
MPI Semantic Terms
Quo Vadis 4.1

Ideas by Rolf Rabenseifner
Based on many discussions within the Semantic Terms Working Group

1

What is still missing?

• Example for MPI_RSEND

• Example for MPI_MRECV

• May be text about progress (instead of referencing

to the rationale about MPI_WIN_COMPLETE in Fig.

11.8 in Section 11.7.3)

2

Clarification of RSEND
• E.g. to be added as a paragraph on „Localness“

at the end of Section 3.5 Semantics of Point-to-Point Communication

In a correct MPI program, a call to MPI_(I)RSEND requires that the receiver has already started the corresponding receive.
Under this assumption, the call to MPI_RSEND and the call to MPI_WAIT corresponding to an MPI_IRSEND are local.

process 0 process 1
MPI_IRECV(tag1,rq)
MPI_SEND(tag2)

MPI_RECV(tag2)
MPI_RSEND(tag1)
MPI_SEND(tag3) MPI_RECV(tag3)

MPI_WAIT(rq)

Figure X.2: No deadlock with MPI_RSEND

Consider the code illustrated in Figure X.2. This code will not deadlock.
Note that the message with tag2 only illustrates any method to guarantee that the receive is already started
in process 1 before the ready send is started in process 0.
Once the MPI_IRECV(tag1) and the MPI_RSEND(tag1) is started, then process 0 can proceed to completion.
The rationale about MPI_WIN_COMPLETE in Fig. 11.8 in Section 11.7.3 does also apply to MPI_RSEND.

3

Clarification of MRECV
• E.g. to be added after the definition of MPI_MRECV in Section 3.8.2 Matching Probe
Consider the code illustrated in Figure X.1.

process 0 process 1
MPI_ISEND(tag1,rq)

MPI_MPROBE(tag1,msg1)
MPI_MRECV(msg1)
MPI_SEND(tag2) MPI_RECV(tag2)

MPI_WAIT(rq)

Figure X.1: No deadlock with MPI_MRECV

This code will not deadlock.
Once the MPI_ISEND(tag1) is started, then MPI_MPROBE(tag1) must return and process 0 can proceed to completion.
The rationale about MPI_WIN_COMPLETE in Fig. 11.8 in Section 11.7.3 does also apply to MPI_MRECV and the
completion of an MPI_WAIT corresponding to a call to MPI_IMRECV.

4

May be that we add a text about weak progress into
Chapter 2.

What is still missing?
• RMA (Current status Feb 2 / May 20, 2020):

o Text in Semantic Terms, advice to users:
Nonblocking procedures:
• incomplete and local: MPI_ISEND, MPI_IRECV, MPI_IBCAST,

MPI_PUT, MPI_GET, MPI_ACCUMULATE, MPI_IMPROBE, MPI_SEND_INIT, MPI_RECV_INIT, ...

o Text in Annex A.2

14) Nonblocking procedure without an I prefix.
21) In some cases, more than one MPI procedure may be needed to implement one stage of an MPI

one-sided operation. For details on the semantics of one-sided operations, see Chapter 11.

• Partitioned Communication
o Currently no investigation / the proposer of the partitioned communication may check whether their

text still fits to the modified Semantic Terms, especially the use of “nonblocking”

Procedure Stages Cpl Loc Blk Op Collective Blocked resources
C sq S/W and remarks

MPI_PUT, MPI_GET, MPI_ACCUMULATE i-s---- ic l nb nb-op - buffer 14) 21)
Other one-sided procedures 21)

5

Problems with RMA

• Do we have any problem with the change
o from MPI-1 – 3: nonblocking := incomplete
o to MPI-4: nonblocking := incomplete AND local

• Is there any wrong usage of nonblocking as
o operation vs. procedure is nonblocking
o procedure does not block until …
o procedure is local

• Which table entries would be correct for the RMA synchronization
procedures?

• Are the RMA communication procedures really nonblocking?

