#120

MPI: A Message-Passing Interface Standard
Version 3.2
(Draft)

Unofficial, for comment only

Message Passing Interface Forum

November 7, 2019

MPI-4 Issue #120: MPI_Cart_create weighted, ...
Pull Request PR98

See changes on pages
1;16;309-321,;716;726;842;860;862-864;867;876;879-880

Latest changes since Sep. 5, 2019
Includes also some late corrections from Nov.21, 2019

hpcrabe
Schreibmaschinentext
MPI-4 Issue #120: MPI_Cart_create_weighted, ...
Pull Request PR98

See changes on pages
i;16;309-321;716;726;842;860;862-864;867;876;879-880

Latest changes since Sep. 5, 2019
Includes also some late corrections from Nov.21, 2019

hpcrabe
Schreibmaschinentext
#120

hpcrabe
Linien

hpcrabe
Linien

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

This document describes the Message-Passing Interface (MPI) standard, version 3.1.
The MPI standard includes point-to-point message-passing, collective communications, group
and communicator concepts, process topologies, environmental management, process cre-
ation and management, one-sided communications, extended collective operations, external
interfaces, I/O, some miscellaneous topics, and a profiling interface. Language bindings for
C and Fortran are defined.

Historically, the evolution of the standards is from MPI-1.0 (May 5, 1994) to MPI-1.1
(June 12, 1995) to MPI-1.2 (July 18, 1997), with several clarifications and additions and
published as part of the MPI-2 document, to MPI-2.0 (July 18, 1997), with new functionality,
to MPI-1.3 (May 30, 2008), combining for historical reasons the documents 1.1 and 1.2
and some errata documents to one combined document, and to MPI-2.1 (June 23, 2008),
combining the previous documents. Version MPI-2.2 (September 4, 2009) added additional
clarifications and seven new routines. Version MPI-3.0 (September 21, 2012) is an extension
of MPI-2.2. This version, MPI-3.1, adds clarifications and minor extensions to MPI-3.0

Comments. Please send comments on MPI to the MPI Forum as follows:
1. Subscribe tohttp://lists.mpi-forum.org/mailman/listinfo.cgi/mpi-comments

2. Send your comment to: mpi-comments@mpi-forum.org, together with the URL of
the version of the MPI standard and the page and line numbers on which you are
commenting. Only use the official versions.

Your comment will be forwarded to MPI Forum committee members for consideration.
Messages sent from an unsubscribed e-mail address will not be considered.

(©1993, 1994, 1995, 1996, 1997, 2008, 2009, 2012, 2015 University of Tennessee, Knoxville,
Tennessee. Permission to copy without fee all or part of this material is granted, provided
the University of Tennessee copyright notice and the title of this document appear, and
notice is given that copying is by permission of the University of Tennessee.

Unofficial Draft for Comment Only il

http://lists.mpi-forum.org/mailman/listinfo.cgi/mpi-comments
mailto:mpi-comments@mpi-forum.org

Version 3.1: June 4, 2015. This document contains mostly corrections and clarifications to
the MPI-3.0 document. The largest change is a correction to the Fortran bindings introduced
in MPI-3.0. Additionally, new functions added include routines to manipulate MPI_Aint
values in a portable manner, nonblocking collective I/O routines, and routines to get the
index value by name for MPI_T performance and control variables.

Version 3.0: September 21, 2012. Coincident with the development of MPI-2.2 the MPI
Forum began discussions of a major extension to MPI. This document contains the MPI-3
Standard. This draft version of the MPI-3 standard contains significant extensions to MPI
functionality, including nonblocking collectives, new one-sided communication operations,
and Fortran 2008 bindings. Unlike MPI-2.2, this standard is considered a major update to
the MPI standard. As with previous versions, new features have been adopted only when
there were compelling needs for the users. Some features, however, may have more than a
minor impact on existing MPI implementations.

Version 2.2: September 4, 2009. This document contains mostly corrections and clarifi-
cations to the MPI-2.1 document. A few extensions have been added; however all correct
MPI-2.1 programs are correct MPI-2.2 programs. New features were adopted only when
there were compelling needs for users, open source implementations, and minor impact on
existing MPI implementations.

Version 2.1: June 23, 2008. This document combines the previous documents MPI-1.3 (May
30, 2008) and MPI-2.0 (July 18, 1997). Certain parts of MPI-2.0, such as some sections of
Chapter 4, Miscellany, and Chapter 7, Extended Collective Operations, have been merged
into the Chapters of MPI-1.3. Additional errata and clarifications collected by the MPI
Forum are also included in this document.

Version 1.3: May 30, 2008. This document combines the previous documents MPI-1.1 (June
12, 1995) and the MPI-1.2 Chapter in MPI-2 (July 18, 1997). Additional errata collected
by the MPI Forum referring to MPI-1.1 and MPI-1.2 are also included in this document.

Version 2.0: July 18, 1997. Beginning after the release of MPI-1.1, the MPIl Forum began
meeting to consider corrections and extensions. MPI-2 has been focused on process creation
and management, one-sided communications, extended collective communications, external
interfaces and parallel I/O. A miscellany chapter discusses items that do not fit elsewhere,
in particular language interoperability.

Version 1.2: July 18, 1997. The MPI-2 Forum introduced MPI-1.2 as Chapter 3 in the
standard “MPI-2: Extensions to the Message-Passing Interface”, July 18, 1997. This section
contains clarifications and minor corrections to Version 1.1 of the MPI Standard. The only
new function in MPI-1.2 is one for identifying to which version of the MPI Standard the
implementation conforms. There are small differences between MPI-1 and MPI-1.1. There
are very few differences between MPI-1.1 and MPI-1.2, but large differences between MPI-1.2
and MPI-2.

Unofficial Draft for Comment Only iii

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Version 1.1: June, 1995. Beginning in March, 1995, the Message-Passing Interface Forum
reconvened to correct errors and make clarifications in the MPI document of May 5, 1994,
referred to below as Version 1.0. These discussions resulted in Version 1.1. The changes
from Version 1.0 are minor. A version of this document with all changes marked is available.

Version 1.0: May, 1994. The Message-Passing Interface Forum (MPIF), with participation
from over 40 organizations, has been meeting since January 1993 to discuss and define a set
of library interface standards for message passing. MPIF is not sanctioned or supported by
any official standards organization.

The goal of the Message-Passing Interface, simply stated, is to develop a widely used
standard for writing message-passing programs. As such the interface should establish a
practical, portable, efficient, and flexible standard for message-passing.

This is the final report, Version 1.0, of the Message-Passing Interface Forum. This
document contains all the technical features proposed for the interface. This copy of the
draft was processed by KTEX on May 5, 1994.

Unofficial Draft for Comment Only iv

Contents

Acknowledgments ix
1 Introduction to MPI 1
1.1 Overview and Goals 1
1.2 Background of MPI-1.0. oL oo 2
1.3 Background of MPI-1.1, MPI-1.2, and MPI-2.0 2
1.4 Background of MPI-1.3 and MPI-2.1 3
1.5 Background of MPI-2.2 Lo 4
1.6 Background of MPI-3.0. L Lo 4
1.7 Background of MPI-3.1. Lo 4
1.8 Who Should Use This Standard? 5
1.9 What Platforms Are Targets for Implementation? 5
1.10 What Is Included in the Standard? 5
1.11 What Is Not Included in the Standard? 6
1.12 Organization of This Document 6
2 MPI Terms and Conventions 9
2.1 Document Notation 9
2.2 Naming Conventions e 9
2.3 Procedure Specification Lo oL 10
2.4 Semantic Terms 11
2.5 Data Types o o 12
2.5.1 Opaque Objects e 12
2.5.2 Array Arguments 14
2.5.3 State. 14
2.5.4 Named Constants, 15
2.5.5 Choice o o e 16
2.5.6 Absolute Addresses and Relative Address Displacements 16
2.5.7 File Offsets e 17
2.5.8 CountsS. 17

2.6 Language Binding 17
2.6.1 Deprecated and Removed Interfaces 18
2.6.2 Fortran Binding Issues oo 18
2.6.3 C Binding Issues 19
2.6.4 Functions and Macroso 19

2.7 Processes e e 19
2.8 Error Handling e 20

2.9 Implementation Issues L L 21

2.9.1 Independence of Basic Runtime Routines 21
2.9.2 Interaction with Signals oL 22

2.10 Exampleso e 22
Point-to-Point Communication 25
3.1 Introduction e 25
3.2 Blocking Send and Receive Operations 26
3.21 Blocking Send 26
3.22 Message Data L L 27
3.2.3 Message Envelope o oo 29
3.2.4 Blocking Receive 30
3.2.5 Return Status. 32
3.2.6 Passing MPI_STATUS_IGNORE for Status 34

3.3 Data Type Matching and Data Conversion 35
3.3.1 Type Matching Rules 35
Type MPI_CHARACTER o oo 36

3.3.2 Data Conversion 37

3.4 Communication Modes e 39
3.5 Semantics of Point-to-Point Communication 42
3.6 Buffer Allocation and Usage 46
3.6.1 Model Implementation of Buffered Mode 48

3.7 Nonblocking Communication 49
3.7.1 Communication Request Objects 50
3.7.2 Communication Initiation 50
3.7.3 Communication Completion 54
3.7.4 Semantics of Nonblocking Communications 58
3.7.5 Multiple Completions 59
3.7.6 Non-destructive Test of status 66

3.8 Probeand Cancel 66
3.8.1 Probe 67
3.8.2 Matching Probe 70
3.8.3 Matched Receives 72
3.84 Cancel e 73

3.9 Persistent Communication Requests 75
3.10 Send-Receive e 80
3.11 Null Processes e e 82
Datatypes 85
4.1 Derived Datatypes 85
4.1.1 Type Constructors with Explicit Addresses 87
4.1.2 Datatype Constructors 87
4.1.3 Subarray Datatype Constructor 96
4.1.4 Distributed Array Datatype Constructor 98
4.1.5 Address and Size Functions, 103
4.1.6 Lower-Bound and Upper-Bound Markers 106
4.1.7 Extent and Bounds of Datatypes 108
4.1.8 True Extent of Datatypes 110

vi

4.1.9 Commit and Free 111

4.1.10 Duplicating a Datatypeo, 113
4.1.11 Use of General Datatypes in Communication 113
4.1.12 Correct Use of Addresses 117
4.1.13 Decoding a Datatypeo 118
4.1.14 Exampleso 125

4.2 Pack and Unpack 134
4.3 Canonical MPI_PACK and MPI_UNPACK 140
Collective Communication 143
5.1 Introduction and Overview, 143
5.2 Communicator Argument 146
5.2.1 Specifics for Intracommunicator Collective Operations 146
5.2.2 Applying Collective Operations to Intercommunicators 147
5.2.3 Specifics for Intercommunicator Collective Operations 148

5.3 Barrier Synchronization L L L L L 149
5.4 Broadcast e 150
5.4.1 Example using MPI_BCAST 150

5.5 Gather L 151
5.5.1 Examples using MPI_GATHER, MPI_GATHERV 154

5.6 Scatter e 161
5.6.1 Examples using MPI_SCATTER, MPI_SCATTERV 164

5.7 Gather-to-all 167
5.7.1 Example using MPI_ALLGATHER 169

5.8 All-to-All Scatter/Gather 170
5.9 Global Reduction Operations 175
5.9.1 Reduce e 176
5.9.2 Predefined Reduction Operations 178
5.9.3 Signed Characters and Reductions 180
5.9.4 MINLOC and MAXLOC 181
5.9.5 User-Defined Reduction Operations 185
Example of User-defined Reduce 188

5.9.6 All-Reduce 189
5.9.7 Process-Local Reduction 191

5.10 Reduce-Scatter 192
5.10.1 MPI_REDUCE_SCATTER_BLOCK 193
5.10.2 MPI_REDUCE_SCATTER 194

5.11 Scano 195
5.11.1 Inclusive Scan. e 195
5.11.2 Exclusive Scan 196
5.11.3 Example using MPI_SCAN, 197

5.12 Nonblocking Collective Operations 199
5.12.1 Nonblocking Barrier Synchronization 201
5.12.2 Nonblocking Broadcast 202
Example using MPI_IBCAST 202

5.12.3 Nonblocking Gather 203
5.12.4 Nomnblocking Scatter 205
5.12.5 Nonblocking Gather-to-all 207

vii

5.12.6 Nonblocking All-to-All Scatter/Gather 209

5.12.7 Nonblocking Reduce 212
5.12.8 Nonblocking All-Reduce 213
5.12.9 Nonblocking Reduce-Scatter with Equal Blocks 214
5.12.10 Nonblocking Reduce-Scatter 215
5.12.11 Nonblocking Inclusive Scan 216
5.12.12Nonblocking Exclusive Scano 217
5.13 Persistent Collective Operations 217
5.13.1 Persistent Barrier Synchronization 219
5.13.2 Persistent Broadcast oL 219
5.13.3 Persistent Gather oL 220
5.13.4 Persistent Scatter. 222
5.13.5 Persistent Gather-to-all 224
5.13.6 Persistent All-to-All Scatter/Gather 226
5.13.7 Persistent Reduce oL 229
5.13.8 Persistent All-Reduce 230
5.13.9 Persistent Reduce-Scatter with Equal Blocks 231
5.13.10 Persistent Reduce-Scatter 232
5.13.11 Persistent Inclusive Scan 233
5.13.12 Persistent Exclusive Scan o000 234
5.14 Correctness o o e e e 234
Groups, Contexts, Communicators, and Caching 243
6.1 Introduction e 243
6.1.1 Features Needed to Support Libraries 243
6.1.2 MPI’s Support for Libraries 244
6.2 Basic Concepts e 246
6.2.1 Groups o 246
6.2.2 Contexts e 246
6.2.3 Intra-Communicators 247
6.2.4 Predefined Intra-Communicators 247
6.3 Group Management 248
6.3.1 Group AcCCessOors i e 248
6.3.2 Group Constructors 250
6.3.3 Group Destructors 255
6.4 Communicator Management oL 255
6.4.1 Communicator ACCESSOIS v v v v it e 255
6.4.2 Communicator Constructors. 257
6.4.3 Communicator Destructors, 268
6.4.4 Communicator Info. 0oL 269
6.5 Motivating Examples o 271
6.5.1 Current Practice #1 271
6.5.2 Current Practice #2 272
6.5.3 (Approximate) Current Practice #3 272
6.5.4 Example #4 e 273
6.5.5 Library Example #1 274
6.5.6 Library Example #2 276
6.6 Inter-Communication 278

6.6.1 Inter-communicator AcCeSSOrs v v v v v i i 280

6.6.2 Inter-communicator Operations 281
6.6.3 Inter-Communication Examples 283
Example 1: Three-Group “Pipeline” 283

Example 2: Three-Group “Ring” 285

6.7 Caching e 286
6.7.1 Functionality 287
6.7.2 Communicators 288
6.7.3 Windows 293
6.7.4 Datatypes 296
6.7.5 Error Class for Invalid Keyval 299
6.7.6 Attributes Example L 300

6.8 Naming Objects 302
6.9 Formalizing the Loosely Synchronous Model 306
6.9.1 Basic Statements 306
6.9.2 Models of Execution oo 306
Static Communicator Allocation 307

Dynamic Communicator Allocation. 307

The General Case 307

Process Topologies 309
7.1 Introduction e 309
7.2 Virtual Topologies e 310
7.3 Embedding in MPl 310
7.4 Overview of the Functions 311
7.5 Topology Constructors e 313
7.5.1 Cartesian Constructor 313
7.5.2 Cartesian Convenience Functions 316
7.5.3 Cartesian Examples oo 319
7.5.4 Graph Constructor 321
7.5.5 Distributed Graph Constructor 323
7.5.6 Topology Inquiry Functions 330
7.5.7 Cartesian Shift Coordinates 337
7.5.8 Partitioning of Cartesian Structures 339
7.5.9 Low-Level Topology Functions 339

7.6 Neighborhood Collective Communication 341
7.6.1 Neighborhood Gather 342
7.6.2 Neighbor Alltoall 346

7.7 Nonblocking Neighborhood Communication 351
7.7.1 Nonblocking Neighborhood Gather 352
7.7.2 Nonblocking Neighborhood Alltoall 354

7.8 Persistent Neighborhood Communication 357
7.8.1 Persistent Neighborhood Gather 357
7.8.2 Persistent Neighborhood Alltoall 359

7.9 An Application Example 362

X

8 MPI Environmental Management

8.1

8.2
8.3

8.4
8.5
8.6
8.7

8.8

Implementation Information L.
8.1.1 Version Inquiries
8.1.2 Environmental Inquiries o o0

Tag Values

Host Rank

IORank o

Clock Synchronization

Inquire Processor Name
Memory Allocation L
Error Handling
8.3.1 Error Handlers for Communicators
8.3.2 Error Handlers for Windows
8.3.3 Error Handlers for Files,
8.3.4 Freeing Errorhandlers and Retrieving Error Strings
Error Codes and Classes o e
Error Classes, Error Codes, and Error Handlers
Timers and Synchronization L L L oL
Startup e
8.7.1 Allowing User Functions at Process Termination
8.7.2 Determining Whether MPIl Has Finished
Portable MPI Process Startup

9 The Info Object

10 Process Creation and Management
10.1 Introductiono Lo
10.2 The Dynamic Process Model

10.2.1 Starting Processes o
10.2.2 The Runtime Environment

10.3 Process Manager Interface o oL

10.3.1 Processesin MPI
10.3.2 Starting Processes and Establishing Communication
10.3.3 Starting Multiple Executables and Establishing Communication
10.3.4 Reserved Keys
10.3.5 Spawn Example oo
Manager-worker Example Using MPI_COMM_SPAWN

10.4 Establishing Communication

10.4.1 Names, Addresses, Ports, and All That
10.4.2 Server Routines
10.4.3 Client Routines
10.4.4 Name Publishing oo
10.4.5 Reserved Key Values
10.4.6 Client/Server Examples
Simplest Example — Completely Portable.
Ocean/Atmosphere — Relies on Name Publishing
Simple Client-Server Example

10.5 Other Functionality

367
367
367
368
369
369
369
370
370
371
374
376
378
379
381
382
382
388
389
395
395
396

399

10.5.1 Universe Size e 429

10.5.2 Singleton MPI_INIT 430
10.5.3 MPI_APPNUM e e 430
10.5.4 Releasing Connections 431
10.5.5 Another Way to Establish MPl Communication 433

11 One-Sided Communications 435
11.1 Introduction e 435
11.2 Inmitialization 436
11.2.1 Window Creation e 437
11.2.2 Window That Allocates Memory 439
11.2.3 Window That Allocates Shared Memory 441
11.2.4 Window of Dynamically Attached Memory 444
11.2.5 Window Destruction, 447
11.2.6 Window Attributes 448
11.2.7 Window Info 449

