
D R A F T

Document for a Standard Message-Passing Interface

Message Passing Interface Forum

October 21, 2020
This work was supported in part by NSF and ARPA under NSF contract

CDA-9115428 and Esprit under project HPC Standards (21111).

This is the result of a LaTeX run of a draft of a single chapter of the MPIF Final
Report document.

ii

Chapter 7

Process Topologies

7.1 Introduction

This chapter discusses the MPI topology mechanism. A topology is an extra, optional
attribute that one can give to an intra-communicator; topologies cannot be added to inter-
communicators. A topology can provide a convenient naming mechanism for the processes
of a group (within a communicator), and additionally, may assist the runtime system in
mapping the processes onto hardware.

As stated in Chapter 7, a process group in MPI is a collection of n processes. Each
process in the group is assigned a rank between 0 and n-1. In many parallel applications
a linear ranking of processes does not adequately reflect the logical communication pattern
of the processes (which is usually determined by the underlying problem geometry and
the numerical algorithm used). Often the processes are arranged in topological patterns
such as two- or three-dimensional grids. More generally, the logical process arrangement is
described by a graph. In this chapter we will refer to this logical process arrangement as
the “virtual topology.”

A clear distinction must be made between the virtual process topology and the topology
of the underlying, physical hardware. The virtual topology can be exploited by the system
in the assignment of processes to physical processors, if this helps to improve the commu-
nication performance on a given machine. How this mapping is done, however, is outside
the scope of MPI. The description of the virtual topology, on the other hand, depends only
on the application, and is machine-independent. The functions that are described in this
chapter deal with machine-independent mapping and communication on virtual process
topologies.

Rationale. Though physical mapping is not discussed, the existence of the virtual
topology information may be used as advice by the runtime system. There are well-
known techniques for mapping grid/torus structures to hardware topologies such as
hypercubes or grids. For more complicated graph structures good heuristics often
yield nearly optimal results [5]. On the other hand, if there is no way for the user to
specify the logical process arrangement as a “virtual topology,” a random mapping
is most likely to result. On some machines, this will lead to unnecessary contention
in the interconnection network. Some details about predicted and measured perfor-
mance improvements that result from good process-to-processor mapping on modern
wormhole-routing architectures can be found in [1, 2].

Unofficial Draft for Comment Only 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2 CHAPTER 7. PROCESS TOPOLOGIES

Besides possible performance benefits, the virtual topology can function as a conve-
nient, process-naming structure, with significant benefits for program readability and
notational power in message-passing programming. (End of rationale.)

7.2 Virtual Topologies

The communication pattern of a set of processes can be represented by a graph. The
nodes represent processes, and the edges connect processes that communicate with each
other. MPI provides message-passing between any pair of processes in a group. There
is no requirement for opening a channel explicitly. Therefore, a “missing link” in the
user-defined process graph does not prevent the corresponding processes from exchanging
messages. It means rather that this connection is neglected in the virtual topology. This
strategy implies that the topology gives no convenient way of naming this pathway of
communication. Another possible consequence is that an automatic mapping tool (if one
exists for the runtime environment) will not take account of this edge when mapping.

Specifying the virtual topology in terms of a graph is sufficient for all applications.
However, in many applications the graph structure is regular, and the detailed set-up of the
graph would be inconvenient for the user and might be less efficient at run time. A large frac-
tion of all parallel applications use process topologies like rings, two- or higher-dimensional
grids, or tori. These structures are completely defined by the number of dimensions and
the numbers of processes in each coordinate direction. Also, the mapping of grids and tori
is generally an easier problem than that of general graphs. Thus, it is desirable to address
these cases explicitly.

Process coordinates in a Cartesian structure begin their numbering at 0. Row-major
numbering is always used for the processes in a Cartesian structure. This means that, for
example, the relation between group rank and coordinates for four processes in a (2 × 2)
grid is as follows.

coord (0,0): rank 0
coord (0,1): rank 1
coord (1,0): rank 2
coord (1,1): rank 3

7.3 Embedding in MPI

The support for virtual topologies as defined in this chapter is consistent with other parts of
MPI, and, whenever possible, makes use of functions that are defined elsewhere. Topology
information is associated with communicators. It is added to communicators using the
caching mechanism described in Chapter 7.

7.4 Overview of the Functions

MPI supports three topology types: Cartesian, graph, and distributed graph. The
function MPI_CART_CREATE is used to create Cartesian topologies, the function
MPI_GRAPH_CREATE is used to create graph topologies, and the functions
MPI_DIST_GRAPH_CREATE_ADJACENT and MPI_DIST_GRAPH_CREATE are used to cre-
ate distributed graph topologies. These topology creation functions are collective. As with

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.4. OVERVIEW OF THE FUNCTIONS 3

other collective calls, the program must be written to work correctly, whether the call
synchronizes or not.

The topology creation functions take as input an existing communicator comm_old,
which defines the set of processes on which the topology is to be mapped. For
MPI_GRAPH_CREATE and MPI_CART_CREATE, all input arguments must have identical
values on all processes of the group of comm_old. When calling MPI_GRAPH_CREATE,
each process specifies all nodes and edges in the graph. In contrast, the functions
MPI_DIST_GRAPH_CREATE_ADJACENT or MPI_DIST_GRAPH_CREATE are used to spec-
ify the graph in a distributed fashion, whereby each process only specifies a subset of the
edges in the graph such that the entire graph structure is defined collectively across the set of
processes. Therefore the processes provide different values for the arguments specifying the
graph. However, all processes must give the same value for reorder and the info argument.
In all cases, a new communicator comm_topol is created that carries the topological struc-
ture as cached information (see Chapter 7). In analogy to function MPI_COMM_CREATE,
no cached information propagates from comm_old to comm_topol.

MPI_CART_CREATE can be used to describe Cartesian structures of arbitrary dimen-
sion. For each coordinate direction one specifies whether the process structure is periodic or
not. Note that an n-dimensional hypercube is an n-dimensional torus with 2 processes per
coordinate direction. Thus, special support for hypercube structures is not necessary. The
local auxiliary function MPI_DIMS_CREATE can be used to compute a balanced distribution
of processes among a given number of dimensions.

MPI defines functions to query a communicator for topology information. The function
MPI_TOPO_TEST is used to query for the type of topology associated with a communicator.
Depending on the topology type, different information can be extracted. For a graph
topology, the functions MPI_GRAPHDIMS_GET and MPI_GRAPH_GET return the values
that were specified in the call to MPI_GRAPH_CREATE. Additionally, the functions
MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS can be used to obtain
the neighbors of an arbitrary node in the graph. For a distributed graph topology, the
functions MPI_DIST_GRAPH_NEIGHBORS_COUNT and MPI_DIST_GRAPH_NEIGHBORS
can be used to obtain the neighbors of the calling process. For a Cartesian topology, the
functions MPI_CARTDIM_GET and MPI_CART_GET return the values that were specified
in the call to MPI_CART_CREATE. Additionally, the functions MPI_CART_RANK and
MPI_CART_COORDS translate Cartesian coordinates into a group rank, and vice-versa.
The function MPI_CART_SHIFT provides the information needed to communicate with
neighbors along a Cartesian dimension. All of these query functions are local.

For Cartesian topologies, the function MPI_CART_SUB can be used to extract a Carte-
sian subspace (analogous to MPI_COMM_SPLIT). This function is collective over the input
communicator’s group.

The two additional functions, MPI_GRAPH_MAP and MPI_CART_MAP, are, in gen-
eral, not called by the user directly. However, together with the communicator manipulation
functions presented in Chapter 7, they are sufficient to implement all other topology func-
tions. Section 7.5.8 outlines such an implementation.

The neighborhood collective communication routines MPI_NEIGHBOR_ALLGATHER,
MPI_NEIGHBOR_ALLGATHERV, MPI_NEIGHBOR_ALLTOALL,
MPI_NEIGHBOR_ALLTOALLV, and MPI_NEIGHBOR_ALLTOALLW communicate with the
nearest neighbors on the topology associated with the communicator. The nonblocking
variants are MPI_INEIGHBOR_ALLGATHER, MPI_INEIGHBOR_ALLGATHERV,
MPI_INEIGHBOR_ALLTOALL, MPI_INEIGHBOR_ALLTOALLV, and

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 CHAPTER 7. PROCESS TOPOLOGIES

MPI_INEIGHBOR_ALLTOALLW.

7.5 Topology Constructors

7.5.1 Cartesian Constructor

MPI_CART_CREATE(comm_old, ndims, dims, periods, reorder, comm_cart)

IN comm_old input communicator (handle)

IN ndims number of dimensions of Cartesian grid (integer)

IN dims integer array of size ndims specifying the number of

processes in each dimension

IN periods logical array of size ndims specifying whether the grid

is periodic (true) or not (false) in each dimension

IN reorder ranking may be reordered (true) or not (false)

(logical)

OUT comm_cart communicator with new Cartesian topology (handle)

int MPI_Cart_create(MPI_Comm comm_old, int ndims, const int dims[],

const int periods[], int reorder, MPI_Comm *comm_cart)

MPI_Cart_create(comm_old, ndims, dims, periods, reorder, comm_cart, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm_old

INTEGER, INTENT(IN) :: ndims, dims(ndims)

LOGICAL, INTENT(IN) :: periods(ndims), reorder

TYPE(MPI_Comm), INTENT(OUT) :: comm_cart

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_CART_CREATE(COMM_OLD, NDIMS, DIMS, PERIODS, REORDER, COMM_CART, IERROR)

INTEGER COMM_OLD, NDIMS, DIMS(*), COMM_CART, IERROR

LOGICAL PERIODS(*), REORDER

MPI_CART_CREATE returns a handle to a new communicator to which the Cartesian
topology information is attached. If reorder = false then the rank of each process in the
new group is identical to its rank in the old group. Otherwise, the function may reorder
the processes (possibly so as to choose a good embedding of the virtual topology onto
the physical machine). If the total size of the Cartesian grid is smaller than the size of
the group of comm_old, then some processes are returned MPI_COMM_NULL, in analogy to
MPI_COMM_SPLIT. If ndims is zero then a zero-dimensional Cartesian topology is created.
The call is erroneous if it specifies a grid that is larger than the group size or if ndims is
negative.

7.5.2 Cartesian Convenience Function: MPI_DIMS_CREATE

For Cartesian topologies, the function MPI_DIMS_CREATE helps the user select a balanced
distribution of processes per coordinate direction, depending on the number of processes
in the group to be balanced and optional constraints that can be specified by the user.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.5. TOPOLOGY CONSTRUCTORS 5

One use is to partition all the processes (the size of MPI_COMM_WORLD’s group) into an
n-dimensional topology.

MPI_DIMS_CREATE(nnodes, ndims, dims)

IN nnodes number of nodes in a grid (integer)

IN ndims number of Cartesian dimensions (integer)

INOUT dims integer array of size ndims specifying the number of

nodes in each dimension

int MPI_Dims_create(int nnodes, int ndims, int dims[])

MPI_Dims_create(nnodes, ndims, dims, ierror)

INTEGER, INTENT(IN) :: nnodes, ndims

INTEGER, INTENT(INOUT) :: dims(ndims)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_DIMS_CREATE(NNODES, NDIMS, DIMS, IERROR)

INTEGER NNODES, NDIMS, DIMS(*), IERROR

The entries in the array dims are set to describe a Cartesian grid with ndims dimensions
and a total of nnodes nodes. The dimensions are set to be as close to each other as possible,
using an appropriate divisibility algorithm. The caller may further constrain the operation
of this routine by specifying elements of array dims. If dims[i] is set to a positive number,
the routine will not modify the number of nodes in dimension i; only those entries where
dims[i] = 0 are modified by the call.

Negative input values of dims[i] are erroneous. An error will occur if nnodes is not a
multiple of ∏

i,dims[i]6=0

dims[i].

For dims[i] set by the call, dims[i] will be ordered in non-increasing order. Array dims
is suitable for use as input to routine MPI_CART_CREATE. MPI_DIMS_CREATE is local.
If ndims is zero and nnodes is one, MPI_DIMS_CREATE returns MPI_SUCCESS.

Example 7.1

dims function call dims
before call on return

(0,0) MPI_DIMS_CREATE(6, 2, dims) (3,2)
(0,0) MPI_DIMS_CREATE(7, 2, dims) (7,1)
(0,3,0) MPI_DIMS_CREATE(6, 3, dims) (2,3,1)
(0,3,0) MPI_DIMS_CREATE(7, 3, dims) erroneous call

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6 CHAPTER 7. PROCESS TOPOLOGIES

7.5.3 Graph Constructor

MPI_GRAPH_CREATE(comm_old, nnodes, index, edges, reorder, comm_graph)

IN comm_old input communicator (handle)

IN nnodes number of nodes in graph (integer)

IN index array of integers describing node degrees (see below)

IN edges array of integers describing graph edges (see below)

IN reorder ranking may be reordered (true) or not (false)

(logical)

OUT comm_graph communicator with graph topology added (handle)

int MPI_Graph_create(MPI_Comm comm_old, int nnodes, const int index[],

const int edges[], int reorder, MPI_Comm *comm_graph)

MPI_Graph_create(comm_old, nnodes, index, edges, reorder, comm_graph,

ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm_old

INTEGER, INTENT(IN) :: nnodes, index(nnodes), edges(*)

LOGICAL, INTENT(IN) :: reorder

TYPE(MPI_Comm), INTENT(OUT) :: comm_graph

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GRAPH_CREATE(COMM_OLD, NNODES, INDEX, EDGES, REORDER, COMM_GRAPH,

IERROR)

INTEGER COMM_OLD, NNODES, INDEX(*), EDGES(*), COMM_GRAPH, IERROR

LOGICAL REORDER

MPI_GRAPH_CREATE returns a handle to a new communicator to which the graph
topology information is attached. If reorder = false then the rank of each process in the
new group is identical to its rank in the old group. Otherwise, the function may reorder the
processes. If the size, nnodes, of the graph is smaller than the size of the group of comm_old,
then some processes are returned MPI_COMM_NULL, in analogy to MPI_CART_CREATE
and MPI_COMM_SPLIT. If the graph is empty, i.e., nnodes == 0, then MPI_COMM_NULL

is returned in all processes. The call is erroneous if it specifies a graph that is larger than
the group size of the input communicator.

