
:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

1 / 13:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

MPI-4 Issue #120

Topology aware Cartesian grid mapping with MPI
Issue #120 Reading

Rolf Rabenseifner Christoph Niethammer
rabenseifner@hlrs.de niethammer@hlrs.de

High Performance Computing Center (HLRS), University of Stuttgart, Germany

Virtual MPI Forum Meeting June 10, 2020

Exceptional virtual MPI Forum Meeting June 29 – July 1, 2020 (originally planned for Munich)
For further information, see https://github.com/mpi-forum/mpi-issues/issues/120

https://github.com/mpi-forum/mpi-issues/issues/120

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

2 / 13

Goals of Cartesian MPI_Cart/Dims_create

• Given: comm_old (e.g., MPI_COMM_WORLD), ndims (e.g., 3 dimensions)

• Provide

– a factorization of #processes (of comm_old) into the dimensions dims[𝒊]𝑖=1..ndims

– a Cartesian communicator comm_cart

– a optimized reordering of the ranks in comm_old into the ranks of comm_cart
to minimize the Cartesian communication time, e.g., of

• MPI_Neighbor_alltoall

• Equivalent communication pattern implemented with

– MPI_Sendrecv

– Nonblocking MPI point-to-point communication

MPI-4 Issue #120

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

3 / 13

The limits of MPI_Dims_create + MPI_Cart_create

• Not application topology aware
– MPI_Dims_create can only map evenly balanced Cartesian topologies

• Factorization of 48,000 processes into 20 x 40 x 60 processes
(e.g. for a mesh with 200 x 400 x 600 mesh points)

 no chance with current interface

• Only partially hardware topology aware

– MPI_Dims_create has no communicator argument  not hardware aware

• An application mesh with 3000x3000 mesh points
on 25 nodes x 24 cores (=600 MPI processes)

– Answer from MPI_Dims_create:

» 25 x 24 MPI processes

» Mapped by most libraries to 25 x 1 nodes with 120x3000 mesh points per node
 too much node-to-node communication

MPI-4 Issue #120

Major problems:

• No weights, no info

• Two separated
interfaces for
two common tasks:

 Factorization
of #processes

 Mapping of
the processes
to the
hardware

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

4 / 13

Goals of Cartesian MPI_Cart/Dims_create

• Remark: On a hierarchical hardware,

– optimized factorization and reordering typically means minimal node-to-node communication,

– which typically means that the communicating surfaces of the data on each node is as quadratic as
possible (or the subdomain as cubic as possible)

• In the current API, i.e.,

– due to the missing weights

– and the non-hardware aware MPI_Dims_create,

does not allow such an optimized factorization and reordering in many cases.

MPI-4 Issue #120

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

5 / 13

Hierarchical Cartesian Domain Decomposition

Virtual

location of an

MPI process

within an

SMP node

All MPI

processes

of an SMP

node

Second and minor

optimization goal:

Whole intra-node

communication must

be minimized!

Example:

24 SMP nodes

X

32 cores/node

Per node:

maximal

8+8+8+8+16+16*)=

48 or 64*)

connections

to neighbor

nodes
*) with cyclic communication

Without

topology-

optimization:

96 connections

to other nodes

2 or 1.6*) times slower

communication

Primary and main

optimization goal:

Whole communication

from each node to all

of its neighbors must

be minimized!

MPI-4 Issue #120

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

6 / 13

The new Interface

MPI-4 Issue #120

• MPI_Dims_create_weighted (
/*IN*/ int nnodes,
/*IN*/ int ndims,
/*IN*/ int dim_weights[ndims],
/*IN*/ int periods[ndims], /* for future use in combination with info */

/*IN*/ MPI_Info info, /* for future use, currently MPI_INFO_NULL */

/*INOUT*/ int dims[ndims]);

– Arguments have same meaning as in MPI_Dims_create

– Goal (in absence of an info argument):

• dims[i]•dim_weights[i] should be as close as possible,

• i.e., the ∑i=0..(ndims-1) dims[i]•dim_weights[i] as small as possible (advice to implementors)

A new courtesy
function:
Weighted factorization

input for application-
topology-awareness

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

7 / 13

The new Interface, continued

MPI-4 Issue #120

• MPI_Cart_create_weighted (
/*IN*/ MPI_Comm comm_old,
/*IN*/ int ndims,
/*IN*/ int dim_weights[ndims], /*or MPI_UNWEIGHTED*/

/*IN*/ int periods[ndims],
/*IN*/ MPI_Info info, /* for future use, currently MPI_INFO_NULL */

/*INOUT*/ int dims[ndims],
/*OUT*/ MPI_Comm *comm_cart);

– Arguments have same meaning as in MPI_Dims_create & MPI_Cart_create

– See next slide for meaning of dim_weights[ndims]

– Goal: chooses
• an ndims-dimensional factorization of #processes of comm_old ( dims)
• and an appropriate reordering of the ranks ( comm_cart),

such that the execution time of a communication step along the virtual process grid
(e.g., with MPI_NEIGHBOR_ALLTOALL or equivalent calls to MPI_SENDRECV as in the example in Section 7.6.2)

is as small as possible.

The new application &
hardware topology
aware interface

input for hardware-awareness

input for application-
topology-awareness

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

8 / 13

How to specify the dim_weights?