These questions should
be also checked by the
chapter committee of
“Partitioned
communication”

6

We first
address
these
questions

RMA small wording corrections Part II.a
MPI-3.1 Section 11.3 Communication Calls, page 417, lines 10-23 should read

MPI supports the following RMA communication calls: MPI_PUT and MPI_RPUT transfer
data from the caller memory (origin) to the target memory; MPI_GET and MPI_RGET
transfer data from the target memory to the caller memory; MPI_ACCUMULATE and
MPI_RACCUMULATE update locations in the target memory, e.g., by adding to these
Locations values sent from the caller memory; MPI_GET_ACCUMULATE,
MPI_RGET_ACCUMULATE, and MPI_FETCH_AND_OP perform atomic read-modify-write
and return the data before the accumulate operation; and MPI_COMPARE_AND_SWAP performs
a remote atomic compare and swap operation. These operations are nonblocking.
Additionally, these particular procedures are nonblocking: the
call initiates the transfer, but the transfer may continue after the call returns. The transfer
is completed, at the origin or both the origin and the target, when a subsequent synchro-
nization call is issued by the caller on the involved window object. These synchronization
calls are described in Section 11.5.

MPI-3.1 Section 11.5.2, page 442, lines 38-42 about Example 11.4 should read
One can also have implementations where the call to MPI_WIN_START is nonblocking may not block, but the call to
MPI_PUT blocks until the matching call to MPI_WIN_POST occurs; or implementations
where the first two calls are nonblocking may not block, but the call to MPI_WIN_COMPLETE blocks
until the call to MPI_WIN_POST occurred;

(similar to the unchanged text in MPI-3.1 Section 11.5.3, page 448, lines 22-25 about Example 11.5:
The call to MPI_WIN_LOCK may block until an exclusive lock on the window is acquired; or, the first
two calls may not block, while MPI_WIN_UNLOCK blocks until a lock is acquired – the
update of the target window is then postponed until the call to MPI_WIN_UNLOCK occurs.) 7

RMA small wording corrections Part II.a, continued

MPI-3.1 Section 11.5.2, page 443, lines 32-33 on MPI_WIN_TEST should read

This is the nonblocking local version of MPI_WIN_WAIT. It returns flag = true if all accesses
to the local window by the group to which it was exposed by the corresponding.

MPI-3.1 Section 11.7.3 Progress, page 462, lines 37-38 about Example 11.6 should read

The post calls are nonblocking do not block, and should complete.

MPI-4 Issue #96 Annex A.2, amendment to Footnote 21 on RMA procedures read

21) In some cases, more than one MPI procedure may be needed to implement one stage of an MPI one-sided operation.
The locality of the RMA procedures is analyzed from the user’s perspective, i.e., independent of the choices to implementors
about weak synchronization as described in Sections 11.5, 11.5.2 (on Example 11.4), and 11.5.3 (on Example 11.5).
For details on the semantics of one-sided operations, see Chapter 11.

• These changes are under the commits
In chap-applang/
- v10-->v11: Semantic terms / RMA small wording corrections in A.2 Footnote 21 (Part II.a)
In chap-one-sided/ (v00= version 2020-02-02 of one-sided-2.tex)
- v00-->v12: Semantic terms / RMA small wording corrections (Part II.a)

8

RMA small wording corrections Part II.b
MPI-3.1 Section 11.5.2, page 442, lines 27-46 about Example 11.4 should read

Consider the sequence of calls in the example below.
Example 11.4
MPI_Win_start(group, flag, win);
MPI_Put(..., win);
MPI_Win_complete(win);

The call to MPI_WIN_COMPLETE does not return until the put call has completed
at the origin; and the target window will be accessed by the put operation only after the
call to MPI_WIN_START has matched a call to MPI_WIN_POST by the target process.