The three parameters nnodes, index and edges define the graph structure. nnodes is the
number of nodes of the graph. The nodes are numbered from 0 to nnodes-1. The i-th entry
of array index stores the total number of neighbors of the first i graph nodes. The lists of
neighbors of nodes 0, 1, . . . , nnodes-1 are stored in consecutive locations in array edges.
The array edges is a flattened representation of the edge lists. The total number of entries
in index is nnodes and the total number of entries in edges is equal to the number of graph
edges.

The definitions of the arguments nnodes, index, and edges are illustrated with the
following simple example.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.5. TOPOLOGY CONSTRUCTORS 7

Example 7.2 Assume there are four processes 0, 1, 2, 3 with the following adjacency
matrix:

process neighbors

0 1, 3
1 0
2 3
3 0, 2

Then, the input arguments are:

nnodes = 4
index = 2, 3, 4, 6
edges = 1, 3, 0, 3, 0, 2

Thus, in C, index[0] is the degree of node zero, and index[i] - index[i-1] is the
degree of node i, i=1, ..., nnodes-1; the list of neighbors of node zero is stored in
edges[j], for 0 ≤ j ≤ index[0]− 1 and the list of neighbors of node i, i > 0, is stored in
edges[j], index[i-1] ≤ j ≤ index[i]− 1.

In Fortran, index(1) is the degree of node zero, and index(i+1) - index(i) is the
degree of node i, i=1, ..., nnodes-1; the list of neighbors of node zero is stored in
edges(j), for 1 ≤ j ≤ index(1) and the list of neighbors of node i, i > 0, is stored in
edges(j), index(i)+1 ≤ j ≤ index(i+1).

A single process is allowed to be defined multiple times in the list of neighbors of a
process (i.e., there may be multiple edges between two processes). A process is also allowed
to be a neighbor to itself (i.e., a self loop in the graph). The adjacency matrix is allowed
to be non-symmetric.

Advice to users. Performance implications of using multiple edges or a non-symmetric
adjacency matrix are not defined. The definition of a node-neighbor edge does not
imply a direction of the communication. (End of advice to users.)

Advice to implementors. The following topology information is likely to be stored
with a communicator:

• Type of topology (Cartesian/graph),

• For a Cartesian topology:

1. ndims (number of dimensions),

2. dims (numbers of processes per coordinate direction),

3. periods (periodicity information),

4. own_position (own position in grid, could also be computed from rank and
dims)

• For a graph topology:

1. index,

2. edges,

which are the vectors defining the graph structure.

For a graph structure the number of nodes is equal to the number of processes in
the group. Therefore, the number of nodes does not have to be stored explicitly.
An additional zero entry at the start of array index simplifies access to the topology
information. (End of advice to implementors.)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8 CHAPTER 7. PROCESS TOPOLOGIES

7.5.4 Distributed Graph Constructor

MPI_GRAPH_CREATE requires that each process passes the full (global) communication
graph to the call. This limits the scalability of this constructor. With the distributed graph
interface, the communication graph is specified in a fully distributed fashion. Each process
specifies only the part of the communication graph of which it is aware. Typically, this
could be the set of processes from which the process will eventually receive or get data,
or the set of processes to which the process will send or put data, or some combination of
such edges. Two different interfaces can be used to create a distributed graph topology.
MPI_DIST_GRAPH_CREATE_ADJACENT creates a distributed graph communicator with
each process specifying each of its incoming and outgoing (adjacent) edges in the logical
communication graph and thus requires minimal communication during creation.
MPI_DIST_GRAPH_CREATE provides full flexibility such that any process can indicate that
communication will occur between any pair of processes in the graph.

To provide better possibilities for optimization by the MPI library, the distributed
graph constructors permit weighted communication edges and take an info argument that
can further influence process reordering or other optimizations performed by the MPI library.
For example, hints can be provided on how edge weights are to be interpreted, the quality
of the reordering, and/or the time permitted for the MPI library to process the graph.

MPI_DIST_GRAPH_CREATE_ADJACENT(comm_old, indegree, sources, sourceweights,
outdegree, destinations, destweights, info, reorder, comm_dist_graph)

IN comm_old input communicator (handle)

IN indegree size of sources and sourceweights arrays (non-negative

integer)

IN sources ranks of processes for which the calling process is a

destination (array of non-negative integers)

IN sourceweights weights of the edges into the calling process (array of

non-negative integers)

IN outdegree size of destinations and destweights arrays

(non-negative integer)

IN destinations ranks of processes for which the calling process is a

source (array of non-negative integers)

IN destweights weights of the edges out of the calling process (array

of non-negative integers)

IN info hints on optimization and interpretation of weights

(handle)

IN reorder the ranks may be reordered (true) or not (false)

(logical)

OUT comm_dist_graph communicator with distributed graph topology

(handle)

int MPI_Dist_graph_create_adjacent(MPI_Comm comm_old, int indegree,

const int sources[], const int sourceweights[], int outdegree,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.5. TOPOLOGY CONSTRUCTORS 9

const int destinations[], const int destweights[],

MPI_Info info, int reorder, MPI_Comm *comm_dist_graph)

MPI_Dist_graph_create_adjacent(comm_old, indegree, sources, sourceweights,

outdegree, destinations, destweights, info, reorder,

comm_dist_graph, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm_old

INTEGER, INTENT(IN) :: indegree, sources(indegree), sourceweights(*),

outdegree, destinations(outdegree), destweights(*)

TYPE(MPI_Info), INTENT(IN) :: info

LOGICAL, INTENT(IN) :: reorder

TYPE(MPI_Comm), INTENT(OUT) :: comm_dist_graph

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_DIST_GRAPH_CREATE_ADJACENT(COMM_OLD, INDEGREE, SOURCES, SOURCEWEIGHTS,

OUTDEGREE, DESTINATIONS, DESTWEIGHTS, INFO, REORDER,

COMM_DIST_GRAPH, IERROR)

INTEGER COMM_OLD, INDEGREE, SOURCES(*), SOURCEWEIGHTS(*), OUTDEGREE,

DESTINATIONS(*), DESTWEIGHTS(*), INFO, COMM_DIST_GRAPH,

IERROR

LOGICAL REORDER

MPI_DIST_GRAPH_CREATE_ADJACENT returns a handle to a new communicator
to which the distributed graph topology information is attached. Each process passes all
information about its incoming and outgoing edges in the virtual distributed graph topology.
The calling processes must ensure that each edge of the graph is described in the source
and in the destination process with the same weights. If there are multiple edges for a given
(source,dest) pair, then the sequence of the weights of these edges does not matter. The
complete communication topology is the combination of all edges shown in the sources arrays
of all processes in comm_old, which must be identical to the combination of all edges shown
in the destinations arrays. Source and destination ranks must be process ranks of comm_old.
This allows a fully distributed specification of the communication graph. Isolated processes
(i.e., processes with no outgoing or incoming edges, that is, processes that have specified
indegree and outdegree as zero and thus do not occur as source or destination rank in the
graph specification) are allowed.

The call creates a new communicator comm_dist_graph of distributed graph topology
type to which topology information has been attached. The number of processes in
comm_dist_graph is identical to the number of processes in comm_old. The call to
MPI_DIST_GRAPH_CREATE_ADJACENT is collective.

Weights are specified as non-negative integers and can be used to influence the process
remapping strategy and other internal MPI optimizations. For instance, approximate count
arguments of later communication calls along specific edges could be used as their edge
weights. Multiplicity of edges can likewise indicate more intense communication between
pairs of processes. However, the exact meaning of edge weights is not specified by the MPI
standard and is left to the implementation. In C or Fortran, an application can supply
the special value MPI_UNWEIGHTED for the weight array to indicate that all edges have
the same (effectively no) weight. It is erroneous to supply MPI_UNWEIGHTED for some
but not all processes of comm_old. If the graph is weighted but indegree or outdegree is
zero, then MPI_WEIGHTS_EMPTY or any arbitrary array may be passed to sourceweights

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10 CHAPTER 7. PROCESS TOPOLOGIES

or destweights respectively. Note that MPI_UNWEIGHTED and MPI_WEIGHTS_EMPTY are
not special weight values; rather they are special values for the total array argument. In
Fortran, MPI_UNWEIGHTED and MPI_WEIGHTS_EMPTY are objects like MPI_BOTTOM (not
usable for initialization or assignment). See Section 2.5.4.

Advice to users. In the case of an empty weights array argument passed while
constructing a weighted graph, one should not pass NULL because the value of
MPI_UNWEIGHTED may be equal to NULL. The value of this argument would then
be indistinguishable from MPI_UNWEIGHTED to the implementation. In this case
MPI_WEIGHTS_EMPTY should be used instead. (End of advice to users.)

Advice to implementors. It is recommended that MPI_UNWEIGHTED not be imple-
mented as NULL. (End of advice to implementors.)

Rationale. To ensure backward compatibility, MPI_UNWEIGHTED may still be imple-
mented as NULL. See Annex B.4. (End of rationale.)

The meaning of the info and reorder arguments is defined in the description of the
following routine.

MPI_DIST_GRAPH_CREATE(comm_old, n, sources, degrees, destinations, weights, info,
reorder, comm_dist_graph)

IN comm_old input communicator (handle)

IN n number of source nodes for which this process

specifies edges (non-negative integer)

IN sources array containing the n source nodes for which this

process specifies edges (array of non-negative

integers)

IN degrees array specifying the number of destinations for each

source node in the source node array (array of

non-negative integers)

IN destinations destination nodes for the source nodes in the source

node array (array of non-negative integers)

IN weights weights for source to destination edges (array of

non-negative integers)

IN info hints on optimization and interpretation of weights

(handle)

IN reorder the ranks may be reordered (true) or not (false)

(logical)

OUT comm_dist_graph communicator with distributed graph topology

added (handle)

int MPI_Dist_graph_create(MPI_Comm comm_old, int n, const int sources[],

const int degrees[], const int destinations[],

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.5. TOPOLOGY CONSTRUCTORS 11

const int weights[], MPI_Info info, int reorder,

MPI_Comm *comm_dist_graph)

MPI_Dist_graph_create(comm_old, n, sources, degrees, destinations, weights,

info, reorder, comm_dist_graph, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm_old

INTEGER, INTENT(IN) :: n, sources(n), degrees(n), destinations(*),

weights(*)

TYPE(MPI_Info), INTENT(IN) :: info

LOGICAL, INTENT(IN) :: reorder

TYPE(MPI_Comm), INTENT(OUT) :: comm_dist_graph

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_DIST_GRAPH_CREATE(COMM_OLD, N, SOURCES, DEGREES, DESTINATIONS, WEIGHTS,

INFO, REORDER, COMM_DIST_GRAPH, IERROR)

INTEGER COMM_OLD, N, SOURCES(*), DEGREES(*), DESTINATIONS(*),

WEIGHTS(*), INFO, COMM_DIST_GRAPH, IERROR

LOGICAL REORDER

MPI_DIST_GRAPH_CREATE returns a handle to a new communicator to which the
distributed graph topology information is attached. Concretely, each process calls the con-
structor with a set of directed (source,destination) communication edges as described below.
Every process passes an array of n source nodes in the sources array. For each source node, a
non-negative number of destination nodes is specified in the degrees array. The destination
nodes are stored in the corresponding consecutive segment of the destinations array. More
precisely, if the i-th node in sources is s, this specifies degrees[i] edges (s,d) with d of the
j-th such edge stored in destinations[degrees[0]+. . .+degrees[i-1]+j]. The weight of this edge
is stored in weights[degrees[0]+. . .+degrees[i-1]+j]. Both the sources and the destinations
arrays may contain the same node more than once, and the order in which nodes are listed
as destinations or sources is not significant. Similarly, different processes may specify edges
with the same source and destination nodes. Source and destination nodes must be pro-
cess ranks of comm_old. Different processes may specify different numbers of source and
destination nodes, as well as different source to destination edges. This allows a fully dis-
tributed specification of the communication graph. Isolated processes (i.e., processes with
no outgoing or incoming edges, that is, processes that do not occur as source or destination
node in the graph specification) are allowed.

The call creates a new communicator comm_dist_graph of distributed graph topology
type to which topology information has been attached. The number of processes in
comm_dist_graph is identical to the number of processes in comm_old. The call to
MPI_DIST_GRAPH_CREATE is collective.

If reorder = false, all processes will have the same rank in comm_dist_graph as in
comm_old. If reorder = true then the MPI library is free to remap to other processes (of
comm_old) in order to improve communication on the edges of the communication graph.
The weight associated with each edge is a hint to the MPI library about the amount or
intensity of communication on that edge, and may be used to compute a “best” reordering.