11.3 Communication Calls 451
11.3.1 Put e 452
11.3.2 Get o e 454
11.3.3 Examples for Communication Calls 455
11.3.4 Accumulate Functions, 457
Accumulate Function L 458

Get Accumulate Function 460

Fetch and Op Function 461

Compare and Swap Function 463

11.3.5 Request-based RMA Communication Operations 464

11.4 Memory Model o 469
11.5 Synchronization Calls o 470
11.5.1 Fence e 474
11.5.2 General Active Target Synchronization 475
11.5.3 Lock e 479
11.5.4 Flush and Sync 482
11.5.5 Assertions 484
11.5.6 Miscellaneous Clarifications 486

11.6 Error Handling L o 486
11.6.1 Error Handlers 486
11.6.2 Error Classes i i it i e 486

11.7 Semantics and Correctness 487
11.7.1 Atomicity 495
11.7.2 Ordering e 495
11.7.3 Progress 496
11.7.4 Registers and Compiler Optimizations 498

11.8 Examples o Lo 498

x1

12 External Interfaces

12.1
12.2

12.3
12.4

131/0
13.1

13.2

13.3
13.4

13.5

13.6

Introduction
Generalized Requests L
12.2.1 Examples
Associating Information with Status
MPIl and Threads e
12.4.1 General e
12.4.2 Clarificationso
12.4.3 Initialization o

Introduction
13.1.1 Definitions e
File Manipulation
13.2.1 Openinga File
13.2.2 Closing a File
13.2.3 Deletinga File oo
13.2.4 Resizinga File
13.2.5 Preallocating Space fora File
13.2.6 Querying the Sizeof a File
13.2.7 Querying File Parameters
13.2.8 FileInfo

Reserved File Hints
File Views e
Data Access o e
13.4.1 Data Access Routines

Positioning

Synchronism oo

Coordination

Data Access Conventions
13.4.2 Data Access with Explicit Offsets
13.4.3 Data Access with Individual File Pointers
13.4.4 Data Access with Shared File Pointers

Noncollective Operations

Collective Operations

Seek . . . L
13.4.5 Split Collective Data Access Routines
File Interoperability
13.5.1 Datatypes for File Interoperability
13.5.2 External Data Representation: “external32”
13.5.3 User-Defined Data Representations

Extent Callback

Datarep Conversion Functions
13.5.4 Matching Data Representations
Consistency and Semantics
13.6.1 File Consistency
13.6.2 Random Access vs. Sequential Files
13.6.3 Progress

xii

13.6.4 Collective File Operations 582

13.6.5 Nonblocking Collective File Operations 582
13.6.6 Type Matching 583
13.6.7 Miscellaneous Clarifications 583
13.6.8 MPI_Offset Type o 583
13.6.9 Logical vs. Physical File Layout 584
13.6.10File Size 584
13.6.11Exampleso 584
Asynchronous I/O o Lo 587

13.7 I/O Error Handling 589
13.8 T/O Error Classes v v v v i i e 589
13.9 Exampleso 589
13.9.1 Double Buffering with Split Collective I/O 589
13.9.2 Subarray Filetype Constructor 592

14 Tool Support 595
14.1 Introduction Lo 595
14.2 Profiling Interface oo 595
14.2.1 Requirements L Lo 595
14.2.2 Discussion e 596
14.2.3 Logic of the Design 596
14.2.4 Miscellaneous Control of Profiling 597
14.2.5 Profiler Implementation Example L. 598
14.2.6 MPI Library Implementation Example 598
Systems with Weak Symbols 598

Systems Without Weak Symbols 599

14.2.7 Complicationso 599
Multiple Counting L 599

Linker Oddities 600

Fortran Support Methods 600

14.2.8 Multiple Levels of Interception 600

14.3 The MPI Tool Information Interface 601
14.3.1 Verbosity Levels oo 602
14.3.2 Binding MPI Tool Information Interface Variables to MPI Objects . 602
14.3.3 Convention for Returning Strings 603
14.3.4 Initialization and Finalization 604
14.3.5 Datatype System 605
14.3.6 Control Variableso 607
Control Variable Query Functions 607

Example: Printing All Control Variables 610

Handle Allocation and Deallocation 611

Control Variable Access Functions 612

Example: Reading the Value of a Control Variable 613

14.3.7 Performance Variables 614
Performance Variable Classes 614
Performance Variable Query Functions 616
Performance Experiment Sessions 619

Handle Allocation and Deallocation 619

xiii

Starting and Stopping of Performance Variables 621

Performance Variable Access Functions 622

Example: Tool to Detect Receives with Long Unexpected Message
Queues 624
14.3.8 Variable Categorization 626
Category Query Functions 627
Category Member Query Functions 629
14.3.9 Return Codes for the MPI Tool Information Interface 630
14.3.10 Profiling Interface oo 631
15 Deprecated Interfaces 633
15.1 Deprecated since MPI-2.0 oo oo 633
15.2 Deprecated since MPI-2.2 o o 636
15.3 Deprecated since MPI-3.2 Lo oo 636
16 Removed Interfaces 637
16.1 Removed MPI-1 Bindings 637
16.1.1 Overview e 637
16.1.2 Removed MPI-1 Functions 637
16.1.3 Removed MPI-1 Datatypes 637
16.1.4 Removed MPI-1 Constants 637
16.1.5 Removed MPI-1 Callback Prototypes 638
16.2 C++ Bindings 638
17 Backward Incompatibilities 639
17.1 Backward Incompatible since MPI-3.2 639
18 Language Bindings 641
18.1 Fortran Support L L 641
18.1.1 Overview e 641
18.1.2 Fortran Support Through the mpi_f08 Module 642
18.1.3 Fortran Support Through the mpi Module 645
18.1.4 Fortran Support Through the mpif.h Include File 647
18.1.5 Interface Specifications, Procedure Names, and the Profiling Interface 648
18.1.6 MPI for Different Fortran Standard Versions 653
18.1.7 Requirements on Fortran Compilers 657
18.1.8 Additional Support for Fortran Register-Memory-Synchronization . 658
18.1.9 Additional Support for Fortran Numeric Intrinsic Types 659
Parameterized Datatypes with Specified Precision and Exponent Range660
Support for Size-specific MPI Datatypes 663
Communication With Size-specific Types 666
18.1.10 Problems With Fortran Bindings for MPI 667
18.1.11 Problems Due to Strong Typing 669

18.1.12 Problems Due to Data Copying and Sequence Association with Sub-
script Triplets o o L oo 669

18.1.13 Problems Due to Data Copying and Sequence Association with Vector
Subscripts 672
18.1.14 Special Constants 673

Xiv

18.1.15 Fortran Derived Types o 673

18.1.16 Optimization Problems, an Overview 675
18.1.17 Problems with Code Movement and Register Optimization 676
Nonblocking Operations 676
Persistent Operations L. 677
One-sided Communication 677
MPI_BOTTOM and Combining Independent Variables in Datatypes 677
Solutions L 677

The Fortran ASYNCHRONOUS Attribute 679
Calling MPI_F_SYNC_REG 680

A User Defined Routine Instead of MPI_F_SYNC_REG 681
Module Variables and COMMON Blocks 682

The (Poorly Performing) Fortran VOLATILE Attribute 682

The Fortran TARGET Attribute 682
18.1.18 Temporary Data Movement and Temporary Memory Modification . 682
18.1.19 Permanent Data Movement 684
18.1.20 Comparison with C 684
18.2 Language Interoperability o 0o 689
18.2.1 Introduction 689
18.2.2 Assumptions 689
18.2.3 Initialization o 689
18.2.4 Transfer of Handles, 690
18.2.5 Status 692
18.2.6 MPI Opaque Objects i 694
Datatypeso 695
Callback Functions 696

Error Handlers o 696
Reduce Operations o 697

18.2.7 Attributes 697
18.2.8 Extra-State 701
18.2.9 Constants 701
18.2.10 Interlanguage Communication 702
A Language Bindings Summary 705
A.1 Defined Values and Handles 705
A.1.1 Defined Constants 705
AL2 Types . . . oo 718
A.1.3 Prototype Definitions 720
CBindings 720
Fortran 2008 Bindings with the mpi_f08 Module 720
Fortran Bindings with mpif.h or the mpi Module 723

A.1.4 Deprecated Prototype Definitions 725
A15 InmfoKeys o 726
A1.6 Info Values 726
A2 CBindings e 728
A.2.1 Point-to-Point Communication C Bindings 728
A.2.2 Datatypes C Bindings 730
A.2.3 Collective Communication C Bindings 732

XV

A.2.4 Groups, Contexts, Communicators, and Caching C Bindings 736

A.2.5 Process Topologies C Bindings 738
A.2.6 MPI Environmental Management C Bindings 741
A.2.7 The Info Object C Bindings 742
A.2.8 Process Creation and Management C Bindings 743
A.2.9 One-Sided Communications C Bindings 743
A.2.10 External Interfaces C Bindings 745
A211T/0CBIndings« v v vt e 746
A.2.12 Language Bindings C Bindings 748
A.2.13 Tools / Profiling Interface C Bindings 749
A.2.14 Tools / MPI Tool Information Interface C Bindings 750
A.2.15 Deprecated C Bindings 751

A.3 Fortran 2008 Bindings with the mpi_fO8 Module 752
A.3.1 Point-to-Point Communication Fortran 2008 Bindings 752
A.3.2 Datatypes Fortran 2008 Bindings 757
A.3.3 Collective Communication Fortran 2008 Bindings 762
A.3.4 Groups, Contexts, Communicators, and Caching Fortran 2008 Bindings773
A.3.5 Process Topologies Fortran 2008 Bindings 780
A.3.6 MPI Environmental Management Fortran 2008 Bindings 786
A.3.7 The Info Object Fortran 2008 Bindings 789
A.3.8 Process Creation and Management Fortran 2008 Bindings 790
A.3.9 One-Sided Communications Fortran 2008 Bindings 791
A.3.10 External Interfaces Fortran 2008 Bindings 797
A.3.11 1/O Fortran 2008 Bindings 797
A.3.12 Language Bindings Fortran 2008 Bindings 805
A.3.13 Tools / Profiling Interface Fortran 2008 Bindings 806

A.4 Fortran Bindings with mpif.h or the mpi Module 807
A.4.1 Point-to-Point Communication Fortran Bindings 807
A.4.2 Datatypes Fortran Bindings 810
A.4.3 Collective Communication Fortran Bindings 812
A.4.4 Groups, Contexts, Communicators, and Caching Fortran Bindings . 818
A.4.5 Process Topologies Fortran Bindings 822
A.4.6 MPI Environmental Management Fortran Bindings 826
A.4.7 The Info Object Fortran Bindings 828
A.4.8 Process Creation and Management Fortran Bindings 829
A.4.9 One-Sided Communications Fortran Bindings 830
A.4.10 External Interfaces Fortran Bindings 834
A.4.11 I/O Fortran Bindings L. 834
A.4.12 Language Bindings Fortran Bindings 839
A.4.13 Tools / Profiling Interface Fortran Bindings 839
A.4.14 Deprecated Fortran Bindings 0L 840

B Change-Log 841
B.1 Changes from Version 3.1 to Version 3.2 841
B.1.1 Changesin MPI-3.2 841

B.2 Changes from Version 3.0 to Version 3.1 842
B.2.1 Fixes to Errata in Previous Versionsof MPI 842
B.2.2 Changesin MPI-3.1 o 844

xvi

B.3 Changes from Version 2.2 to Version 3.0 845

B.3.1 Fixes to Errata in Previous Versions of MPI 845

B.3.2 Changesin MPI-3.0 846

B.4 Changes from Version 2.1 to Version 2.2 851
B.5 Changes from Version 2.0 to Version 2.1 853
Bibliography 859
General Index 864
Examples Index 869
MPI Constant and Predefined Handle Index 872
MPI Declarations Index 877
MPI Callback Function Prototype Index 878
MPI Function Index 879

xvii

List of Figures

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

6.1
6.2
6.3
6.4

7.1

7.2

7.3

Collective communications, an overview 145
Intercommunicator allgather Lo 0oL 148
Intercommunicator reduce-scatter oL 149
Gather example e 155
Gatherv example with strides 156
Gatherv example, 2-dimensional o000 157
Gatherv example, 2-dimensional, subarrays with different sizes 158
Gatherv example, 2-dimensional, subarrays with different sizes and strides . 160
Scatter example L 165
Scatterv example with strides o000 165
Scatterv example with different strides and counts 166
Race conditions with point-to-point and collective communications 237
Overlapping Communicators Example 241
Intercommunicator creation using MPI_COMM_CREATE 262
Intercommunicator construction with MPI_COMM_SPLIT 266
Three-group pipeline Lo 284
Three-group ring L L 285

Example with a comm_old with 48 processes, ndims=2, dim_weights=(1./4,
1./12), and nsplit_types=2 and split_types, e.g., splitting into ccNUMA nodes

and those into CPUs, and here with 4 cores per CPU and 4 CPUs per node.

The level_comms][i] show this splitting of comm_old into hierarchical subcom-
municators. The renumbering in comm_cart should first minimize the com-
munication A (here, e.g., the communication between the ccNUMA nodes),

then B (here, e.g., the CPU to CPU communication), and last C (here, e.g.,

the core to core communication) o L0 L. 316
Example with 24 shared memory nodes (e.g., ccNUMA nodes), 4 NUMA-
nodes (e.g., CPUs) per node and 8 MPI processes (e.g., on cores) per NUMA-
node. The figure shows the 3-dimensional distribution calculated by
MPI_CART_CREATE_WEIGHTED based on weight values (1/12, 1/16, 1/8). 317
Example for the calculation of the accumulated communication size in each
dimension. The data sizes g; express the three dimensions of the total appli-
cation data mesh. The virtual process grid dimensions are expressed by d;.

The figure shows the division of the total application mesh into its subdo-
mains. The value h; represents the halo width in a given direction when the
2-dimensional side of a subdomain is communicated to the neighbor process

in that direction. L L L 320

7.4

7.5
7.6
7.7

7.8

7.9

11.1

11.2
11.3
11.4
11.5
11.6
11.7
11.8

13.1
13.2
13.3
13.4
13.5

18.1

Communication model: w; should express the accumulated communication
size in a direction of dimension 4, i.e., accumulated over all MPI processes that
are part of the same surface in this direction. The figure to the right shows all
communications in the positive and negative direction of dimension 1. The

communication size of one process in direction i is therefore w;/ I i dy - 321
Neighborhood gather communication example. 344
Set-up of process structure for two-dimensional parallel Poisson solver. . . . 363
Communication routine with local data copying and sparse neighborhood
all-to-all. oL 364
Communication routine with sparse neighborhood all-to-all-w and without

local data copying. L L 365
Two-dimensional parallel Poisson solver with persistent sparse neighborhood
all-to-all-w and without local data copying. 366
Schematic description of the public/private window operations in the
MPI_WIN_SEPARATE memory model for two overlapping windows. 470
Active target communication oL 472
Active target communication, with weak synchronization. 473
Passive target communicationo o000 474
Active target communication with several processes 478
Symmetric communicationo L 496
Deadlock situation Lo Lo 497
Nodeadlock e 497
Etypes and filetypeso 526
Partitioning a file among parallel processes 526
Displacements 539
Example array file layout oL 592
Example local array filetype for process 1 593
Status conversion routineso Lo 693

Xix

© oo ~ =] ot - w

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

List of Tables

2.1

3.1
3.2
3.3
3.4

4.1

6.1

8.1
8.2

11.1

11.2

13.1
13.2
13.3

14.1
14.2
14.3
14.4
14.5

16.1
16.2
16.3
16.4

18.1
18.2

Deprecated and Removed constructs

Predefined MPI datatypes corresponding to Fortran datatypes
Predefined MPI datatypes corresponding to C datatypes
Predefined MPI datatypes corresponding to both C and Fortran datatypes .
Predefined MPI datatypes corresponding to C++ datatypes

combiner values returned from MPI_TYPE_GET_ENVELOPE
MPI_COMM_* Function Behavior (in Inter-Communication Mode)

Error classes (Part 1)
Error classes (Part 2) L

C types of attribute value argument to MPI_WIN_GET_ATTR and

MPI_WIN_SET_ATTR. e

Error classes in one-sided communication routines

Data access routines
“external32” sizes of predefined datatypes
I/O Error Classes o v v i i it i

MPI tool information interface verbosity levels
Constants to identify associations of variables
MPI datatypes that can be used by the MPI tool information interface . . .
Scopes for control variables L
Return codes used in functions of the MPI tool information interface

Removed MPI-1 functions and their replacements
Removed MPI-1 datatypes and their replacements
Removed MPI-1 constants
Removed MPI-1 callback prototypes and their replacements

Specific Fortran procedure names and related calling conventions
Occurrence of Fortran optimization problems

Unofficial Draft for Comment Only

119

280

383
384

541
074
590

602
603
605
609
632

637
638
638
638

649
675

Acknowledgments

This document is the product of a number of distinct efforts in three distinct phases:
one for each of MPI-1, MPI-2, and MPI-3. This section describes these in historical order,
starting with MPI-1. Some efforts, particularly parts of MPI-2, had distinct groups of
individuals associated with them, and these efforts are detailed separately.

This document represents the work of many people who have served on the MPI Forum.
The meetings have been attended by dozens of people from many parts of the world. It is
the hard and dedicated work of this group that has led to the MPI standard.

The technical development was carried out by subgroups, whose work was reviewed
by the full committee. During the period of development of the Message-Passing Interface
(MPI), many people helped with this effort.

Those who served as primary coordinators in MPI-1.0 and MPI-1.1 are:

e Jack Dongarra, David Walker, Conveners and Meeting Chairs

o Ewing Lusk, Bob Knighten, Minutes

e Marc Snir, William Gropp, Ewing Lusk, Point-to-Point Communication
e Al Geist, Marc Snir, Steve Otto, Collective Communication

e Steve Otto, Editor

e Rolf Hempel, Process Topologies

e Ewing Lusk, Language Binding

e William Gropp, Environmental Management

e James Cownie, Profiling

e Tony Skjellum, Lyndon Clarke, Marc Snir, Richard Littlefield, Mark Sears, Groups,
Contexts, and Communicators

e Steven Huss-Lederman, Initial Implementation Subset

The following list includes some of the active participants in the MPI-1.0 and MPI-1.1
process not mentioned above.

