
Motivation and Scope of Changes to
MPI Semantic Terms Section

Semantic Terms Working Group

(latest changes: telcon 2020-05-26: now on slides 23, 23+25, 26;
2020-05-31 modified changes of MPI wording on slides 23, (25, 26), 32, (36);

organizational changes on slides: 19, 22-29, 32-36, 40, 50-51)

1

Overview

• What is missing?

• Semantic Terms in MPI-3.1 – are they still correct?
o Blocking / nonblocking
o Collective
o Local / non-local

• Current status of Sect. 2.4 Semantic Terms

• Solution  Issue #96, PR #116 (Changes v01-v10  Part I.)

• RMA
o Small corrections (v11-v13)  Part II.
o Table of most RMA procedures in Annex A.2 (v14)  Part III.
o Rational to formalize “user’s perspective” (v15)  Part IV.

2

What is missing?

• Persistent:
• Since MPI-4.0, now two Sections on persistent operations:

o pt-to-pt and

o collective

• Common definitions should be in Semantic Terms

• Operations:
• 1049 x the word “operation” in MPI-3.1 (and 1202x in MPI-4.x currently)

• But definition of MPI operations is missing

3

Motivation - original terms of reference

• Instruction: define “persistent” in context of “persistent collectives”
• There is/was no definition of the term “persistent” at all in MPI

• The word is used without explanation in the body of the document.

• Persistent “fits” in the sequence {blocking, nonblocking, persistent}
• However, this is talking about MPI operations, not MPI procedures

• Insight: there is no such thing as a “persistent procedure” in MPI.

• There is/was no definition of “MPI operation” at all in MPI!

• We need at least a definition of operation that is good enough to
define “persistent operation”

4

Defining “MPI operation”

• Need to differentiate persistent operations from blocking and
nonblocking ones.

• Persistent MPI operations are expressed using 4 MPI procedures:
MPI_<thing>_init, MPI_Start[all], MPI_{Test|Wait}[all|some], MPI_Request_free

• These can be seen as 4 state transitions between 2 operation states:
• Initialisation (*->inactive), starting (inactive->active),

• Completion (active->inactive), freeing (inactive->*)

• Nonblocking operation: 2 state transitions
• Initialisation+starting & Completion+freeing

• Blocking operation: all together in one routine

5

Semantic Terms in MPI-3.1 – are they still correct?

2.4 Semantic Terms

When discussing MPI procedures the following semantic terms are used.

nonblocking A procedure is nonblocking if it may return before the associated operation
completes, and before the user is allowed to reuse resources (such as buffers) specified in
the call. The word complete is used with respect to operations and any associated requests
and/or communications. An operation completes when the user is allowed to reuse
resources, and any output buffers have been updated.

blocking A procedure is blocking if return from the procedure indicates the user is allowed
to reuse resources specified in the call.

local A procedure is local if completion of the procedure depends only on the local
executing process.

non-local A procedure is non-local if completion of the operation may require the
execution of some MPI procedure on another process. Such an operation may require
communication occurring with another user process.

collective A procedure is collective if all processes in a process group need to invoke the
procedure. A collective call may or may not be synchronizing. Collective calls over the same
communicator must be executed in the same order by all members of the process group.

6

Semantic Terms in MPI-3.1 – are they still correct?

nonblocking A procedure is nonblocking if it may return before the associated operation

completes, and before the user is allowed to reuse resources (such as buffers) specified in

the call. The word complete is used with respect to operations and any associated requests

and/or communications. An operation completes when the user is allowed to reuse

resources, and any output buffers have been updated.

Examples: • MPI_File_read_all_begin:

o This procedure is nonblocking because you must not reuse the buffer upon return.

o This procedure is non-local. It may block (in the normal English sense of the word) until all
processes of the process group have called this procedure.

o To name a procedure “nonblocking” although it may block – is this a good idea?
In other words, MPI-3.1 allows that a routine may both block (English meaning) and is
nonblocking (based on the MPI definition) .

• MPI_Bcast_init (coming with MPI-4):

o This procedure is nonblocking because you must not free the buffer address upon return.

o This procedure is non-local because it may block until all processes of the process group have
called this procedure.

Additionally, the

term “operation”

is undefined

 coming later

7

Semantic Terms in MPI-3.1 – are they still correct?

nonblocking A procedure is nonblocking if it may return before the associated operation

completes, and before the user is allowed to reuse resources (such as buffers) specified in

the call. The word complete is used with respect to operations and any associated requests

and/or communications. An operation completes when the user is allowed to reuse

resources, and any output buffers have been updated.

Result: • The MPI definition of nonblocking is broken, because in conflict with the normal use of
English blocking in a dangerous way:
A user may program deadlocks because he/she may overs that the procedure is non-
local.
There are 23 MPI nonblocking (MPI sense) procedures that are allowed to block (English
sense)

How to resolve: • Introduce the new semantic term “incomplete” based on the definition above.

• Define nonblocking as incomplete AND local

• and only for operation-related procedures
8

Semantic Terms in MPI-3.1 – are they still correct?

blocking A procedure is blocking if return from the procedure indicates the user is
allowed to reuse resources specified in the call.

Problem: • When we fix “nonblocking”, then we have also to fix “blocking”

How to resolve: • Define “blocking” also only for operation-related procedures

• And just: An MPI procedure is blocking if it is not nonblocking

Important: • Non………… should be identical to logically not …………

9

Semantic Terms in MPI-3.1 – are they still correct?

collective A procedure is collective if all processes in a process group need to invoke the
procedure. A collective call may or may not be synchronizing. Collective calls over the same
communicator must be executed in the same order by all members of the process group.

Question: These are two different concepts:

• A procedure is collective if all processes in a process group need to invoke the
procedure.

• A collective call may or may not be synchronizing.