Weights are specified as non-negative integers and can be used to influence the process
remapping strategy and other internal MPI optimizations. For instance, approximate count
arguments of later communication calls along specific edges could be used as their edge
weights. Multiplicity of edges can likewise indicate more intense communication between

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12 CHAPTER 7. PROCESS TOPOLOGIES

pairs of processes. However, the exact meaning of edge weights is not specified by the MPI
standard and is left to the implementation. In C or Fortran, an application can supply
the special value MPI_UNWEIGHTED for the weight array to indicate that all edges have the
same (effectively no) weight. It is erroneous to supply MPI_UNWEIGHTED for some but not
all processes of comm_old. If the graph is weighted but n = 0, then MPI_WEIGHTS_EMPTY

or any arbitrary array may be passed to weights. Note that MPI_UNWEIGHTED and
MPI_WEIGHTS_EMPTY are not special weight values; rather they are special values for the
total array argument. In Fortran, MPI_UNWEIGHTED and MPI_WEIGHTS_EMPTY are objects
like MPI_BOTTOM (not usable for initialization or assignment). See Section 2.5.4.

Advice to users. In the case of an empty weights array argument passed while
constructing a weighted graph, one should not pass NULL because the value of
MPI_UNWEIGHTED may be equal to NULL. The value of this argument would then
be indistinguishable from MPI_UNWEIGHTED to the implementation.
MPI_WEIGHTS_EMPTY should be used instead. (End of advice to users.)

Advice to implementors. It is recommended that MPI_UNWEIGHTED not be imple-
mented as NULL. (End of advice to implementors.)

Rationale. To ensure backward compatibility, MPI_UNWEIGHTED may still be imple-
mented as NULL. See Annex B.4. (End of rationale.)

The meaning of the weights argument can be influenced by the info argument. Info
arguments can be used to guide the mapping; possible options include minimizing the
maximum number of edges between processes on different SMP nodes, or minimizing the
sum of all such edges. An MPI implementation is not obliged to follow specific hints, and it
is valid for an MPI implementation not to do any reordering. An MPI implementation may
specify more info key-value pairs. All processes must specify the same set of key-value info
pairs.

Advice to implementors. MPI implementations must document any additionally
supported key-value info pairs. MPI_INFO_NULL is always valid, and may indicate the
default creation of the distributed graph topology to the MPI library.

An implementation does not explicitly need to construct the topology from its dis-
tributed parts. However, all processes can construct the full topology from the dis-
tributed specification and use this in a call to MPI_GRAPH_CREATE to create the
topology. This may serve as a reference implementation of the functionality, and
may be acceptable for small communicators. However, a scalable high-quality im-
plementation would save the topology graph in a distributed way. (End of advice to
implementors.)

Example 7.3 As for Example 7.2, assume there are four processes 0, 1, 2, 3 with the
following adjacency matrix and unit edge weights:

process neighbors

0 1, 3
1 0
2 3
3 0, 2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.5. TOPOLOGY CONSTRUCTORS 13

With MPI_DIST_GRAPH_CREATE, this graph could be constructed in many different ways.
One way would be that each process specifies its outgoing edges. The arguments per process
would be:

process n sources degrees destinations weights

0 1 0 2 1,3 1,1
1 1 1 1 0 1
2 1 2 1 3 1
3 1 3 2 0,2 1,1

Another way would be to pass the whole graph on process 0, which could be done with
the following arguments per process:

process n sources degrees destinations weights

0 4 0,1,2,3 2,1,1,2 1,3,0,3,0,2 1,1,1,1,1,1
1 0 - - - -
2 0 - - - -
3 0 - - -

In both cases above, the application could supply MPI_UNWEIGHTED instead of explic-
itly providing identical weights.

MPI_DIST_GRAPH_CREATE_ADJACENT could be used to specify this graph using the
following arguments:

process indegree sources sourceweights outdegree destinations destweights

0 2 1,3 1,1 2 1,3 1,1
1 1 0 1 1 0 1
2 1 3 1 1 3 1
3 2 0,2 1,1 2 0,2 1,1

Example 7.4 A two-dimensional PxQ torus where all processes communicate along the
dimensions and along the diagonal edges. This cannot be modeled with Cartesian topologies,
but can easily be captured with MPI_DIST_GRAPH_CREATE as shown in the following
code. In this example, the communication along the dimensions is twice as heavy as the
communication along the diagonals:

/*

Input: dimensions P, Q

Condition: number of processes equal to P*Q; otherwise only

ranks smaller than P*Q participate

*/

int rank, x, y;

int sources[1], degrees[1];

int destinations[8], weights[8];

MPI_Comm comm_dist_graph;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* get x and y dimension */

y=rank/P; x=rank%P;

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14 CHAPTER 7. PROCESS TOPOLOGIES

/* get my communication partners along x dimension */

destinations[0] = P*y+(x+1)%P; weights[0] = 2;

destinations[1] = P*y+(P+x-1)%P; weights[1] = 2;

/* get my communication partners along y dimension */

destinations[2] = P*((y+1)%Q)+x; weights[2] = 2;

destinations[3] = P*((Q+y-1)%Q)+x; weights[3] = 2;

/* get my communication partners along diagonals */

destinations[4] = P*((y+1)%Q)+(x+1)%P; weights[4] = 1;

destinations[5] = P*((Q+y-1)%Q)+(x+1)%P; weights[5] = 1;

destinations[6] = P*((y+1)%Q)+(P+x-1)%P; weights[6] = 1;

destinations[7] = P*((Q+y-1)%Q)+(P+x-1)%P; weights[7] = 1;

sources[0] = rank;

degrees[0] = 8;

MPI_Dist_graph_create(MPI_COMM_WORLD, 1, sources, degrees, destinations,

weights, MPI_INFO_NULL, 1, &comm_dist_graph);

7.5.5 Topology Inquiry Functions

If a topology has been defined with one of the above functions, then the topology information
can be looked up using inquiry functions. They all are local calls.

MPI_TOPO_TEST(comm, status)

IN comm communicator (handle)

OUT status topology type of communicator comm (state)

int MPI_Topo_test(MPI_Comm comm, int *status)

MPI_Topo_test(comm, status, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(OUT) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TOPO_TEST(COMM, STATUS, IERROR)

INTEGER COMM, STATUS, IERROR

The function MPI_TOPO_TEST returns the type of topology that is assigned to a
communicator.

The output value status is one of the following:

MPI_GRAPH graph topology
MPI_CART Cartesian topology
MPI_DIST_GRAPH distributed graph topology
MPI_UNDEFINED no topology

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.5. TOPOLOGY CONSTRUCTORS 15

MPI_GRAPHDIMS_GET(comm, nnodes, nedges)

IN comm communicator for group with graph structure

(handle)

OUT nnodes number of nodes in graph (same as number of

processes in the group) (integer)

OUT nedges number of edges in graph (integer)

int MPI_Graphdims_get(MPI_Comm comm, int *nnodes, int *nedges)

MPI_Graphdims_get(comm, nnodes, nedges, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(OUT) :: nnodes, nedges

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GRAPHDIMS_GET(COMM, NNODES, NEDGES, IERROR)

INTEGER COMM, NNODES, NEDGES, IERROR

Functions MPI_GRAPHDIMS_GET and MPI_GRAPH_GET retrieve the graph-topology
information that was associated with a communicator by MPI_GRAPH_CREATE.

The information provided by MPI_GRAPHDIMS_GET can be used to dimension the
vectors index and edges correctly for the following call to MPI_GRAPH_GET.

MPI_GRAPH_GET(comm, maxindex, maxedges, index, edges)

IN comm communicator with graph structure (handle)

IN maxindex length of vector index in the calling program (integer)

IN maxedges length of vector edges in the calling program (integer)

OUT index array of integers containing the graph structure (for

details see the definition of MPI_GRAPH_CREATE)

OUT edges array of integers containing the graph structure

int MPI_Graph_get(MPI_Comm comm, int maxindex, int maxedges, int index[],

int edges[])

MPI_Graph_get(comm, maxindex, maxedges, index, edges, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: maxindex, maxedges

INTEGER, INTENT(OUT) :: index(maxindex), edges(maxedges)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GRAPH_GET(COMM, MAXINDEX, MAXEDGES, INDEX, EDGES, IERROR)

INTEGER COMM, MAXINDEX, MAXEDGES, INDEX(*), EDGES(*), IERROR

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16 CHAPTER 7. PROCESS TOPOLOGIES

MPI_CARTDIM_GET(comm, ndims)

IN comm communicator with Cartesian structure (handle)

OUT ndims number of dimensions of the Cartesian structure

(integer)

int MPI_Cartdim_get(MPI_Comm comm, int *ndims)

MPI_Cartdim_get(comm, ndims, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(OUT) :: ndims

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_CARTDIM_GET(COMM, NDIMS, IERROR)

INTEGER COMM, NDIMS, IERROR

The functions MPI_CARTDIM_GET and MPI_CART_GET return the Cartesian topol-
ogy information that was associated with a communicator by MPI_CART_CREATE. If comm
is associated with a zero-dimensional Cartesian topology, MPI_CARTDIM_GET returns
ndims = 0 and MPI_CART_GET will keep all output arguments unchanged.

MPI_CART_GET(comm, maxdims, dims, periods, coords)

IN comm communicator with Cartesian structure (handle)

IN maxdims length of vectors dims, periods, and coords in the

calling program (integer)

OUT dims number of processes for each Cartesian dimension

(array of integers)

OUT periods periodicity (true/false) for each Cartesian dimension

(array of logicals)

OUT coords coordinates of calling process in Cartesian structure

(array of integers)

int MPI_Cart_get(MPI_Comm comm, int maxdims, int dims[], int periods[],

int coords[])

MPI_Cart_get(comm, maxdims, dims, periods, coords, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: maxdims

INTEGER, INTENT(OUT) :: dims(maxdims), coords(maxdims)

LOGICAL, INTENT(OUT) :: periods(maxdims)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_CART_GET(COMM, MAXDIMS, DIMS, PERIODS, COORDS, IERROR)

INTEGER COMM, MAXDIMS, DIMS(*), COORDS(*), IERROR

LOGICAL PERIODS(*)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.5. TOPOLOGY CONSTRUCTORS 17

MPI_CART_RANK(comm, coords, rank)

IN comm communicator with Cartesian structure (handle)

IN coords integer array (of size ndims) specifying the Cartesian

coordinates of a process

OUT rank rank of specified process (integer)

int MPI_Cart_rank(MPI_Comm comm, const int coords[], int *rank)

MPI_Cart_rank(comm, coords, rank, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: coords(*)

INTEGER, INTENT(OUT) :: rank

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_CART_RANK(COMM, COORDS, RANK, IERROR)

INTEGER COMM, COORDS(*), RANK, IERROR

For a communicator with an associated Cartesian topology, the function
MPI_CART_RANK translates the logical process coordinates to process ranks as they are
used by the point-to-point routines.

For dimension i with periods(i) = true, if the coordinate, coords(i), is out of range, that
is, coords(i) < 0 or coords(i) ≥ dims(i), it is shifted back to the interval
0 ≤ coords(i) < dims(i) automatically. Out-of-range coordinates are erroneous for non-
periodic dimensions.

If comm is associated with a zero-dimensional Cartesian topology, coords is not signif-
icant and 0 is returned in rank.

MPI_CART_COORDS(comm, rank, maxdims, coords)

IN comm communicator with Cartesian structure (handle)

IN rank rank of a process within group of comm (integer)

IN maxdims length of vector coords in the calling program

(integer)

OUT coords integer array (of size maxdims) containing the

Cartesian coordinates of specified process (array of

integers)

int MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims, int coords[])

MPI_Cart_coords(comm, rank, maxdims, coords, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: rank, maxdims

INTEGER, INTENT(OUT) :: coords(maxdims)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_CART_COORDS(COMM, RANK, MAXDIMS, COORDS, IERROR)

INTEGER COMM, RANK, MAXDIMS, COORDS(*), IERROR

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

christoph

christoph
issue #311

18 CHAPTER 7. PROCESS TOPOLOGIES

The inverse mapping, rank-to-coordinates translation is provided by
MPI_CART_COORDS.

If comm is associated with a zero-dimensional Cartesian topology,
coords will be unchanged.

MPI_GRAPH_NEIGHBORS_COUNT(comm, rank, nneighbors)

IN comm communicator with graph topology (handle)

IN rank rank of process in group of comm (integer)

OUT nneighbors number of neighbors of specified process (integer)

int MPI_Graph_neighbors_count(MPI_Comm comm, int rank, int *nneighbors)

MPI_Graph_neighbors_count(comm, rank, nneighbors, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: rank

INTEGER, INTENT(OUT) :: nneighbors

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GRAPH_NEIGHBORS_COUNT(COMM, RANK, NNEIGHBORS, IERROR)

INTEGER COMM, RANK, NNEIGHBORS, IERROR

MPI_GRAPH_NEIGHBORS(comm, rank, maxneighbors, neighbors)

IN comm communicator with graph topology (handle)

IN rank rank of process in group of comm (integer)

IN maxneighbors size of array neighbors (integer)

OUT neighbors ranks of processes that are neighbors to specified

process (array of integers)

int MPI_Graph_neighbors(MPI_Comm comm, int rank, int maxneighbors,

int neighbors[])

MPI_Graph_neighbors(comm, rank, maxneighbors, neighbors, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: rank, maxneighbors

INTEGER, INTENT(OUT) :: neighbors(maxneighbors)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GRAPH_NEIGHBORS(COMM, RANK, MAXNEIGHBORS, NEIGHBORS, IERROR)

INTEGER COMM, RANK, MAXNEIGHBORS, NEIGHBORS(*), IERROR

MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS provide adjacency
information for a graph topology. The returned count and array of neighbors for the queried
rank will both include all neighbors and reflect the same edge ordering as was specified by
the original call to MPI_GRAPH_CREATE. Specifically, MPI_GRAPH_NEIGHBORS_COUNT
and MPI_GRAPH_NEIGHBORS will return values based on the original index and edges array

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.5. TOPOLOGY CONSTRUCTORS 19

passed to MPI_GRAPH_CREATE (for the purpose of this example, we assume that index[-1]
is zero):

• The number of neighbors (nneighbors) returned from
MPI_GRAPH_NEIGHBORS_COUNT will be (index[rank] - index[rank-1]).

