Fortran, by having the MPI-provided type consist of a pair of the same type as value,
and coercing the index to this type also. In C, the MPIl-provided pair type has distinct
types and the index is an int.

In order to use MPI_MINLOC and MPI_MAXLOC in a reduce operation, one must provide
a datatype argument that represents a pair (value and index). MPI provides nine such
predefined datatypes. The operations MPI_MAXLOC and MPI_MINLOC can be used with
each of the following datatypes.

Fortran:

Name Description
MPI_2REAL pair of REALS
MPI_2DOUBLE_PRECISION pair of DOUBLE PRECISION variables
MPI_2INTEGER pair of INTEGERs

C

Name Description
MPI_FLOAT_INT float and int
MPI_DOUBLE_INT double and int
MPI_LONG_INT long and int
MPI_2INT pair of int
MPI_SHORT_INT short and int
MPI_LONG_DOUBLE_INT long double and int

The datatype MPI_2REAL is as if defined by the following (see Section 4.1).
MPI_Type_contiguous(2, MPI_REAL, MPI_2REAL);

Similar statements apply for MPI_2INTEGER, MPI_2DOUBLE_PRECISION, and MPI_2INT.
The datatype MPI_SHORT_INT is as if defined by the following sequence of instructions.

struct mystruct {

short val;
int rank;
+;
typel[0] = MPI_SHORT;
typel[1] = MPI_INT;
disp[0] = 0;
disp[1] = offsetof(struct mystruct, rank);
block[0] = 1;
block[1] = 1;

MPI_Type_create_struct(2, block, disp, type, MPI_SHORT_INT);

Unofficial Draft for Comment Only



5.9. GLOBAL REDUCTION OPERATIONS 185

Similar statements apply for MPI_FLOAT_INT, MPI_LONG_INT and MPI_DOUBLE_INT.
The following examples use intracommunicators.

Example 5.17
Each process has an array of 30 doubles, in C. For each of the 30 locations, compute
the value and rank of the process containing the largest value.

/* each process has an array of 30 double: ain[30]
*/
double ain[30], aout[30];
int ind[30];
struct {
double val;
int rank;
} in[30], out[30];
int i, myrank, root;

MPI_Comm_rank(comm, &myrank) ;
for (i=0; i<30; ++i) {
in[i] .val = ain[i];
in[i] .rank = myrank;
}
MPI_Reduce(in, out, 30, MPI_DOUBLE_INT, MPI_MAXLOC, root, comm);
/* At this point, the answer resides on process root
*/
if (myrank == root) {
/* read ranks out
*/
for (i=0; i<30; ++i) {
aout[i] = out[i].val;
ind[i] = out[i].rank;

Example 5.18
Same example, in Fortran.

! each process has an array of 30 double: ain(30)

DOUBLE PRECISION ain(30), aout(30)
INTEGER ind(30)

DOUBLE PRECISION in(2,30), out(2,30)
INTEGER i, myrank, root, ierr

CALL MPI_COMM_RANK(comm, myrank, ierr)
DO I=1, 30

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

186

CHAPTER 5. COLLECTIVE COMMUNICATION

in(1,i) = ain(i)
in(2,1)
END DO

myrank ! myrank is coerced to a double

CALL MPI_REDUCE(in, out, 30, MPI_2DOUBLE_PRECISION, MPI_MAXLOC, root,
comm, ierr)
! At this point, the answer resides on process root

IF (myrank .EQ. root) THEN
! read ranks out

DO I= 1, 30
aout(i) = out(1,i)
ind(i) = out(2,i) ! rank is coerced back to an integer
END DO
END IF

Example 5.19

Each process has a non-empty array of values. Find the minimum global value, the

rank of the process that holds it and its index on this process.