Advice to implementors. This still leaves much choice to implementors. The call to MPI_WIN_START
can block until the matching call to MPI_WIN_POST occurs at all target processes. One can also
have implementations where the call to MPI_WIN_START may not block, but the call to
MPI_PUT blocks until the matching call to MPI_WIN_POST occurs; or implementations
where the first two calls may not block, but the call to MPI_WIN_COMPLETE blocks
until the call to MPI_WIN_POST occurred; or even implementations where all three calls
can complete before any target process has called MPI_WIN_POST – the data put must
be buffered, in this last case, so as to allow the put to complete at the origin ahead of its
completion at the target. However, once the call to MPI_WIN_POST is issued, the sequence
above must complete, without further dependencies. (End of advice to implementors.)
Advice to users. In order to ensure a portable deadlock free program, a user must assume that
MPI_WIN_START may block until the corresponding MPI_WIN_POST has been called. (End of advice to users.)

9

This existing part from MPI-
3.1 now defined as advice to

implementors.

New advice to users to make
clear that MPI_WIN_START
has to be assumed as non-

local for portable application
programming.

RMA small wording corrections Part II.b, continued

MPI-3.1 Section 11.5.3 Lock, page 448, lines 14-28 about Example 11.5 should read

Consider the sequence of calls in the example below.
Example 11.5
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, rank, assert, win);
MPI_Put(..., rank, ..., win);
MPI_Win_unlock(rank, win);

The call to MPI_WIN_UNLOCK will not return until the put transfer has completed at
the origin and at the target.

Advice to implementors. This still leaves much freedom to implementors. The call to
MPI_WIN_LOCK may block until an exclusive lock on the window is acquired; or, the first
two calls may not block, while MPI_WIN_UNLOCK blocks until a lock is acquired – the
update of the target window is then postponed until the call to MPI_WIN_UNLOCK occurs.
However, if the call to MPI_WIN_LOCK is used to lock a local window, then the call must
block until the lock is acquired, since the lock may protect local load/store accesses to the
window issued after the lock call returns. (End of advice to implementors.)

Advice to users. In order to ensure a portable deadlock free program, a user must assume
that MPI_Win_lock may block until an exclusive lock on the window is acquired. (End of advice to users.)

• These changes are under the commits
In chap-one-sided/
- v12-->v13: Semantic terms / RMA small wording corrections (Part II.b)

10

Problems with RMA

• Do we have any problem with the change
o from MPI-1 – 3: nonblocking := incomplete
o to MPI-4: nonblocking := incomplete AND local

• Is there any wrong usage of nonblocking as
o operation vs. procedure is nonblocking
o procedure does not block until …
o procedure is local

• Which table entries would be correct for the RMA synchronization
procedures?

• Are the RMA communication procedures really nonblocking?
11

Second
question

Additional changes to Issue 96 to more completely
handle RMA in Annex A.2 (part 3)

MPI-4 Issue #96 Annex A.2 2nd table on RMA procedures reads

but should read

Procedure Stages Cpl Loc Blk Op Collective Blocked resources
C sq S/W and remarks

MPI_PUT, MPI_GET, MPI_ACCUMULATE i-s---- ic l nb nb-op - buffer 14) 21)
Other one-sided procedures 21)

Procedure Stages Cpl Loc Blk Op Collective Blocked resources
C sq S/W and remarks

On an origin process with Fence Synchronization

MPI_WIN_FENCE i------ nl C sq W1

MPI_PUT, MPI_GET, MPI_ACCUMULATE, … i-s---- ic l nb nb-op - buffer 14) 21)

MPI_WIN_FENCE ----c-f c+f l C sq W1

On a target process

MPI_WIN_CREATE/_ALLOCATE/..._SHARED i------ nl C sq W1 buffer address

MPI_WIN_FENCE --s---- ic l C sq W1 buffer address+content

MPI_WIN_FENCE ----c-- c nl C sq W1 buffer address

MPI_WIN_FREE ------f f nl C sq W1

Continuation
on next slide

12

Additional changes to Issue 96 to more completely
handle RMA in Annex A.2 (part 3, continued)

and Procedure Stages Cpl Loc Blk Op Collective Blocked resources
C sq S/W and remarks

On an origin process with General Active Target Synchronization

MPI_WIN_START i------ nl - 21)

MPI_PUT, MPI_GET, MPI_ACCUMULATE, … i-s---- ic l nb nb-op - buffer 14) 21)