• The neighbors array returned from MPI_GRAPH_NEIGHBORS will be edges[index[rank-
1]] through edges[index[rank]-1].

Example 7.5 Assume there are four processes 0, 1, 2, 3 with the following adjacency
matrix (note that some neighbors are listed multiple times):

process neighbors

0 1, 1, 3
1 0, 0
2 3
3 0, 2, 2

Thus, the input arguments to MPI_GRAPH_CREATE are:

nnodes = 4
index = 3, 5, 6, 9
edges = 1, 1, 3, 0, 0, 3, 0, 2, 2

Therefore, calling MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS for
each of the 4 processes will return:

Input rank Count Neighbors

0 3 1, 1, 3
1 2 0, 0
2 1 3
3 3 0, 2, 2

Example 7.6 Suppose that comm is a communicator with a shuffle-exchange topology.
The group has 2n members. Each process is labeled by a1, . . . , an with ai ∈ {0, 1}, and has
three neighbors: exchange(a1, . . . , an) = a1, . . . , an−1, ān (ā = 1 − a), shuffle(a1, . . . , an) =
a2, . . . , an, a1, and unshuffle(a1, . . . , an) = an, a1, . . . , an−1. The graph adjacency list is
illustrated below for n = 3.

node exchange shuffle unshuffle
neighbors(1) neighbors(2) neighbors(3)

0 (000) 1 0 0
1 (001) 0 2 4
2 (010) 3 4 1
3 (011) 2 6 5
4 (100) 5 1 2
5 (101) 4 3 6
6 (110) 7 5 3
7 (111) 6 7 7

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

20 CHAPTER 7. PROCESS TOPOLOGIES

Suppose that the communicator comm has this topology associated with it. The follow-
ing code fragment cycles through the three types of neighbors and performs an appropriate
permutation for each.

! assume: each process has stored a real number A.

! extract neighborhood information

CALL MPI_COMM_RANK(comm, myrank, ierr)

CALL MPI_GRAPH_NEIGHBORS(comm, myrank, 3, neighbors, ierr)

! perform exchange permutation

CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, neighbors(1), 0, &

neighbors(1), 0, comm, status, ierr)

! perform shuffle permutation

CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, neighbors(2), 0, &

neighbors(3), 0, comm, status, ierr)

! perform unshuffle permutation

CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, neighbors(3), 0, &

neighbors(2), 0, comm, status, ierr)

MPI_DIST_GRAPH_NEIGHBORS_COUNT and MPI_DIST_GRAPH_NEIGHBORS pro-
vide adjacency information for a distributed graph topology.

MPI_DIST_GRAPH_NEIGHBORS_COUNT(comm, indegree, outdegree, weighted)

IN comm communicator with distributed graph topology

(handle)

OUT indegree number of edges into this process (non-negative

integer)

OUT outdegree number of edges out of this process (non-negative

integer)

OUT weighted false if MPI_UNWEIGHTED was supplied during

creation, true otherwise (logical)

int MPI_Dist_graph_neighbors_count(MPI_Comm comm, int *indegree,

int *outdegree, int *weighted)

MPI_Dist_graph_neighbors_count(comm, indegree, outdegree, weighted, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(OUT) :: indegree, outdegree

LOGICAL, INTENT(OUT) :: weighted

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_DIST_GRAPH_NEIGHBORS_COUNT(COMM, INDEGREE, OUTDEGREE, WEIGHTED, IERROR)

INTEGER COMM, INDEGREE, OUTDEGREE, IERROR

LOGICAL WEIGHTED

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.5. TOPOLOGY CONSTRUCTORS 21

MPI_DIST_GRAPH_NEIGHBORS(comm, maxindegree, sources, sourceweights,
maxoutdegree, destinations, destweights)

IN comm communicator with distributed graph topology

(handle)

IN maxindegree size of sources and sourceweights arrays

(non-negative integer)

OUT sources processes for which the calling process is a

destination (array of non-negative integers)

OUT sourceweights weights of the edges into the calling process (array of

non-negative integers)

IN maxoutdegree size of destinations and destweights arrays

(non-negative integer)

OUT destinations processes for which the calling process is a source

(array of non-negative integers)

OUT destweights weights of the edges out of the calling process (array

of non-negative integers)

int MPI_Dist_graph_neighbors(MPI_Comm comm, int maxindegree, int sources[],

int sourceweights[], int maxoutdegree, int destinations[],

int destweights[])

MPI_Dist_graph_neighbors(comm, maxindegree, sources, sourceweights,

maxoutdegree, destinations, destweights, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: maxindegree, maxoutdegree

INTEGER, INTENT(OUT) :: sources(maxindegree),

destinations(maxoutdegree)

INTEGER :: sourceweights(*), destweights(*)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_DIST_GRAPH_NEIGHBORS(COMM, MAXINDEGREE, SOURCES, SOURCEWEIGHTS,

MAXOUTDEGREE, DESTINATIONS, DESTWEIGHTS, IERROR)

INTEGER COMM, MAXINDEGREE, SOURCES(*), SOURCEWEIGHTS(*), MAXOUTDEGREE,

DESTINATIONS(*), DESTWEIGHTS(*), IERROR

These calls are local. The number of edges into and out of the process returned by
MPI_DIST_GRAPH_NEIGHBORS_COUNT are the total number of such edges given in the
call to MPI_DIST_GRAPH_CREATE_ADJACENT or MPI_DIST_GRAPH_CREATE (poten-
tially by processes other than the calling process in the case of
MPI_DIST_GRAPH_CREATE). Multiply defined edges are all counted and returned by
MPI_DIST_GRAPH_NEIGHBORS in some order. If MPI_UNWEIGHTED is supplied for
sourceweights or destweights or both, or if MPI_UNWEIGHTED was supplied during the con-
struction of the graph then no weight information is returned in that array or those arrays.
If the communicator was created with MPI_DIST_GRAPH_CREATE_ADJACENT then for
each rank in comm, the order of the values in sources and destinations is identical to the in-
put that was used by the process with the same rank in comm_old in the creation call. If the
communicator was created with MPI_DIST_GRAPH_CREATE then the only requirement on

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

22 CHAPTER 7. PROCESS TOPOLOGIES

the order of values in sources and destinations is that two calls to the routine with same in-
put argument comm will return the same sequence of edges. If maxindegree or maxoutdegree
is smaller than the numbers returned by MPI_DIST_GRAPH_NEIGHBORS_COUNT, then
only the first part of the full list is returned.

Advice to implementors. Since the query calls are defined to be local, each process
needs to store the list of its neighbors with incoming and outgoing edges. Communica-
tion is required at the collective MPI_DIST_GRAPH_CREATE call in order to compute
the neighbor lists for each process from the distributed graph specification. (End of
advice to implementors.)

7.5.6 Cartesian Shift Coordinates

If the process topology is a Cartesian structure, an MPI_SENDRECV operation may be used
along a coordinate direction to perform a shift of data. As input, MPI_SENDRECV takes
the rank of a source process for the receive, and the rank of a destination process for the
send. If the function MPI_CART_SHIFT is called for a Cartesian process group, it provides
the calling process with the above identifiers, which then can be passed to MPI_SENDRECV.
The user specifies the coordinate direction and the size of the step (positive or negative).
The function is local.

MPI_CART_SHIFT(comm, direction, disp, rank_source, rank_dest)

IN comm communicator with Cartesian structure (handle)

IN direction coordinate dimension of shift (integer)

IN disp displacement (> 0: upwards shift, < 0: downwards

shift) (integer)

OUT rank_source rank of source process (integer)

OUT rank_dest rank of destination process (integer)

int MPI_Cart_shift(MPI_Comm comm, int direction, int disp,

int *rank_source, int *rank_dest)

MPI_Cart_shift(comm, direction, disp, rank_source, rank_dest, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: direction, disp

INTEGER, INTENT(OUT) :: rank_source, rank_dest

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_CART_SHIFT(COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR)

INTEGER COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR

The direction argument indicates the coordinate dimension to be traversed by the shift.
The dimensions are numbered from 0 to ndims-1, where ndims is the number of dimensions.

Depending on the periodicity of the Cartesian group in the specified coordinate direc-
tion, MPI_CART_SHIFT provides the identifiers for a circular or an end-off shift. In the case
of an end-off shift, the value MPI_PROC_NULL may be returned in rank_source or rank_dest,
indicating that the source or the destination for the shift is out of range.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.5. TOPOLOGY CONSTRUCTORS 23

It is erroneous to call MPI_CART_SHIFT with a direction that is either negative or
greater than or equal to the number of dimensions in the Cartesian communicator. This
implies that it is erroneous to call MPI_CART_SHIFT with a comm that is associated with
a zero-dimensional Cartesian topology.

Example 7.7 The communicator, comm, has a two-dimensional, periodic, Cartesian topol-
ogy associated with it. A two-dimensional array of REALs is stored one element per process,
in variable A. One wishes to skew this array, by shifting column i (vertically, i.e., along the
column) by i steps.

...

! find process rank

CALL MPI_COMM_RANK(comm, rank, ierr)

! find Cartesian coordinates

CALL MPI_CART_COORDS(comm, rank, maxdims, coords, ierr)

! compute shift source and destination

CALL MPI_CART_SHIFT(comm, 0, coords(2), source, dest, ierr)

! skew array

CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, dest, 0, source, 0, comm, &

status, ierr)

Advice to users. In Fortran, the dimension indicated by DIRECTION = i has DIMS(i+1)
nodes, where DIMS is the array that was used to create the grid. In C, the dimension
indicated by direction = i is the dimension specified by dims[i]. (End of advice
to users.)

7.5.7 Partitioning of Cartesian Structures

MPI_CART_SUB(comm, remain_dims, newcomm)

IN comm communicator with Cartesian structure (handle)

IN remain_dims the i-th entry of remain_dims specifies whether the

i-th dimension is kept in the subgrid (true) or is

dropped (false) (array of logicals)

OUT newcomm communicator containing the subgrid that includes

the calling process (handle)

int MPI_Cart_sub(MPI_Comm comm, const int remain_dims[], MPI_Comm *newcomm)

MPI_Cart_sub(comm, remain_dims, newcomm, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

LOGICAL, INTENT(IN) :: remain_dims(*)

TYPE(MPI_Comm), INTENT(OUT) :: newcomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_CART_SUB(COMM, REMAIN_DIMS, NEWCOMM, IERROR)

INTEGER COMM, NEWCOMM, IERROR

LOGICAL REMAIN_DIMS(*)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

24 CHAPTER 7. PROCESS TOPOLOGIES

If a Cartesian topology has been created with MPI_CART_CREATE, the function
MPI_CART_SUB can be used to partition the communicator group into subgroups that
form lower-dimensional Cartesian subgrids, and to build for each subgroup a communicator
with the associated subgrid Cartesian topology. If all entries in remain_dims are false or
comm is already associated with a zero-dimensional Cartesian topology then newcomm is
associated with a zero-dimensional Cartesian topology. (This function is closely related to
MPI_COMM_SPLIT.)

Example 7.8 Assume that MPI_CART_CREATE(. . ., comm) has defined a (2×3×4) grid.
Let remain_dims = (true, false, true). Then a call to

MPI_CART_SUB(comm, remain_dims, comm_new);

will create three communicators each with eight processes in a 2 × 4 Cartesian topology.
If remain_dims = (false, false, true) then the call to MPI_CART_SUB(comm, remain_dims,
comm_new) will create six non-overlapping communicators, each with four processes, in a
one-dimensional Cartesian topology.

7.5.8 Low-Level Topology Functions

The two additional functions introduced in this section can be used to implement all other
topology functions. In general they will not be called by the user directly, unless he or she
is creating additional virtual topology capability other than that provided by MPI. The two
calls are both local.

MPI_CART_MAP(comm, ndims, dims, periods, newrank)

IN comm input communicator (handle)

IN ndims number of dimensions of Cartesian structure (integer)

IN dims integer array of size ndims specifying the number of

processes in each coordinate direction

IN periods logical array of size ndims specifying the periodicity

specification in each coordinate direction

OUT newrank reordered rank of the calling process;

MPI_UNDEFINED if calling process does not belong

to grid (integer)

int MPI_Cart_map(MPI_Comm comm, int ndims, const int dims[],

const int periods[], int *newrank)

MPI_Cart_map(comm, ndims, dims, periods, newrank, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: ndims, dims(ndims)

LOGICAL, INTENT(IN) :: periods(ndims)

INTEGER, INTENT(OUT) :: newrank

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_CART_MAP(COMM, NDIMS, DIMS, PERIODS, NEWRANK, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.5. TOPOLOGY CONSTRUCTORS 25

INTEGER COMM, NDIMS, DIMS(*), NEWRANK, IERROR

LOGICAL PERIODS(*)

MPI_CART_MAP computes an “optimal” placement for the calling process on the phys-
ical machine. A possible implementation of this function is to always return the rank of the
calling process, that is, not to perform any reordering.

Advice to implementors. The function MPI_CART_CREATE(comm, ndims, dims,
periods, reorder, comm_cart), with reorder = true can be implemented by calling
MPI_CART_MAP(comm, ndims, dims, periods, newrank), then calling
MPI_COMM_SPLIT(comm, color, key, comm_cart), with color = 0 if newrank 6=
MPI_UNDEFINED, color = MPI_UNDEFINED otherwise, and key = newrank. If ndims
is zero then a zero-dimensional Cartesian topology is created.

The function MPI_CART_SUB(comm, remain_dims, comm_new) can be implemented
by a call to MPI_COMM_SPLIT(comm, color, key, comm_new), using a single number
encoding of the lost dimensions as color and a single number encoding of the preserved
dimensions as key.