Some routines are

• Collective and they are allowed to synchronize
but need not to synchronize (MPI_Bcast, MPI_Bcast_init)

• Collective and they are not allowed to synchronize (MPI_Ibcast)

• Collective and must synchronize (MPI_Barrier)

 Unclear / weakly defined definition and therefore needs to be clarified.

Overseen when introducing

the nonblocking collectives

in MPI-3.0

This exception is clearly

defined in the routine

definition of MPI_Barrier

10

Semantic Terms in MPI-3.1 – are they still correct?

collective A procedure is collective if all processes in a process group need to invoke the
procedure. A collective call may or may not be synchronizing. Collective calls over the
same communicator must be executed in the same order by all members of the process
group.

Result: • The definition fits well to blocking collective operations, but since MPI-1.1, we now
have many chapters with collective operations and different types of collective
procedures:
• Always: must be called by all processes of the group

• Initialization procedures of collective operations must be called in the same sequence.

• Initiation procedures for nonblocking collective operations and the starting of persistent collectives are
local,

• whereas all others, especially the blocking collectives and the persistent collective initialization
procedures are allowed to synchronize.

How to resolve: • Rewriting this definition that it fits to all collective procedures.

11

Semantic Terms in MPI-3.1 – are they still correct?

local A procedure is local if completion of the procedure depends only on the local
executing process.

non-local A procedure is non-local if completion of the operation may require the
execution of some MPI procedure on another process. Such an operation may require
communication occurring with another user process.

Issue: • Local / non-local is related to progress

12

Semantic Terms in MPI-3.1 – are they still correct?

local A procedure is local if completion of the procedure depends only on the local
executing process.

non-local A procedure is non-local if completion of the operation may require the
execution of some MPI procedure on another process. Such an operation may require
communication occurring with another user process.

Clarification:

• Local / non-local is related to progress

•  any change in the definition must not change the understanding of progress

• Let’s name this definition of “local” as “strong local”.

• Let’s check whether this meaning of “local” is really used in MPI?

Important:

13

Semantic Terms in MPI-3.1 – are they still correct?

local A procedure is local if completion of the procedure depends only on the local
executing process.

Problems: • Let’s look at MPI_Cancel and MPI_Test_cancelled of a nonblocking MPI_Issend?

o MPI-3.1, section 8.7, Example 8.9 on pages 358+359: “The program is correct.”:

Process 0 Process 1
--------- ---------
MPI_Issend(dest=1); MPI_Finalize();
MPI_Cancel();
MPI_Wait(…, &status);
MPI_Test_cancelled(&status, &flag);
MPI_Finalize();

o Both, MPI_Cancel and MPI_Wait must be local by definition of MPI_Cancel.

o MPI_Cancel may require communication to check, whether the message is
already received on the other process, i.e., whether flag == true or false must be returned:

• As stated in MPI-1.1 to MPI-3.1, in the advice to implementors for MPI_Test_cancelled (MPI-3.1 page73 lines 21-23):
“Note that, while communication may be needed to implement MPI_CANCEL, this is still a local operation,
since its completion does not depend on the code executed by other processes.”

• That this MPI_Cancel is able to communicate, MPI-1.2 already mentioned for a similar example (MPI-2 page 24,

lines 12-14): “An implementation may need to delay the return from MPI FINALIZE until all potential future
message cancellations have been processed.”

• Therefore, “local” was seen as weak local since MPI-1.1  The definition of local is broken.

I added this local inquiry call to show the problem

Result: 14

Semantic Terms in MPI-3.1 – are they still correct?

local A procedure is local if completion of the procedure depends only on the local
executing process.

non-local A procedure is non-local if completion of the operation may require the
execution of some MPI procedure on another process. Such an operation may require
communication occurring with another user process.

Problems: • Is non-local the contrary of local?

• The contrary of local would be something like
• non-local A procedure is non-local if completion of the operation may require the execution

of some (MPI or non MPI) procedure on another process. Such an operation may require communication
occurring with another user process.

 Gap between non-local and local  broken

• What means “of some MPI procedure on another process”?

o Is it “may require the execution of some specific semantically-related MPI procedure”,
then non-local is identical to contrary of weak local.

o Or is it “may require the execution of some (specific or unspecific) MPI procedure”,
then non-local is nearby to the contrary of strong local.

• This means, this definition is not clear enough  and therefore double broken.

This would be needed to be

consistent with MPI_Cancel

A weak-local definition

would be needed for

MPI_Cancel

15

Semantic Terms in MPI-3.1 – are they still correct?

local A procedure is local if completion of the procedure depends only on the local
executing process.

non-local A procedure is non-local if completion of the operation may require the
execution of some MPI procedure on another process. Such an operation may require
communication occurring with another user process.

Result: • Local should be defined as weak local

• Non-local should be defined as the contrary of weak local

• MPI-1.1 to MPI-3.1 ever wanted to have local defined as “weak local” that implementations
can implement all MPI procedures as flexible and efficient as possible.

How to resolve: • We take the non-local definition and add “specific semantically-related”

• We define local as not non-local

Remark: • The terms complete/incomplete and blocking/nonblocking are only useful for
operation-related MPI procedures,

• Whereas local/non-local can be used for all MPI procedures. 16

Current status of Sect. 2.4 Semantic Terms

operation

persistent

nonblocking A procedure is nonblocking if it may return before the associated operation
completes, and before the user is allowed to reuse resources (such as buffers) specified in
the call. The word complete is used with respect to operations and any associated requests
and/or communications. An operation completes when the user is allowed to reuse
resources, and any output buffers have been updated.

blocking A procedure is blocking if return from the procedure indicates the user is allowed
to reuse resources specified in the call.

local A procedure is local if completion of the procedure depends only on the local
executing process.

non-local A procedure is non-local if completion of the operation may require the
execution of some MPI procedure on another process. Such an operation may require
communication occurring with another user process.

collective A procedure is collective if all processes in a process group need to invoke the
procedure. A collective call may or may not be synchronizing. Collective calls over the same
communicator must be executed in the same order by all members of the process group.