MPI_WIN_COMPLETE ----c-f c+f l - 21)

On a target process

MPI_WIN_CREATE/_ALLOCATE/..._SHARED i------ nl C sq W1 buffer address

MPI_WIN_POST --s---- ic l - buffer address+content

MPI_WIN_WAIT ----c-- c nl - buffer address

MPI_WIN_FREE ------f f nl C sq W1

On an origin process with Lock/Unlock Synchronization

MPI_WIN_LOCK and others i------ nl - 21)

MPI_PUT, MPI_GET, MPI_ACCUMULATE, … i-s---- ic l nb nb-op - buffer 14) 21)

MPI_WIN_UNLOCK and others ----c-f c+f l - 21)

On a target process

MPI_WIN_CREATE/_ALLOCATE/..._SHARED i------ nl C sq W1 buffer address

MPI_WIN_FREE ------f f nl C sq W1 13

Continuation
on next slide

Additional changes to Issue 96 to more completely
handle RMA in Annex A.2 (part 3, continued)

and

14

Procedure Stages Cpl Loc Blk Op Collective Blocked resources
C sq S/W and remarks

On an origin process with Lock/Unlock Synchronization
MPI_WIN_LOCK and others i------ nl - 21)
MPI_RPUT, MPI_RGET, MPI_RACCUMULATE, … i-s---- ic l nb nb-op - buffer 14) 21)
MPI_WAIT ----c-f c+f l - 21)
MPI_WIN_UNLOCK and others ------- l - 21)
On a target process
MPI_WIN_CREATE/_ALLOCATE/..._SHARED i------ nl C sq W1 buffer address
MPI_WIN_FREE ------f f nl C sq W1

Lets look at pdf on Issue #96 and
the small changes on PR 116

• pdf: https://github.com/mpi-forum/mpi-issues/files/4708015/mpi32-
report-semantic-terms-2020-05-31-annotated.pdf

• Issue: https://github.com/mpi-forum/mpi-issues/issues/96
o Here, you can find also these slides:
o EuroMPI2019-SematicTerms-fromPuri-2020-04-28+RMA-rab-2020-05-31.pdf

• Pull request: https://github.com/mpi-forum/mpi-standard/pull/116

• Any open questions?

15

https://github.com/mpi-forum/mpi-issues/files/4708015/mpi32-report-semantic-terms-2020-05-31-annotated.pdf
https://github.com/mpi-forum/mpi-issues/issues/96
https://github.com/mpi-forum/mpi-standard/pull/116

Problems with RMA

• Do we have any problem with the change
o from MPI-1 – 3: nonblocking := incomplete
o to MPI-4: nonblocking := incomplete AND local

• Is there any wrong usage of nonblocking as
o operation vs. procedure is nonblocking
o procedure does not block until …
o procedure is local

• Which table entries would be correct for the RMA synchronization
procedures?

• Are the RMA communication procedures really nonblocking?
16

Third
question

Recap of RMA in MPI-3.1
11.3 Communication Calls (page 417, lines 10-23)

MPI supports the following RMA communication calls: MPI_PUT and MPI_RPUT transfer
data from the caller memory (origin) to the target memory; MPI_GET and MPI_RGET
transfer data from the target memory to the caller memory; MPI_ACCUMULATE and
MPI_RACCUMULATE update locations in the target memory, e.g., by adding to these
Locations values sent from the caller memory; MPI_GET_ACCUMULATE,
MPI_RGET_ACCUMULATE, and MPI_FETCH_AND_OP perform atomic read-modify-write
and return the data before the accumulate operation; and MPI_COMPARE_AND_SWAP performs
a remote atomic compare and swap operation. These operations are nonblocking.
Additionally, these particular procedures are nonblocking: the
call initiates the transfer, but the transfer may continue after the call returns. The transfer
is completed, at the origin or both the origin and the target, when a subsequent synchro-
nization call is issued by the caller on the involved window object. These synchronization
calls are described in Section 11.5.