#define LEN 1000

float val[LEN]; /* local array of values */

int count; /* local number of values */
int myrank, minrank, minindex;

float minval;

struct {

float value;
int index;

} in, out;

/* local minloc */

in.value = val[0];
in.index = 0;

for (i=1; i < count; i++)

if (in.value > vallil]) {
in.value = valli];
in.index = i;

/* global minloc */

MPI_Comm_rank(comm, &myrank);

in.index = myrank*LEN + in.index;

MPI_Reduce( &in, &out, 1, MPI_FLOAT_INT, MPI_MINLOC, root, comm );

/* At this point, the answer resides on process root

*/

Unofficial Draft for Comment Only



5.9. GLOBAL REDUCTION OPERATIONS

if (myrank == root) {
/* read answer out
*/
minval = out.value;
minrank = out.index / LEN;
minindex = out.index % LEN;

187

Rationale.  The definition of MPI_MINLOC and MPI_MAXLOC given here has the

advantage that it does not require any special-case handling of these two operations:
they are handled like any other reduce operation. A programmer can provide his or
her own definition of MPI_MAXLOC and MPI_MINLOC, if so desired. The disadvantage
is that values and indices have to be first interleaved, and that indices and values have

to be coerced to the same type, in Fortran. (End of rationale.)

5.9.5 User-Defined Reduction Operations

MPI_OP_CREATE(user_fn, commute, op)

IN user_fn user defined function (function)
IN commute true if commutative; false otherwise.
ouT op operation (handle)

int MPI_Op_create(MPI_User_function* user_fn, int commute, MPI_Op* op)

MPI_Op_create(user_fn, commute, op, ierror)

PROCEDURE (MPI_User_function) :: user_fn
LOGICAL, INTENT(IN) :: commute
TYPE(MPI_Op), INTENT(OUT) :: op

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_QOP_CREATE( USER_FN, COMMUTE, OP, IERROR)
EXTERNAL USER_FN
LOGICAL COMMUTE
INTEGER 0P, IERROR

MPI_OP_CREATE binds a user-defined reduction operation to an
op handle that can subsequently be used in MPI_REDUCE, MPI_ALLREDUCE,
MPI_REDUCE_SCATTER_BLOCK, MPI_REDUCE_SCATTER, MPI_SCAN,
MPI_EXSCAN, all nonblocking variants of those (see Section 5.12), and

MPI_REDUCE_LOCAL. The user-defined operation is assumed to be associative. If commute
= true, then the operation should be both commutative and associative. If commute = false,
then the order of operands is fixed and is defined to be in ascending, process rank order,

beginning with process zero. The order of evaluation can be changed, talking advantage of

the associativity of the operation. If commute = true then the order of evaluation can be

changed, taking advantage of commutativity and associativity.

The argument user_fn is the user-defined function, which must have the following four

arguments: invec, inoutvec, len, and datatype.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

43

44

45

46

47

48

188 CHAPTER 5. COLLECTIVE COMMUNICATION

The ISO C prototype for the function is the following.
typedef void MPI_User_function(void* invec, void* inoutvec, int *len,
MPI_Datatype *datatype);

The Fortran declarations of the user-defined function user_fn appear below.
ABSTRACT INTERFACE
SUBROUTINE MPI_User_function(invec, inoutvec, len, datatype)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
TYPE(C_PTR), VALUE :: invec, inoutvec

INTEGER :: 1len

TYPE(MPI_Datatype) :: datatype

SUBROUTINE USER_FUNCTION(INVEC, INOUTVEC, LEN, DATATYPE)
<type> INVEC(LEN), INOUTVEC(LEN)
INTEGER LEN, DATATYPE

The datatype argument is a handle to the data type that was passed into the call to
MPI_REDUCE. The user reduce function should be written such that the following holds:
Let u[0], ..., u[len-1] be the len elements in the communication buffer described by the
arguments invec, len and datatype when the function is invoked; let v[0], ..., v[len-1] be len
elements in the communication buffer described by the arguments inoutvec, len and datatype
when the function is invoked; let w[0], ..., w[len-1] be len elements in the communication
buffer described by the arguments inoutvec, len and datatype when the function returns;
then w[i] = uli]ov[i], for i=0, ..., len-1, where o is the reduce operation that the function
computes.

Informally, we can think of invec and inoutvec as arrays of len elements that user_fn
is combining. The result of the reduction over-writes values in inoutvec, hence the name.
Each invocation of the function results in the pointwise evaluation of the reduce operator
on len elements: i.e., the function returns in inoutvec[i] the value invec|i] o inoutvec]i], for
i=0, ..., count-1, where o is the combining operation computed by the function.

Rationale. The len argument allows MPI_REDUCE to avoid calling the function for
each element in the input buffer. Rather, the system can choose to apply the function
to chunks of input. In C, it is passed in as a reference for reasons of compatibility
with Fortran.