17

Solution  Issue #96, PR #116
Semantic Terms has now three subsections:

• MPI operations
o Operations consist of 4 stages: initialization, starting, completion, freeing stages

o 3 forms: blocking, nonblocking and persistent operations

o Collective / noncollective operations

• MPI procedures
o Non-local / local (defined for all MPI procedures)

o An MPI operation is implemented as a set of one ore more MPI procedures.

o An MPI operation-related procedure implements at least part of a stage of an MPI operation.

o Properties of operation-related MPI procedures:
 Initialization / Starting / initiation / completing / incomplete / freeing procedure

 Nonblocking / blocking procedure

 Collective procedure

• MPI Datatypes
o (existing text is unchanged)

Some additional comments on exceptions within the chapters

New Annex A.2, showing
o the set of procedures that form an operation

o The properties of the involved procedures

Important:

• We do not change

the definition of any

MPI procedure.

• The semantic terms

should be

consistent to the

rest of the MPI

standard.

18

Status (May 20, 2020)

• Had reading: Version from Feb. 2, 2020 (2 weeks before Portland meeting (Feb.18-21, 2020)

• A set of additional changes:
o No-no-votes requested for June 29-July 1, 2020 meeting (Munich  online)

o Based on the discussions during the Portland meeting and afterwards
In chap-terms/ (v00= version 2020-02-02 of terms-2.tex)

 v00-->v01: Formatting (3 small changes with \ldots)

 v01-->v02: Better or more precise English wording (12 independent small changes)

 v02-->v03: removal of unnecessary notes, e.g., implications (3 such small removals)

 v03-->v04: moving non-local and local definitions before all operation-related procedure terms (1 move)

 v04-->v05: Stating more clearly that the other terms are only defined for operation related procedures (1 small change)

 v05-->v06: Define 'blocking' as 'not nonblocking‘ (1 small change for logical clarity)

 v06-->v07: More precise definition of non-local that the rationale is no more needed
(adding in the definition of non-local the words “specific semantically-related”
and removing the therefore no longer needed rationale and advice to users)

 v07-->v08: Define 'Incomplete' as 'not completing' (1 small change for logical clarity)

In chap-applang/ (v00= version 2020-02-02 of appLang-Const.tex)

 v00-->v09: Minor changes in the Appendix A.2 legend and footnotes (part 1)

 v09-->v10: Minor changes in the Appendix A.2 legend and footnotes (part 2)

• For first vote: Version from May 20, 2020 19

PART I.

Lets look at pdf on Issue #96 and
the small changes Part I. (v01-v10) on PR 116

• pdf: https://github.com/mpi-forum/mpi-issues/files/4708009/mpi32-
report-semantic-terms-2020-05-20-annotated.pdf

• Issue: https://github.com/mpi-forum/mpi-issues/issues/96
o Here, you can find also these slides:
o EuroMPI2019-SematicTerms-fromPuri-2020-04-28+RMA-rab-2020-05-31.pdf

• Pull request: https://github.com/mpi-forum/mpi-standard/pull/116

• Any open questions?

20

https://github.com/mpi-forum/mpi-issues/files/4708009/mpi32-report-semantic-terms-2020-05-20-annotated.pdf
https://github.com/mpi-forum/mpi-issues/issues/96
https://github.com/mpi-forum/mpi-standard/pull/116

What is still missing?

• RMA (Current status Feb 2 / May 20, 2020):
o Text in Semantic Terms, advice to users:

Nonblocking procedures:

• incomplete and local: MPI_ISEND, MPI_IRECV, MPI_IBCAST,
MPI_PUT, MPI_GET, MPI_ACCUMULATE, MPI_IMPROBE, MPI_SEND_INIT, MPI_RECV_INIT, ...

o Text in Annex A.2

14) Nonblocking procedure without an I prefix.

21) In some cases, more than one MPI procedure may be needed to implement one stage of an MPI
one-sided operation. For details on the semantics of one-sided operations, see Chapter 11.

• Partitioned Communication
o Currently no investigation / the proposer of the partitioned communication may check whether their

text still fits to the modified Semantic Terms, especially the use of “nonblocking”

Procedure Stages Cpl Loc Blk Op Collective Blocked resources

C sq S/W and remarks

MPI_PUT, MPI_GET, MPI_ACCUMULATE i-s---- ic l nb nb-op - buffer 14) 21)

Other one-sided procedures 21)

21

Problems with RMA

• Do we have any problem with the change
o from MPI-1 – 3: nonblocking := incomplete

o to MPI-4: nonblocking := incomplete AND local

• Is there any wrong usage of nonblocking as
o operation vs. procedure is nonblocking

o procedure does not block until …

o procedure is local

• Which table entries would be correct for the RMA synchronization
procedures?

• Are the RMA communication procedures really nonblocking?

These questions should

be also checked by the

chapter committee of

“Partitioned

communication”

22

We first

address

these

questions

RMA small wording corrections Part II.a
MPI-3.1 Section 11.3 Communication Calls, page 417, lines 10-23 should read

MPI supports the following RMA communication calls: MPI_PUT and MPI_RPUT transfer

data from the caller memory (origin) to the target memory; MPI_GET and MPI_RGET

transfer data from the target memory to the caller memory; MPI_ACCUMULATE and

MPI_RACCUMULATE update locations in the target memory, e.g., by adding to these

Locations values sent from the caller memory; MPI_GET_ACCUMULATE,

MPI_RGET_ACCUMULATE, and MPI_FETCH_AND_OP perform atomic read-modify-write

and return the data before the accumulate operation; and MPI_COMPARE_AND_SWAP performs

a remote atomic compare and swap operation. These operations are nonblocking.