17

That is what we
expected:

MPI_PUT, MPI_GET,
MPI_ACCULMULATE,

…, they are
nonblocking

procedures according
to MPI-3.1 definition of

nonblocking.
Are they also local?

Recap of RMA in MPI-3.1
11.7.3 Progress (page 462, lines 16-20)

One-sided communication has the same progress requirements as point-to-point communication:
once a communication is enabled it is guaranteed to complete. RMA calls must have
local semantics, except when required for synchronization with other RMA calls.

Yes, they are also local!
What does this exception mean?

Can only RMA synchronization calls be
non-local?

18

Recap of RMA in MPI-3.1
11.5.2 General Active Target Synchronization (page 441, line 28-32, 47 - page 442, line 4)

MPI_WIN_START(group, assert, win)
Starts an RMA access epoch for win. RMA calls issued on win during this epoch must
access only windows at processes in group. Each process in group must issue a matching
call to MPI_WIN_POST. RMA accesses to each target window will be delayed, if necessary,
until the target process executed the matching call to MPI_WIN_POST. MPI_WIN_START
is allowed to block until the corresponding MPI_WIN_POST calls are executed, but is not
required to.

Okay, MPI_WIN_START is non-local!

19

Recap of RMA in MPI-3.1
11.5.2 General Active Target Synchronization (page 442, lines 10, 21-26)

MPI_WIN_COMPLETE(win)
Completes an RMA access epoch on win started by a call to MPI_WIN_START. All
RMA communication calls issued on win during this epoch will have completed at the origin
when the call returns.
MPI_WIN_COMPLETE enforces completion of preceding RMA calls at the origin, but
not at the target. A put or accumulate call may not have completed at the target when it
has completed at the origin.

MPI_WIN_COMPLETE has no defined
right to block.

Expectation: It is local !?!?

20

Wow!!!!

“MPI_PUT is allowed to block until …”
Is MPI_PUT still a local procedure???

Recap of RMA in MPI-3.1
11.5.2 General Active Target Synchronization (page 442, lines 27-46)

Consider the sequence of calls in the example below.
Example 11.4
MPI_Win_start(group, flag, win);
MPI_Put(..., win);
MPI_Win_complete(win);

The call to MPI_WIN_COMPLETE does not return until the put call has completed
at the origin; and the target window will be accessed by the put operation only after the
call to MPI_WIN_START has matched a call to MPI_WIN_POST by the target process.

Advice to implementors.
This still leaves much choice to implementors. The call to MPI_WIN_START can block
until the matching call to MPI_WIN_POST occurs at all target processes. One can also
have implementations where the call to MPI_WIN_START may not block, but the call to
MPI_PUT blocks until the matching call to MPI_WIN_POST occurs; or implementations
where the first two calls may not block, but the call to MPI_WIN_COMPLETE blocks
until the call to MPI_WIN_POST occurred; or even implementations where all three calls
can complete before any target process has called MPI_WIN_POST – the data put must
be buffered, in this last case, so as to allow the put to complete at the origin ahead of its
completion at the target. However, once the call to MPI_WIN_POST is issued, the sequence
above must complete, without further dependencies. (End of advice to implementors.)

Advice to users. In order to ensure a portable deadlock free program, a user must assume that
MPI_WIN_START may block until the corresponding MPI_WIN_POST has been called. (End of
advice to users.)

From the users view, these sentences

are not relevant:

The user has already to expect that
MPI_WIN_START has blocked until …

This means:

Only the BLUE sentence is relevant for

the user’s perspective for writing
deadlock-free MPI applications …

21

… as also mentioned in the new advice to

users.

Let’s formalize our
definition of non-local
From the “application

programmers’”
viewpoint

Recap of RMA in MPI-3.1
1.8 Who Should Use This Standard? (page 5, lines 1-9)

This standard is intended for use by all those who want to write portable message-passing
programs in Fortran and C (and access the C bindings from C++). This includes individual
application programmers, developers of software designed to run on parallel machines, and
creators of environments and tools. In order to be attractive to this wide audience, the
standard must provide a simple, easy-to-use interface for the basic user while not semantically
precluding the high-performance message-passing operations available on advanced
machines.