By internally comparing the value of the datatype argument to known, global handles,
it is possible to overload the use of a single user-defined function for several, different
data types. (End of rationale.)

General datatypes may be passed to the user function. However, use of datatypes that
are not contiguous is likely to lead to inefficiencies.

No MPI communication function may be called inside the user function. MPI_ABORT
may be called inside the function in case of an error.

Advice to users. Suppose one defines a library of user-defined reduce functions that
are overloaded: the datatype argument is used to select the right execution path at each
invocation, according to the types of the operands. The user-defined reduce function
cannot “decode” the datatype argument that it is passed, and cannot identify, by itself,
the correspondence between the datatype handles and the datatype they represent.

Unofficial Draft for Comment Only



5.9. GLOBAL REDUCTION OPERATIONS 189

This correspondence was established when the datatypes were created. Before the
library is used, a library initialization preamble must be executed. This preamble
code will define the datatypes that are used by the library, and store handles to these
datatypes in global, static variables that are shared by the user code and the library
code.

The Fortran version of MPI_REDUCE will invoke a user-defined reduce function using
the Fortran calling conventions and will pass a Fortran-type datatype argument; the
C version will use C calling convention and the C representation of a datatype handle.
Users who plan to mix languages should define their reduction functions accordingly.
(End of advice to users.)

Advice to implementors. We outline below a naive and inefficient implementation of
MPI_REDUCE not supporting the “in place” option.

MPI_Comm_size(comm, &groupsize);
MPI_Comm_rank(comm, &rank);
if (rank > 0) {
MPI_Recv(tempbuf, count, datatype, rank-1,...);
User_reduce(tempbuf, sendbuf, count, datatype);

}
if (rank < groupsize-1) {
MPI_Send(sendbuf, count, datatype, rank+l, ...);
}
/* answer now resides in process groupsize-1 ... now send to root
*/
if (rank == root) {
MPI_Irecv(recvbuf, count, datatype, groupsize-1,..., &req);
}

if (rank == groupsize-1) {

MPI_Send(sendbuf, count, datatype, root, ...);
}
if (rank == root) {

MPI_Wait(&req, &status);

The reduction computation proceeds, sequentially, from process 0 to process

groupsize-1. This order is chosen so as to respect the order of a possibly non-
commutative operator defined by the function User_reduce(). A more efficient im-
plementation is achieved by taking advantage of associativity and using a logarithmic
tree reduction. Commutativity can be used to advantage, for those cases in which
the commute argument to MPI_OP_CREATE is true. Also, the amount of temporary
buffer required can be reduced, and communication can be pipelined with computa-
tion, by transferring and reducing the elements in chunks of size len <count.

The predefined reduce operations can be implemented as a library of user-defined
operations. However, better performance might be achieved if MPI_REDUCE handles
these functions as a special case. (End of advice to implementors.)

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

190 CHAPTER 5. COLLECTIVE COMMUNICATION

MPI_OP_FREE(op)
INOUT  op operation (handle)

int MPI_Op_free(MPI_Op *op)

MPI_Op_free(op, ierror)
TYPE(MPI_Op), INTENT(INOUT) :: op
INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

MPI_OP_FREE(OP, IERROR)
INTEGER 0P, IERROR

Marks a user-defined reduction operation for deallocation and sets op to MPI_OP_NULL.

Example of User-defined Reduce

It is time for an example of user-defined reduction. The example in this section uses an
intracommunicator.

Example 5.20 Compute the product of an array of complex numbers, in C.

typedef struct {
double real,imag;
} Complex;

/* the user-defined function
*/
void myProd(void *inP, void *inoutP, int *len, MPI_Datatype *dptr)
{
int i;
Complex c;
Complex *in = (Complex *)inP, *inout = (Complex *)inoutP;

for (i=0; i< *len; ++i) {
c.real = inout->real*in->real -
inout->imag*in->imag;
c.imag = inout->real*in->imag +
inout->imag*in->real;
*inout = c;
in++; inout++;

/* and, to call it...
*/

/* each process has an array of 100 Complexes

*/

Unofficial Draft for Comment Only



5.9. GLOBAL REDUCTION OPERATIONS 191

Complex a[100], answer[100];
MPI_Op myOp;
MPI_Datatype ctype;