Unofficial Draft for Comment Only poel

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Ed Anderson
Scott Berryman
Jim Feeney
Daniel Frye
Leslie Hart
Alex Ho

James Kohl
Peter Madams
Charles Mosher
Paul Pierce
Erich Schikuta
Robert G. Voigt

Robert Babb
Rob Bjornson
Vince Fernando
Tan Glendinning
Tom Haupt

C.T. Howard Ho
Susan Krauss
Alan Mainwaring
Dan Nessett
Sanjay Ranka
Ambuj Singh
Dennis Weeks

Joe Baron
Nathan Doss
Sam Fineberg
Adam Greenberg
Don Heller
Gary Howell
Bob Leary
Oliver McBryan
Peter Pacheco
Peter Rigsbee
Alan Sussman
Stephen Wheat

Eric Barszcz
Anne Elster

Jon Flower
Robert Harrison
Tom Henderson
John Kapenga
Arthur Maccabe
Phil McKinley
Howard Palmer
Arch Robison

Robert Tomlinson

Steve Zenith

The University of Tennessee and Oak Ridge National Laboratory made the draft avail-

able by anonymous FTP mail servers and were instrumental in distributing the document.

The work on the MPI-1 standard was supported in part by ARPA and NSF under grant

ASC-9310330, the National Science Foundation Science and Technology Center Cooperative
Agreement No. CCR-8809615, and by the Commission of the European Community through
Esprit project P6643 (PPPE).

MPI-1.2 and MPI-2.0:

Those who served as primary coordinators in MPI-1.2 and MPI-2.0 are:

Ewing Lusk, Convener and Meeting Chair

Steve Huss-Lederman, Editor

Ewing Lusk, Miscellany

Bill Saphir, Process Creation and Management

Marc Snir, One-Sided Communications

Bill Gropp and Anthony Skjellum, Extended Collective Operations

Steve Huss-Lederman, External Interfaces

Bill Nitzberg, 1/O

Andrew Lumsdaine, Bill Saphir, and Jeff Squyres, Language Bindings

Anthony Skjellum and Arkady Kanevsky, Real-Time

meetings and are not mentioned above.

Unofficial Draft for Comment Only

The following list includes some of the active participants who attended MPI-2 Forum

xxii

Greg Astfalk
Pete Bradley
Eric Brunner
Ying Chen
Lyndon Clarke
Zhengian Cui
Judith Devaney
Terry Dontje
Karl Feind

Tan Foster
Robert George
Leslie Hart
Alex Ho

Karl Kesselman
Steve Landherr

Robert Babb
Peter Brennan
Greg Burns
Albert Cheng Yong Cho
Laurie Costello Dennis Cottel
Suresh Damodaran-Kamal

David DiNucci Doug Doefler
Nathan Doss Anne Elster
Sam Fineberg Craig Fischberg
Hubertus Franke Richard Frost
David Greenberg John Hagedorn
Shane Hebert Rolf Hempel
Hans-Christian Hoppe Joefon Jann
Koichi Konishi Susan Kraus
Mario Lauria Mark Law

Ed Benson
Ron Brightwell
Margaret Cahir

Lloyd Lewins Ziyang Lu Bob Madahar
John May Oliver McBryan Brian McCandless
Thom McMahon Harish Nag Nick Nevin

Ron Oldfield Peter Ossadnik Steve Otto

Yoonho Park
Paul Pierce
James Pruyve

Perry Partow Pratap Pattnaik

Heidi Poxon

Rolf Rabenseifner Joe Rieken

Tom Robey Anna Rounbehler Nobutoshi Sagawa
Eric Salo Darren Sanders Eric Sharakan
Fred Shirley Lance Shuler A. Gordon Smith
David Taylor Stephen Taylor Greg Tensa
Marydell Tholburn Dick Treumann Simon Tsang
David Walker Jerrell Watts Klaus Wolf

Dave Wright

The MPI Forum also acknowledges and appreciates the valuable input from people via

e-mail and in person.

The following institutions supported the MPI-2 effort through time and travel support

for the people listed above.

Argonne National Laboratory

Bolt, Beranek, and Newman
California Institute of Technology
Center for Computing Sciences
Convex Computer Corporation

Cray Research

Digital Equipment Corporation
Dolphin Interconnect Solutions, Inc.
Edinburgh Parallel Computing Centre
General Electric Company

German National Research Center for Information Technology

Hewlett-Packard
Hitachi
Hughes Aircraft Company

Unofficial Draft for Comment Only

Jean-Pierre Prost

Rajesh Bordawekar
Maciej Brodowicz
Pang Chen

Joel Clark

Jim Cownie

Raja Daoud

Jack Dongarra
Mark Fallon
Stephen Fleischman
Al Geist

Kei Harada

Tom Henderson
Terry Jones
Steve Kubica
Juan Leon

Peter Madams
Tyce McLarty
Jarek Nieplocha
Peter Pacheco
Elsie Pierce

Boris Protopopov
Peter Rigsbee
Arindam Saha
Andrew Sherman
Tan Stockdale
Rajeev Thakur
Manuel Ujaldon
Parkson Wong

xxiil

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Intel Corporation

International Business Machines

Khoral Research

Lawrence Livermore National Laboratory

Los Alamos National Laboratory

MPI Software Techology, Inc.

Mississippi State University

NEC Corporation

National Aeronautics and Space Administration
National Energy Research Scientific Computing Center
National Institute of Standards and Technology
National Oceanic and Atmospheric Adminstration
Oak Ridge National Laboratory

The Ohio State University

PALLAS GmbH

Pacific Northwest National Laboratory

Pratt & Whitney

San Diego Supercomputer Center

Sanders, A Lockheed-Martin Company

Sandia National Laboratories

Schlumberger

Scientific Computing Associates, Inc.

Silicon Graphics Incorporated

Sky Computers

Sun Microsystems Computer Corporation
Syracuse University

The MITRE Corporation

Thinking Machines Corporation

United States Navy

University of Colorado

University of Denver

University of Houston

University of Illinois

University of Maryland

University of Notre Dame

University of San Fransisco

University of Stuttgart Computing Center
University of Wisconsin

MPI-2 operated on a very tight budget (in reality, it had no budget when the first
meeting was announced). Many institutions helped the MPI-2 effort by supporting the
efforts and travel of the members of the MP| Forum. Direct support was given by NSF and
DARPA under NSF contract CDA-9115428 for travel by U.S. academic participants and
Esprit under project HPC Standards (21111) for European participants.

Unofficial Draft for Comment Only xxiv

MPI-1.3 and MPI-2.1:

The
[}

editors and organizers of the combined documents have been:
Richard Graham, Convener and Meeting Chair
Jack Dongarra, Steering Committee
Al Geist, Steering Committee
Bill Gropp, Steering Committee
Rainer Keller, Merge of MPI-1.3
Andrew Lumsdaine, Steering Committee

Ewing Lusk, Steering Committee, MPI-1.1-Errata (Oct. 12, 1998) MPI-2.1-Errata
Ballots 1, 2 (May 15, 2002)

Rolf Rabenseifner, Steering Committee, Merge of MPI-2.1 and MPI-2.1-Errata Ballots
3, 4 (2008)

All chapters have been revisited to achieve a consistent MPI-2.1 text. Those who served

as authors for the necessary modifications are:

Bill Gropp, Front matter, Introduction, and Bibliography
Richard Graham, Point-to-Point Communication

Adam Moody, Collective Communication

Richard Treumann, Groups, Contexts, and Communicators

Jesper Larsson Traff, Process Topologies, Info-Object, and One-Sided Communica-
tions

George Bosilca, Environmental Management

David Solt, Process Creation and Management

Bronis R. de Supinski, External Interfaces, and Profiling

Rajeev Thakur, I/O

Jeffrey M. Squyres, Language Bindings and MPI-2.1 Secretary
Rolf Rabenseifner, Deprecated Functions and Annex Change-Log
Alexander Supalov and Denis Nagorny, Annex Language Bindings

The following list includes some of the active participants who attended MPI-2 Forum

meetings and in the e-mail discussions of the errata items and are not mentioned above.

Unofficial Draft for Comment Only XXV

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Pavan Balaji
Richard Barrett
Gil Bloch
Darius Buntinas
Terry Dontje
Karl Feind
David Gingold
Robert Harrison
Torsten Hoefler
Matthew Koop
Miron Livny
Avneesh Pant
Craig Rasmussen Hubert Ritzdorf
Tony Skjellum Brian Smith
Jesper Larsson Traff Keith Underwood

Purushotham V. Bangalore
Christian Bell

Ron Brightwell
Jonathan Carter
Gabor Dozsa

Edgar Gabriel

Dave Goodell
Thomas Herault
Joshua Hursey
Quincey Koziol
Kannan Narasimhan
Steve Poole

Brian Barrett
Robert Blackmore
Jeffrey Brown
Nathan DeBardeleben
Edric Ellis

Patrick Geoffray
Erez Haba

Steve Hodson
Yann Kalemkarian
Sameer Kumar
Mark Pagel
Howard Pritchard
Rob Ross

Vinod Tipparaju

The MPI Forum also acknowledges and appreciates the valuable input from people via

e-mail and in person.

The following institutions supported the MPI-2 effort through time and travel support

for the people listed above.

Argonne National Laboratory
Bull

Cisco Systems, Inc.

Cray Inc.

The HDF Group
Hewlett-Packard

IBM T.J. Watson Research
Indiana University

Institut National de Recherche en Informatique et Automatique (INRIA)

Intel Corporation

Lawrence Berkeley National Laboratory
Lawrence Livermore National Laboratory
Los Alamos National Laboratory
Mathworks

Mellanox Technologies

Microsoft

Myricom

NEC Laboratories Europe, NEC Europe Ltd.
Oak Ridge National Laboratory

The Ohio State University

Pacific Northwest National Laboratory
QLogic Corporation

Sandia National Laboratories

SiCortex

Silicon Graphics Incorporated

Sun Microsystems, Inc.

University of Alabama at Birmingham
University of Houston

Unofficial Draft for Comment Only

XXVi

University of Illinois at Urbana-Champaign

University of Stuttgart, High Performance Computing Center Stuttgart (HLRS)
University of Tennessee, Knoxville

University of Wisconsin

Funding for the MPI Forum meetings was partially supported by award #CCF-0816909

from the National Science Foundation. In addition, the HDF Group provided travel support
for one U.S. academic.

MPI-2.2:

All chapters have been revisited to achieve a consistent MPI-2.2 text. Those who served as
authors for the necessary modifications are:

William Gropp, Front matter, Introduction, and Bibliography; MPI-2.2 chair.
Richard Graham, Point-to-Point Communication and Datatypes

Adam Moody, Collective Communication

Torsten Hoefler, Collective Communication and Process Topologies

Richard Treumann, Groups, Contexts, and Communicators

Jesper Larsson Traff, Process Topologies, Info-Object and One-Sided Communications
George Bosilca, Datatypes and Environmental Management

David Solt, Process Creation and Management

Bronis R. de Supinski, External Interfaces, and Profiling

Rajeev Thakur, I/O

Jeffrey M. Squyres, Language Bindings and MPI-2.2 Secretary

Rolf Rabenseifner, Deprecated Functions, Annex Change-Log, and Annex Language
Bindings

Alexander Supalov, Annex Language Bindings

The following list includes some of the active participants who attended MPI-2 Forum

meetings and in the e-mail discussions of the errata items and are not mentioned above.

Unofficial Draft for Comment Only xxvil

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Pavan Balaji

Richard Barrett

Gil Bloch

Jeff Brown

Nathan DeBardeleben

Purushotham V. Bangalore
Christian Bell

Ron Brightwell

Darius Buntinas

Terry Dontje

Brian Barrett
Robert Blackmore
Greg Bronevetsky
Jonathan Carter
Gabor Dozsa

6 Edric Ellis Karl Feind Edgar Gabriel
7 Patrick Geoffray Johann George David Gingold
8 David Goodell Erez Haba Robert Harrison

10

11

12

13

Thomas Herault
Joshua Hursey
Hideyuki Jitsumoto
Ranier Keller
Manojkumar Krishnan

Marc-André Hermanns
Yutaka Ishikawa

Terry Jones

Matthew Koop
Sameer Kumar

Steve Hodson

Bin Jia

Yann Kalemkarian
Quincey Koziol
Miron Livny

14 Andrew Lumsdaine Miao Luo Ewing Lusk

15 Timothy I. Mattox Kannan Narasimhan Mark Pagel

16 Avneesh Pant Steve Poole Howard Pritchard
17 Craig Rasmussen Hubert Ritzdorf Rob Ross

20

Martin Schulz
Christian Siebert
Naoki Sueyasu

Pavel Shamis
Anthony Skjellum
Vinod Tipparaju

Galen Shipman
Brian Smith
Keith Underwood

21 Rolf Vandevaart Abhinav Vishnu Weikuan Yu
22

23 The MPI Forum also acknowledges and appreciates the valuable input from people via
24 e-mail and in person.

25 The following institutions supported the MPI-2.2 effort through time and travel support
26 for the people listed above.

2z Argonne National Laboratory

28 Auburn University

2 Bull

30 Cisco Systems, Inc.

31 Cray Inc.

32 Forschungszentrum Jiilich

33 Fujitsu

34 The HDF Group

35 Hewlett-Packard

36 International Business Machines

37 Indiana University

38 Institut National de Recherche en Informatique et Automatique (INRIA)
39 Institute for Advanced Science & Engineering Corporation

40 Intel Corporation

41 Lawrence Berkeley National Laboratory

42 Lawrence Livermore National Laboratory

43 Los Alamos National Laboratory

a4 Mathworks

45 Mellanox Technologies

46 Microsoft

47 Myricom

48 NEC Corporation

Unofficial Draft for Comment Only xxviil

and

Oak Ridge National Laboratory

The Ohio State University

Pacific Northwest National Laboratory
QLogic Corporation

RunTime Computing Solutions, LLC
Sandia National Laboratories

SiCortex, Inc.

Silicon Graphics Inc.

Sun Microsystems, Inc.

Tokyo Institute of Technology

University of Alabama at Birmingham
University of Houston

University of Illinois at Urbana-Champaign
University of Stuttgart, High Performance Computing Center Stuttgart (HLRS)
University of Tennessee, Knoxville
University of Tokyo

University of Wisconsin

Funding for the MPI Forum meetings was partially supported by awards #CCF-0816909
#CCF-1144042 from the National Science Foundation. In addition, the HDF Group

provided travel support for one U.S. academic.

MPI-3.0:
MPI-3.0 is a signficant effort to extend and modernize the MPI Standard.

The

editors and organizers of the MPI-3.0 have been:

William Gropp, Steering committee, Front matter, Introduction, Groups, Contexts,
and Communicators, One-Sided Communications, and Bibliography

Richard Graham, Steering committee, Point-to-Point Communication, Meeting Con-
vener, and MPI-3.0 chair

Torsten Hoefler, Collective Communication, One-Sided Communications, and Process
Topologies

George Bosilca, Datatypes and Environmental Management
David Solt, Process Creation and Management

Bronis R. de Supinski, External Interfaces and Tool Support
Rajeev Thakur, I/O and One-Sided Communications

Darius Buntinas, Info Object

Jeffrey M. Squyres, Language Bindings and MPI-3.0 Secretary

Rolf Rabenseifner, Steering committee, Terms and Definitions, and Fortran Bindings,
Deprecated Functions, Annex Change-Log, and Annex Language Bindings

Craig Rasmussen, Fortran Bindings

Unofficial Draft for Comment Only XXX

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

The following list includes some of the active participants who attended MPI-3 Forum

Tatsuya Abe

Reinhold Bader

Brian Barrett
Aurelien Bouteiller
Jed Brown

Arno Candel
Raghunath Raja Chandrasekar
Edgar Gabriel

David Goodell

Jeff Hammond
Jennifer Herrett-Skjellum
Joshua Hursey

Nysal Jan

Yann Kalemkarian
Chulho Kim

Alice Koniges
Manojkumar Krishnan
Jay Lofstead

Miao Luo

Nick M. Maclaren
Scott McMillan

Tim Murray

Steve Oyanagi
Sreeram Potluri
Hubert Ritzdorf
Martin Schulz
Anthony Skjellum
Raffaele Giuseppe Solca
Sayantan Sur

Vinod Tipparaju
Keith Underwood
Abhinav Vishnu

Tomoya Adachi
Pavan Balaji
Richard Barrett
Ron Brightwell
Darius Buntinas
George Carr
James Dinan
Balazs Gerofi
Manjunath Gorentla
Thomas Herault
Nathan Hjelm
Marty Itzkowitz
Bin Jia

Krishna Kandalla
Dries Kimpe
Quincey Koziol
Sameer Kumar
Bill Long

Ewing Lusk
Amith Mamidala
Douglas Miller
Tomotake Nakamura
Mark Pagel
Howard Pritchard
Kuninobu Sasaki
Gilad Shainer
Brian Smith
Shinji Sumimoto
Masamichi Takagi
Jesper Larsson Traff
Rolf Vandevaart
Min Xie

meetings or participated in the e-mail discussions and who are not mentioned above.

Sadaf Alam
Purushotham V. Bangalore
Robert Blackmore
Greg Bronevetsky
Devendar Bureddy
Mohamad Chaarawi
Terry Dontje

Brice Goglin

Erez Haba
Marc-André Hermanns
Atsushi Hori

Yutaka Ishikawa
Hideyuki Jitsumoto
Takahiro Kawashima
Christof Klausecker
Dieter Kranzlmueller
Eric Lantz

Andrew Lumsdaine
Adam Moody
Guillaume Mercier
Kathryn Mohror
Takeshi Nanri
Swann Perarnau
Rolf Riesen

Timo Schneider
Christian Siebert
Marc Snir
Alexander Supalov
Fabian Tillier
Richard Treumann
Anh Vo

Engiang Zhou

The MPI Forum also acknowledges and appreciates the valuable input from people via

e-mail and in person.

The MPI Forum also thanks those that provided feedback during the public comment
period. In particular, the Forum would like to thank Jeremiah Wilcock for providing detailed
comments on the entire draft standard.

The following institutions supported the MPI-3 effort through time and travel support
for the people listed above.

Argonne National Laboratory
Bull
Cisco Systems, Inc.

Cray Inc.
CSCS

Unofficial Draft for Comment Only XXX

ETH Zurich

Fujitsu Ltd.

German Research School for Simulation Sciences

The HDF Group

Hewlett-Packard

International Business Machines

IBM India Private Ltd

Indiana University

Institut National de Recherche en Informatique et Automatique (INRIA)
Institute for Advanced Science & Engineering Corporation
Intel Corporation

Lawrence Berkeley National Laboratory

Lawrence Livermore National Laboratory

Los Alamos National Laboratory

Mellanox Technologies, Inc.