All other Cartesian topology functions can be implemented locally, using the topology
information that is cached with the communicator. (End of advice to implementors.)

The corresponding function for graph structures is as follows.

MPI_GRAPH_MAP(comm, nnodes, index, edges, newrank)

IN comm input communicator (handle)

IN nnodes number of graph nodes (integer)

IN index integer array specifying the graph structure, see

MPI_GRAPH_CREATE

IN edges integer array specifying the graph structure

OUT newrank reordered rank of the calling process;

MPI_UNDEFINED if the calling process does not

belong to graph (integer)

int MPI_Graph_map(MPI_Comm comm, int nnodes, const int index[],

const int edges[], int *newrank)

MPI_Graph_map(comm, nnodes, index, edges, newrank, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: nnodes, index(nnodes), edges(*)

INTEGER, INTENT(OUT) :: newrank

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GRAPH_MAP(COMM, NNODES, INDEX, EDGES, NEWRANK, IERROR)

INTEGER COMM, NNODES, INDEX(*), EDGES(*), NEWRANK, IERROR

Advice to implementors. The function MPI_GRAPH_CREATE(comm, nnodes, index,
edges, reorder, comm_graph), with reorder = true can be implemented by calling

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

26 CHAPTER 7. PROCESS TOPOLOGIES

MPI_GRAPH_MAP(comm, nnodes, index, edges, newrank), then calling
MPI_COMM_SPLIT(comm, color, key, comm_graph), with color = 0 if newrank 6=
MPI_UNDEFINED, color = MPI_UNDEFINED otherwise, and key = newrank.

All other graph topology functions can be implemented locally, using the topology
information that is cached with the communicator. (End of advice to implementors.)

7.6 Neighborhood Collective Communication on Process Topologies

MPI process topologies specify a communication graph, but they implement no commu-
nication function themselves. Many applications require sparse nearest neighbor commu-
nications that can be expressed as graph topologies. We now describe several collective
operations that perform communication along the edges of a process topology. All of these
functions are collective; i.e., they must be called by all processes in the specified commu-
nicator. See Section 6 for an overview of other dense (global) collective communication
operations and the semantics of collective operations.

If the graph was created with MPI_DIST_GRAPH_CREATE_ADJACENT with sources
and destinations containing 0, . . ., n-1, where n is the number of processes in the group
of comm_old (i.e., the graph is fully connected and also includes an edge from each node
to itself), then the sparse neighborhood communication routine performs the same data
exchange as the corresponding dense (fully-connected) collective operation. In the case of a
Cartesian communicator, only nearest neighbor communication is provided, corresponding
to rank_source and rank_dest in MPI_CART_SHIFT with input disp = 1.

Rationale. Neighborhood collective communications enable communication on a
process topology. This high-level specification of data exchange among neighboring
processes enables optimizations in the MPI library because the communication pattern
is known statically (the topology). Thus, the implementation can compute optimized
message schedules during creation of the topology [4]. This functionality can signifi-
cantly simplify the implementation of neighbor exchanges [3]. (End of rationale.)

For a distributed graph topology, created with MPI_DIST_GRAPH_CREATE, the se-
quence of neighbors in the send and receive buffers at each process is defined as the sequence
returned by MPI_DIST_GRAPH_NEIGHBORS for destinations and sources, respectively. For
a general graph topology, created with MPI_GRAPH_CREATE, the use of neighborhood col-
lective communication is restricted to adjacency matrices, where the number of edges be-
tween any two processes is defined to be the same for both processes (i.e., with a symmetric
adjacency matrix). In this case, the order of neighbors in the send and receive buffers is
defined as the sequence of neighbors as returned by MPI_GRAPH_NEIGHBORS. Note that
general graph topologies should generally be replaced by the distributed graph topologies.

For a Cartesian topology, created with MPI_CART_CREATE, the sequence of neigh-
bors in the send and receive buffers at each process is defined by order of the dimensions,
first the neighbor in the negative direction and then in the positive direction with dis-
placement 1. The numbers of sources and destinations in the communication routines are
2*ndims with ndims defined in MPI_CART_CREATE. If a neighbor does not exist, i.e., at
the border of a Cartesian topology in the case of a non-periodic virtual grid dimension (i.e.,
periods[. . .]==false), then this neighbor is defined to be MPI_PROC_NULL.

If a neighbor in any of the functions is MPI_PROC_NULL, then the neighborhood collec-
tive communication behaves like a point-to-point communication with MPI_PROC_NULL in

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.6. NEIGHBORHOOD COLLECTIVE COMMUNICATION 27

this direction. That is, the buffer is still part of the sequence of neighbors but it is neither
communicated nor updated.

7.6.1 Neighborhood Gather

In this function, each process i gathers data items from each process j if an edge (j, i) exists
in the topology graph, and each process i sends the same data items to all processes j where
an edge (i, j) exists. The send buffer is sent to each neighboring process and the l-th block
in the receive buffer is received from the l-th neighbor.

MPI_NEIGHBOR_ALLGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each neighbor

(non-negative integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcount number of elements received from each neighbor

(non-negative integer)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

int MPI_Neighbor_allgather(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)

MPI_Neighbor_allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(*), DIMENSION(..) :: recvbuf

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_NEIGHBOR_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,

RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

This function supports Cartesian communicators, graph communicators, and distributed
graph communicators as described in Section 7.6. If comm is a distributed graph commu-
nicator, the outcome is as if each process executed sends to each of its outgoing neighbors
and receives from each of its incoming neighbors:

MPI_Dist_graph_neighbors_count(comm, &indegree, &outdegree, &weighted);

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

28 CHAPTER 7. PROCESS TOPOLOGIES

int *srcs=(int*)malloc(indegree*sizeof(int));

int *dsts=(int*)malloc(outdegree*sizeof(int));

MPI_Dist_graph_neighbors(comm, indegree, srcs, MPI_UNWEIGHTED,

outdegree, dsts, MPI_UNWEIGHTED);

int k,l;

/* assume sendbuf and recvbuf are of type (char*) */

for(k=0; k<outdegree; ++k)

MPI_Isend(sendbuf, sendcount, sendtype,dsts[k],...);

for(l=0; l<indegree; ++l)

MPI_Irecv(recvbuf+l*recvcount*extent(recvtype), recvcount, recvtype,

srcs[l],...);

MPI_Waitall(...);

Figure 7.1 shows the neighborhood gather communication of one process with outgoing
neighbors d0 . . . d3 and incoming neighbors s0 . . . s5. The process will send its sendbuf to
all four destinations (outgoing neighbors) and it will receive the contribution from all six
sources (incoming neighbors) into separate locations of its receive buffer.

d�@
@R� B
B
B
B
BBM

+�
�
�
�
��3

�
�
�
��MB
B
B
B
BBN

HH
H

HH
H

HHY

recvbuf

sendbuf

d0

s0

s1

s2
s3

d2, s4

d3, s5

d1

s0 s1 s2 s3 s4 s5

Figure 7.1: Neighborhood gather communication example.

All arguments are significant on all processes and the argument comm must have iden-
tical values on all processes.

The type signature associated with sendcount, sendtype, at a process must be equal to
the type signature associated with recvcount, recvtype at all other processes. This implies
that the amount of data sent must be equal to the amount of data received, pairwise between
every pair of communicating processes. Distinct type maps between sender and receiver are
still allowed.

Rationale. For optimization reasons, the same type signature is required indepen-
dently of whether the topology graph is connected or not. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.6. NEIGHBORHOOD COLLECTIVE COMMUNICATION 29

The “in place” option is not meaningful for this operation.

Example 7.9 On a Cartesian virtual grid, the buffer usage in a given direction d with
dims[d]==3 and 1, respectively during creation of the communicator is described in the
following figure.

The figure may apply to any (or multiple) directions in the Cartesian topology. The grey
buffers are required in all cases but are only accessed if during creation of the communicator,
periods[d] was defined as 1 (in C) or .TRUE. (in Fortran).

The vector variant of MPI_NEIGHBOR_ALLGATHER allows one to gather different
numbers of elements from each neighbor.

MPI_NEIGHBOR_ALLGATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
recvtype, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each neighbor

(non-negative integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array (of length indegree)

containing the number of elements that are received

from each neighbor

IN displs integer array (of length indegree). Entry i specifies

the displacement (relative to recvbuf) at which to

place the incoming data from neighbor i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

int MPI_Neighbor_allgatherv(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf, const int recvcounts[],

const int displs[], MPI_Datatype recvtype, MPI_Comm comm)

MPI_Neighbor_allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts,

displs, recvtype, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

INTEGER, INTENT(IN) :: sendcount, recvcounts(*), displs(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(*), DIMENSION(..) :: recvbuf

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_NEIGHBOR_ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS,

DISPLS, RECVTYPE, COMM, IERROR)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

30 CHAPTER 7. PROCESS TOPOLOGIES

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,

IERROR

This function supports Cartesian communicators, graph communicators, and distributed
graph communicators as described in Section 7.6. If comm is a distributed graph commu-
nicator, the outcome is as if each process executed sends to each of its outgoing neighbors
and receives from each of its incoming neighbors:

MPI_Dist_graph_neighbors_count(comm, &indegree, &outdegree, &weighted);

int *srcs=(int*)malloc(indegree*sizeof(int));

int *dsts=(int*)malloc(outdegree*sizeof(int));

MPI_Dist_graph_neighbors(comm, indegree, srcs, MPI_UNWEIGHTED,

outdegree, dsts, MPI_UNWEIGHTED);

int k,l;

/* assume sendbuf and recvbuf are of type (char*) */

for(k=0; k<outdegree; ++k)

MPI_Isend(sendbuf, sendcount, sendtype, dsts[k],...);

for(l=0; l<indegree; ++l)

MPI_Irecv(recvbuf+displs[l]*extent(recvtype), recvcounts[l], recvtype,

srcs[l],...);

MPI_Waitall(...);

The type signature associated with sendcount, sendtype, at process j must be equal
to the type signature associated with recvcounts[l], recvtype at any other process with
srcs[l]==j. This implies that the amount of data sent must be equal to the amount of
data received, pairwise between every pair of communicating processes. Distinct type maps
between sender and receiver are still allowed. The data received from the l-th neighbor is
placed into recvbuf beginning at offset displs[l] elements (in terms of the recvtype).

The “in place” option is not meaningful for this operation.
All arguments are significant on all processes and the argument comm must have iden-

tical values on all processes.

7.6.2 Neighbor Alltoall

In this function, each process i receives data items from each process j if an edge (j, i)
exists in the topology graph or Cartesian topology. Similarly, each process i sends data
items to all processes j where an edge (i, j) exists. This call is more general than
MPI_NEIGHBOR_ALLGATHER in that different data items can be sent to each neighbor.
The k-th block in send buffer is sent to the k-th neighboring process and the l-th block in
the receive buffer is received from the l-th neighbor.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.6. NEIGHBORHOOD COLLECTIVE COMMUNICATION 31

MPI_NEIGHBOR_ALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each neighbor

(non-negative integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcount number of elements received from each neighbor

(non-negative integer)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

int MPI_Neighbor_alltoall(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)

MPI_Neighbor_alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(*), DIMENSION(..) :: recvbuf

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_NEIGHBOR_ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,

RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

This function supports Cartesian communicators, graph communicators, and distributed
graph communicators as described in Section 7.6. If comm is a distributed graph commu-
nicator, the outcome is as if each process executed sends to each of its outgoing neighbors
and receives from each of its incoming neighbors:

MPI_Dist_graph_neighbors_count(comm, &indegree, &outdegree, &weighted);

int *srcs=(int*)malloc(indegree*sizeof(int));

int *dsts=(int*)malloc(outdegree*sizeof(int));

MPI_Dist_graph_neighbors(comm, indegree, srcs, MPI_UNWEIGHTED,

outdegree, dsts, MPI_UNWEIGHTED);

int k,l;

/* assume sendbuf and recvbuf are of type (char*) */

for(k=0; k<outdegree; ++k)

MPI_Isend(sendbuf+k*sendcount*extent(sendtype), sendcount, sendtype,

dsts[k],...);

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

32 CHAPTER 7. PROCESS TOPOLOGIES

for(l=0; l<indegree; ++l)

MPI_Irecv(recvbuf+l*recvcount*extent(recvtype), recvcount, recvtype,

srcs[l],...);

MPI_Waitall(...);

The type signature associated with sendcount, sendtype, at a process must be equal to
the type signature associated with recvcount, recvtype at any other process. This implies
that the amount of data sent must be equal to the amount of data received, pairwise between
every pair of communicating processes. Distinct type maps between sender and receiver are
still allowed.

The “in place” option is not meaningful for this operation.
All arguments are significant on all processes and the argument comm must have iden-

tical values on all processes.

Example 7.10 For a halo communication on a Cartesian grid, the buffer usage in a given
direction d with dims[d]==3 and 1, respectively during creation of the communicator is
described in the following figure.

The figure may apply to any (or multiple) directions in the Cartesian topology. The grey
buffers are required in all cases but are only accessed if during creation of the communicator,
periods[d] was defined as 1 (in C) or .TRUE. (in Fortran).