• Given: comm_old (e.g., MPI_COMM_WORLD), ndims (e.g., 3 dimensions)

• This means, the domain decomposition has not yet taken place!

• Goals for dim_weights and the API at all:

– Easy to understand

– Easy to calculate

– Relevant for typical Cartesian communication patterns (MPI_Neighbor_alltoall or alternatives)

– Rules fit to usual design criteria of MPI

• E.g., reusing MPI_UNWEIGHTED  integer array

• Can be enhanced by vendors for their platforms
 additional info argument for further specification

• To provide also the less optimal two stage interface (in addition to the combined routine)

MPI-4 Issue #120

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

9 / 13

The dim_weights[𝑖], example with 3 dimensions

MPI-4 Issue #120

𝑤1 𝑤1 𝑤1

𝑤1

𝑑0𝑑2
(=
𝑤1𝑑1
 𝑖 𝑑𝑖

) 𝑑1(=4)

𝑑
2
(=
3
)

Cutting plane orthogonal to dimension 1

periods[0]

=false
periods[1]=false

p
e

rio
d
s
[2

]=
tru

e

1

2

0

Three dimensions,

i.e., ndims=3

Abbreviations:

𝑑𝑖 = dims[𝑖]
𝑤𝑖 = dim_weights[𝑖]
with

𝑖 = 0..(ndims-1)

The arguments dim_weights[𝑖] 𝑖 =0::(ndims-1), abbreviated with 𝑤𝑖, should be specified as the
accumulated message size (in bytes) communicated in one communication step through each
cutting plane orthogonal to dimension 𝑑𝑖 and in each of the two directions.

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

10 / 13

The dim_weights[𝑖], example with 3 dimensions, continued

Example for the calculation of the accumulated communication size 𝑤𝑖,𝑖=0..2 in each dimension.

• 𝑔𝑖 – The data mesh sizes 𝑔𝑖,𝑖=0..2 express the three dimensions of the total application data mesh.

• ℎ𝑖 – The value ℎ𝑖 represents the halo width in a given direction when the 2-dimensional side of a
subdomain is communicated to the neighbor process in that direction.

Output from MPI_Cart/Dims_create_weighted: The dimensions 𝑑𝑖,𝑖=0..2

MPI-4 Issue #120

Distributed

into the

sub-domains

on each MPI

process
𝑔0

𝑔0
𝑑0

𝑑0

𝑔1
𝑔1
𝑑1

𝑑1

𝑔2
𝑔2
𝑑2

𝑑2

ℎ0

ℎ2

ℎ1

𝑤1 = 𝑔0ℎ1𝑔2 = ℎ1
 𝑖 𝑔𝑖
𝑔1

Accumulated communication size through

cutting plane orthogonal to dimension 110

dimensions

2

Abbreviations: 𝑔𝑖 = data mesh size in dimension 𝑖, 𝑖=0..(ndims-1), 𝑤𝑖 = dim_weights[𝑖],
ℎ𝑖 = halo width in dimension 𝑖, 𝑑𝑖 = dims[𝑖]

Global data mesh Important:

• The definition of the
dim_weights
(= 𝑤𝑖 in this figure)
is independent of the
total number of
processes and its
factorization into the
dimensions
(= 𝑑𝑖 in this figure)

• Result was

𝑤𝑖 = ℎ𝑖
 𝑗 𝑔𝑗

𝑔𝑖

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

11 / 13

Simple answers to our problems / examples

• Existing API is not application topology aware
• Factorization of 48,000 processes into 20 x 40 x 60 processes  no chance with current API

(e.g. for a mesh with 200 x 400 x 600 mesh points)

• Use MPI_Cart_create_weighted with the dim_weights=(N/200, N/400, N/600)
with N=200•400•600

• Existing API is only partially hardware topology aware
• An application mesh with 3000x3000 mesh points (i.e., example with MPI_UNWEIGHTED)

on 25 nodes x 24 cores (=600 MPI processes)

– Current API must factorize into 25 x 24 MPI processes

» 25 x 1 nodes  120x3000 mesh points  too much node to node communication

– Optimized answer from MPI_Carte_create_weighted may be:

» 30 x 20 MPI processes

» Mapped to 5 x 5 nodes with 600x600 mesh points per node
minimal node-to-node communication

MPI-4 Issue #120

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

12 / 13

Reading of the changes during the Portland Meeting

• Issue: https://github.com/mpi-forum/mpi-issues/issues/120

• PR: https://github.com/mpi-forum/mpi-standard/pull/98

• Annotated PDF:
https://github.com/mpi-forum/mpi-issues/files/4758790/mpi-report-issue120-topol-2020-02-21-annotated.pdf
(State: End of Portland meeting Feb. 21, 2020 plus small (typo) corrections = PR98 from June 10, 2020)

MPI-4 Issue #120

https://github.com/mpi-forum/mpi-issues/issues/120
https://github.com/mpi-forum/mpi-standard/pull/98
https://github.com/mpi-forum/mpi-issues/files/4758790/mpi-report-issue120-topol-2020-02-21-annotated.pdf

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

13 / 13

Thank you for your interest / any questions?

MPI-4 Issue #120