Microsoft Corporation

NEC Corporation

National Oceanic and Atmospheric Administration, Global Systems Division
NVIDIA Corporation

Oak Ridge National Laboratory

The Ohio State University

Oracle America

Platform Computing

RIKEN AICS

RunTime Computing Solutions, LLC

Sandia National Laboratories

Technical University of Chemnitz

Tokyo Institute of Technology

University of Alabama at Birmingham

University of Chicago

University of Houston

University of Illinois at Urbana-Champaign

University of Stuttgart, High Performance Computing Center Stuttgart (HLRS)
University of Tennessee, Knoxville

University of Tokyo

Funding for the MPI Forum meetings was partially supported by awards #CCF-0816909

and #CCF-1144042 from the National Science Foundation. In addition, the HDF Group
and Sandia National Laboratories provided travel support for one U.S. academic each.
MPI-3.1:

MPI-3.1 is a minor update to the MPI Standard.
The editors and organizers of the MPI-3.1 have been:

e Martin Schulz, MPI-3.1 chair

e William Gropp, Steering committee, Front matter, Introduction, One-Sided Commu-
nications, and Bibliography; Overall editor

Unofficial Draft for Comment Only XxXX1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Rolf Rabenseifner, Steering committee, Terms and Definitions, and Fortran Bindings,
Deprecated Functions, Annex Change-Log, and Annex Language Bindings

Richard L. Graham, Steering committee, Meeting Convener

Jeffrey M. Squyres, Language Bindings and MPI-3.1 Secretary

Daniel Holmes, Point-to-Point Communication

George Bosilca, Datatypes and Environmental Management

Torsten Hoefler, Collective Communication and Process Topologies

Pavan Balaji, Groups, Contexts, and Communicators, and External Interfaces

Jeff Hammond, The Info Object

David Solt, Process Creation and Management

Quincey Koziol, I/O

Kathryn Mohror, Tool Support

Rajeev Thakur, One-Sided Communications

meetings or participated in the e-mail discussions.

Charles Archer
Brian Barrett
George Bosilca
Yohann Burette
James Dinan
Edgar Gabriel
Paddy Gillies
Richard L. Graham
Khaled Hamidouche
Marc-André Hermanns
Daniel Holmes
Hideyuki Jitsumoto
Christos Kavouklis
Michael Knobloch
Sameer Kumar
Huiwei Lu

Adam Moody
Steve Oyanagi
Howard Pritchard
Ken Raffenetti
Davide Rossetti
Sangmin Seo

Brian Smith

Pavan Balaji
Wesley Bland
Aurelien Bouteiller
Mohamad Chaarawi
Dmitry Durnov
Todd Gamblin
David Goodell
Ryan E. Grant

Jeff Hammond
Nathan Hjelm
Atsushi Hori

Jithin Jose
Takahiro Kawashima
Alice Koniges
Joshua Ladd
Guillaume Mercier
Tomotake Nakamura
Antonio J. Péna
Rolf Rabenseifner
Raghunath Raja
Kento Sato
Christian Siebert
David Solt

Purushotham V. Bangalore
Michael Blocksome
Devendar Bureddy
Alexey Cheptsov
Thomas Francois
Balazs Gerofi
Manjunath Gorentla Venkata
William Gropp
Amin Hassani
Torsten Hoefler
Yutaka Ishikawa
Krishna Kandalla
Chulho Kim
Quincey Koziol
Ignacio Laguna
Kathryn Mohror
Takeshi Nanri
Sreeram Potluri
Nicholas Radcliffe
Craig Rasmussen
Martin Schulz
Anthony Skjellum
Jeffrey M. Squyres

Unofficial Draft for Comment Only

The following list includes some of the active participants who attended MPI Forum

Xxx11

Hari Subramoni Shinji Sumimoto Alexander Supalov

Bronis R. de Supinski Sayantan Sur Masamichi Takagi
Keita Teranishi Rajeev Thakur Fabian Tillier
Yuichi Tsujita Geoffroy Vallée Rolf vandeVaart
Akshay Venkatesh Jerome Vienne Venkat Vishwanath
Anh Vo Huseyin S. Yildiz Junchao Zhang
Xin Zhao

The MPI Forum also acknowledges and appreciates the valuable input from people via

e-mail and in person.

The following institutions supported the MPI-3.1 effort through time and travel support

for the people listed above.

Argonne National Laboratory

Auburn University

Cisco Systems, Inc.

Cray

EPCC, The University of Edinburgh

ETH Zurich

Forschungszentrum Jiilich

Fujitsu

German Research School for Simulation Sciences
The HDF Group

International Business Machines

INRIA

Intel Corporation

Jillich Aachen Research Alliance, High-Performance Computing (JARA-HPC)
Kyushu University

Lawrence Berkeley National Laboratory
Lawrence Livermore National Laboratory
Lenovo

Los Alamos National Laboratory

Mellanox Technologies, Inc.

Microsoft Corporation

NEC Corporation

NVIDIA Corporation

Oak Ridge National Laboratory

The Ohio State University

RIKEN AICS

Sandia National Laboratories

Texas Advanced Computing Center

Tokyo Institute of Technology

University of Alabama at Birmingham
University of Houston

University of Illinois at Urbana-Champaign
University of Oregon

University of Stuttgart, High Performance Computing Center Stuttgart (HLRS)
University of Tennessee, Knoxville
University of Tokyo

Unofficial Draft for Comment Only xxxiii

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 1

Introduction to MPI

1.1 Overview and Goals

MPI (Message-Passing Interface) is a message-passing library interface specification. All
parts of this definition are significant. MPI addresses primarily the message-passing parallel
programming model, in which data is moved from the address space of one process to
that of another process through cooperative operations on each process. Extensions to the
“classical” message-passing model are provided in collective operations, remote-memory
access operations, dynamic process creation, and parallel I/O. MPI is a specification, not
an implementation; there are multiple implementations of MPI. This specification is for a
library interface; MPI is not a language, and all MPI operations are expressed as functions,
subroutines, or methods, according to the appropriate language bindings which, for C and
Fortran, are part of the MPI standard. The standard has been defined through an open
process by a community of parallel computing vendors, computer scientists, and application
developers. The next few sections provide an overview of the history of MPI’s development.

The main advantages of establishing a message-passing standard are portability and
ease of use. In a distributed memory communication environment in which the higher level
routines and/or abstractions are built upon lower level message-passing routines the benefits
of standardization are particularly apparent. Furthermore, the definition of a message-
passing standard, such as that proposed here, provides vendors with a clearly defined base
set of routines that they can implement efficiently, or in some cases for which they can
provide hardware support, thereby enhancing scalability.

The goal of the Message-Passing Interface simply stated is to develop a widely used
standard for writing message-passing programs. As such the interface should establish a
practical, portable, efficient, and flexible standard for message passing.

A complete list of goals follows.

e Design an application programming interface (not necessarily for compilers or a system
implementation library).

e Allow efficient communication: Avoid memory-to-memory copying, allow overlap of
computation and communication, and offload to communication co-processors, where
available.

e Allow for implementations that can be used in a heterogeneous environment.

e Allow convenient C and Fortran bindings for the interface.

Unofficial Draft for Comment Only 1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2 CHAPTER 1. INTRODUCTION TO MPI

e Assume a reliable communication interface: the user need not cope with communica-
tion failures. Such failures are dealt with by the underlying communication subsystem.

Define an interface that can be implemented on many vendor’s platforms, with no
significant changes in the underlying communication and system software.

Semantics of the interface should be language independent.

The interface should be designed to allow for thread safety.

1.2 Background of MPI-1.0

MPI sought to make use of the most attractive features of a number of existing message-
passing systems, rather than selecting one of them and adopting it as the standard. Thus,
MPI was strongly influenced by work at the IBM T. J. Watson Research Center [1, 2],
Intel’s NX/2 [52], Express [13], nCUBE’s Vertex [47], p4 [8, 9], and PARMACS 5, 10].
Other important contributions have come from Zipcode [55, 56], Chimp [20, 21|, PVM
[4, 18], Chameleon [28], and PICL [26].

The MPI standardization effort involved about 60 people from 40 organizations mainly
from the United States and Europe. Most of the major vendors of concurrent computers
were involved in MPI, along with researchers from universities, government laboratories, and
industry. The standardization process began with the Workshop on Standards for Message-
Passing in a Distributed Memory Environment, sponsored by the Center for Research on
Parallel Computing, held April 29-30, 1992, in Williamsburg, Virginia [63]. At this workshop
the basic features essential to a standard message-passing interface were discussed, and a
working group established to continue the standardization process.

A preliminary draft proposal, known as MPI-1, was put forward by Dongarra, Hempel,
Hey, and Walker in November 1992, and a revised version was completed in February
1993 [19]. MPI-1 embodied the main features that were identified at the Williamsburg
workshop as being necessary in a message passing standard. Since MPI-1 was primarily
intended to promote discussion and “get the ball rolling,” it focused mainly on point-to-point
communications. MPI-1 brought to the forefront a number of important standardization
issues, but did not include any collective communication routines and was not thread-safe.

In November 1992, a meeting of the MPI| working group was held in Minneapolis, at
which it was decided to place the standardization process on a more formal footing, and to
generally adopt the procedures and organization of the High Performance Fortran Forum.
Subcommittees were formed for the major component areas of the standard, and an email
discussion service established for each. In addition, the goal of producing a draft MPI
standard by the Fall of 1993 was set. To achieve this goal the MPI working group met every
6 weeks for two days throughout the first 9 months of 1993, and presented the draft MPI
standard at the Supercomputing 93 conference in November 1993. These meetings and the
email discussion together constituted the MPI Forum, membership of which has been open
to all members of the high performance computing community.

1.3 Background of MPI-1.1, MPI-1.2, and MPI-2.0

Beginning in March 1995, the MPI| Forum began meeting to consider corrections and exten-
sions to the original MPI Standard document [23]. The first product of these deliberations

Unofficial Draft for Comment Only

1.4. BACKGROUND OF MPI-1.3 AND MPI-2.1 3

was Version 1.1 of the MPI specification, released in June of 1995 [24] (see
http://www.mpi-forum.org for official MPI document releases). At that time, effort fo-
cused in five areas.

1. Further corrections and clarifications for the MPI-1.1 document.

2. Additions to MPI-1.1 that do not significantly change its types of functionality (new
datatype constructors, language interoperability, etc.).

3. Completely new types of functionality (dynamic processes, one-sided communication,
parallel I/O, etc.) that are what everyone thinks of as “MPI-2 functionality.”

4. Bindings for Fortran 90 and C+4. MPI-2 specifies C++ bindings for both MPI-1 and
MPI-2 functions, and extensions to the Fortran 77 binding of MPI-1 and MPI-2 to
handle Fortran 90 issues.

5. Discussions of areas in which the MPI process and framework seem likely to be useful,
but where more discussion and experience are needed before standardization (e.g.,
zero-copy semantics on shared-memory machines, real-time specifications).

Corrections and clarifications (items of type 1 in the above list) were collected in Chap-
ter 3 of the MPI-2 document: “Version 1.2 of MPI.” That chapter also contains the function
for identifying the version number. Additions to MPI-1.1 (items of types 2, 3, and 4 in the
above list) are in the remaining chapters of the MPI-2 document, and constitute the specifi-
cation for MPI-2. Items of type 5 in the above list have been moved to a separate document,
the “MPI Journal of Development” (JOD), and are not part of the MPI-2 Standard.

This structure makes it easy for users and implementors to understand what level of
MPI compliance a given implementation has:

e MPI-1 compliance will mean compliance with MPI-1.3. This is a useful level of com-
pliance. It means that the implementation conforms to the clarifications of MPI-1.1
function behavior given in Chapter 3 of the MPI-2 document. Some implementations
may require changes to be MPI-1 compliant.

e MPI-2 compliance will mean compliance with all of MPI-2.1.
e The MPI Journal of Development is not part of the MPI Standard.

It is to be emphasized that forward compatibility is preserved. That is, a valid MPI-1.1
program is both a valid MPI-1.3 program and a valid MPI-2.1 program, and a valid MPI-1.3
program is a valid MPI-2.1 program.

1.4 Background of MPI-1.3 and MPI-2.1

After the release of MPI-2.0, the MPI Forum kept working on errata and clarifications for
both standard documents (MPI-1.1 and MPI-2.0). The short document “Errata for MPI-1.1"
was released October 12, 1998. On July 5, 2001, a first ballot of errata and clarifications for
MPI-2.0 was released, and a second ballot was voted on May 22, 2002. Both votes were done
electronically. Both ballots were combined into one document: “Errata for MPI-2,” May
15, 2002. This errata process was then interrupted, but the Forum and its e-mail reflectors
kept working on new requests for clarification.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

http://www.mpi-forum.org

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 CHAPTER 1. INTRODUCTION TO MPI

Restarting regular work of the MPI Forum was initiated in three meetings, at Fu-
roPVM/MPT’06 in Bonn, at EuroPVM/MPT’07 in Paris, and at SC’07 in Reno. In De-
cember 2007, a steering committee started the organization of new MPI| Forum meetings at
regular 8-weeks intervals. At the January 14-16, 2008 meeting in Chicago, the MPI Forum
decided to combine the existing and future MP| documents to one document for each ver-
sion of the MPI standard. For technical and historical reasons, this series was started with
MPI-1.3. Additional Ballots 3 and 4 solved old questions from the errata list started in 1995
up to new questions from the last years. After all documents (MPI-1.1, MPI-2, Errata for
MPI-1.1 (Oct. 12, 1998), and MPI-2.1 Ballots 1-4) were combined into one draft document,
for each chapter, a chapter author and review team were defined. They cleaned up the
document to achieve a consistent MPI-2.1 document. The final MPI-2.1 standard document
was finished in June 2008, and finally released with a second vote in September 2008 in
the meeting at Dublin, just before EuroPVM/MPT’08. The major work of the current MPI
Forum is the preparation of MPI-3.

1.5 Background of MPI-2.2

MPI-2.2 is a minor update to the MPI-2.1 standard. This version addresses additional errors
and ambiguities that were not corrected in the MPI-2.1 standard as well as a small number
of extensions to MPI-2.1 that met the following criteria:

e Any correct MPI-2.1 program is a correct MPI-2.2 program.
e Any extension must have significant benefit for users.

e Any extension must not require significant implementation effort. To that end, all
such changes are accompanied by an open source implementation.

The discussions of MPI-2.2 proceeded concurrently with the MPI-3 discussions; in some
cases, extensions were proposed for MPI-2.2 but were later moved to MPI-3.

1.6 Background of MPI-3.0

MPI-3.0 is a major update to the MPI standard. The updates include the extension of
collective operations to include nonblocking versions, extensions to the one-sided operations,
and a new Fortran 2008 binding. In addition, the deprecated C++ bindings have been
removed, as well as many of the deprecated routines and MPI objects (such as the MPI_UB
datatype).

1.7 Background of MPI-3.1

MPI-3.1 is a minor update to the MPI standard. Most of the updates are corrections
and clarifications to the standard, especially for the Fortran bindings. New functions added
include routines to manipulate MPI_Aint values in a portable manner, nonblocking collective
I/O routines, and routines to get the index value by name for MPI_T performance and
control variables. A general index was also added.

Unofficial Draft for Comment Only

1.8. WHO SHOULD USE THIS STANDARD?)

1.8 Who Should Use This Standard?

This standard is intended for use by all those who want to write portable message-passing
programs in Fortran and C (and access the C bindings from C++). This includes individual
application programmers, developers of software designed to run on parallel machines, and
creators of environments and tools. In order to be attractive to this wide audience, the
standard must provide a simple, easy-to-use interface for the basic user while not seman-
tically precluding the high-performance message-passing operations available on advanced
machines.

1.9 What Platforms Are Targets for Implementation?

The attractiveness of the message-passing paradigm at least partially stems from its wide
portability. Programs expressed this way may run on distributed-memory multiprocessors,
networks of workstations, and combinations of all of these. In addition, shared-memory
implementations, including those for multi-core processors and hybrid architectures, are
possible. The paradigm will not be made obsolete by architectures combining the shared-
and distributed-memory views, or by increases in network speeds. It thus should be both
possible and useful to implement this standard on a great variety of machines, including
those “machines” consisting of collections of other machines, parallel or not, connected by
a communication network.

The interface is suitable for use by fully general MIMD programs, as well as those writ-
ten in the more restricted style of SPMD. MPI provides many features intended to improve
performance on scalable parallel computers with specialized interprocessor communication
hardware. Thus, we expect that native, high-performance implementations of MPI will be
provided on such machines. At the same time, implementations of MPI on top of stan-
dard Unix interprocessor communication protocols will provide portability to workstation
clusters and heterogenous networks of workstations.

1.10 What Is Included in the Standard?

The standard includes:

e Point-to-point communication,

e Datatypes,

e Collective operations,

e Process groups,

e Communication contexts,

e Process topologies,

e Environmental management and inquiry,
e The Info object,

e Process creation and management,

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6 CHAPTER 1. INTRODUCTION TO MPI

One-sided communication,

External interfaces,

Parallel file I/0,

Language bindings for Fortran and C,

Tool support.

1.11 What Is Not Included in the Standard?
The standard does not specify:

e Operations that require more operating system support than is currently standard;
for example, interrupt-driven receives, remote execution, or active messages,

e Program construction tools,

e Debugging facilities.

There are many features that have been considered and not included in this standard.
This happened for a number of reasons, one of which is the time constraint that was self-
imposed in finishing the standard. Features that are not included can always be offered as
extensions by specific implementations. Perhaps future versions of MPI| will address some
of these issues.

1.12 Organization of This Document

The following is a list of the remaining chapters in this document, along with a brief
description of each.

e Chapter 2, MP| Terms and Conventions, explains notational terms and conventions
used throughout the MPI document.

e Chapter 3, Point-to-Point Communication, defines the basic, pairwise communication
subset of MPI. Send and receive are found here, along with many associated functions
designed to make basic communication powerful and efficient.

e Chapter 4, Datatypes, defines a method to describe any data layout, e.g., an array of
structures in the memory, which can be used as message send or receive buffer.

e Chapter 5, Collective Communication, defines process-group collective communication
operations. Well known examples of this are barrier and broadcast over a group of
processes (not necessarily all the processes). With MPI-2, the semantics of collective
communication was extended to include intercommunicators. It also adds two new
collective operations. MPI-3 adds nonblocking collective operations.

e Chapter 6, Groups, Contexts, Communicators, and Caching, shows how groups of pro-
cesses are formed and manipulated, how unique communication contexts are obtained,
and how the two are bound together into a communicator.

Unofficial Draft for Comment Only

1.12.

ORGANIZATION OF THIS DOCUMENT 7

Chapter 7, Process Topologies, explains a set of utility functions meant to assist in
the mapping of process groups (a linearly ordered set) to richer topological structures
such as multi-dimensional grids.

Chapter 8, MPI| Environmental Management, explains how the programmer can man-
age and make inquiries of the current MP| environment. These functions are needed
for the writing of correct, robust programs, and are especially important for the con-
struction of highly-portable message-passing programs.