Often overseen in many
discussions!

22

How to resolve the problem that MPI_Put

should be local and is allowed to block
Semantic Terms, definition of non-local:

Non-local procedure An MPI procedure is non-local if returning may require the execution
of some specific semantically-related MPI procedure on another MPI process during the execution of the MPI procedure.

How to decide whether an MPI procedure is non-local, especially, if an MPI implementation is allowed to postpone a “may

block until …” to a later MPI procedure call?

In this case, we may formalize our definition of non-local:
An MPI procedure MPI_A is non-local, if there exists a correct (i.e. also deadlock-free) MPI program with a call to MPI_A on

one process and if there exists a call to an MPI procedure MPI_B on another process

so that if we add a test message as in the following figure

then the application is still correct (i.e. also deadlock-free),

whereas the following modification may cause a deadlock:

MPI_A MPI_B

MPI_Bsend MPI_Recv
MPI_A MPI_B

MPI_A MPI_Recv
MPI_Bsend MPI_B

If such a correct MPI program and such

MPI_B exist, then MPI_B is such a “specific
semantically-related MPI procedure on another
MPI process” in the definition of non-local.

If no such correct MPI program with any

such MPI_B exist, then MPI_A is local.

23

Let’s apply the test scheme
to MPI_Win_start:

MPI_A MPI_B

MPI_Bsend MPI_Recv
MPI_A MPI_B

MPI_A MPI_Recv
MPI_Bsend MPI_B

given

still
correct

Message
causes

deadlock

MPI_Win_start MPI_Win_Post
MPI_Put/Get/Accu
MPI_Win_complete MPI_Win_wait

Is A=MPI_Win_start non-local?

MPI_Bsend MPI_Recv
MPI_Win_start MPI_Win_post
MPI_Put/Get/Accu
MPI_Win_complete MPI_Win_wait

given

Still correct? à YES

1) Testing with B=MPI_Win_post:

MPI_Win_start MPI_Recv
MPI_Bsend MPI_Win_post
MPI_Put/Get/Accu
MPI_Win_complete MPI_Win_wait

Message causes deadlock? à YES

MPI_Bsend
MPI_Win_start MPI_Win_post
MPI_Put/Get/Accu MPI_Recv
MPI_Win_complete MPI_Win_wait

Still correct? à YES

2) Testing with B=MPI_Win_wait:
(not needed, if one B is already found)

MPI_Win_start
MPI_Bsend MPI_Win_post
MPI_Put/Get/Accu MPI_Recv
MPI_Win_complete MPI_Win_wait

Message causes deadlock? àNO (failed)

Result: MPI_Win_start is non-local

Result: No answer from this test

Final result:
MPI_Win_start is non-local because
its return may requires the call of
MPI_Win_post in another process.

24

Let’s apply the test scheme
to MPI_Put/Get/Accumulate:

MPI_A MPI_B

MPI_Bsend MPI_Recv

MPI_A MPI_B

MPI_A MPI_Recv
MPI_Bsend MPI_B

given

still
correct

Message
causes

deadlock

MPI_Win_start MPI_Win_Post

MPI_Put/Get/Accu
MPI_Win_complete MPI_Win_wait

Is A=MPI_Put/Get/Accu non-local?

given

Still correct? àNO (because it may deadlock)

1) Testing with B=MPI_Win_post:

MPI_Win_start MPI_Recv

MPI_Bsend MPI_Win_post
MPI_Put/Get/Accu
MPI_Win_complete MPI_Win_wait

MPI_Win_start MPI_Win_post
MPI_Bsend

MPI_Put/Get/Accu MPI_Recv
MPI_Win_complete MPI_Win_wait

Still correct? à YES

2) Testing with B=MPI_Win_wait:
(not needed, if one B is already found)

MPI_Win_start MPI_Win_post
MPI_Put/Get/Accu
MPI_Bsend MPI_Recv

MPI_Win_complete MPI_Win_wait

Message causes deadlock? àNO (failed)

Result: No answer from this test

Result: No answer from this test

Final result:
MPI_Put, Get, Accumulate are local
because there isn’t such MPI_B to
detect non-locality.