/* explain to MPI how type Complex is defined
*/
MPI_Type_contiguous(2, MPI_DOUBLE, &ctype);
MPI_Type_commit (&ctype) ;
/* create the complex-product user-op
*/
MPI_Op_create( myProd, 1, &myOp );

MPI_Reduce(a, answer, 100, ctype, myOp, root, comm);
/* At this point, the answer, which consists of 100 Complexes,

* resides on process root

*/

Example 5.21 How to use the mpi_£08 interface of the Fortran MPI_User_function.

subroutine my_user_function( invec, inoutvec, len, type )  bind(c)

use, intrinsic :: iso_c_binding, only : c_ptr, c_f_pointer
use mpi_£08

type(c_ptr), value :: invec, inoutvec

integer :: len

type (MPI_Datatype) :: type

real, pointer :: invec_r(:), inoutvec_r(:)

if (type/%MPI_VAL == MPI_REALYMPI_VAL) then
call c_f_pointer(invec, invec_r, (/ len /) )
call c_f_pointer(inoutvec, inoutvec_r, (/ len /) )
inoutvec_r = invec_r + inoutvec_r
end if
end subroutine

5.9.6 All-Reduce

MPI includes a variant of the reduce operations where the result is returned to all processes
in a group. MPI requires that all processes from the same group participating in these
operations receive identical results.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

192 CHAPTER 5. COLLECTIVE COMMUNICATION

MPI_ALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm)

IN sendbuf starting address of send buffer (choice)

ouT recvbuf starting address of receive buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype data type of elements of send buffer (handle)

IN op operation (handle)

IN comm communicator (handle)

int MPI_Allreduce(const void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ALLREDUCE (SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER COUNT, DATATYPE, OP, COMM, IERROR

If comm is an intracommunicator, MPI_ALLREDUCE behaves the same as
MPI_REDUCE except that the result appears in the receive buffer of all the group members.

Advice to implementors.  The all-reduce operations can be implemented as a re-
duce, followed by a broadcast. However, a direct implementation can lead to better
performance. (End of advice to implementors.)

The “in place” option for intracommunicators is specified by passing the value
MPI_IN_PLACE to the argument sendbuf at all processes. In this case, the input data is
taken at each process from the receive buffer, where it will be replaced by the output data.

If comm is an intercommunicator, then the result of the reduction of the data provided
by processes in group A is stored at each process in group B, and vice versa. Both groups
should provide count and datatype arguments that specify the same type signature.

The following example uses an intracommunicator.

Example 5.22
A routine that computes the product of a vector and an array that are distributed
across a group of processes and returns the answer at all nodes (see also Example 5.16).

Unofficial Draft for Comment Only



5.9. GLOBAL REDUCTION OPERATIONS 193

SUBROUTINE PAR_BLAS2(m, n, a, b, c, comm)
REAL a(m), b(m,n) I local slice of array
REAL c(n) | result

REAL sum(n)

INTEGER n, comm, i, j, ierr

I local sum
DO j= 1,
sum(j) = 0.0
DOi=1, m
sum(j) = sum(j) + a(i)*b(i,j)
END DO
END DO

=}

[

! global sum
CALL MPI_ALLREDUCE(sum, c, n, MPI_REAL, MPI_SUM, comm, ierr)

! return result at all nodes
RETURN
END

5.9.7 Process-Local Reduction

The functions in this section are of importance to library implementors who may want to
implement special reduction patterns that are otherwise not easily covered by the standard
MPI operations.

The following function applies a reduction operator to local arguments.

MPI_REDUCE_LOCAL(inbuf, inoutbuf, count, datatype, op)

IN inbuf input buffer (choice)
INOUT  inoutbuf combined input and output buffer (choice)
IN count number of elements in inbuf and inoutbuf buffers (non-

negative integer)

IN datatype data type of elements of inbuf and inoutbuf buffers
(handle)
IN op operation (handle)

int MPI_Reduce_local(const void* inbuf, void* inoutbuf, int count,
MPI_Datatype datatype, MPI_Op op)

MPI_Reduce_local (inbuf, inoutbuf, count, datatype, op, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: dinbuf
TYPE(*), DIMENSION(..) :: inoutbuf
INTEGER, INTENT(IN) :: count

TYPE(MPI_ Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

194 CHAPTER 5. COLLECTIVE COMMUNICATION

INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

MPI_REDUCE_LOCAL (INBUF, INOUTBUF, COUNT, DATATYPE, OP, IERROR)
<type> INBUF (*), INOUTBUF (*)
INTEGER COUNT, DATATYPE, OP, IERROR

The function applies the operation given by op element-wise to the elements of inbuf
and inoutbuf with the result stored element-wise in inoutbuf, as explained for user-defined
operations in Section 5.9.5. Both inbuf and inoutbuf (input as well as result) have the
same number of elements given by count and the same datatype given by datatype. The
MPI_IN_PLACE option is not allowed.