Chapter 9, The Info Object, defines an opaque object, that is used as input in several
MPI routines.

Chapter 10, Process Creation and Management, defines routines that allow for cre-
ation of processes.

Chapter 11, One-Sided Communications, defines communication routines that can be
completed by a single process. These include shared-memory operations (put/get)
and remote accumulate operations.

Chapter 12, External Interfaces, defines routines designed to allow developers to layer
on top of MPI. This includes generalized requests, routines that decode MPI opaque
objects, and threads.

Chapter 13, I/0, defines MPI support for parallel I/O.

Chapter 14, Tool Support, covers interfaces that allow debuggers, performance ana-
lyzers, and other tools to obtain data about the operation of MPI processes. This
chapter includes Section 14.2 (Profiling Interface), which was a chapter in previous
versions of MPI.

Chapter 15, Deprecated Interfaces, describes routines that are kept for reference.
However usage of these functions is discouraged, as they may be deleted in future
versions of the standard.

Chapter 16, Removed Interfaces, describes routines and constructs that have been
removed from MPI. These were deprecated in MPI-2, and the MPI Forum decided to
remove these from the MPI-3 standard.

Chapter 17, Backward Incompatibilities, describes incompatibilities with previous ver-
sions of MPI.

Chapter 18, Language Bindings, discusses Fortran issues, and describes language in-
teroperability aspects between C and Fortran.

The Appendices are:

Annex A, Language Bindings Summary, gives specific syntax in C and Fortran, for
all MPI functions, constants, and types.

Annex B, Change-Log, summarizes some changes since the previous version of the
standard.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8 CHAPTER 1. INTRODUCTION TO MPI

e Several Index pages show the locations of examples, constants and predefined handles,
callback routine prototypes, and all MPI functions.

MPI provides various interfaces to facilitate interoperability of distinct MPI imple-
mentations. Among these are the canonical data representation for MPI I/O and for
MPI_PACK_EXTERNAL and MPI_UNPACK_EXTERNAL. The definition of an actual bind-
ing of these interfaces that will enable interoperability is outside the scope of this document.

A separate document consists of ideas that were discussed in the MPI Forum during the
MPI-2 development and deemed to have value, but are not included in the MPI Standard.
They are part of the “Journal of Development” (JOD), lest good ideas be lost and in order
to provide a starting point for further work. The chapters in the JOD are

e Chapter 2, Spawning Independent Processes, includes some elements of dynamic pro-
cess management, in particular management of processes with which the spawning
processes do not intend to communicate, that the Forum discussed at length but
ultimately decided not to include in the MPI Standard.

e Chapter 3, Threads and MPI, describes some of the expected interaction between an
MPI implementation and a thread library in a multi-threaded environment.

e Chapter 4, Communicator ID, describes an approach to providing identifiers for com-
municators.

e Chapter 5, Miscellany, discusses Miscellaneous topics in the MPI JOD, in particu-
lar single-copy routines for use in shared-memory environments and new datatype
constructors.

e Chapter 6, Toward a Full Fortran 90 Interface, describes an approach to providing a
more elaborate Fortran 90 interface.

e Chapter 7, Split Collective Communication, describes a specification for certain non-
blocking collective operations.

e Chapter 8, Real-Time MPI, discusses MPI support for real time processing.

Unofficial Draft for Comment Only

Chapter 2

MPIl Terms and Conventions

This chapter explains notational terms and conventions used throughout the MPI document,
some of the choices that have been made, and the rationale behind those choices.

2.1

Document Notation

Rationale. Throughout this document, the rationale for the design choices made in
the interface specification is set off in this format. Some readers may wish to skip
these sections, while readers interested in interface design may want to read them
carefully. (End of rationale.)

Advice to users. Throughout this document, material aimed at users and that
illustrates usage is set off in this format. Some readers may wish to skip these sections,
while readers interested in programming in MPI may want to read them carefully. (End
of advice to users.)

Advice to implementors. Throughout this document, material that is primarily
commentary to implementors is set off in this format. Some readers may wish to skip
these sections, while readers interested in MPI implementations may want to read
them carefully. (End of advice to implementors.)

2.2 Naming Conventions

In many cases MPI names for C functions are of the form MPI_Class_action_subset. This
convention originated with MPI-1. Since MPI-2 an attempt has been made to standardize
the names of MPI functions according to the following rules.

1. In C, all routines associated with a particular type of MPI object should be of the

form MPI_Class_action_subset or, if no subset exists, of the form MPI_Class_action.

In Fortran, all routines associated with a particular type of MPI object should be of
the form MPI_CLASS_ACTION_SUBSET or, if no subset exists, of the form
MPI_CLASS_ACTION.

. If the routine is not associated with a class, the name should be of the form

MPI_Action_subset in C and MPI_ACTION_SUBSET in Fortran.

Unofficial Draft for Comment Only 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10 CHAPTER 2. MPI TERMS AND CONVENTIONS

3. The names of certain actions have been standardized. In particular, Create creates
a new object, Get retrieves information about an object, set sets this information,
Delete deletes information, Is asks whether or not an object has a certain property.

C and Fortran names for some MPI functions (that were defined during the MPI-1
process) violate these rules in several cases. The most common exceptions are the omission
of the Class name from the routine and the omission of the Action where one can be
inferred.

MPI identifiers are limited to 30 characters (31 with the profiling interface). This is
done to avoid exceeding the limit on some compilation systems.

2.3 Procedure Specification

MPI procedures are specified using a language-independent notation. The arguments of
procedure calls are marked as IN, OUT, or INOUT. The meanings of these are:

e IN: the call may use the input value but does not update the argument from the
perspective of the caller at any time during the call’s execution,

e OUT: the call may update the argument but does not use its input value,
e INOUT: the call may both use and update the argument.

There is one special case — if an argument is a handle to an opaque object (these
terms are defined in Section 2.5.1), and the object is updated by the procedure call, then
the argument is marked INOUT or OUT. It is marked this way even though the handle itself
is not modified — we use the INOUT or OUT attribute to denote that what the handle
references is updated.

Rationale. The definition of MPI tries to avoid, to the largest possible extent, the use
of INOUT arguments, because such use is error-prone, especially for scalar arguments.
(End of rationale.)

MPI’s use of IN, OUT, and INOUT is intended to indicate to the user how an argument
is to be used, but does not provide a rigorous classification that can be translated directly
into all language bindings (e.g., INTENT in Fortran 90 bindings or const in C bindings).
For instance, the “constant” MPI_BOTTOM can usually be passed to OUT buffer arguments.
Similarly, MPI_STATUS_IGNORE can be passed as the OUT status argument.

A common occurrence for MPI functions is an argument that is used as IN by some pro-
cesses and OUT by other processes. Such an argument is, syntactically, an INOUT argument
and is marked as such, although, semantically, it is not used in one call both for input and
for output on a single process.

Another frequent situation arises when an argument value is needed only by a subset
of the processes. When an argument is not significant at a process then an arbitrary value
can be passed as an argument.

Unless specified otherwise, an argument of type OUT or type INOUT cannot be aliased
with any other argument passed to an MPI procedure. An example of argument aliasing in
C appears below. If we define a C procedure like this,

Unofficial Draft for Comment Only

2.4. SEMANTIC TERMS 11

void copyIntBuffer(int *pin, int *pout, int len)
{ int i;
for (i=0; i<len; ++i) *pout++ = *pin++;

}

then a call to it in the following code fragment has aliased arguments.

int a[10];
copyIntBuffer(a, at+3, 7);

Although the C language allows this, such usage of MPI procedures is forbidden unless
otherwise specified. Note that Fortran prohibits aliasing of arguments.

All MPI functions are first specified in the language-independent notation. Immediately
below this, language dependent bindings follow:

e The ISO C version of the function.
e The Fortran version used with USE mpi_f£08.
e The Fortran version of the same function used with USE mpi or INCLUDE ’mpif.h’.

An exception is Section 14.3 “The MPI Tool Information Interface”, which only provides
ISO C interfaces.
“Fortran” in this document refers to Fortran 90 and higher; see Section 2.6.

2.4 Semantic Terms

When discussing MPI procedures the following semantic terms are used.

nonblocking A procedure is nonblocking if it may return before the associated operation
completes, and before the user is allowed to reuse resources (such as buffers) specified
in the call. The word complete is used with respect to operations and any associated
requests and/or communications. An operation completes when the user is allowed
to reuse resources, and any output buffers have been updated.

blocking A procedure is blocking if return from the procedure indicates the user is allowed
to reuse resources specified in the call.

local A procedure is local if completion of the procedure depends only on the local executing
process.

non-local A procedure is non-local if completion of the operation may require the exe-
cution of some MPI procedure on another process. Such an operation may require
communication occurring with another user process.

collective A procedure is collective if all processes in a process group need to invoke the
procedure. A collective call may or may not be synchronizing. Collective calls over
the same communicator must be executed in the same order by all members of the
process group.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

32

33

34

35

36

37

38

39

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12 CHAPTER 2. MPI TERMS AND CONVENTIONS

predefined A predefined datatype is a datatype with a predefined (constant) name (such
as MPI_INT, MPI_FLOAT_INT, or MPI_PACKED) or a datatype constructed with
MPI_TYPE_CREATE_F90_INTEGER, MPI_TYPE_CREATE_F90_REAL, or
MPI_TYPE_CREATE_F90_COMPLEX. The former are named whereas the latter are
unnamed.

derived A derived datatype is any datatype that is not predefined.

portable A datatype is portable if it is a predefined datatype, or it is derived from
a portable datatype using only the type constructors MPI_TYPE_CONTIGUOUS,
MPI_TYPE_VECTOR, MPI_TYPE_INDEXED,
MPI_TYPE_CREATE_INDEXED_BLOCK, MPI_TYPE_CREATE_SUBARRAY,
MPI_TYPE_DUP, and MPI_TYPE_CREATE_DARRAY. Such a datatype is portable
because all displacements in the datatype are in terms of extents of one predefined
datatype. Therefore, if such a datatype fits a data layout in one memory, it will
fit the corresponding data layout in another memory, if the same declarations were
used, even if the two systems have different architectures. On the other hand, if a
datatype was constructed using MPI_TYPE_CREATE_HINDEXED,
MPI_TYPE_CREATE_HINDEXED_BLOCK, MPI_TYPE_CREATE_HVECTOR or
MPI_TYPE_CREATE_STRUCT, then the datatype contains explicit byte displace-
ments (e.g., providing padding to meet alignment restrictions). These displacements
are unlikely to be chosen correctly if they fit data layout on one memory, but are
used for data layouts on another process, running on a processor with a different
architecture.

equivalent Two datatypes are equivalent if they appear to have been created with the same
sequence of calls (and arguments) and thus have the same typemap. Two equivalent
datatypes do not necessarily have the same cached attributes or the same names.

2.5 Data Types

2.5.1 Opaque Objects

MPI manages system memory that is used for buffering messages and for storing internal
representations of various MPI objects such as groups, communicators, datatypes, etc. This
memory is not directly accessible to the user, and objects stored there are opaque: their
size and shape is not visible to the user. Opaque objects are accessed via handles, which
exist in user space. MPI procedures that operate on opaque objects are passed handle
arguments to access these objects. In addition to their use by MPI calls for object access,
handles can participate in assignments and comparisons.

In Fortran with USE mpi or INCLUDE ’mpif.h’, all handles have type INTEGER. In
Fortran with USE mpi_£08, and in C, a different handle type is defined for each category of
objects. With Fortran USE mpi_f08, the handles are defined as Fortran BIND(C) derived
types that consist of only one element INTEGER :: MPI_VAL. The internal handle value is
identical to the Fortran INTEGER value used in the mpi module and mpif.h. The operators
.EQ., .NE., == and /= are overloaded to allow the comparison of these handles. The type
names are identical to the names in C, except that they are not case sensitive. For example:

Unofficial Draft for Comment Only

2.5. DATA TYPES 13

TYPE, BIND(C) :: MPI_Comm
INTEGER :: MPI_VAL
END TYPE MPI_Comm

The C types must support the use of the assignment and equality operators.

Advice to implementors. In Fortran, the handle can be an index into a table of
opaque objects in a system table; in C it can be such an index or a pointer to the
object. (End of advice to implementors.)

Rationale. Since the Fortran integer values are equivalent, applications can easily
convert MPI handles between all three supported Fortran methods. For example, an
integer communicator handle COMM can be converted directly into an exactly equivalent
mpi_f08 communicator handle named comm_£08 by comm_f08%MPI_VAL=COMM, and
vice versa. The use of the INTEGER defined handles and the BIND(C) derived type
handles is different: Fortran 2003 (and later) define that BIND(C) derived types can
be used within user defined common blocks, but it is up to the rules of the companion
C compiler how many numerical storage units are used for these BIND (C) derived type
handles. Most compilers use one unit for both, the INTEGER handles and the handles
defined as BIND(C) derived types. (End of rationale.)

Advice to users. If a user wants to substitute mpif.h or the mpi module by the
mpi_f08 module and the application program stores a handle in a Fortran common
block then it is necessary to change the Fortran support method in all application
routines that use this common block, because the number of numerical storage units
of such a handle can be different in the two modules. (End of advice to users.)

Opaque objects are allocated and deallocated by calls that are specific to each object
type. These are listed in the sections where the objects are described. The calls accept a
handle argument of matching type. In an allocate call this is an OUT argument that returns
a valid reference to the object. In a call to deallocate this is an INOUT argument which
returns with an “invalid handle” value. MPI provides an “invalid handle” constant for each
object type. Comparisons to this constant are used to test for validity of the handle.

A call to a deallocate routine invalidates the handle and marks the object for deal-
location. The object is not accessible to the user after the call. However, MPI need not
deallocate the object immediately. Any operation pending (at the time of the deallocate)
that involves this object will complete normally; the object will be deallocated afterwards.

An opaque object and its handle are significant only at the process where the object
was created and cannot be transferred to another process.

MPI provides certain predefined opaque objects and predefined, static handles to these
objects. The user must not free such objects.

Rationale. This design hides the internal representation used for MPI data structures,
thus allowing similar calls in C and Fortran. It also avoids conflicts with the typing
rules in these languages, and easily allows future extensions of functionality. The
mechanism for opaque objects used here loosely follows the POSIX Fortran binding
standard.

The explicit separation of handles in user space and objects in system space allows
space-reclaiming and deallocation calls to be made at appropriate points in the user

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14 CHAPTER 2. MPI TERMS AND CONVENTIONS

program. If the opaque objects were in user space, one would have to be very careful
not to go out of scope before any pending operation requiring that object completed.
The specified design allows an object to be marked for deallocation, the user program
can then go out of scope, and the object itself still persists until any pending operations
are complete.

The requirement that handles support assignment/comparison is made since such op-
erations are common. This restricts the domain of possible implementations. The
alternative in C would have been to allow handles to have been an arbitrary, opaque
type. This would force the introduction of routines to do assignment and compar-
ison, adding complexity, and was therefore ruled out. In Fortran, the handles are
defined such that assignment and comparison are available through the operators of
the language or overloaded versions of these operators. (End of rationale.)

Advice to users. A user may accidentally create a dangling reference by assigning to a
handle the value of another handle, and then deallocating the object associated with
these handles. Conversely, if a handle variable is deallocated before the associated
object is freed, then the object becomes inaccessible (this may occur, for example, if
the handle is a local variable within a subroutine, and the subroutine is exited before
the associated object is deallocated). It is the user’s responsibility to avoid adding or
deleting references to opaque objects, except as a result of MPI calls that allocate or
deallocate such objects. (End of advice to users.)

Advice to implementors. The intended semantics of opaque objects is that opaque
objects are separate from one another; each call to allocate such an object copies
all the information required for the object. Implementations may avoid excessive
copying by substituting referencing for copying. For example, a derived datatype
may contain references to its components, rather then copies of its components; a
call to MPI_COMM_GROUP may return a reference to the group associated with the
communicator, rather than a copy of this group. In such cases, the implementation
must maintain reference counts, and allocate and deallocate objects in such a way that
the visible effect is as if the objects were copied. (End of advice to implementors.)

2.5.2 Array Arguments

An MPI call may need an argument that is an array of opaque objects, or an array of
handles. The array-of-handles is a regular array with entries that are handles to objects
of the same type in consecutive locations in the array. Whenever such an array is used,
an additional len argument is required to indicate the number of valid entries (unless this
number can be derived otherwise). The valid entries are at the beginning of the array;
len indicates how many of them there are, and need not be the size of the entire array.
The same approach is followed for other array arguments. In some cases NULL handles are
considered valid entries. When a NULL argument is desired for an array of statuses, one
uses MPI_STATUSES_IGNORE.

2.5.3 State

MPI procedures use at various places arguments with state types. The values of such a data
type are all identified by names, and no operation is defined on them. For example, the

Unofficial Draft for Comment Only

2.5. DATA TYPES 15

MPI_TYPE_CREATE_SUBARRAY routine has a state argument order with values
MPI_ORDER_C and MPI_ORDER_FORTRAN.

2.5.4 Named Constants

MPI procedures sometimes assign a special meaning to a special value of a basic type argu-
ment; e.g., tag is an integer-valued argument of point-to-point communication operations,
with a special wild-card value, MPI_ANY_TAG. Such arguments will have a range of regular
values, which is a proper subrange of the range of values of the corresponding basic type;
special values (such as MPI_ANY_TAG) will be outside the regular range. The range of regu-
lar values, such as tag, can be queried using environmental inquiry functions, see Chapter 8.
The range of other values, such as source, depends on values given by other MPI routines
(in the case of source it is the communicator size).

MPI also provides predefined named constant handles, such as MPI_COMM_WORLD.

All named constants, with the exceptions noted below for Fortran, can be used in
initialization expressions or assignments, but not necessarily in array declarations or as
labels in C switch or Fortran select/case statements. This implies named constants
to be link-time but not necessarily compile-time constants. The named constants listed
below are required to be compile-time constants in both C and Fortran. These constants
do not change values during execution. Opaque objects accessed by constant handles are
defined and do not change value between MPI initialization (MPI_INIT) and MPI completion
(MPI_FINALIZE). The handles themselves are constants and can be also used in initialization
expressions or assignments.