25

Let’s apply the test scheme
to MPI_Win_complete:

MPI_A MPI_B

MPI_Bsend MPI_Recv
MPI_A MPI_B

MPI_A MPI_Recv
MPI_Bsend MPI_B

given

still
correct

Message
causes

deadlock

MPI_Win_start MPI_Win_Post
MPI_Put/Get/Accu
MPI_Win_complete MPI_Win_wait

Is A=MPI_Win_complete non-local?

given

Still correct? àNO (because it may deadlock)

1) Testing with B=MPI_Win_post:

MPI_Win_start MPI_Recv
MPI_Put/Get/Accu MPI_Win_post
MPI_Bsend
MPI_Win_complete MPI_Win_wait

MPI_Win_start MPI_Win_post
MPI_Put/Get/Accu
MPI_Bsend MPI_Recv
MPI_Win_complete MPI_Win_wait

Still correct? à YES

2) Testing with B=MPI_Win_wait:
(not needed, if one B is already found)

MPI_Win_start MPI_Win_post
MPI_Put/Get/Accu
MPI_Win_complete MPI_Recv
MPI_Bsend MPI_Win_wait

Message causes deadlock? àNO (failed)
See MPI-3.1 page 463, Fig. 11.8

Result: No answer from this test

Result: No answer from this test

Final result:
MPI_Win_complete is local because
there isn’t such MPI_B to detect non-
locality.

26

Recap of RMA in MPI-3.1

11.5.2 General Active Target Synchronization (page 443, lines 1, 17-19, 22, 33-38)

MPI_WIN_POST(group, assert, win)

Starts an RMA exposure epoch for the local window associated with win. Only processes
in group should access the window with RMA calls on win during this epoch. Each process
in group must issue a matching call to MPI_WIN_START. MPI_WIN_POST does not block.

MPI_WIN_WAIT(win)

Completes an RMA exposure epoch started by a call to MPI_WIN_POST on win. This
call matches calls to MPI_WIN_COMPLETE(win) issued by each of the origin processes that
were granted access to the window during this epoch. The call to MPI_WIN_WAIT will block
until all matching calls to MPI_WIN_COMPLETE have occurred. This guarantees that all
these origin processes have completed their RMA accesses to the local window. When the
call returns, all these RMA accesses will have completed at the target window.

It is local

It is non-local

27

Results, independent from implementation choices:

MPI_Win_Start non-local
MPI_Put local (AND incomplete è nonblocking)
MPI_Get local (AND incomplete è nonblocking)
MPI_Accumulate local (AND incomplete è nonblocking)
MPI_Win_complete local
From the MPI text and of course also with same testing one can see:
MPI_Win_post local
MPI_Win_wait non-local
MPI_Win_test local
MPI_Win_fence non-local
MPI_Win_lock non-local
MPI_Win_unlock local

28

As already shown
in the proposal for
the RMA tables in

Annex A.2

Additional rationale to Issue 96 to more completely describe the
“user’s perspective” in Annex A.2, Footnote 21 (part 4)

MPI-4 Issue #96 Annex A.2 Footnote 21 on RMA procedures read (including the change from Part 1)
21) In some cases, more than one MPI procedure may be needed to implement one stage of an MPI one-sided operation.

The locality of the RMA procedures is analyzed from the user’s perspective, i.e., independent of the choices to implementors
about weak synchronization as described in Sections 11.5, 11.5.2 (on Example 11.4), and 11.5.3 (on Example 11.5).
For details on the semantics of one-sided operations, see Chapter 11.

but should read
21) In some cases, more than one MPI procedure may be needed to implement one stage of an MPI one-sided operation.

The locality of the RMA procedures is analyzed from the user’s perspective, i.e., independent of the choices to implementors
about weak synchronization as described in Sections 11.5, 11.5.2 (on Example 11.4), and 11.5.3 (on Example 11.5).