Additionally, these particular procedures are nonblocking: the

call initiates the transfer, but the transfer may continue after the call returns. The transfer

is completed, at the origin or both the origin and the target, when a subsequent synchro-

nization call is issued by the caller on the involved window object. These synchronization

calls are described in Section 11.5.

MPI-3.1 Section 11.5.2, page 442, lines 38-42 about Example 11.4 should read

One can also have implementations where the call to MPI_WIN_START is nonblocking may not block, but the call to

MPI_PUT blocks until the matching call to MPI_WIN_POST occurs; or implementations

where the first two calls are nonblocking may not block, but the call to MPI_WIN_COMPLETE blocks

until the call to MPI_WIN_POST occurred;

(similar to the unchanged text in MPI-3.1 Section 11.5.3, page 448, lines 22-25 about Example 11.5:

The call to MPI_WIN_LOCK may block until an exclusive lock on the window is acquired; or, the first

two calls may not block, while MPI_WIN_UNLOCK blocks until a lock is acquired – the

update of the target window is then postponed until the call to MPI_WIN_UNLOCK occurs.) 23

RMA small wording corrections Part II.a, continued

MPI-3.1 Section 11.5.2, page 443, lines 32-33 on MPI_WIN_TEST should read

This is the nonblocking local version of MPI_WIN_WAIT. It returns flag = true if all accesses

to the local window by the group to which it was exposed by the corresponding.

MPI-3.1 Section 11.7.3 Progress, page 462, lines 37-38 about Example 11.6 should read

The post calls are nonblocking do not block, and should complete.

MPI-4 Issue #96 Annex A.2, amendment to Footnote 21 on RMA procedures read

21) In some cases, more than one MPI procedure may be needed to implement one stage of an MPI one-sided operation.

The locality of the RMA procedures is analyzed from the user’s perspective, i.e., independent of the choices to implementors

about weak synchronization as described in Sections 11.5, 11.5.2 (on Example 11.4), and 11.5.3 (on Example 11.5).

For details on the semantics of one-sided operations, see Chapter 11.

• These changes are under the commits
In chap-applang/

 v10-->v11: Semantic terms / RMA small wording corrections in A.2 Footnote 21 (Part II.a)

In chap-one-sided/ (v00= version 2020-02-02 of one-sided-2.tex)

 v00-->v12: Semantic terms / RMA small wording corrections (Part II.a)

24

RMA small wording corrections Part II.b
MPI-3.1 Section 11.5.2, page 442, lines 27-46 about Example 11.4 should read

Consider the sequence of calls in the example below.

Example 11.4
MPI_Win_start(group, flag, win);

MPI_Put(..., win);

MPI_Win_complete(win);

The call to MPI_WIN_COMPLETE does not return until the put call has completed

at the origin; and the target window will be accessed by the put operation only after the

call to MPI_WIN_START has matched a call to MPI_WIN_POST by the target process.

Advice to implementors. This still leaves much choice to implementors. The call to MPI_WIN_START

can block until the matching call to MPI_WIN_POST occurs at all target processes. One can also

have implementations where the call to MPI_WIN_START may not block, but the call to

MPI_PUT blocks until the matching call to MPI_WIN_POST occurs; or implementations

where the first two calls may not block, but the call to MPI_WIN_COMPLETE blocks

until the call to MPI_WIN_POST occurred; or even implementations where all three calls

can complete before any target process has called MPI_WIN_POST – the data put must

be buffered, in this last case, so as to allow the put to complete at the origin ahead of its

completion at the target. However, once the call to MPI_WIN_POST is issued, the sequence

above must complete, without further dependencies. (End of advice to implementors.)

Advice to users. In order to ensure a portable deadlock free program, a user must assume that

MPI_WIN_START may block until the corresponding MPI_WIN_POST has been called. (End of advice to users.)

25

This existing part from MPI-
3.1 now defined as advice to

implementors.

New advice to users to make
clear that MPI_WIN_START
has to be assumed as non-

local for portable application
programming.

RMA small wording corrections Part II.b, continued

MPI-3.1 Section 11.5.3 Lock, page 448, lines 14-28 about Example 11.5 should read

Consider the sequence of calls in the example below.

Example 11.5
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, rank, assert, win);

MPI_Put(..., rank, ..., win);

MPI_Win_unlock(rank, win);

The call to MPI_WIN_UNLOCK will not return until the put transfer has completed at

the origin and at the target.

Advice to implementors. This still leaves much freedom to implementors. The call to

MPI_WIN_LOCK may block until an exclusive lock on the window is acquired; or, the first

two calls may not block, while MPI_WIN_UNLOCK blocks until a lock is acquired – the

update of the target window is then postponed until the call to MPI_WIN_UNLOCK occurs.

However, if the call to MPI_WIN_LOCK is used to lock a local window, then the call must

block until the lock is acquired, since the lock may protect local load/store accesses to the

window issued after the lock call returns. (End of advice to implementors.)

Advice to users. In order to ensure a portable deadlock free program, a user must assume

that MPI_Win_lock may block until an exclusive lock on the window is acquired. (End of advice to users.)

• These changes are under the commits
In chap-one-sided/

 v12-->v13: Semantic terms / RMA small wording corrections (Part II.b)

26

Status (May 31, 2020)

• A set of additional changes:
o No-no-votes requested for June 29-July 1, 2020 meeting (Munich  online)

o Based on the discussions after the Portland meeting:
In chap-applang/

 v10-->v11: Semantic terms / RMA small wording corrections in A.2 Footnote 21 (Part II.a)
(1 small change)

In chap-one-sided/ (v00= version 2020-02-02 of one-sided-2.tex)

 v00-->v12: Semantic terms / RMA small wording corrections (Part II.a)
(5 small changes)

In chap-one-sided/

 v12-->v13: Semantic terms / RMA small wording corrections (Part II.b)
(4 small changes)

In chap-changes/ (v00= version 2020-02-02 of terms-2.tex)

 v00-->v14: Semantic terms / RMA small wording corrections (Part II.a+b)
(4 small changes)

• For first vote: Version from May 31, 2020

27

PART II.