The constants that are required to be compile-time constants (and can thus be used
for array length declarations and labels in C switch and Fortran case/select statements)
are:

MPI_MAX_PROCESSOR_NAME

MPI_MAX_LIBRARY _VERSION_STRING

MPI_MAX_ERROR_STRING

MPI_MAX_DATAREP_STRING

MPI_MAX_INFO_KEY

MPI_MAX_INFO_VAL

MPI_MAX_OBJECT_NAME

MPI_MAX_PORT_NAME

MPI_VERSION

MPI_SUBVERSION

MPI_STATUS_SIZE (Fortran only)

MPI_ADDRESS_KIND (Fortran only)

MPI_COUNT_KIND (Fortran only)

MPI_INTEGER_KIND (Fortran only)

MPI_OFFSET_KIND (Fortran only)

MPI_SUBARRAYS_SUPPORTED (Fortran only)

MPI_ASYNC_PROTECTS_NONBLOCKING (Fortran only)

The constants that cannot be used in initialization expressions or assignments in For-

tran are as follows:
MPI_BOTTOM
MPI_STATUS_IGNORE
MPI_STATUSES_IGNORE

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16 CHAPTER 2. MPI TERMS AND CONVENTIONS

MPI_ERRCODES_IGNORE
MPI_IN_PLACE
MPI_ARGV_NULL
MPI_ARGVS_NULL
MPI_UNWEIGHTED
MPI_WEIGHTS_EMPTY
MPI_WEIGHTS_EQUAL

Advice to implementors. In Fortran the implementation of these special constants
may require the use of language constructs that are outside the Fortran standard.
Using special values for the constants (e.g., by defining them through PARAMETER
statements) is not possible because an implementation cannot distinguish these val-
ues from valid data. Typically, these constants are implemented as predefined static
variables (e.g., a variable in an MPI-declared COMMON block), relying on the fact that
the target compiler passes data by address. Inside the subroutine, this address can
be extracted by some mechanism outside the Fortran standard (e.g., by Fortran ex-
tensions or by implementing the function in C). (End of advice to implementors.)

2.5.5 Choice

MPI functions sometimes use arguments with a choice (or union) data type. Distinct calls to
the same routine may pass by reference actual arguments of different types. The mechanism
for providing such arguments will differ from language to language. For Fortran with the
include file mpif.h or the mpi module, the document uses <type> to represent a choice
variable; with the Fortran mpi_£08 module, such arguments are declared with the Fortran
2008 + TR 29113 syntax TYPE(*), DIMENSION(..); for C, we use void *.

Advice to implementors. Implementors can freely choose how to implement choice
arguments in the mpi module, e.g., with a non-standard compiler-dependent method
that has the quality of the call mechanism in the implicit Fortran interfaces, or with
the method defined for the mpi_f08 module. See details in Section 18.1.1. (End of
advice to implementors.)

2.5.6 Absolute Addresses and Relative Address Displacements

Some MPI procedures use address arguments that represent an absolute address in the call-
ing program, or relative displacement arguments that represent differences of two absolute
addresses. The datatype of such arguments is MPI_Aint in C and INTEGER (KIND=
MPI_ADDRESS_KIND) in Fortran. These types must have the same width and encode address
values in the same manner such that address values in one language may be passed directly
to another language without conversion. There is the MPI constant MPI_BOTTOM to in-
dicate the start of the address range. For retrieving absolute addresses or any calculation
with absolute addresses, one should use the routines and functions provided in Section 4.1.5.
Section 4.1.12 provides additional rules for the correct use of absolute addresses. For ex-
pressions with relative displacements or other usage without absolute addresses, intrinsic
operators (e.g., +, -, *) can be used.

Unofficial Draft for Comment Only

hpcrabe
Hervorheben

hpcrabe
Schreibmaschinentext
#120

hpcrabe
Linien

2.6. LANGUAGE BINDING 17

2.5.7 File Offsets

For I/0 there is a need to give the size, displacement, and offset into a file. These quantities
can easily be larger than 32 bits which can be the default size of a Fortran integer. To
overcome this, these quantities are declared to be INTEGER (KIND=MPI_OFFSET_KIND) in
Fortran. In C one uses MPI_Offset. These types must have the same width and encode
address values in the same manner such that offset values in one language may be passed
directly to another language without conversion.

2.5.8 Counts

As described above, MPI defines types (e.g., MPI_Aint) to address locations within memory
and other types (e.g., MPI_Offset) to address locations within files. In addition, some MPI
procedures use count arguments that represent a number of MPI datatypes on which to
operate. At times, one needs a single type that can be used to address locations within
either memory or files as well as express count values, and that type is MPI_Count in C
and INTEGER (KIND=MPI_COUNT_KIND) in Fortran. These types must have the same width
and encode values in the same manner such that count values in one language may be
passed directly to another language without conversion. The size of the MPI_Count type
is determined by the MPI implementation with the restriction that it must be minimally
capable of encoding any value that may be stored in a variable of type int, MPI_Aint, or
MPI_Offset in C and of type INTEGER, INTEGER (KIND=MPI_ADDRESS_KIND), or

INTEGER (KIND=MPI_OFFSET_KIND) in Fortran.

Rationale. Count values logically need to be large enough to encode any value used
for expressing element counts, type maps in memory, type maps in file views, etc. For
backward compatibility reasons, many MPI routines still use int in C and INTEGER
in Fortran as the type of count arguments. (End of rationale.)

2.6 Language Binding

This section defines the rules for MPI language binding in general and for Fortran, and ISO
C, in particular. (Note that ANSI C has been replaced by ISO C.) Defined here are various
object representations, as well as the naming conventions used for expressing this standard.
The actual calling sequences are defined elsewhere.

MPI bindings are for Fortran 90 or later, though they were originally designed to be
usable in Fortran 77 environments. With the mpi_f08 module, two new Fortran features,
assumed type and assumed rank, are also required, see Section 2.5.5.

Since the word PARAMETER is a keyword in the Fortran language, we use the word
“argument” to denote the arguments to a subroutine. These are normally referred to
as parameters in C, however, we expect that C programmers will understand the word
“argument” (which has no specific meaning in C), thus allowing us to avoid unnecessary
confusion for Fortran programmers.

Since Fortran is case insensitive, linkers may use either lower case or upper case when
resolving Fortran names. Users of case sensitive languages should avoid any prefix of the
form “MPI_” and “PMPI_", where any of the letters are either upper or lower case.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

18 CHAPTER 2. MPI TERMS AND CONVENTIONS

2.6.1 Deprecated and Removed Interfaces

A number of chapters refer to deprecated or replaced MPI constructs. These are constructs
that continue to be part of the MPI standard, as documented in Chapter 15, but that users
are recommended not to continue using, since better solutions were provided with newer
versions of MPI. For example, the Fortran binding for MPI-1 functions that have address
arguments uses INTEGER. This is not consistent with the C binding, and causes problems on
machines with 32 bit INTEGERs and 64 bit addresses. In MPI-2, these functions were given
new names with new bindings for the address arguments. The use of the old functions was
declared as deprecated. For consistency, here and in a few other cases, new C functions are
also provided, even though the new functions are equivalent to the old functions. The old
names are deprecated.

Some of the deprecated constructs are now removed, as documented in Chapter 16.
They may still be provided by an implementation for backwards compatibility, but are not
required.

Table 2.1 shows a list of all of the deprecated and removed constructs. Note that some
C typedefs and Fortran subroutine names are included in this list; they are the types of
callback functions.

2.6.2 Fortran Binding Issues

Originally, MPI-1.1 provided bindings for Fortran 77. These bindings are retained, but they
are now interpreted in the context of the Fortran 90 standard. MPI can still be used with
most Fortran 77 compilers, as noted below. When the term “Fortran” is used it means
Fortran 90 or later; it means Fortran 2008 + TR 29113 and later if the mpi_£08 module is
used.

All MPI names have an MPI_ prefix, and all characters are capitals. Programs must
not declare names, e.g., for variables, subroutines, functions, parameters, derived types,
abstract interfaces, or modules, beginning with the prefix MPI_. To avoid conflicting with
the profiling interface, programs must also avoid subroutines and functions with the prefix
PMPI_. This is mandated to avoid possible name collisions.

All MPI Fortran subroutines have a return code in the last argument. With USE
mpi_£08, this last argument is declared as OPTIONAL, except for user-defined callback func-
tions (e.g., COMM_COPY_ATTR_FUNCTION) and their predefined callbacks (e.g.,
MPI_NULL_COPY_FN). A few MPI operations which are functions do not have the return
code argument. The return code value for successful completion is MPI_SUCCESS. Other
error codes are implementation dependent; see the error codes in Chapter 8 and Annex A.

Constants representing the maximum length of a string are one smaller in Fortran than
in C as discussed in Section 18.2.9.

Handles are represented in Fortran as INTEGERSs, or as a BIND(C) derived type with the
mpi_f08 module; see Section 2.5.1. Binary-valued variables are of type LOGICAL.

Array arguments are indexed from one.

The older MPI Fortran bindings (mpif.h and use mpi) are inconsistent with the For-
tran standard in several respects. These inconsistencies, such as register optimization prob-
lems, have implications for user codes that are discussed in detail in Section 18.1.16.

Unofficial Draft for Comment Only

2.7. PROCESSES 19

2.6.3 C Binding Issues

We use the ISO C declaration format. All MPI names have an MPI_ prefix, defined constants
are in all capital letters, and defined types and functions have one capital letter after
the prefix. Programs must not declare names (identifiers), e.g., for variables, functions,
constants, types, or macros, beginning with any prefix of the form MPI_, where any of the
letters are either upper or lower case. To support the profiling interface, programs must
not declare functions with names beginning with any prefix of the form PMPI_, where any
of the letters are either upper or lower case.

The definition of named constants, function prototypes, and type definitions must be
supplied in an include file mpi.h.

Almost all C functions return an error code. The successful return code will be
MPI_SUCCESS, but failure return codes are implementation dependent.

Type declarations are provided for handles to each category of opaque objects.

Array arguments are indexed from zero.

Logical flags are integers with value 0 meaning “false” and a non-zero value meaning
“true.”

Choice arguments are pointers of type void x*.

2.6.4 Functions and Macros

An implementation is allowed to implement MPI_WTIME, PMPI_WTIME, MPI_WTICK,
PMPI_WTICK, MPI_AINT_ADD, PMPI_AINT_ADD, MPI_AINT_DIFF, PMPI_AINT_DIFF,
and the handle-conversion functions (MPI_Group_f2c, etc.) in Section 18.2.4, and no others,
as macros in C.

Advice to implementors. Implementors should document which routines are imple-
mented as macros. (End of advice to implementors.)

Advice to users. If these routines are implemented as macros, they will not work
with the MPI profiling interface. (End of advice to users.)

2.7 Processes

An MPI program consists of autonomous processes, executing their own code, in an MIMD
style. The codes executed by each process need not be identical. The processes communicate
via calls to MPIl communication primitives. Typically, each process executes in its own
address space, although shared-memory implementations of MPI are possible.

This document specifies the behavior of a parallel program assuming that only MPI
calls are used. The interaction of an MPI program with other possible means of commu-
nication, I/O, and process management is not specified. Unless otherwise stated in the
specification of the standard, MPI places no requirements on the result of its interaction
with external mechanisms that provide similar or equivalent functionality. This includes,
but is not limited to, interactions with external mechanisms for process control, shared and
remote memory access, file system access and control, interprocess communication, process
signaling, and terminal I/O. High quality implementations should strive to make the results
of such interactions intuitive to users, and attempt to document restrictions where deemed
necessary.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

20 CHAPTER 2. MPI TERMS AND CONVENTIONS

Advice to implementors. Implementations that support such additional mechanisms
for functionality supported within MPI are expected to document how these interact
with MPL. (End of advice to implementors.)

The interaction of MPI and threads is defined in Section 12.4.

2.8 Error Handling

MPI provides the user with reliable message transmission. A message sent is always received
correctly, and the user does not need to check for transmission errors, time-outs, or other
error conditions. In other words, MPI does not provide mechanisms for dealing with failures
in the communication system. If the MPI implementation is built on an unreliable underly-
ing mechanism, then it is the job of the implementor of the MPI subsystem to insulate the
user from this unreliability, or to reflect unrecoverable errors as failures. Whenever possible,
such failures will be reflected as errors in the relevant communication call. Similarly, MPI
itself provides no mechanisms for handling processor failures.

Of course, MPI programs may still be erroneous. A program error can occur when
an MPI call is made with an incorrect argument (non-existing destination in a send oper-
ation, buffer too small in a receive operation, etc.). This type of error would occur in any
implementation. In addition, a resource error may occur when a program exceeds the
amount of available system resources (number of pending messages, system buffers, etc.).
The occurrence of this type of error depends on the amount of available resources in the
system and the resource allocation mechanism used; this may differ from system to system.
A high-quality implementation will provide generous limits on the important resources so
as to alleviate the portability problem this represents.

In C and Fortran, almost all MPI calls return a code that indicates successful completion
of the operation. Whenever possible, MPI calls return an error code if an error occurred
during the call. By default, an error detected during the execution of the MPI library
causes the parallel computation to abort, except for file operations. However, MPI provides
mechanisms for users to change this default and to handle recoverable errors. The user may
specify that no error is fatal, and handle error codes returned by MPI calls by himself or
herself. Also, the user may provide his or her own error-handling routines, which will be
invoked whenever an MPI call returns abnormally. The MPI error handling facilities are
described in Section 8.3.

Several factors limit the ability of MPI calls to return with meaningful error codes
when an error occurs. MPI may not be able to detect some errors; other errors may be too
expensive to detect in normal execution mode; finally some errors may be “catastrophic”
and may prevent MPI from returning control to the caller. On the other hand, some errors
may be detected after the associated operation has completed; some errors may not have a
communicator, window, or file on which an error may be raised. In such cases, these errors
will be raised on the communicator MPI_COMM_SELF.

An example of such a case arises because of the nature of asynchronous communications:
MPI calls may initiate operations that continue asynchronously after the call returned. Thus,
the operation may return with a code indicating successful completion, yet later cause an
error exception to be raised. If there is a subsequent call that relates to the same operation
(e.g., a call that verifies that an asynchronous operation has completed) then the error
argument associated with this call will be used to indicate the nature of the error. In a
few cases, the error may occur after all calls that relate to the operation have completed,

Unofficial Draft for Comment Only

2.9. IMPLEMENTATION ISSUES 21

so that no error value can be used to indicate the nature of the error (e.g., an error on the
receiver in a send with the ready mode).

This document does not specify the state of a computation after an erroneous MPI call
has occurred. The desired behavior is that a relevant error code be returned, and the effect
of the error be localized to the greatest possible extent. E.g., it is highly desirable that an
erroneous receive call will not cause any part of the receiver’s memory to be overwritten,
beyond the area specified for receiving the message.

Implementations may go beyond this document in supporting in a meaningful manner
MPI calls that are defined here to be erroneous. For example, MPI specifies strict type
matching rules between matching send and receive operations: it is erroneous to send a
floating point variable and receive an integer. Implementations may go beyond these type
matching rules, and provide automatic type conversion in such situations. It will be helpful
to generate warnings for such non-conforming behavior.

MPI defines a way for users to create new error codes as defined in Section 8.5.

2.9 Implementation Issues

There are a number of areas where an MP| implementation may interact with the operating
environment and system. While MPI does not mandate that any services (such as signal
handling) be provided, it does strongly suggest the behavior to be provided if those services
are available. This is an important point in achieving portability across platforms that
provide the same set of services.

2.9.1 Independence of Basic Runtime Routines

MPI programs require that library routines that are part of the basic language environment
(such as write in Fortran and printf and malloc in ISO C) and are executed after
MPI_INIT and before MPI_FINALIZE operate independently and that their completion is
independent of the action of other processes in an MPI program.

Note that this in no way prevents the creation of library routines that provide parallel
services whose operation is collective. However, the following program is expected to com-
plete in an ISO C environment regardless of the size of MPI_COMM_WORLD (assuming that
printf is available at the executing nodes).

int rank;

MPI_Init((void *)0, (void *)0);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

if (rank == 0) printf("Starting program\n");
MPI_Finalize();

The corresponding Fortran programs are also expected to complete.

An example of what is mot required is any particular ordering of the action of these
routines when called by several tasks. For example, MPl makes neither requirements nor
recommendations for the output from the following program (again assuming that I/0 is
available at the executing nodes).

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
printf ("Output from task rank %d\n", rank);

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

22 CHAPTER 2. MPI TERMS AND CONVENTIONS

In addition, calls that fail because of resource exhaustion or other error are not con-
sidered a violation of the requirements here (however, they are required to complete, just
not to complete successfully).

2.9.2 Interaction with Signals

MPI does not specify the interaction of processes with signals and does not require that MPI
be signal safe. The implementation may reserve some signals for its own use. It is required
that the implementation document which signals it uses, and it is strongly recommended
that it not use SIGALRM, SIGFPE, or SIGIO. Implementations may also prohibit the use of
MPI calls from within signal handlers.

In multithreaded environments, users can avoid conflicts between signals and the MPI
library by catching signals only on threads that do not execute MPI calls. High quality
single-threaded implementations will be signal safe: an MPI call suspended by a signal will
resume and complete normally after the signal is handled.

2.10 Examples

The examples in this document are for illustration purposes only. They are not intended
to specify the standard. Furthermore, the examples have not been carefully checked or
verified.

Unofficial Draft for Comment Only

2.10. EXAMPLES

23

Deprecated or removed deprecated removed Replacement

construct since since

MPI_ADDRESS MPI-2.0 MPI-3.0 MPI_GET_ADDRESS
MPI_TYPE_HINDEXED MPI-2.0 MPI-3.0 MPI_TYPE_CREATE_HINDEXED
MPI_TYPE_HVECTOR MPI-2.0 MPI-3.0 MPI_TYPE_CREATE_HVECTOR
MPI_TYPE_STRUCT MPI-2.0 MPI-3.0 MPI_TYPE_CREATE_STRUCT
MPI_TYPE_EXTENT MPI-2.0 MPI-3.0 MPI_TYPE_GET_EXTENT
MPI_TYPE_UB MPI-2.0 MPI-3.0 MPI_TYPE_GET_EXTENT
MPI_TYPE_LB MPI-2.0 MPI-3.0 MPI_TYPE_GET_EXTENT
MPI_LB! MPI-2.0 MPI-3.0 MPI_TYPE_CREATE_RESIZED
MPI_UB! MPI-2.0 MPI-3.0 MPI_TYPE_CREATE_RESIZED
MPI_ERRHANDLER_CREATE MPI-2.0 MPI-3.0 MPI_COMM_CREATE_ERRHANDLER
MPI_ERRHANDLER_GET MPI-2.0 MPI-3.0 MPI_COMM_GET_ERRHANDLER
MPI_ERRHANDLER_SET MPI-2.0 MPI-3.0 MPI_COMM_SET_ERRHANDLER
MPI_Handler_function® MPI-2.0 MPI-3.0 MPI_Comm_errhandler_function®
MPI_KEYVAL_CREATE MPI-2.0 MPI_COMM_CREATE_KEYVAL
MPI_KEYVAL_FREE MPI-2.0 MPI_COMM_FREE_KEYVAL
MPI_DUP_FN? MPI-2.0 MPI_COMM_DUP_FN?
MPI_NULL_COPY_FN? MPI-2.0 MPI_COMM_NULL_COPY_FN?
MPI_NULL_DELETE_FN? MPI-2.0 MPI_COMM_NULL_DELETE_FN?
MPI_Copy_function? MPI-2.0 MPI_Comm_copy_attr_function?
COPY_FUNCTION? MPI-2.0 COMM_COPY_ATTR_FUNCTION?
MPI_Delete_function® MPI-2.0 MPI_Comm_delete_attr_function?
DELETE_FUNCTION? MPI-2.0 COMM_DELETE_ATTR_FUNCTION?
MPI_ATTR_DELETE MPI-2.0 MPI_COMM_DELETE_ATTR
MPI_ATTR_GET MPI-2.0 MPI_COMM_GET_ATTR
MPI_ATTR_PUT MPI-2.0 MPI_COMM_SET_ATTR
MPI_COMBINER_HVECTOR_INTEGER? - MPI-3.0 MPI_COMBINER_HVECTOR?
MF‘I_COMBINER_HINDEXED_INTEGER4 - MPI-3.0 MPI_COMBINER_HINDEXED4
MF’I_COMBINER_STRUCT_INTEGER4 - MPI-3.0 MPI_COMBINER_STRUCT4

MPI::. .. MPI-2.2 MPI-3.0 C language binding

MPI_CANCEL for send requests MPI-3.2 no direct replacement
MPI_T_ERR_INVALID_ITEM MPI-3.2 MPI_T_ERR_INVALID_INDEX

T Predefined datatype.