If each array element of sendbuf and recvbuf are described by sendcount,sendtype and
recvbuf,recvtype, then after MPI_NEIGHBOR_ALLTOALL on a Cartesian communicator re-
turned, the content of the recvbuf is as if the following code is executed:

MPI_Cartdim_get(comm, &ndims);

for(/*direction*/ d=0; d < ndims; d++) {
MPI_Cart_shift(comm, /*direction*/ d, /*disp*/ 1, &rank_source, &rank_dest);

MPI_Sendrecv(sendbuf[d*2+0],sendcount,sendtype,rank_source,/*sendtag*/d*2,

recvbuf[d*2+1],recvcount,recvtype,rank_dest, /*recvtag*/ d*2,

comm,&status);/*communication in direction of displacment -1*/

MPI_Sendrecv(sendbuf[d*2+1],sendcount,sendtype,rank_dest, /*sendtag*/ d*2+1,

recvbuf[d*2+0],recvcount,recvtype,rank_source,/*recvtag*/d*2+1,

comm,&status);/*communication in direction of displacment +1*/

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.6. NEIGHBORHOOD COLLECTIVE COMMUNICATION 33

Advice to implementors. For a Cartesian topology, if the virtual grid in a direction d
is periodic and dims[d] is equal to 0 or 1, then rank_source and rank_dest are identical,
but still all ndims send and ndims receive operations use different buffers. If in this
case, the two send and receive operations per direction or of all directions are internally
parallelized, then the several send and receive operations for the same sender-receiver
process pair must be initiated in the same sequence on sender and receiver side or
they shall be distinguished by different tags. The code above shows a valid sequence
of operations and tags. (End of advice to implementors.)

The vector variant of MPI_NEIGHBOR_ALLTOALL allows sending/receiving different
numbers of elements to and from each neighbor.

MPI_NEIGHBOR_ALLTOALLV(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts,
rdispls, recvtype, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcounts non-negative integer array (of length outdegree)

specifying the number of elements to send to each

neighbor

IN sdispls integer array (of length outdegree). Entry j specifies

the displacement (relative to sendbuf) from which to

send the outgoing data to neighbor j

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array (of length indegree)

specifying the number of elements that are received

from each neighbor

IN rdispls integer array (of length indegree). Entry i specifies

the displacement (relative to recvbuf) at which to

place the incoming data from neighbor i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

int MPI_Neighbor_alltoallv(const void *sendbuf, const int sendcounts[],

const int sdispls[], MPI_Datatype sendtype, void *recvbuf,

const int recvcounts[], const int rdispls[],

MPI_Datatype recvtype, MPI_Comm comm)

MPI_Neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,

recvcounts, rdispls, recvtype, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

INTEGER, INTENT(IN) :: sendcounts(*), sdispls(*), recvcounts(*),

rdispls(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(*), DIMENSION(..) :: recvbuf

TYPE(MPI_Comm), INTENT(IN) :: comm

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

34 CHAPTER 7. PROCESS TOPOLOGIES

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_NEIGHBOR_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF,

RECVCOUNTS, RDISPLS, RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),

RECVTYPE, COMM, IERROR

This function supports Cartesian communicators, graph communicators, and distributed
graph communicators as described in Section 7.6. If comm is a distributed graph commu-
nicator, the outcome is as if each process executed sends to each of its outgoing neighbors
and receives from each of its incoming neighbors:

MPI_Dist_graph_neighbors_count(comm, &indegree, &outdegree, &weighted);

int *srcs=(int*)malloc(indegree*sizeof(int));

int *dsts=(int*)malloc(outdegree*sizeof(int));

MPI_Dist_graph_neighbors(comm, indegree, srcs, MPI_UNWEIGHTED,

outdegree, dsts, MPI_UNWEIGHTED);

int k,l;

/* assume sendbuf and recvbuf are of type (char*) */

for(k=0; k<outdegree; ++k)

MPI_Isend(sendbuf+sdispls[k]*extent(sendtype), sendcounts[k], sendtype,

dsts[k],...);

for(l=0; l<indegree; ++l)

MPI_Irecv(recvbuf+rdispls[l]*extent(recvtype), recvcounts[l], recvtype,

srcs[l],...);

MPI_Waitall(...);

The type signature associated with sendcounts[k], sendtype with dsts[k]==j at process
i must be equal to the type signature associated with recvcounts[l], recvtype with srcs[l]==i
at process j. This implies that the amount of data sent must be equal to the amount of
data received, pairwise between every pair of communicating processes. Distinct type maps
between sender and receiver are still allowed. The data in the sendbuf beginning at offset
sdispls[k] elements (in terms of the sendtype) is sent to the k-th outgoing neighbor. The data
received from the l-th incoming neighbor is placed into recvbuf beginning at offset rdispls[l]
elements (in terms of the recvtype).

The “in place” option is not meaningful for this operation.
All arguments are significant on all processes and the argument comm must have iden-

tical values on all processes.
MPI_NEIGHBOR_ALLTOALLW allows one to send and receive with different datatypes

to and from each neighbor.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.6. NEIGHBORHOOD COLLECTIVE COMMUNICATION 35

MPI_NEIGHBOR_ALLTOALLW(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts,
rdispls, recvtypes, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcounts non-negative integer array (of length outdegree)

specifying the number of elements to send to each

neighbor

IN sdispls integer array (of length outdegree). Entry j specifies

the displacement in bytes (relative to sendbuf) from

which to take the outgoing data destined for

neighbor j (array of integers)

IN sendtypes array of datatypes (of length outdegree). Entry j

specifies the type of data to send to neighbor j (array

of handles)

OUT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array (of length indegree)

specifying the number of elements that are received

from each neighbor

IN rdispls integer array (of length indegree). Entry i specifies

the displacement in bytes (relative to recvbuf) at

which to place the incoming data from neighbor i

(array of integers)

IN recvtypes array of datatypes (of length indegree). Entry i

specifies the type of data received from neighbor i

(array of handles)

IN comm communicator with topology structure (handle)

int MPI_Neighbor_alltoallw(const void *sendbuf, const int sendcounts[],

const MPI_Aint sdispls[], const MPI_Datatype sendtypes[],

void *recvbuf, const int recvcounts[],

const MPI_Aint rdispls[], const MPI_Datatype recvtypes[],

MPI_Comm comm)

MPI_Neighbor_alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,

recvcounts, rdispls, recvtypes, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

INTEGER, INTENT(IN) :: sendcounts(*), recvcounts(*)

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: sdispls(*), rdispls(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtypes(*), recvtypes(*)

TYPE(*), DIMENSION(..) :: recvbuf

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_NEIGHBOR_ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF,

RECVCOUNTS, RDISPLS, RECVTYPES, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

36 CHAPTER 7. PROCESS TOPOLOGIES

INTEGER SENDCOUNTS(*), SENDTYPES(*), RECVCOUNTS(*), RECVTYPES(*), COMM,

IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SDISPLS(*), RDISPLS(*)

This function supports Cartesian communicators, graph communicators, and distributed
graph communicators as described in Section 7.6. If comm is a distributed graph commu-
nicator, the outcome is as if each process executed sends to each of its outgoing neighbors
and receives from each of its incoming neighbors:

MPI_Dist_graph_neighbors_count(comm, &indegree, &outdegree, &weighted);

int *srcs=(int*)malloc(indegree*sizeof(int));

int *dsts=(int*)malloc(outdegree*sizeof(int));

MPI_Dist_graph_neighbors(comm, indegree, srcs, MPI_UNWEIGHTED,

outdegree, dsts, MPI_UNWEIGHTED);

int k,l;

/* assume sendbuf and recvbuf are of type (char*) */

for(k=0; k<outdegree; ++k)

MPI_Isend(sendbuf+sdispls[k], sendcounts[k], sendtypes[k], dsts[k],...);

for(l=0; l<indegree; ++l)

MPI_Irecv(recvbuf+rdispls[l], recvcounts[l], recvtypes[l], srcs[l],...);

MPI_Waitall(...);

The type signature associated with sendcounts[k], sendtypes[k] with dsts[k]==j at pro-
cess i must be equal to the type signature associated with recvcounts[l], recvtypes[l] with
srcs[l]==i at process j. This implies that the amount of data sent must be equal to the
amount of data received, pairwise between every pair of communicating processes. Distinct
type maps between sender and receiver are still allowed.

The “in place” option is not meaningful for this operation.
All arguments are significant on all processes and the argument comm must have iden-

tical values on all processes.

7.7 Nonblocking Neighborhood Communication on Process Topologies

Nonblocking variants of the neighborhood collective operations allow relaxed synchroniza-
tion and overlapping of computation and communication. The semantics are similar to
nonblocking collective operations as described in Section 6.12.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.7. NONBLOCKING NEIGHBORHOOD COMMUNICATION 37

7.7.1 Nonblocking Neighborhood Gather

MPI_INEIGHBOR_ALLGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
comm, request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each neighbor

(non-negative integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcount number of elements received from each neighbor

(non-negative integer)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

OUT request communication request (handle)

int MPI_Ineighbor_allgather(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

MPI_Ineighbor_allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_INEIGHBOR_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,

RECVTYPE, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_NEIGHBOR_ALLGATHER.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

38 CHAPTER 7. PROCESS TOPOLOGIES

MPI_INEIGHBOR_ALLGATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
recvtype, comm, request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each neighbor

(non-negative integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array (of length indegree)

containing the number of elements that are received

from each neighbor

IN displs integer array (of length indegree). Entry i specifies

the displacement (relative to recvbuf) at which to

place the incoming data from neighbor i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

OUT request communication request (handle)

int MPI_Ineighbor_allgatherv(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf, const int recvcounts[],

const int displs[], MPI_Datatype recvtype, MPI_Comm comm,

MPI_Request *request)

MPI_Ineighbor_allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts,

displs, recvtype, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

INTEGER, INTENT(IN) :: sendcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_INEIGHBOR_ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS,

DISPLS, RECVTYPE, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,

REQUEST, IERROR

This call starts a nonblocking variant of MPI_NEIGHBOR_ALLGATHERV.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.7. NONBLOCKING NEIGHBORHOOD COMMUNICATION 39

7.7.2 Nonblocking Neighborhood Alltoall

MPI_INEIGHBOR_ALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
comm, request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each neighbor

(non-negative integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcount number of elements received from each neighbor

(non-negative integer)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

OUT request communication request (handle)

int MPI_Ineighbor_alltoall(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

MPI_Ineighbor_alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_INEIGHBOR_ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,

RECVTYPE, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_NEIGHBOR_ALLTOALL.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

40 CHAPTER 7. PROCESS TOPOLOGIES

MPI_INEIGHBOR_ALLTOALLV(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts,
rdispls, recvtype, comm, request)

IN sendbuf starting address of send buffer (choice)

IN sendcounts non-negative integer array (of length outdegree)

specifying the number of elements to send to each

neighbor

IN sdispls integer array (of length outdegree). Entry j specifies

the displacement (relative to sendbuf) from which

send the outgoing data to neighbor j

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array (of length indegree)

specifying the number of elements that are received

from each neighbor

IN rdispls integer array (of length indegree). Entry i specifies

the displacement (relative to recvbuf) at which to

place the incoming data from neighbor i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

OUT request communication request (handle)

int MPI_Ineighbor_alltoallv(const void *sendbuf, const int sendcounts[],

const int sdispls[], MPI_Datatype sendtype, void *recvbuf,

const int recvcounts[], const int rdispls[],

MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

MPI_Ineighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,

recvcounts, rdispls, recvtype, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),

recvcounts(*), rdispls(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_INEIGHBOR_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF,

RECVCOUNTS, RDISPLS, RECVTYPE, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),

RECVTYPE, COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_NEIGHBOR_ALLTOALLV.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.7. NONBLOCKING NEIGHBORHOOD COMMUNICATION 41

MPI_INEIGHBOR_ALLTOALLW(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts,
rdispls, recvtypes, comm, request)

IN sendbuf starting address of send buffer (choice)

IN sendcounts non-negative integer array (of length outdegree)

specifying the number of elements to send to each

neighbor

IN sdispls integer array (of length outdegree). Entry j specifies

the displacement in bytes (relative to sendbuf) from

which to take the outgoing data destined for

neighbor j (array of integers)

IN sendtypes array of datatypes (of length outdegree). Entry j

specifies the type of data to send to neighbor j (array

of handles)

OUT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array (of length indegree)

specifying the number of elements that are received

from each neighbor

IN rdispls integer array (of length indegree). Entry i specifies

the displacement in bytes (relative to recvbuf) at

which to place the incoming data from neighbor i

(array of integers)

IN recvtypes array of datatypes (of length indegree). Entry i

specifies the type of data received from neighbor i

(array of handles)

IN comm communicator with topology structure (handle)

OUT request communication request (handle)

int MPI_Ineighbor_alltoallw(const void *sendbuf, const int sendcounts[],

const MPI_Aint sdispls[], const MPI_Datatype sendtypes[],

void *recvbuf, const int recvcounts[],

const MPI_Aint rdispls[], const MPI_Datatype recvtypes[],

MPI_Comm comm, MPI_Request *request)

MPI_Ineighbor_alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,

recvcounts, rdispls, recvtypes, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), recvcounts(*)

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: sdispls(*),

rdispls(*)

TYPE(MPI_Datatype), INTENT(IN), ASYNCHRONOUS :: sendtypes(*),

recvtypes(*)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

42 CHAPTER 7. PROCESS TOPOLOGIES

MPI_INEIGHBOR_ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF,

RECVCOUNTS, RDISPLS, RECVTYPES, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SENDTYPES(*), RECVCOUNTS(*), RECVTYPES(*), COMM,

REQUEST, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SDISPLS(*), RDISPLS(*)

This call starts a nonblocking variant of MPI_NEIGHBOR_ALLTOALLW.

7.8 Persistent Neighborhood Communication on Process Topologies

Persistent variants of the neighborhood collective operations can offer significant perfor-
mance benefits for programs with repetitive communication patterns. The semantics are
similar to persistent collective operations as described in Section 6.13.