Lets look at pdf on Issue #96 and
the small changes on PR 116

• pdf: https://github.com/mpi-forum/mpi-issues/files/4708015/mpi32-
report-semantic-terms-2020-05-31-annotated.pdf

• Issue: https://github.com/mpi-forum/mpi-issues/issues/96
o Here, you can find also these slides:
o EuroMPI2019-SematicTerms-fromPuri-2020-04-28+RMA-rab-2020-05-31.pdf

• Pull request: https://github.com/mpi-forum/mpi-standard/pull/116

• Any open questions?

28

https://github.com/mpi-forum/mpi-issues/files/4708015/mpi32-report-semantic-terms-2020-05-31-annotated.pdf
https://github.com/mpi-forum/mpi-issues/issues/96
https://github.com/mpi-forum/mpi-standard/pull/116

Problems with RMA

• Do we have any problem with the change
o from MPI-1 – 3: nonblocking := incomplete

o to MPI-4: nonblocking := incomplete AND local

• Is there any wrong usage of nonblocking as
o operation vs. procedure is nonblocking

o procedure does not block until …

o procedure is local

• Which table entries would be correct for the RMA synchronization
procedures?

• Are the RMA communication procedures really nonblocking?
29

Second

question

Additional changes to Issue 96 to more completely
handle RMA in Annex A.2 (part 3)

MPI-4 Issue #96 Annex A.2 2nd table on RMA procedures reads

but should read

Procedure Stages Cpl Loc Blk Op Collective Blocked resources

C sq S/W and remarks

MPI_PUT, MPI_GET, MPI_ACCUMULATE i-s---- ic l nb nb-op - buffer 14) 21)

Other one-sided procedures 21)

Procedure Stages Cpl Loc Blk Op Collective Blocked resources

C sq S/W and remarks

On an origin process with Fence Synchronization

MPI_WIN_FENCE i------ nl C sq W1

MPI_PUT, MPI_GET, MPI_ACCUMULATE, … i-s---- ic l nb nb-op - buffer 14) 21)

MPI_WIN_FENCE ----c-f c+f l C sq W1

On a target process

MPI_WIN_CREATE/_ALLOCATE/..._SHARED i------ nl C sq W1 buffer address

MPI_WIN_FENCE --s---- ic l C sq W1 buffer address+content

MPI_WIN_FENCE ----c-- c nl C sq W1 buffer address

MPI_WIN_FREE ------f f nl C sq W1

Continuation

on next slide

30

Additional changes to Issue 96 to more completely
handle RMA in Annex A.2 (part 3, continued)

and Procedure Stages Cpl Loc Blk Op Collective Blocked resources

C sq S/W and remarks

On an origin process with General Active Target Synchronization

MPI_WIN_START i------ nl - 21)

MPI_PUT, MPI_GET, MPI_ACCUMULATE, … i-s---- ic l nb nb-op - buffer 14) 21)

MPI_WIN_COMPLETE ----c-f c+f l - 21)

On a target process

MPI_WIN_CREATE/_ALLOCATE/..._SHARED i------ nl C sq W1 buffer address

MPI_WIN_POST --s---- ic l - buffer address+content

MPI_WIN_WAIT ----c-- c nl - buffer address

MPI_WIN_FREE ------f f nl C sq W1

On an origin process with Lock/Unlock Synchronization

MPI_WIN_LOCK and others i------ nl - 21)

MPI_PUT, MPI_GET, MPI_ACCUMULATE, … i-s---- ic l nb nb-op - buffer 14) 21)

MPI_WIN_UNLOCK and others ----c-f c+f l - 21)

On a target process

MPI_WIN_CREATE/_ALLOCATE/..._SHARED i------ nl C sq W1 buffer address

MPI_WIN_FREE ------f f nl C sq W1 31

Continuation

on next slide

Additional changes to Issue 96 to more completely
handle RMA in Annex A.2 (part 3, continued)

and

32

Procedure Stages Cpl Loc Blk Op Collective Blocked resources

C sq S/W and remarks

On an origin process with Lock/Unlock Synchronization

MPI_WIN_LOCK and others i------ nl - 21)

MPI_RPUT, MPI_RGET, MPI_RACCUMULATE, … i-s---- ic l nb nb-op - buffer 14) 21)

MPI_WAIT ----c-f c+f l - 21)

MPI_WIN_UNLOCK and others ------- l - 21)

On a target process

MPI_WIN_CREATE/_ALLOCATE/..._SHARED i------ nl C sq W1 buffer address

MPI_WIN_FREE ------f f nl C sq W1

Status (May 31, 2020)

• A set of additional changes:
o No-no-votes requested for June 29-July 1, 2020 meeting (Munich  online)

o Based on the discussions after the Portland meeting:
In chap-applang/

 v11-->v15: Semantic terms / RMA tables in A.2 (Part III.)
(RMA removed from 2nd table in A.2; 3rd table added for RMA)

In figures/

 Modified MPI-semantics-appendix_for-pptx.xlsx (containing all tables)

 Modified MPI-semantics-appendix.pptx (now including also img4)

 Modified MPI-semantics-appendix_img3.png / .eps / .pdf (without the 2-rows entry for MPI_PUT, …)

 New MPI-semantics-appendix_img4.png / .eps / .pdf (new table for RMA)

• For first vote: Version from May 31, 2020

33

PART III.