2 Callback prototype definition.
3 Predefined callback routine.

4 Constant.

Other entries are regular MPI routines.

Table 2.1: Deprecated and Removed constructs

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

24

CHAPTER 2. MPI TERMS AND CONVENTIONS

Unofficial Draft for Comment Only

Chapter 3

Point-to-Point Communication

3.1 Introduction

Sending and receiving of messages by processes is the basic MPl communication mechanism.
The basic point-to-point communication operations are send and receive. Their use is
illustrated in the example below.

#include "mpi.h"
int main(int argc, char *argv[])
{
char message[20];
int myrank;
MPI_Status status;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0) /* code for process zero */
{
strcpy(message, "Hello, there");
MPI_Send(message, strlen(message)+1, MPI_CHAR, 1, 99, MPI_COMM_WORLD) ;

}

else if (myrank == 1) /* code for process one */

{
MPI_Recv(message, 20, MPI_CHAR, O, 99, MPI_COMM_WORLD, &status);
printf("received :%s:\n", message);

}

MPI_Finalize();

return O;

}

In this example, process zero (myrank = 0) sends a message to process one using the
send operation MPI_SEND. The operation specifies a send buffer in the sender memory
from which the message data is taken. In the example above, the send buffer consists of
the storage containing the variable message in the memory of process zero. The location,
size and type of the send buffer are specified by the first three parameters of the send
operation. The message sent will contain the 13 characters of this variable. In addition,
the send operation associates an envelope with the message. This envelope specifies the

Unofficial Draft for Comment Only 25

11

12

13

14

15

16

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

26 CHAPTER 3. POINT-TO-POINT COMMUNICATION

message destination and contains distinguishing information that can be used by the receive
operation to select a particular message. The last three parameters of the send operation,
along with the rank of the sender, specify the envelope for the message sent. Process one
(myrank = 1) receives this message with the receive operation MPI_RECV. The message to
be received is selected according to the value of its envelope, and the message data is stored
into the receive buffer. In the example above, the receive buffer consists of the storage
containing the string message in the memory of process one. The first three parameters
of the receive operation specify the location, size and type of the receive buffer. The next
three parameters are used for selecting the incoming message. The last parameter is used
to return information on the message just received.

The next sections describe the blocking send and receive operations. We discuss send,
receive, blocking communication semantics, type matching requirements, type conversion in
heterogeneous environments, and more general communication modes. Nonblocking com-
munication is addressed next, followed by probing and canceling a message, channel-like
constructs and send-receive operations, ending with a description of the “dummy” process,
MPI_PROC_NULL.

3.2 Blocking Send and Receive Operations
3.2.1 Blocking Send

The syntax of the blocking send operation is given below.

MPI_SEND(buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

int MPI_Send(const void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

MPI_Send(buf, count, datatype, dest, tag, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(QOUT) :: ierror

MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF ()
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

The blocking semantics of this call are described in Section 3.4.

Unofficial Draft for Comment Only

3.2. BLOCKING SEND AND RECEIVE OPERATIONS 27

3.2.2 Message Data

The send buffer specified by the MPI_SEND operation consists of count successive entries of
the type indicated by datatype, starting with the entry at address buf. Note that we specify
the message length in terms of number of elements, not number of bytes. The former is
machine independent and closer to the application level.

The data part of the message consists of a sequence of count values, each of the type
indicated by datatype. count may be zero, in which case the data part of the message is
empty. The basic datatypes that can be specified for message data values correspond to the
basic datatypes of the host language. Possible values of this argument for Fortran and the
corresponding Fortran types are listed in Table 3.1.

MPI datatype Fortran datatype
MPI_INTEGER INTEGER
MPI_REAL REAL
MPI_DOUBLE_PRECISION | DOUBLE PRECISION
MPI_COMPLEX COMPLEX
MPI_LOGICAL LOGICAL
MPI_CHARACTER CHARACTER (1)
MPI_BYTE

MPI_PACKED

Table 3.1: Predefined MPI datatypes corresponding to Fortran datatypes

Possible values for this argument for C and the corresponding C types are listed in
Table 3.2.

The datatypes MPI_BYTE and MPI_PACKED do not correspond to a Fortran or C
datatype. A value of type MPI_BYTE consists of a byte (8 binary digits). A byte is
uninterpreted and is different from a character. Different machines may have different
representations for characters, or may use more than one byte to represent characters. On
the other hand, a byte has the same binary value on all machines. The use of the type
MPI_PACKED is explained in Section 4.2.

MPI requires support of these datatypes, which match the basic datatypes of Fortran
and ISO C. Additional MPI datatypes should be provided if the host language has additional
data types: MPI_DOUBLE_COMPLEX for double precision complex in Fortran declared
to be of type DOUBLE COMPLEX; MPI_REAL2, MPI_REAL4, and MPI_REALS8 for Fortran
reals, declared to be of type REAL*2, REAL*4 and REAL*8, respectively; MPI_INTEGER1,
MPI_INTEGER2, and MPI_INTEGER4 for Fortran integers, declared to be of type
INTEGER*1, INTEGER*2, and INTEGER*4, respectively; etc.

Rationale. One goal of the design is to allow for MPI to be implemented as a
library, with no need for additional preprocessing or compilation. Thus, one cannot
assume that a communication call has information on the datatype of variables in the
communication buffer; this information must be supplied by an explicit argument.
The need for such datatype information will become clear in Section 3.3.2. (End of
rationale.)

The datatypes MPI_AINT, MPI_OFFSET, and MPI_COUNT correspond to the MPI-
defined C types MPI_Aint, MPI_Offset, and MPI_Count and their Fortran equivalents

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

© 4] ~ =] ot - w [=

[[[e~ ~ > - [w w w w w w w w w w [[M [N) N N [V [= = [= = = [[[=
~ =] (o)) - w N - o © oo ~ [=2] ot [w N - o © oo ~ =] o - w %) - (=) © oo ~ (=2} ot = w [- o

'S
oo

28

INTEGER (KIND=MPI_ADDRESS_KIND), INTEGER (KIND=MPI_OFFSET_KIND) , and INTEGER
(KIND=MPI_COUNT_KIND) . This is described in Table 3.3. All predefined datatype handles
are available in all language bindings. See Sections 18.2.6 and 18.2.10 on page 694 and 702

CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI datatype C datatype
MPI_CHAR char
(treated as printable character)
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int

MPI_LONG_LONGL_INT
MPI_LONG_LONG (as a synonym)
MPI_SIGNED_CHAR

MPI_UNSIGNED_CHAR

MPI_UNSIGNED_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_UNSIGNED_LONG_LONG
MPI_FLOAT

MPI_DOUBLE
MPI_LONG_DOUBLE
MPI_WCHAR

MPI_C_BOOL
MPI_INT8_T
MPI_INT16_T
MPI_INT32_T
MPI_INT64_T
MPI_UINT8_T
MPI_UINT16_T
MPI_UINT32_T
MPI_UINT64_T
MPI_C_COMPLEX

MPI_C_FLOAT_COMPLEX (as a synonym)

MPI_C_DOUBLE_COMPLEX
MPI_C_LONG_DOUBLE_COMPLEX
MPI_BYTE

MPI_PACKED

signed long long int
signed long long int
signed char
(treated as integral value)
unsigned char

(treated as integral value)
unsigned short int
unsigned int

unsigned long int
unsigned long long int
float

double

long double

wchar_t
(defined in <stddef.h>)
(treated as printable character)
_Bool

int8_t

intl6_t

int32_t

int64_t

uint8_t

uintl6_t

uint32_t

uint64_t

float _Complex

float _Complex

double _Complex

long double _Complex

Table 3.2: Predefined MPI datatypes corresponding to C datatypes

for information on interlanguage communication with these types.

supported in C and Fortran.

If there is an accompanying C++ compiler then the datatypes in Table 3.4 are also

Unofficial Draft for Comment Only

3.2. BLOCKING SEND AND RECEIVE OPERATIONS 29

MPI datatype | C datatype | Fortran datatype

MPI_AINT MPI_Aint INTEGER (KIND=MPI_ADDRESS_KIND)
MPI_OFFSET | MPI_Offset | INTEGER (KIND=MPI_OFFSET_KIND)
MPI_COUNT MPI_Count INTEGER (KIND=MPI_COUNT_KIND)

Table 3.3: Predefined MPI datatypes corresponding to both C and Fortran datatypes

MPI datatype C++ datatype
MPI_CXX_BOOL bool
MPI_CXX_FLOAT_COMPLEX std::complex<float>
MPI_CXX_DOUBLE_COMPLEX std::complex<double>
MPI_CXX_LONG_DOUBLE_COMPLEX | std::complex<long double>

Table 3.4: Predefined MPI datatypes corresponding to C++ datatypes

3.2.3 Message Envelope

In addition to the data part, messages carry information that can be used to distinguish
messages and selectively receive them. This information consists of a fixed number of fields,
which we collectively call the message envelope. These fields are

source
destination
tag
communicator

The message source is implicitly determined by the identity of the message sender. The
other fields are specified by arguments in the send operation.

The message destination is specified by the dest argument.

The integer-valued message tag is specified by the tag argument. This integer can be
used by the program to distinguish different types of messages. The range of valid tag
values is 0, . .., UB, where the value of UB is implementation dependent. It can be found by
querying the value of the attribute MPI_TAG_UB, as described in Chapter 8. MPI requires
that UB be no less than 32767.

The comm argument specifies the communicator that is used for the send operation.
Communicators are explained in Chapter 6; below is a brief summary of their usage.

A communicator specifies the communication context for a communication operation.
Each communication context provides a separate “communication universe”: messages are
always received within the context they were sent, and messages sent in different contexts
do not interfere.

The communicator also specifies the set of processes that share this communication
context. This process group is ordered and processes are identified by their rank within
this group. Thus, the range of valid values for dest is 0, ..., n—1U{MPI_PROC_NULL}, where
n is the number of processes in the group. (If the communicator is an inter-communicator,
then destinations are identified by their rank in the remote group. See Chapter 6.)

A predefined communicator MPI_COMM_WORLD is provided by MPI. It allows com-
munication with all processes that are accessible after MPI initialization and processes are
identified by their rank in the group of MPI_COMM_WORLD.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

23

24

25

26

27

28

29

30

31

32

33

35

36

38

39

40

41

42

43

45

46

47

48

30

CHAPTER 3. POINT-TO-POINT COMMUNICATION

Advice to users. Users that are comfortable with the notion of a flat name space
for processes, and a single communication context, as offered by most existing com-
munication libraries, need only use the predefined variable MPI_COMM_WORLD as the
comm argument. This will allow communication with all the processes available at
initialization time.

Users may define new communicators, as explained in Chapter 6. Communicators
provide an important encapsulation mechanism for libraries and modules. They allow
modules to have their own disjoint communication universe and their own process
numbering scheme. (End of advice to users.)

Advice to implementors. The message envelope would normally be encoded by a
fixed-length message header. However, the actual encoding is implementation depen-
dent. Some of the information (e.g., source or destination) may be implicit, and need
not be explicitly carried by messages. Also, processes may be identified by relative
ranks, or absolute ids, etc. (End of advice to implementors.)

3.2.4 Blocking Receive

The syntax of the blocking receive operation is given below.

MPI_RECV (buf, count, datatype, source, tag, comm, status)

ouT buf initial address of receive buffer (choice)
IN count number of elements in receive buffer (non-negative in-
teger)
IN datatype datatype of each receive buffer element (handle)
IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
ouT status status object (Status)
int MPI_Recv(void* buf, int count, MPI_Datatype datatype, int source,

MPI_

MPI_

int tag, MPI_Comm comm, MPI_Status *status)

Recv(buf, count, datatype, source, tag, comm, status, ierror)

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count, source, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)

<type> BUF ()

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE),
IERROR

Unofficial Draft for Comment Only

3.2. BLOCKING SEND AND RECEIVE OPERATIONS 31

The blocking semantics of this call are described in Section 3.4.

The receive buffer consists of the storage containing count consecutive elements of the
type specified by datatype, starting at address buf. The length of the received message must
be less than or equal to the length of the receive buffer. An overflow error occurs if all
incoming data does not fit, without truncation, into the receive buffer.

If a message that is shorter than the receive buffer arrives, then only those locations
corresponding to the (shorter) message are modified.

Advice to users. The MPI_PROBE function described in Section 3.8 can be used to
receive messages of unknown length. (End of advice to users.)

Advice to implementors. Even though no specific behavior is mandated by MPI for
erroneous programs, the recommended handling of overflow situations is to return in
status information about the source and tag of the incoming message. The receive
operation will return an error code. A quality implementation will also ensure that
no memory that is outside the receive buffer will ever be overwritten.

In the case of a message shorter than the receive buffer, MPI is quite strict in that it
allows no modification of the other locations. A more lenient statement would allow
for some optimizations but this is not allowed. The implementation must be ready to
end a copy into the receiver memory exactly at the end of the receive buffer, even if
it is an odd address. (End of advice to implementors.)

The selection of a message by a receive operation is governed by the value of the
message envelope. A message can be received by a receive operation if its envelope matches
the source, tag and comm values specified by the receive operation. The receiver may
specify a wildcard MPI_ANY_SOURCE value for source, and/or a wildcard MPI_ANY_TAG
value for tag, indicating that any source and/or tag are acceptable. It cannot specify a
wildcard value for comm. Thus, a message can be received by a receive operation only
if it is addressed to the receiving process, has a matching communicator, has matching
source unless source=MPI_ANY_SOURCE in the pattern, and has a matching tag unless
tag=MPI_ANY_TAG in the pattern.

The message tag is specified by the tag argument of the receive operation. The argu-
ment source, if different from MPI_ANY_SOURCE, is specified as a rank within the process
group associated with that same communicator (remote process group, for intercommu-
nicators). Thus, the range of valid values for the source argument is {0,...,n — 1} U
{MPI_ANY_SOURCE} U{MPI_PROC_NULL}, where n is the number of processes in this group.

Note the asymmetry between send and receive operations: A receive operation may
accept messages from an arbitrary sender, on the other hand, a send operation must specify
a unique receiver. This matches a “push” communication mechanism, where data transfer
is effected by the sender (rather than a “pull” mechanism, where data transfer is effected
by the receiver).

Source = destination is allowed, that is, a process can send a message to itself. (How-
ever, it is unsafe to do so with the blocking send and receive operations described above,
since this may lead to deadlock. See Section 3.5.)

Advice to implementors. Message context and other communicator information can
be implemented as an additional tag field. It differs from the regular message tag
in that wild card matching is not allowed on this field, and that value setting for

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

41

43

44

45

46

47

48

32 CHAPTER 3. POINT-TO-POINT COMMUNICATION

this field is controlled by communicator manipulation functions. (End of advice to
implementors.)

The use of dest or source=MPI_PROC_NULL to define a “dummy” destination or source
in any send or receive call is described in Section 3.11.

3.2.5 Return Status

The source or tag of a received message may not be known if wildcard values were used
in the receive operation. Also, if multiple requests are completed by a single MPI function
(see Section 3.7.5), a distinct error code may need to be returned for each request. The
information is returned by the status argument of MPI_RECV. The type of status is MPI-
defined. Status variables need to be explicitly allocated by the user, that is, they are not
system objects.

In C, status is a structure that contains three fields named MPI_SOURCE, MPI_TAG,
and MPI_ERROR; the structure may contain additional fields. Thus,
status.MPI_SOURCE, status.MPI_TAG and status.MPI_ERROR contain the source, tag, and
error code, respectively, of the received message.

In Fortran with USE mpi or INCLUDE ’mpif.h’, status is an array of INTEGERs of size
MPI_STATUS_SIZE. The constants MPI_SOURCE, MPI_TAG and MPI_ERROR are the indices
of the entries that store the source, tag and error fields. Thus, status(MPI_SOURCE),
status(MPI_TAG) and status(MPI_ERROR) contain, respectively, the source, tag and error
code of the received message.

With Fortran USE mpi_£08, status is defined as the Fortran BIND(C) derived type
TYPE(MPI_Status) containing three public INTEGER fields named MPI_SOURCE, MPI_TAG,
and MPI_ERROR. TYPE(MPI_Status) may contain additional, implementation-specific fields.
Thus, status%MPI_SOURCE, status%MPI_TAG and status%MPI_ERROR contain the source,
tag, and error code of a received message respectively. Additionally, within both the mpi
and the mpi_£08 modules, the constants MPI_STATUS_SIZE, MPI_SOURCE, MPI_TAG,
MPI_ERROR, and TYPE(MPI_Status) are defined to allow conversion between both status
representations. Conversion routines are provided in Section 18.2.5.

Rationale. The Fortran TYPE(MPI_Status) is defined as a BIND(C) derived type so
that it can be used at any location where the status integer array representation can
be used, e.g., in user defined common blocks. (End of rationale.)

Rationale. It is allowed to have the same name (e.g., MPI_SOURCE) defined as a
constant (e.g., Fortran parameter) and as a field of a derived type. (End of rationale.)

In general, message-passing calls do not modify the value of the error code field of
status variables. This field may be updated only by the functions in Section 3.7.5 which
return multiple statuses. The field is updated if and only if such function returns with an
error code of MPI_ERR_IN_STATUS.