7.8.1 Persistent Neighborhood Gather

MPI_NEIGHBOR_ALLGATHER_INIT(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm, info, request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each neighbor

(non-negative integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcount number of elements received from each neighbor

(non-negative integer)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

IN info info argument (handle)

OUT request communication request (handle)

int MPI_Neighbor_allgather_init(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,

MPI_Request *request)

MPI_Neighbor_allgather_init(sendbuf, sendcount, sendtype, recvbuf,

recvcount, recvtype, comm, info, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Info), INTENT(IN) :: info

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.8. PERSISTENT NEIGHBORHOOD COMMUNICATION 43

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_NEIGHBOR_ALLGATHER_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF,

RECVCOUNT, RECVTYPE, COMM, INFO, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, INFO, REQUEST,

IERROR

Creates a persistent collective communication request for the neighborhood allgather
operation.

MPI_NEIGHBOR_ALLGATHERV_INIT(sendbuf, sendcount, sendtype, recvbuf, recvcounts,
displs, recvtype, comm, info, request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each neighbor

(non-negative integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array (of length indegree)

containing the number of elements that are received

from each neighbor

IN displs integer array (of length indegree). Entry i specifies

the displacement (relative to recvbuf) at which to

place the incoming data from neighbor i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

IN info info argument (handle)

OUT request communication request (handle)

int MPI_Neighbor_allgatherv_init(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf, const int recvcounts[],

const int displs[], MPI_Datatype recvtype, MPI_Comm comm,

MPI_Info info, MPI_Request *request)

MPI_Neighbor_allgatherv_init(sendbuf, sendcount, sendtype, recvbuf,

recvcounts, displs, recvtype, comm, info, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

INTEGER, INTENT(IN) :: sendcount, displs(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_Request), INTENT(OUT) :: request

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

44 CHAPTER 7. PROCESS TOPOLOGIES

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_NEIGHBOR_ALLGATHERV_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF,

RECVCOUNTS, DISPLS, RECVTYPE, COMM, INFO, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,

INFO, REQUEST, IERROR

Creates a persistent collective communication request for the neighborhood allgatherv
operation.

7.8.2 Persistent Neighborhood Alltoall

MPI_NEIGHBOR_ALLTOALL_INIT(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm, info, request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each neighbor

(non-negative integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcount number of elements received from each neighbor

(non-negative integer)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

IN info info argument (handle)

OUT request communication request (handle)

int MPI_Neighbor_alltoall_init(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm, MPI_Info info,

MPI_Request *request)

MPI_Neighbor_alltoall_init(sendbuf, sendcount, sendtype, recvbuf,

recvcount, recvtype, comm, info, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_NEIGHBOR_ALLTOALL_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF,

RECVCOUNT, RECVTYPE, COMM, INFO, REQUEST, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.8. PERSISTENT NEIGHBORHOOD COMMUNICATION 45

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, INFO, REQUEST,

IERROR

Creates a persistent collective communication request for the neighborhood alltoall
operation.

MPI_NEIGHBOR_ALLTOALLV_INIT(sendbuf, sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm, info, request)

IN sendbuf starting address of send buffer (choice)

IN sendcounts non-negative integer array (of length outdegree)

specifying the number of elements to send to each

neighbor

IN sdispls integer array (of length outdegree). Entry j specifies

the displacement (relative to sendbuf) from which

send the outgoing data to neighbor j

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array (of length indegree)

specifying the number of elements that are received

from each neighbor

IN rdispls integer array (of length indegree). Entry i specifies

the displacement (relative to recvbuf) at which to

place the incoming data from neighbor i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

IN info info argument (handle)

OUT request communication request (handle)

int MPI_Neighbor_alltoallv_init(const void *sendbuf,

const int sendcounts[], const int sdispls[],

MPI_Datatype sendtype, void *recvbuf, const int recvcounts[],

const int rdispls[], MPI_Datatype recvtype, MPI_Comm comm,

MPI_Info info, MPI_Request *request)

MPI_Neighbor_alltoallv_init(sendbuf, sendcounts, sdispls, sendtype,

recvbuf, recvcounts, rdispls, recvtype, comm, info, request,

ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),

recvcounts(*), rdispls(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

TYPE(MPI_Comm), INTENT(IN) :: comm

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

46 CHAPTER 7. PROCESS TOPOLOGIES

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_NEIGHBOR_ALLTOALLV_INIT(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE,

RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPE, COMM, INFO, REQUEST,

IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),

RECVTYPE, COMM, INFO, REQUEST, IERROR

Creates a persistent collective communication request for the neighborhood alltoallv
operation.

MPI_NEIGHBOR_ALLTOALLW_INIT(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,
recvcounts, rdispls, recvtypes, comm, info, request)

IN sendbuf starting address of send buffer (choice)

IN sendcounts non-negative integer array (of length outdegree)

specifying the number of elements to send to each

neighbor

IN sdispls integer array (of length outdegree). Entry j specifies

the displacement in bytes (relative to sendbuf) from

which to take the outgoing data destined for

neighbor j (array of integers)

IN sendtypes array of datatypes (of length outdegree). Entry j

specifies the type of data to send to neighbor j (array

of handles)

OUT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array (of length indegree)

specifying the number of elements that are received

from each neighbor

IN rdispls integer array (of length indegree). Entry i specifies

the displacement in bytes (relative to recvbuf) at

which to place the incoming data from neighbor i

(array of integers)

IN recvtypes array of datatypes (of length indegree). Entry i

specifies the type of data received from neighbor i

(array of handles)

IN comm communicator with topology structure (handle)

IN info info argument (handle)

OUT request communication request (handle)

int MPI_Neighbor_alltoallw_init(const void *sendbuf,

const int sendcounts[], const MPI_Aint sdispls[],

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.9. AN APPLICATION EXAMPLE 47

const MPI_Datatype sendtypes[], void *recvbuf,

const int recvcounts[], const MPI_Aint rdispls[],

const MPI_Datatype recvtypes[], MPI_Comm comm, MPI_Info info,

MPI_Request *request)

MPI_Neighbor_alltoallw_init(sendbuf, sendcounts, sdispls, sendtypes,

recvbuf, recvcounts, rdispls, recvtypes, comm, info, request,

ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), recvcounts(*)

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: sdispls(*),

rdispls(*)

TYPE(MPI_Datatype), INTENT(IN), ASYNCHRONOUS :: sendtypes(*),

recvtypes(*)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_NEIGHBOR_ALLTOALLW_INIT(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES,

RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPES, COMM, INFO, REQUEST,

IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SENDTYPES(*), RECVCOUNTS(*), RECVTYPES(*), COMM,

INFO, REQUEST, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SDISPLS(*), RDISPLS(*)

Creates a persistent collective communication request for the neighborhood alltoallw
operation.

7.9 An Application Example

Example 7.11 The example in Figures 7.2-7.5 shows how the grid definition and inquiry
functions can be used in an application program. A partial differential equation, for instance
the Poisson equation, is to be solved on a rectangular domain. First, the processes organize
themselves in a two-dimensional structure. Each process then inquires about the ranks of
its neighbors in the four directions (up, down, right, left). The numerical problem is solved
by an iterative method, the details of which are hidden in the subroutine relax.

In each relaxation step each process computes new values for the solution grid function
at the points u(1:100,1:100) owned by the process. Then the values at inter-process
boundaries have to be exchanged with neighboring processes. For example, the newly
calculated values in u(1,1:100) must be sent into the halo cells u(101,1:100) of the
left-hand neighbor with coordinates (own_coord(1)-1,own_coord(2)).

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

48 CHAPTER 7. PROCESS TOPOLOGIES

INTEGER ndims, num_neigh

LOGICAL reorder

PARAMETER (ndims=2, num_neigh=4, reorder=.true.)

INTEGER comm, comm_size, comm_cart, dims(ndims), ierr

INTEGER neigh_rank(num_neigh), own_coords(ndims), i, j, it

LOGICAL periods(ndims)

REAL u(0:101,0:101), f(0:101,0:101)

DATA dims / ndims * 0 /

comm = MPI_COMM_WORLD

CALL MPI_COMM_SIZE(comm, comm_size, ierr)

! Set process grid size and periodicity

CALL MPI_DIMS_CREATE(comm_size, ndims, dims, ierr)

periods(1) = .TRUE.

periods(2) = .TRUE.

! Create a grid structure in WORLD group and inquire about own position

CALL MPI_CART_CREATE(comm, ndims, dims, periods, reorder, &

comm_cart, ierr)

CALL MPI_CART_GET(comm_cart, ndims, dims, periods, own_coords, ierr)

i = own_coords(1)

j = own_coords(2)

! Look up the ranks for the neighbors. Own process coordinates are (i,j).

! Neighbors are (i-1,j), (i+1,j), (i,j-1), (i,j+1) modulo (dims(1),dims(2))

CALL MPI_CART_SHIFT(comm_cart, 0,1, neigh_rank(1), neigh_rank(2), ierr)

CALL MPI_CART_SHIFT(comm_cart, 1,1, neigh_rank(3), neigh_rank(4), ierr)

! Initialize the grid functions and start the iteration

CALL init(u, f)

DO it=1,100

CALL relax(u, f)

! Exchange data with neighbor processes

CALL exchange(u, comm_cart, neigh_rank, num_neigh)

END DO

CALL output(u)

Figure 7.2: Set-up of process structure for two-dimensional parallel Poisson solver.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.9. AN APPLICATION EXAMPLE 49

SUBROUTINE exchange(u, comm_cart, neigh_rank, num_neigh)

REAL u(0:101,0:101)

INTEGER comm_cart, num_neigh, neigh_rank(num_neigh)

REAL sndbuf(100,num_neigh), rcvbuf(100,num_neigh)

INTEGER ierr

sndbuf(1:100,1) = u(1,1:100)

sndbuf(1:100,2) = u(100,1:100)

sndbuf(1:100,3) = u(1:100, 1)

sndbuf(1:100,4) = u(1:100,100)

CALL MPI_NEIGHBOR_ALLTOALL(sndbuf, 100, MPI_REAL, rcvbuf, 100, MPI_REAL, &

comm_cart, ierr)

! instead of

! CALL MPI_IRECV(rcvbuf(1,1),100,MPI_REAL, neigh_rank(1),..., rq(1), ierr)

! CALL MPI_ISEND(sndbuf(1,2),100,MPI_REAL, neigh_rank(2),..., rq(2), ierr)

! Always pairing a receive from rank_source with a send to rank_dest

! of the same direction in MPI_CART_SHIFT!

! CALL MPI_IRECV(rcvbuf(1,2),100,MPI_REAL, neigh_rank(2),..., rq(3), ierr)

! CALL MPI_ISEND(sndbuf(1,1),100,MPI_REAL, neigh_rank(1),..., rq(4), ierr)

! CALL MPI_IRECV(rcvbuf(1,3),100,MPI_REAL, neigh_rank(3),..., rq(5), ierr)

! CALL MPI_ISEND(sndbuf(1,4),100,MPI_REAL, neigh_rank(4),..., rq(6), ierr)

! CALL MPI_IRECV(rcvbuf(1,4),100,MPI_REAL, neigh_rank(4),..., rq(7), ierr)

! CALL MPI_ISEND(sndbuf(1,3),100,MPI_REAL, neigh_rank(3),..., rq(8), ierr)

! Of course, one can first start all four IRECV and then all four ISEND,

! Or vice versa, but both in the sequence shown above. Otherwise, the

! matching would be wrong for 2 or only 1 processes in a direction.

! CALL MPI_WAITALL(2*num_neigh, rq, statuses, ierr)

u(0,1:100) = rcvbuf(1:100,1)

u(101,1:100) = rcvbuf(1:100,2)

u(1:100, 0) = rcvbuf(1:100,3)

u(1:100,101) = rcvbuf(1:100,4)

END

Figure 7.3: Communication routine with local data copying and sparse neighborhood all-
to-all.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

50 CHAPTER 7. PROCESS TOPOLOGIES

SUBROUTINE exchange(u, comm_cart, neigh_rank, num_neigh)

IMPLICIT NONE

USE MPI

REAL u(0:101,0:101)

INTEGER comm_cart, num_neigh, neigh_rank(num_neigh)

INTEGER sndcounts(num_neigh), sndtypes(num_neigh)

INTEGER rcvcounts(num_neigh), rcvtypes(num_neigh)

INTEGER (KIND=MPI_ADDRESS_KIND) lb, sizeofreal

INTEGER (KIND=MPI_ADDRESS_KIND) sdispls(num_neigh), rdispls(num_neigh)

INTEGER type_vec, ierr

! The following initialization need to be done only once

! before the first call of exchange.

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lb, sizeofreal, ierr)

CALL MPI_TYPE_VECTOR(100, 1, 102, MPI_REAL, type_vec, ierr)

CALL MPI_TYPE_COMMIT(type_vec, ierr)

sndtypes(1:2) = type_vec

sndcounts(1:2) = 1

sndtypes(3:4) = MPI_REAL

sndcounts(3:4) = 100

rcvtypes = sndtypes

rcvcounts = sndcounts

sdispls(1) = (1 + 1*102) * sizeofreal ! first element of u(1 , 1:100)

sdispls(2) = (100 + 1*102) * sizeofreal ! first element of u(100 , 1:100)

sdispls(3) = (1 + 1*102) * sizeofreal ! first element of u(1:100, 1)

sdispls(4) = (1 + 100*102) * sizeofreal ! first element of u(1:100,100)

rdispls(1) = (0 + 1*102) * sizeofreal ! first element of u(0 , 1:100)

rdispls(2) = (101 + 1*102) * sizeofreal ! first element of u(101 , 1:100)

rdispls(3) = (1 + 0*102) * sizeofreal ! first element of u(1:100, 0)

rdispls(4) = (1 + 101*102) * sizeofreal ! first element of u(1:100,101)

! the following communication has to be done in each call of exchange

CALL MPI_NEIGHBOR_ALLTOALLW(u, sndcounts, sdispls, sndtypes, &

u, rcvcounts, rdispls, rcvtypes, &

comm_cart, ierr)

! The following finalizing need to be done only once

! after the last call of exchange.