Lets look at pdf on Issue #96 and
the small changes on PR 116

• pdf: https://github.com/mpi-forum/mpi-issues/files/4708015/mpi32-
report-semantic-terms-2020-05-31-annotated.pdf

• Issue: https://github.com/mpi-forum/mpi-issues/issues/96
o Here, you can find also these slides:
o EuroMPI2019-SematicTerms-fromPuri-2020-04-28+RMA-rab-2020-05-31.pdf

• Pull request: https://github.com/mpi-forum/mpi-standard/pull/116

• Any open questions?

34

https://github.com/mpi-forum/mpi-issues/files/4708015/mpi32-report-semantic-terms-2020-05-31-annotated.pdf
https://github.com/mpi-forum/mpi-issues/issues/96
https://github.com/mpi-forum/mpi-standard/pull/116

Problems with RMA

• Do we have any problem with the change
o from MPI-1 – 3: nonblocking := incomplete

o to MPI-4: nonblocking := incomplete AND local

• Is there any wrong usage of nonblocking as
o operation vs. procedure is nonblocking

o procedure does not block until …

o procedure is local

• Which table entries would be correct for the RMA synchronization
procedures?

• Are the RMA communication procedures really nonblocking?
35

Third

question

Recap of RMA in MPI-3.1

11.3 Communication Calls (page 417, lines 10-23)

MPI supports the following RMA communication calls: MPI_PUT and MPI_RPUT transfer

data from the caller memory (origin) to the target memory; MPI_GET and MPI_RGET

transfer data from the target memory to the caller memory; MPI_ACCUMULATE and

MPI_RACCUMULATE update locations in the target memory, e.g., by adding to these

Locations values sent from the caller memory; MPI_GET_ACCUMULATE,

MPI_RGET_ACCUMULATE, and MPI_FETCH_AND_OP perform atomic read-modify-write

and return the data before the accumulate operation; and MPI_COMPARE_AND_SWAP performs

a remote atomic compare and swap operation. These operations are nonblocking.

Additionally, these particular procedures are nonblocking: the

call initiates the transfer, but the transfer may continue after the call returns. The transfer

is completed, at the origin or both the origin and the target, when a subsequent synchro-

nization call is issued by the caller on the involved window object. These synchronization

calls are described in Section 11.5.

36

That is what we
expected:

MPI_PUT, MPI_GET,
MPI_ACCULMULATE,

…, they are
nonblocking

procedures according
to MPI-3.1 definition of

nonblocking.
Are they also local?

Recap of RMA in MPI-3.1

11.7.3 Progress (page 462, lines 16-20)

One-sided communication has the same progress requirements as point-to-point communication:

once a communication is enabled it is guaranteed to complete. RMA calls must have

local semantics, except when required for synchronization with other RMA calls.

Yes, they are also local!
What does this exception mean?

Can only RMA synchronization calls be
non-local?

37

Recap of RMA in MPI-3.1

11.5.2 General Active Target Synchronization (page 441, line 28-32, 47 - page 442, line 4)

MPI_WIN_START(group, assert, win)

Starts an RMA access epoch for win. RMA calls issued on win during this epoch must

access only windows at processes in group. Each process in group must issue a matching

call to MPI_WIN_POST. RMA accesses to each target window will be delayed, if necessary,

until the target process executed the matching call to MPI_WIN_POST. MPI_WIN_START

is allowed to block until the corresponding MPI_WIN_POST calls are executed, but is not

required to.

Okay, MPI_WIN_START is non-local!

38

Recap of RMA in MPI-3.1

11.5.2 General Active Target Synchronization (page 442, lines 10, 21-26)

MPI_WIN_COMPLETE(win)

Completes an RMA access epoch on win started by a call to MPI_WIN_START. All

RMA communication calls issued on win during this epoch will have completed at the origin

when the call returns.

MPI_WIN_COMPLETE enforces completion of preceding RMA calls at the origin, but

not at the target. A put or accumulate call may not have completed at the target when it

has completed at the origin.

MPI_WIN_COMPLETE has no defined
right to block.

Expectation: It is local !?!?

39

Wow!!!!
“MPI_PUT is allowed to block until …”
Is MPI_PUT still a local procedure???

Recap of RMA in MPI-3.1
11.5.2 General Active Target Synchronization (page 442, lines 27-46)

Consider the sequence of calls in the example below.

Example 11.4
MPI_Win_start(group, flag, win);

MPI_Put(..., win);

MPI_Win_complete(win);

The call to MPI_WIN_COMPLETE does not return until the put call has completed

at the origin; and the target window will be accessed by the put operation only after the

call to MPI_WIN_START has matched a call to MPI_WIN_POST by the target process.

Advice to implementors.

This still leaves much choice to implementors. The call to MPI_WIN_START can block

until the matching call to MPI_WIN_POST occurs at all target processes. One can also

have implementations where the call to MPI_WIN_START may not block, but the call to

MPI_PUT blocks until the matching call to MPI_WIN_POST occurs; or implementations

where the first two calls may not block, but the call to MPI_WIN_COMPLETE blocks

until the call to MPI_WIN_POST occurred; or even implementations where all three calls

can complete before any target process has called MPI_WIN_POST – the data put must

be buffered, in this last case, so as to allow the put to complete at the origin ahead of its

completion at the target. However, once the call to MPI_WIN_POST is issued, the sequence

above must complete, without further dependencies. (End of advice to implementors.)

Advice to users. In order to ensure a portable deadlock free program, a user must assume that

MPI_WIN_START may block until the corresponding MPI_WIN_POST has been called. (End of

advice to users.)

From the users view, these sentences
are not relevant:

The user has already to expect that
MPI_WIN_START has blocked until …

This means:
Only the BLUE sentence is relevant for

the user’s perspective for writing
deadlock-free MPI applications …

40

… as also mentioned in the new advice to
users.