Rationale. The error field in status is not needed for calls that return only one status,
such as MPI_WAIT, since that would only duplicate the information returned by the
function itself. The current design avoids the additional overhead of setting it, in such
cases. The field is needed for calls that return multiple statuses, since each request
may have had a different failure. (End of rationale.)

Unofficial Draft for Comment Only

3.2. BLOCKING SEND AND RECEIVE OPERATIONS 33

The status argument also returns information on the length of the message received.
However, this information is not directly available as a field of the status variable and a call
to MPI_GET_COUNT is required to “decode” this information.

MPI_GET_COUNT (status, datatype, count)

IN status return status of receive operation (Status)
IN datatype datatype of each receive buffer entry (handle)
ouT count number of received entries (integer)

int MPI_Get_count(const MPI_Status *status, MPI_Datatype datatype,
int *count)

MPI_Get_count(status, datatype, count, ierror)

TYPE(MPI_Status), INTENT(IN) :: status
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(OUT) :: count

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GET_COUNT (STATUS, DATATYPE, COUNT, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

Returns the number of entries received. (Again, we count entries, each of type datatype,
not bytes.) The datatype argument should match the argument provided by the receive call
that set the status variable. If the number of entries received exceeds the limits of the count
parameter, then MPI_GET_COUNT sets the value of count to MPI_UNDEFINED. There are
other situations where the value of count can be set to MPI_UNDEFINED; see Section 4.1.11.

Rationale. Some message-passing libraries use INOUT count, tag and

source arguments, thus using them both to specify the selection criteria for incoming
messages and return the actual envelope values of the received message. The use of a
separate status argument prevents errors that are often attached with INOUT argument
(e.g., using the MPI_ANY_TAG constant as the tag in a receive). Some libraries use
calls that refer implicitly to the “last message received.” This is not thread safe.

The datatype argument is passed to MPI_GET_COUNT so as to improve performance.
A message might be received without counting the number of elements it contains,
and the count value is often not needed. Also, this allows the same function to be
used after a call to MPI_PROBE or MPI_IPROBE. With a status from MPI_PROBE
or MPI_IPROBE, the same datatypes are allowed as in a call to MPI_RECV to receive
this message. (End of rationale.)

The value returned as the count argument of MPI_GET_COUNT for a datatype of length
zero where zero bytes have been transferred is zero. If the number of bytes transferred is
greater than zero, MPI_UNDEFINED is returned.

Rationale. Zero-length datatypes may be created in a number of cases. An important

case is MPI_TYPE_CREATE_DARRAY, where the definition of the particular darray
results in an empty block on some MPI process. Programs written in an SPMD style

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

34 CHAPTER 3. POINT-TO-POINT COMMUNICATION

will not check for this special case and may want to use MPI_GET_COUNT to check
the status. (End of rationale.)

Advice to users. The buffer size required for the receive can be affected by data con-
versions and by the stride of the receive datatype. In most cases, the safest approach
is to use the same datatype with MPI_GET_COUNT and the receive. (End of advice
to users.)

All send and receive operations use the buf, count, datatype, source, dest, tag, comm,
and status arguments in the same way as the blocking MPI_SEND and MPI_RECV operations
described in this section.

3.2.6 Passing MPI_STATUS_IGNORE for Status

Every call to MPI_RECV includes a status argument, wherein the system can return details
about the message received. There are also a number of other MPI calls where status
is returned. An object of type MPI_Status is not an MPI opaque object; its structure
is declared in mpi.h and mpif.h, and it exists in the user’s program. In many cases,
application programs are constructed so that it is unnecessary for them to examine the
status fields. In these cases, it is a waste for the user to allocate a status object, and it is
particularly wasteful for the MPI implementation to fill in fields in this object.

To cope with this problem, there are two predefined constants, MPI_STATUS_IGNORE
and MPI_STATUSES_IGNORE, which when passed to a receive, probe, wait, or test function,
inform the implementation that the status fields are not to be filled in. Note that
MPI_STATUS_IGNORE is not a special type of MPI_Status object; rather, it is a special value
for the argument. In C one would expect it to be NULL, not the address of a special
MPI_Status.

MPI_STATUS_IGNORE, and the array version MPI_STATUSES_IGNORE, can be used every-
where a status argument is passed to a receive, wait, or test function. MPI_STATUS_IGNORE
cannot be used when status is an IN argument. Note that in Fortran MPI_STATUS_IGNORE
and MPI_STATUSES_IGNORE are objects like MPI_BOTTOM (not usable for initialization or
assignment). See Section 2.5.4.

In general, this optimization can apply to all functions for which status or an array of
statuses is an OUT argument. Note that this converts status into an INOUT argument. The
functions that can be passed MPI_STATUS_IGNORE are all the various forms of MPI_RECV,
MPI_PROBE, MPI_TEST, and MPI_WAIT, as well as MPI_REQUEST _GET_STATUS. When
an array is passed, as in the MPI_{TEST|WAIT }{ALL|SOME} functions, a separate constant,
MPI_STATUSES_IGNORE, is passed for the array argument. It is possible for an MPI function
to return MPI_ERR_IN_STATUS even when MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE
has been passed to that function.

MPI_STATUS_IGNORE and MPI_STATUSES_IGNORE are not required to have the same
values in C and Fortran.

It is not allowed to have some of the statuses in an array of statuses for
MPI_{TEST|WAIT }{ALL|SOME} functions set to MPI_STATUS_IGNORE; one either specifies
ignoring all of the statuses in such a call with MPI_STATUSES_IGNORE, or none of them by
passing normal statuses in all positions in the array of statuses.

Unofficial Draft for Comment Only

3.3. DATA TYPE MATCHING AND DATA CONVERSION 35

3.3 Data Type Matching and Data Conversion

3.3.1 Type Matching Rules

One can think of message transfer as consisting of the following three phases.
1. Data is pulled out of the send buffer and a message is assembled.
2. A message is transferred from sender to receiver.
3. Data is pulled from the incoming message and disassembled into the receive buffer.

Type matching has to be observed at each of these three phases: The type of each
variable in the sender buffer has to match the type specified for that entry by the send
operation; the type specified by the send operation has to match the type specified by the
receive operation; and the type of each variable in the receive buffer has to match the type
specified for that entry by the receive operation. A program that fails to observe these three
rules is erroneous.

To define type matching more precisely, we need to deal with two issues: matching of
types of the host language with types specified in communication operations; and matching
of types at sender and receiver.

The types of a send and receive match (phase two) if both operations use identical
names. That is, MPI_INTEGER matches MPI_INTEGER, MPI_REAL matches MPI_REAL,
and so on. There is one exception to this rule, discussed in Section 4.2: the type
MPI_PACKED can match any other type.

The type of a variable in a host program matches the type specified in the commu-
nication operation if the datatype name used by that operation corresponds to the basic
type of the host program variable. For example, an entry with type name MPI_INTEGER
matches a Fortran variable of type INTEGER. A table giving this correspondence for Fortran
and C appears in Section 3.2.2. There are two exceptions to this last rule: an entry with
type name MPI_BYTE or MPI_PACKED can be used to match any byte of storage (on a
byte-addressable machine), irrespective of the datatype of the variable that contains this
byte. The type MPI_PACKED is used to send data that has been explicitly packed, or
receive data that will be explicitly unpacked, see Section 4.2. The type MPI_BYTE allows
one to transfer the binary value of a byte in memory unchanged.

To summarize, the type matching rules fall into the three categories below.

e Communication of typed values (e.g., with datatype different from MPI_BYTE), where
the datatypes of the corresponding entries in the sender program, in the send call, in
the receive call and in the receiver program must all match.

e Communication of untyped values (e.g., of datatype MPI_BYTE), where both sender
and receiver use the datatype MPI_BYTE. In this case, there are no requirements on
the types of the corresponding entries in the sender and the receiver programs, nor is
it required that they be the same.

e Communication involving packed data, where MPI_PACKED is used.

The following examples illustrate the first two cases.

Example 3.1 Sender and receiver specify matching types.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

36 CHAPTER 3. POINT-TO-POINT COMMUNICATION

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
CALL MPI_SEND(a(1), 10, MPI_REAL, 1, tag, comm, ierr)
ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(b(1), 15, MPI_REAL, O, tag, comm, status, ierr)
END IF

This code is correct if both a and b are real arrays of size > 10. (In Fortran, it might be
correct to use this code even if a or b have size < 10: e.g., when a(1) can be equivalenced
to an array with ten reals.)

Example 3.2 Sender and receiver do not specify matching types.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
CALL MPI_SEND(a(1), 10, MPI_REAL, 1, tag, comm, ierr)
ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(b(1), 40, MPI_BYTE, O, tag, comm, status, ierr)
END IF

This code is erroneous, since sender and receiver do not provide matching datatype
arguments.

Example 3.3 Sender and receiver specify communication of untyped values.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
CALL MPI_SEND(a(1), 40, MPI_BYTE, 1, tag, comm, ierr)
ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(b(1), 60, MPI_BYTE, O, tag, comm, status, ierr)
END IF

This code is correct, irrespective of the type and size of a and b (unless this results in
an out of bounds memory access).

Adwvice to users. If a buffer of type MPI_BYTE is passed as an argument to MPI_SEND,
then MPI will send the data stored at contiguous locations, starting from the address
indicated by the buf argument. This may have unexpected results when the data
layout is not as a casual user would expect it to be. For example, some Fortran
compilers implement variables of type CHARACTER as a structure that contains the
character length and a pointer to the actual string. In such an environment, sending
and receiving a Fortran CHARACTER variable using the MPI_BYTE type will not have
the anticipated result of transferring the character string. For this reason, the user is
advised to use typed communications whenever possible. (End of advice to users.)

Type MPI_CHARACTER

The type MPI_CHARACTER matches one character of a Fortran variable of type CHARACTER,
rather than the entire character string stored in the variable. Fortran variables of type
CHARACTER or substrings are transferred as if they were arrays of characters. This is
illustrated in the example below.

Unofficial Draft for Comment Only

3.3. DATA TYPE MATCHING AND DATA CONVERSION 37

Example 3.4
Transfer of Fortran CHARACTERs.

CHARACTER*10 a
CHARACTER*10 b

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
CALL MPI_SEND(a, 5, MPI_CHARACTER, 1, tag, comm, ierr)
ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(b(6:10), 5, MPI_CHARACTER, 0O, tag, comm, status, ierr)
END IF

The last five characters of string b at process 1 are replaced by the first five characters
of string a at process 0.

Rationale. The alternative choice would be for MPI_CHARACTER to match a char-
acter of arbitrary length. This runs into problems.

A Fortran character variable is a constant length string, with no special termina-
tion symbol. There is no fixed convention on how to represent characters, and how
to store their length. Some compilers pass a character argument to a routine as a
pair of arguments, one holding the address of the string and the other holding the
length of string. Consider the case of an MPIl communication call that is passed a
communication buffer with type defined by a derived datatype (Section 4.1). If this
communicator buffer contains variables of type CHARACTER then the information on
their length will not be passed to the MPI routine.

This problem forces us to provide explicit information on character length with the
MPI call. One could add a length parameter to the type MPI_CHARACTER, but this
does not add much convenience and the same functionality can be achieved by defining
a suitable derived datatype. (End of rationale.)

Advice to implementors. Some compilers pass Fortran CHARACTER arguments as a
structure with a length and a pointer to the actual string. In such an environment,
the MPI call needs to dereference the pointer in order to reach the string. (End of
advice to implementors.)

3.3.2 Data Conversion

One of the goals of MPI is to support parallel computations across heterogeneous environ-
ments. Communication in a heterogeneous environment may require data conversions. We
use the following terminology.

type conversion changes the datatype of a value, e.g., by rounding a REAL to an INTEGER.

representation conversion changes the binary representation of a value, e.g., from Hex
floating point to IEEE floating point.

The type matching rules imply that MPl communication never entails type conversion.
On the other hand, MPI requires that a representation conversion be performed when a

Unofficial Draft for Comment Only

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

38 CHAPTER 3. POINT-TO-POINT COMMUNICATION

typed value is transferred across environments that use different representations for the
datatype of this value. MPI does not specify rules for representation conversion. Such
conversion is expected to preserve integer, logical and character values, and to convert a
floating point value to the nearest value that can be represented on the target system.

Overflow and underflow exceptions may occur during floating point conversions. Con-
version of integers or characters may also lead to exceptions when a value that can be
represented in one system cannot be represented in the other system. An exception occur-
ring during representation conversion results in a failure of the communication. An error
occurs either in the send operation, or the receive operation, or both.

If a value sent in a message is untyped (i.e., of type MPI_BYTE), then the binary
representation of the byte stored at the receiver is identical to the binary representation
of the byte loaded at the sender. This holds true, whether sender and receiver run in the
same or in distinct environments. No representation conversion is required. (Note that
representation conversion may occur when values of type MPI_CHARACTER or MPI_CHAR
are transferred, for example, from an EBCDIC encoding to an ASCII encoding.)

No conversion need occur when an MPI program executes in a homogeneous system,
where all processes run in the same environment.

Consider the three examples, 3.1-3.3. The first program is correct, assuming that a and
b are REAL arrays of size > 10. If the sender and receiver execute in different environments,
then the ten real values that are fetched from the send buffer will be converted to the
representation for reals on the receiver site before they are stored in the receive buffer.
While the number of real elements fetched from the send buffer equal the number of real
elements stored in the receive buffer, the number of bytes stored need not equal the number
of bytes loaded. For example, the sender may use a four byte representation and the receiver
an eight byte representation for reals.

The second program is erroneous, and its behavior is undefined.

The third program is correct. The exact same sequence of forty bytes that were loaded
from the send buffer will be stored in the receive buffer, even if sender and receiver run in
a different environment. The message sent has exactly the same length (in bytes) and the
same binary representation as the message received. If a and b are of different types, or if
they are of the same type but different data representations are used, then the bits stored
in the receive buffer may encode values that are different from the values they encoded in
the send buffer.

Data representation conversion also applies to the envelope of a message: source, des-
tination and tag are all integers that may need to be converted.

Advice to implementors. The current definition does not require messages to carry
data type information. Both sender and receiver provide complete data type infor-
mation. In a heterogeneous environment, one can either use a machine independent
encoding such as XDR, or have the receiver convert from the sender representation
to its own, or even have the sender do the conversion.

Additional type information might be added to messages in order to allow the sys-
tem to detect mismatches between datatype at sender and receiver. This might be
particularly useful in a slower but safer debug mode. (End of advice to implementors.)

MPI requires support for inter-language communication, i.e., if messages are sent by a
C or C++ process and received by a Fortran process, or vice-versa. The behavior is defined
in Section 18.2.

Unofficial Draft for Comment Only

3.4. COMMUNICATION MODES 39

3.4 Communication Modes

The send call described in Section 3.2.1 is blocking: it does not return until the message
data and envelope have been safely stored away so that the sender is free to modify the
send buffer. The message might be copied directly into the matching receive buffer, or it
might be copied into a temporary system buffer.

Message buffering decouples the send and receive operations. A blocking send can com-
plete as soon as the message was buffered, even if no matching receive has been executed by
the receiver. On the other hand, message buffering can be expensive, as it entails additional
memory-to-memory copying, and it requires the allocation of memory for buffering. MPI
offers the choice of several communication modes that allow one to control the choice of the
communication protocol.

The send call described in Section 3.2.1 uses the standard communication mode. In
this mode, it is up to MPI to decide whether outgoing messages will be buffered. MPI may
buffer outgoing messages. In such a case, the send call may complete before a matching
receive is invoked. On the other hand, buffer space may be unavailable, or MPI may choose
not to buffer outgoing messages, for performance reasons. In this case, the send call will
not complete until a matching receive has been posted, and the data has been moved to the
receiver.

Thus, a send in standard mode can be started whether or not a matching receive has
been posted. It may complete before a matching receive is posted. The standard mode send
is non-local: successful completion of the send operation may depend on the occurrence of
a matching receive.

Rationale. The reluctance of MPI to mandate whether standard sends are buffering
or not stems from the desire to achieve portable programs. Since any system will run
out of buffer resources as message sizes are increased, and some implementations may
want to provide little buffering, MPI takes the position that correct (and therefore,
portable) programs do not rely on system buffering in standard mode. Buffering may
improve the performance of a correct program, but it doesn’t affect the result of the
program. If the user wishes to guarantee a certain amount of buffering, the user-
provided buffer system of Section 3.6 should be used, along with the buffered-mode
send. (End of rationale.)

There are three additional communication modes.

A buffered mode send operation can be started whether or not a matching receive
has been posted. It may complete before a matching receive is posted. However, unlike the
standard send, this operation is local, and its completion does not depend on the occurrence
of a matching receive. Thus, if a send is executed and no matching receive is posted, then
MPI must buffer the outgoing message, so as to allow the send call to complete. An error will
occur if there is insufficient buffer space. The amount of available buffer space is controlled
by the user — see Section 3.6. Buffer allocation by the user may be required for the buffered
mode to be effective.

A send that uses the synchronous mode can be started whether or not a matching
receive was posted. However, the send will complete successfully only if a matching receive is
posted, and the receive operation has started to receive the message sent by the synchronous
send. Thus, the completion of a synchronous send not only indicates that the send buffer
can be reused, but it also indicates that the receiver has reached a certain point in its

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

33

34

35

36

37

38

39

40

41

42

44

45

46

47

48

40 CHAPTER 3. POINT-TO-POINT COMMUNICATION

execution, namely that it has started executing the matching receive. If both sends and
receives are blocking operations then the use of the synchronous mode provides synchronous
communication semantics: a communication does not complete at either end before both
processes rendezvous at the communication. A send executed in this mode is non-local.

A send that uses the ready communication mode may be started only if the matching
receive is already posted. Otherwise, the operation is erroneous and its outcome is unde-
fined. On some systems, this allows the removal of a hand-shake operation that is otherwise
required and results in improved performance. The completion of the send operation does
not depend on the status of a matching receive, and merely indicates that the send buffer
can be reused. A send operation that uses the ready mode has the same semantics as a
standard send operation, or a synchronous send operation; it is merely that the sender
provides additional information to the system (namely that a matching receive is already
posted), that can save some overhead. In a correct program, therefore, a ready send could
be replaced by a standard send with no effect on the behavior of the program other than
performance.

Three additional send functions are provided for the three additional communication
modes. The communication mode is indicated by a one letter prefix: B for buffered, S for
synchronous, and R for ready.

MPI_BSEND (buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

int MPI_Bsend(const void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

MPI_Bsend(buf, count, datatype, dest, tag, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_BSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF ()
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Send in buffered mode.

Unofficial Draft for Comment Only

3.4. COMMUNICATION MODES 41
MPI_SSEND (buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-

ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

int MPI_Ssend(const void* buf, int