Rationale.
For this user’s perspective, the definition of non-local can be formalized as follows:

(see next slide)
(End of rationale.)

For details on the semantics of one-sided operations, see Chapter 11.

29

Additional rationale to Issue 96 to more completely describe the
“user’s perspective” in Annex A.2, Footnote 21 (part 4, continued)

21) In some cases, more than one MPI procedure may be needed to implement one stage of an MPI one-sided operation.
The locality of the RMA procedures is analyzed from the user’s perspective, i.e., independent of the choices to implementors
about weak synchronization as described in Sections 11.5, 11.5.2 (on Example 11.4), and 11.5.3 (on Example 11.5).

Rationale.
For this user’s perspective, the definition of a non-local procedure (see Section 2.4.2) can be formalized as follows:
An MPI procedure MPI_A is non-local, if there exists a correct (i.e. also deadlock-free) MPI program with
a call to MPI_A on one process and if there exists a call to an MPI procedure MPI_B on another process

so that if we add a test message as in the following figure

then the application is still correct (i.e. also deadlock-free),
whereas the following modification may cause a deadlock:

Note that MPI_B is then such a specific semantically-related MPI procedure on another MPI process as
mentioned in the definition of the semantic term non-local procedure in Section 2.4.2.
(End of rationale.)

For details on the semantics of one-sided operations, see Chapter 11.

MPI_A MPI_B

MPI_Bsend MPI_Recv
MPI_A MPI_B

MPI_A MPI_Recv
MPI_Bsend MPI_B

30

from
PART II.

PART IV.

Status (May 31, 2020)

• A set of additional changes:

o No-no-votes requested for June 29-July 1, 2020 meeting (Munich à online)

o Additional changes for the RMA chapter

In chap-applang/

- v15-->v16: Semantic terms / RMA: Rationale for A.2 Footnote 21 (1 change)

In figures/

- Modified MPI-semantics-appendix.pptx (now including also img5a-c)

- New MPI-semantics-appendix_img5a.png / .eps / .pdf (for the rationale)

- New MPI-semantics-appendix_img5b.png / .eps / .pdf

- New MPI-semantics-appendix_img5c.png / .eps / .pdf

• For first vote: Version from May 31, 2020

31

PART IV.

Is our definition of „non-local“ correct?
• Why should we go with

process 0 process 1
MPI_A

MPI_B

MPI_C

If return from MPI_B requires call of (i.e., the entry to) MPI_A and call of MPI_C requires return from MPI_B (and
no additional call), is then MPI_C non-local?
Examples are
• Entry to MPI_(I)Send à MPI_Recv à MPI_Get_count
• Entry to MPI_(I)Send à MPI_Mprobe à MPI_Mrecv
• Entry to MPI_Win_post à MPI_Win_start à MPI_Put

32

non-local An MPI procedure is non-local if returning may require, during its execution,
some specific semantically-related MPI procedure to be called on another MPI process.

This “may” allows of course that the call on the other
process is already done earlier.

We do not want to use a stage, because for some
procedures, it is the starting stage and for others

(MI_Bcast_init) it is the initialization stage..

non-local An MPI procedure is non-local if returning may require the execution of
some specific semantically-related MPI procedure on another MPI process.

Lets look at pdf on Issue #96 and
the small changes on PR 116

• Final version from May 31, 2020
• pdf: https://github.com/mpi-forum/mpi-issues/files/4708015/mpi32-

report-semantic-terms-2020-05-31-annotated.pdf

• Issue: https://github.com/mpi-forum/mpi-issues/issues/96
o Here, you can find also these slides:
o EuroMPI2019-SematicTerms-fromPuri-2020-04-28+RMA-rab-2020-05-31.pdf

• Pull request: https://github.com/mpi-forum/mpi-standard/pull/116

• Any open questions?

33

https://github.com/mpi-forum/mpi-issues/files/4708015/mpi32-report-semantic-terms-2020-05-31-annotated.pdf
https://github.com/mpi-forum/mpi-issues/issues/96
https://github.com/mpi-forum/mpi-standard/pull/116

Thanks for listening
Questions?

34