Let’s formalize our
definition of non-local
From the “application

programmers’”
viewpoint

Recap of RMA in MPI-3.1

1.8 Who Should Use This Standard? (page 5, lines 1-9)

This standard is intended for use by all those who want to write portable message-passing

programs in Fortran and C (and access the C bindings from C++). This includes individual

application programmers, developers of software designed to run on parallel machines, and

creators of environments and tools. In order to be attractive to this wide audience, the

standard must provide a simple, easy-to-use interface for the basic user while not semantically

precluding the high-performance message-passing operations available on advanced

machines.

Often overseen in many
discussions!

41

How to resolve the problem that MPI_Put
should be local and is allowed to block

Semantic Terms, definition of non-local:

Non-local procedure An MPI procedure is non-local if returning may require the execution
of some specific semantically-related MPI procedure on another MPI process during the execution of the MPI procedure.

How to decide whether an MPI procedure is non-local, especially, if an MPI implementation is allowed to postpone a “may
block until …” to a later MPI procedure call?

In this case, we may formalize our definition of non-local:

An MPI procedure MPI_A is non-local, if there exists a correct (i.e. also deadlock-free) MPI program with a call to MPI_A on
one process and if there exists a call to an MPI procedure MPI_B on another process

so that if we add a test message as in the following figure

then the application is still correct (i.e. also deadlock-free),
whereas the following modification may cause a deadlock:

MPI_A MPI_B

MPI_Bsend MPI_Recv

MPI_A MPI_B

MPI_A MPI_Recv

MPI_Bsend MPI_B

If such a correct MPI program and such
MPI_B exist, then MPI_B is such a “specific

semantically-related MPI procedure on another

MPI process” in the definition of non-local.

If no such correct MPI program with any
such MPI_B exist, then MPI_A is local.

42

Let’s apply the test scheme
to MPI_Win_start:

MPI_A MPI_B

MPI_Bsend MPI_Recv

MPI_A MPI_B

MPI_A MPI_Recv

MPI_Bsend MPI_B

given

still
correct

Message
causes

deadlock

MPI_Win_start MPI_Win_Post

MPI_Put/Get/Accu

MPI_Win_complete MPI_Win_wait

Is A=MPI_Win_start non-local?

MPI_Bsend MPI_Recv

MPI_Win_start MPI_Win_post

MPI_Put/Get/Accu

MPI_Win_complete MPI_Win_wait

given

Still correct?  YES

1) Testing with B=MPI_Win_post:

MPI_Win_start MPI_Recv

MPI_Bsend MPI_Win_post

MPI_Put/Get/Accu

MPI_Win_complete MPI_Win_wait

Message causes deadlock?  YES

MPI_Bsend

MPI_Win_start MPI_Win_post

MPI_Put/Get/Accu MPI_Recv

MPI_Win_complete MPI_Win_wait

Still correct?  YES

2) Testing with B=MPI_Win_wait:
(not needed, if one B is already found)

MPI_Win_start

MPI_Bsend MPI_Win_post

MPI_Put/Get/Accu MPI_Recv

MPI_Win_complete MPI_Win_wait

Message causes deadlock?  NO (failed)

Result: MPI_Win_start is non-local

Result: No answer from this test

Final result:
MPI_Win_start is non-local because

its return may requires the call of

MPI_Win_post in another process.

43

Let’s apply the test scheme
to MPI_Put/Get/Accumulate:

MPI_A MPI_B

MPI_Bsend MPI_Recv

MPI_A MPI_B

MPI_A MPI_Recv

MPI_Bsend MPI_B

given

still
correct

Message
causes

deadlock

MPI_Win_start MPI_Win_Post

MPI_Put/Get/Accu
MPI_Win_complete MPI_Win_wait

Is A=MPI_Put/Get/Accu non-local?

given

Still correct?  NO (because it may deadlock)

1) Testing with B=MPI_Win_post:

MPI_Win_start MPI_Recv

MPI_Bsend MPI_Win_post

MPI_Put/Get/Accu

MPI_Win_complete MPI_Win_wait

MPI_Win_start MPI_Win_post

MPI_Bsend

MPI_Put/Get/Accu MPI_Recv

MPI_Win_complete MPI_Win_wait

Still correct?  YES

2) Testing with B=MPI_Win_wait:
(not needed, if one B is already found)

MPI_Win_start MPI_Win_post

MPI_Put/Get/Accu

MPI_Bsend MPI_Recv

MPI_Win_complete MPI_Win_wait

Message causes deadlock?  NO (failed)

Result: No answer from this test

Result: No answer from this test

Final result:
MPI_Put, Get, Accumulate are local

because there isn’t such MPI_B to

detect non-locality.

44

Let’s apply the test scheme
to MPI_Win_complete:

MPI_A MPI_B

MPI_Bsend MPI_Recv

MPI_A MPI_B

MPI_A MPI_Recv

MPI_Bsend MPI_B

given

still
correct

Message
causes

deadlock

MPI_Win_start MPI_Win_Post

MPI_Put/Get/Accu

MPI_Win_complete MPI_Win_wait

Is A=MPI_Win_complete non-local?

given

Still correct?  NO (because it may deadlock)

1) Testing with B=MPI_Win_post:

MPI_Win_start MPI_Recv

MPI_Put/Get/Accu MPI_Win_post

MPI_Bsend

MPI_Win_complete MPI_Win_wait

MPI_Win_start MPI_Win_post

MPI_Put/Get/Accu

MPI_Bsend MPI_Recv

MPI_Win_complete MPI_Win_wait

Still correct?  YES

2) Testing with B=MPI_Win_wait:
(not needed, if one B is already found)

MPI_Win_start MPI_Win_post

MPI_Put/Get/Accu

MPI_Win_complete MPI_Recv

MPI_Bsend MPI_Win_wait

Message causes deadlock?  NO (failed)
See MPI-3.1 page 463, Fig. 11.8

Result: No answer from this test

Result: No answer from this test

Final result:
MPI_Win_complete is local because

there isn’t such MPI_B to detect non-

locality.