Reduction operations can be queried for their commutativity.

MPI_OP_COMMUTATIVE(op, commute)
IN op operation (handle)

ouT commute true if op is commutative, false otherwise (logical)

int MPI_Op_commutative(MPI_QOp op, int *commute)

MPI_Op_commutative(op, commute, ierror)
TYPE(MPI_Op), INTENT(IN) :: op
LOGICAL, INTENT(QUT) :: commute
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_OP_COMMUTATIVE(OP, COMMUTE, IERROR)
LOGICAL COMMUTE
INTEGER 0P, IERROR

5.10 Reduce-Scatter

MPI includes variants of the reduce operations where the result is scattered to all processes
in a group on return. One variant scatters equal-sized blocks to all processes, while another
variant scatters blocks that may vary in size for each process.

Unofficial Draft for Comment Only



5.10. REDUCE-SCATTER 195

5.10.1 MPI_REDUCE_SCATTER_BLOCK

MPI_REDUCE_SCATTER_BLOCK(sendbuf, recvbuf, recvcount, datatype, op, comm)

IN sendbuf starting address of send buffer (choice)

ouT recvbuf starting address of receive buffer (choice)

IN recvcount element count per block (non-negative integer)

IN datatype data type of elements of send and receive buffers (han-
dle)

IN op operation (handle)

IN comm communicator (handle)

int MPI_Reduce_scatter_block(const void* sendbuf, void* recvbuf,
int recvcount, MPI_Datatype datatype, MPI_(Op op,
MPI_Comm comm)

MPI_Reduce_scatter_block(sendbuf, recvbuf, recvcount, datatype, op, comm,

ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: recvcount
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_REDUCE_SCATTER_BLOCK (SENDBUF, RECVBUF, RECVCOUNT, DATATYPE, OP, COMM,
IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER RECVCOUNT, DATATYPE, OP, COMM, IERROR

If comm is an intracommunicator, MPI_REDUCE_SCATTER_BLOCK first performs a
global, element-wise reduction on vectors of count = n*recvcount elements in the send buffers
defined by sendbuf, count and datatype, using the operation op, where n is the number of
processes in the group of comm. The routine is called by all group members using the
same arguments for recvcount, datatype, op and comm. The resulting vector is treated
as n consecutive blocks of recvcount elements that are scattered to the processes of the
group. The i-th block is sent to process i and stored in the receive buffer defined by recvbuf,
recvcount, and datatype.

Advice to implementors. The MPI_REDUCE_SCATTER_BLOCK routine is func-
tionally equivalent to: an MPI_REDUCE collective operation with count equal to
recvcount*n, followed by an MPI_SCATTER with sendcount equal to recvcount. How-
ever, a direct implementation may run faster. (End of advice to implementors.)

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE in
the sendbuf argument on all processes. In this case, the input data is taken from the receive
buffer.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

48

196 CHAPTER 5. COLLECTIVE COMMUNICATION

If comm is an intercommunicator, then the result of the reduction of the data provided
by processes in one group (group A) is scattered among processes in the other group (group
B) and vice versa. Within each group, all processes provide the same value for the recvcount
argument, and provide input vectors of count = n*recvcount elements stored in the send
buffers, where n is the size of the group. The number of elements count must be the same
for the two groups. The resulting vector from the other group is scattered in blocks of
recvcount elements among the processes in the group.

Rationale.  The last restriction is needed so that the length of the send buffer of
one group can be determined by the local recvcount argument of the other group.

Otherwise, a communication is needed to figure out how many elements are reduced.
(End of rationale.)

5.10.2 MPI_REDUCE_SCATTER

MPI_REDUCE_SCATTER extends the functionality of MPI_R