45

Recap of RMA in MPI-3.1

11.5.2 General Active Target Synchronization (page 443, lines 1, 17-19, 22, 33-38)

MPI_WIN_POST(group, assert, win)

Starts an RMA exposure epoch for the local window associated with win. Only processes

in group should access the window with RMA calls on win during this epoch. Each process

in group must issue a matching call to MPI_WIN_START. MPI_WIN_POST does not block.

MPI_WIN_WAIT(win)

Completes an RMA exposure epoch started by a call to MPI_WIN_POST on win. This

call matches calls to MPI_WIN_COMPLETE(win) issued by each of the origin processes that

were granted access to the window during this epoch. The call to MPI_WIN_WAIT will block

until all matching calls to MPI_WIN_COMPLETE have occurred. This guarantees that all

these origin processes have completed their RMA accesses to the local window. When the

call returns, all these RMA accesses will have completed at the target window.

It is local

It is non-local

46

Results, independent from implementation choices:

MPI_Win_Start non-local

MPI_Put local (AND incomplete  nonblocking)
MPI_Get local (AND incomplete  nonblocking)
MPI_Accumulate local (AND incomplete  nonblocking)

MPI_Win_complete local

From the MPI text and of course also with same testing one can see:

MPI_Win_post local
MPI_Win_wait non-local
MPI_Win_test local

MPI_Win_fence non-local

MPI_Win_lock non-local
MPI_Win_unlock local

47

As already shown
in the proposal for
the RMA tables in

Annex A.2

Additional rationale to Issue 96 to more completely describe the
“user’s perspective” in Annex A.2, Footnote 21 (part 4)

MPI-4 Issue #96 Annex A.2 Footnote 21 on RMA procedures read (including the change from Part 1)
21) In some cases, more than one MPI procedure may be needed to implement one stage of an MPI one-sided operation.

The locality of the RMA procedures is analyzed from the user’s perspective, i.e., independent of the choices to implementors

about weak synchronization as described in Sections 11.5, 11.5.2 (on Example 11.4), and 11.5.3 (on Example 11.5).

For details on the semantics of one-sided operations, see Chapter 11.

but should read
21) In some cases, more than one MPI procedure may be needed to implement one stage of an MPI one-sided operation.

The locality of the RMA procedures is analyzed from the user’s perspective, i.e., independent of the choices to implementors

about weak synchronization as described in Sections 11.5, 11.5.2 (on Example 11.4), and 11.5.3 (on Example 11.5).

Rationale.

For this user’s perspective, the definition of non-local can be formalized as follows:

(see next slide)

(End of rationale.)

For details on the semantics of one-sided operations, see Chapter 11.

48

Additional rationale to Issue 96 to more completely describe the
“user’s perspective” in Annex A.2, Footnote 21 (part 4, continued)

21) In some cases, more than one MPI procedure may be needed to implement one stage of an MPI one-sided operation.

The locality of the RMA procedures is analyzed from the user’s perspective, i.e., independent of the choices to implementors

about weak synchronization as described in Sections 11.5, 11.5.2 (on Example 11.4), and 11.5.3 (on Example 11.5).

Rationale.

For this user’s perspective, the definition of a non-local procedure (see Section 2.4.2) can be formalized as follows:

An MPI procedure MPI_A is non-local, if there exists a correct (i.e. also deadlock-free) MPI program with

a call to MPI_A on one process and if there exists a call to an MPI procedure MPI_B on another process

so that if we add a test message as in the following figure

then the application is still correct (i.e. also deadlock-free),

whereas the following modification may cause a deadlock:

Note that MPI_B is then such a specific semantically-related MPI procedure on another MPI process as

mentioned in the definition of the semantic term non-local procedure in Section 2.4.2.

(End of rationale.)

For details on the semantics of one-sided operations, see Chapter 11.

MPI_A MPI_B

MPI_Bsend MPI_Recv

MPI_A MPI_B

MPI_A MPI_Recv

MPI_Bsend MPI_B

49

from

PART II.

PART IV.

Status (May 31, 2020)

• A set of additional changes:
o No-no-votes requested for June 29-July 1, 2020 meeting (Munich  online)

o Additional changes for the RMA chapter
In chap-applang/

 v15-->v16: Semantic terms / RMA: Rationale for A.2 Footnote 21 (1 change)

In figures/

 Modified MPI-semantics-appendix.pptx (now including also img5a-c)

 New MPI-semantics-appendix_img5a.png / .eps / .pdf (for the rationale)

 New MPI-semantics-appendix_img5b.png / .eps / .pdf

 New MPI-semantics-appendix_img5c.png / .eps / .pdf

• For first vote: Version from May 31, 2020

50

PART IV.

Lets look at pdf on Issue #96 and
the small changes on PR 116

• Final version from May 31, 2020

• pdf: https://github.com/mpi-forum/mpi-issues/files/4708015/mpi32-
report-semantic-terms-2020-05-31-annotated.pdf

• Issue: https://github.com/mpi-forum/mpi-issues/issues/96
o Here, you can find also these slides:

o EuroMPI2019-SematicTerms-fromPuri-2020-04-28+RMA-rab-2020-05-31.pdf

• Pull request: https://github.com/mpi-forum/mpi-standard/pull/116

• Any open questions?

51

https://github.com/mpi-forum/mpi-issues/files/4708015/mpi32-report-semantic-terms-2020-05-31-annotated.pdf
https://github.com/mpi-forum/mpi-issues/issues/96
https://github.com/mpi-forum/mpi-standard/pull/116

Thanks for listening
Questions?

52