CALL MPI_TYPE_FREE(type_vec, ierr)

END

Figure 7.4: Communication routine with sparse neighborhood all-to-all-w and without local
data copying.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7.9. AN APPLICATION EXAMPLE 51

INTEGER ndims, num_neigh

LOGICAL reorder

PARAMETER (ndims=2, num_neigh=4, reorder=.true.)

INTEGER comm, comm_size, comm_cart, dims(ndims), it, ierr

LOGICAL periods(ndims)

REAL u(0:101,0:101), f(0:101,0:101)

DATA dims / ndims * 0 /

INTEGER sndcounts(num_neigh), sndtypes(num_neigh)

INTEGER rcvcounts(num_neigh), rcvtypes(num_neigh)

INTEGER (KIND=MPI_ADDRESS_KIND) lb, sizeofreal

INTEGER (KIND=MPI_ADDRESS_KIND) sdispls(num_neigh), rdispls(num_neigh)

INTEGER type_vec, request, status

comm = MPI_COMM_WORLD

CALL MPI_COMM_SIZE(comm, comm_size, ierr)

! Set process grid size and periodicity

CALL MPI_DIMS_CREATE(comm_size, ndims, dims, ierr)

periods(1) = .TRUE.

periods(2) = .TRUE.

! Create a grid structure in WORLD group

CALL MPI_CART_CREATE(comm, ndims, dims, periods, reorder, &

comm_cart, ierr)

! Create datatypes for the neighborhood communication

!

! Insert code from example in Figure 7.4 to create and initialize

! sndcounts, sdispls, sndtypes, rcvcounts, rdispls, and rcvtypes

!

! Initialize the neighborhood all-to-all-w operation

CALL MPI_NEIGHBOR_ALLTOALLW_INIT(u, sndcounts, sdispls, sndtypes, &

u, rcvcounts, rdispls, rcvtypes, &

comm_cart, info, request, ierr)

! Initialize the grid functions and start the iteration

CALL init(u, f)

DO it=1,100

! Start data exchange with neighbor processes

CALL MPI_START(request, ierr)

! Compute inner cells

CALL relax_inner (u, f)

! Check on completion of neighbor exchange

CALL MPI_WAIT(request, status, ierr)

! Compute edge cells

CALL relax_edges(u, f)

END DO

CALL output(u)

CALL MPI_REQUEST_FREE(request, ierr)

CALL MPI_TYPE_FREE(type_vec, ierr)

Figure 7.5: Two-dimensional parallel Poisson solver with persistent sparse neighborhood
all-to-all-w and without local data copying.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Bibliography

[1] S. Chittor and R. J. Enbody. Performance evaluation of mesh-connected wormhole-
routed networks for interprocessor communication in multicomputers. In Proceedings of
the 1990 Supercomputing Conference, pages 647–656, 1990. 7.1

[2] S. Chittor and R. J. Enbody. Predicting the effect of mapping on the communication
performance of large multicomputers. In Proceedings of the 1991 International Confer-
ence on Parallel Processing, vol. II (Software), pages II–1–II–4, 1991. 7.1

[3] T. Hoefler, F. Lorenzen, and A. Lumsdaine. Sparse non-blocking collectives in quantum
mechanical calculations. In Recent Advances in Parallel Virtual Machine and Message
Passing Interface, 15th European PVM/MPI Users’ Group Meeting, volume LNCS 5205,
pages 55–63. Springer, Sep. 2008. 7.6

[4] T. Hoefler and J. L. Träff. Sparse collective operations for MPI. In Proceedings of
the 23rd IEEE International Parallel & Distributed Processing Symposium, HIPS’09
Workshop, May 2009. 7.6

[5] O. Krämer and H. Mühlenbein. Mapping strategies in message-based multiprocessor
systems. Parallel Computing, 9:213–225, 1989. 7.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only 52

Index

CONST:MPI_BOTTOM, 10, 12
CONST:MPI_CART, 14
CONST:MPI_COMM_NULL, 4, 6
CONST:MPI_COMM_WORLD, 5
CONST:MPI_DIST_GRAPH, 14
CONST:MPI_GRAPH, 14
CONST:MPI_INFO_NULL, 12
CONST:MPI_PROC_NULL, 22, 26
CONST:MPI_SUCCESS, 5
CONST:MPI_UNDEFINED, 14, 24, 25
CONST:MPI_UNWEIGHTED, 9, 10, 12, 13,

20, 21
CONST:MPI_WEIGHTS_EMPTY, 9, 10, 12

EXAMPLES:Cartesian virtual topologies, 47
EXAMPLES:MPI_CART_COORDS, 23
EXAMPLES:MPI_CART_GET, 47
EXAMPLES:MPI_CART_RANK, 23
EXAMPLES:MPI_CART_SHIFT, 23, 47
EXAMPLES:MPI_CART_SUB, 24
EXAMPLES:MPI_DIMS_CREATE, 5, 47
EXAMPLES:MPI_DIST_GRAPH_CREATE,

12
EXAMPLES:MPI_Dist_graph_create, 13
EXAMPLES:MPI_DIST_GRAPH_CREATE_ADJACENT,

12
EXAMPLES:MPI_GRAPH_CREATE, 7, 19
EXAMPLES:MPI_GRAPH_NEIGHBORS, 19
EXAMPLES:MPI_GRAPH_NEIGHBORS_COUNT,

19
EXAMPLES:MPI_NEIGHBOR_ALLGATHER,

29
EXAMPLES:MPI_NEIGHBOR_ALLTOALL,

32
EXAMPLES:MPI_SENDRECV_REPLACE,

23
EXAMPLES:Neighborhood collective commu-

nication, 47
EXAMPLES:Topologies, 47
EXAMPLES:Virtual topologies, 47

MPI_CART_COORDS, 3, 18
MPI_CART_COORDS(comm, rank, maxdims,

coords), 17
MPI_CART_CREATE, 2–6, 16, 24, 26
MPI_CART_CREATE(comm_old, ndims, dims,

periods, reorder, comm_cart), 4
MPI_CART_CREATE(comm, ndims, dims,

periods, reorder, comm_cart), 25
MPI_CART_GET, 3, 16
MPI_CART_GET(comm, maxdims, dims, periods,

coords), 16
MPI_CART_MAP, 3, 25
MPI_CART_MAP(comm, ndims, dims, periods,

newrank), 24
MPI_CART_MAP(comm, ndims, dims, pe-

riods, newrank), 25
MPI_CART_RANK, 3, 17
MPI_CART_RANK(comm, coords, rank), 17
MPI_CART_SHIFT, 3, 22, 23, 26
MPI_CART_SHIFT(comm, direction, disp,

rank_source, rank_dest), 22
MPI_CART_SUB, 3, 24
MPI_CART_SUB(comm, remain_dims, newcomm),

23
MPI_CART_SUB(comm, remain_dims, comm_new),

24, 25
MPI_CARTDIM_GET, 3, 16
MPI_CARTDIM_GET(comm, ndims), 16
MPI_COMM_CREATE, 3
MPI_COMM_SPLIT, 3, 4, 6, 24
MPI_COMM_SPLIT(comm, color, key, comm_cart),

25
MPI_COMM_SPLIT(comm, color, key, comm_graph),

26
MPI_COMM_SPLIT(comm, color, key, comm_new),

25
MPI_DIMS_CREATE, 3–5
MPI_DIMS_CREATE(6, 2, dims), 5
MPI_DIMS_CREATE(6, 3, dims), 5
MPI_DIMS_CREATE(7, 2, dims), 5

53

54 INDEX

MPI_DIMS_CREATE(7, 3, dims), 5
MPI_DIMS_CREATE(nnodes, ndims, dims),

5
MPI_DIST_GRAPH_CREATE, 2, 3, 8, 11,

13, 21, 22, 26
MPI_DIST_GRAPH_CREATE(comm_old, n,

sources, degrees, destinations, weights,
info, reorder, comm_dist_graph), 10

MPI_DIST_GRAPH_CREATE_ADJACENT,
2, 3, 8, 9, 13, 21, 26

MPI_DIST_GRAPH_CREATE_ADJACENT(comm_old,
indegree, sources, sourceweights, outdegree,
destinations, destweights, info, reorder,
comm_dist_graph), 8

MPI_DIST_GRAPH_NEIGHBORS, 3, 20, 21,
26

MPI_DIST_GRAPH_NEIGHBORS(comm, maxindegree,
sources, sourceweights, maxoutdegree,
destinations, destweights), 21

MPI_DIST_GRAPH_NEIGHBORS_COUNT,
3, 20–22

MPI_DIST_GRAPH_NEIGHBORS_COUNT(comm,
indegree, outdegree, weighted), 20

MPI_GRAPH_CREATE, 2, 3, 6, 8, 12, 15,
18, 19, 25, 26

MPI_GRAPH_CREATE(comm_old, nnodes,
index, edges, reorder, comm_graph),
6

MPI_GRAPH_CREATE(comm, nnodes, in-
dex, edges, reorder, comm_graph),
25

MPI_GRAPH_GET, 3, 15
MPI_GRAPH_GET(comm, maxindex, maxedges,

index, edges), 15
MPI_GRAPH_MAP, 3
MPI_GRAPH_MAP(comm, nnodes, index,

edges, newrank), 25
MPI_GRAPH_MAP(comm, nnodes, index,

edges, newrank), 26
MPI_GRAPH_NEIGHBORS, 3, 18, 19, 26
MPI_GRAPH_NEIGHBORS(comm, rank, maxneighbors,

neighbors), 18
MPI_GRAPH_NEIGHBORS_COUNT, 3, 18,

19
MPI_GRAPH_NEIGHBORS_COUNT(comm,

rank, nneighbors), 18
MPI_GRAPHDIMS_GET, 3, 15
MPI_GRAPHDIMS_GET(comm, nnodes, nedges),

15
MPI_INEIGHBOR_ALLGATHER, 3
MPI_INEIGHBOR_ALLGATHER(sendbuf, sendcount,

sendtype, recvbuf, recvcount, recvtype,
comm, request), 37

MPI_INEIGHBOR_ALLGATHERV, 3
MPI_INEIGHBOR_ALLGATHERV(sendbuf,

sendcount, sendtype, recvbuf, recvcounts,
displs, recvtype, comm, request), 38

MPI_INEIGHBOR_ALLTOALL, 3
MPI_INEIGHBOR_ALLTOALL(sendbuf, sendcount,

sendtype, recvbuf, recvcount, recvtype,
comm, request), 39

MPI_INEIGHBOR_ALLTOALLV, 3
MPI_INEIGHBOR_ALLTOALLV(sendbuf, sendcounts,

sdispls, sendtype, recvbuf, recvcounts,
rdispls, recvtype, comm, request), 40

MPI_INEIGHBOR_ALLTOALLW, 4
MPI_INEIGHBOR_ALLTOALLW(sendbuf, sendcounts,

sdispls, sendtypes, recvbuf, recvcounts,
rdispls, recvtypes, comm, request),
41

MPI_NEIGHBOR_ALLGATHER, 3, 29, 30,
37

MPI_NEIGHBOR_ALLGATHER(sendbuf, sendcount,
sendtype, recvbuf, recvcount, recvtype,
comm), 27

MPI_NEIGHBOR_ALLGATHER_INIT(sendbuf,
sendcount, sendtype, recvbuf, recvcount,
recvtype, comm, info, request), 42

MPI_NEIGHBOR_ALLGATHERV, 3, 38
MPI_NEIGHBOR_ALLGATHERV(sendbuf,

sendcount, sendtype, recvbuf, recvcounts,
displs, recvtype, comm), 29

MPI_NEIGHBOR_ALLGATHERV_INIT(sendbuf,
sendcount, sendtype, recvbuf, recvcounts,
displs, recvtype, comm, info, request),
43

MPI_NEIGHBOR_ALLTOALL, 3, 32, 33, 39
MPI_NEIGHBOR_ALLTOALL(sendbuf, sendcount,

sendtype, recvbuf, recvcount, recvtype,
comm), 31

MPI_NEIGHBOR_ALLTOALL_INIT(sendbuf,
sendcount, sendtype, recvbuf, recvcount,
recvtype, comm, info, request), 44

MPI_NEIGHBOR_ALLTOALLV, 3, 40
MPI_NEIGHBOR_ALLTOALLV(sendbuf, sendcounts,

sdispls, sendtype, recvbuf, recvcounts,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

INDEX 55

rdispls, recvtype, comm), 33
MPI_NEIGHBOR_ALLTOALLV_INIT(sendbuf,

sendcounts, sdispls, sendtype, recvbuf,
recvcounts, rdispls, recvtype, comm,
info, request), 45

MPI_NEIGHBOR_ALLTOALLW, 3, 34, 42
MPI_NEIGHBOR_ALLTOALLW(sendbuf, sendcounts,

sdispls, sendtypes, recvbuf, recvcounts,
rdispls, recvtypes, comm), 35

MPI_NEIGHBOR_ALLTOALLW_INIT(sendbuf,
sendcounts, sdispls, sendtypes, recvbuf,
recvcounts, rdispls, recvtypes, comm,
info, request), 46

MPI_SENDRECV, 22
MPI_TOPO_TEST, 3, 14
MPI_TOPO_TEST(comm, status), 14

TERM:Cartesian
topology, 2, 4

TERM:collective communication
neighborhood, 26

TERM:distributed graph
topology, 2, 8

TERM:graph
topology, 2, 6

TERM:neighborhood collective communica-
tion, 26

nonblocking, 37
TERM:persistent communication requests

collective persistent, 42
TERM:topologies, 1
TERM:topology

Cartesian, 2, 4
distributed graph, 2, 8
graph, 2, 6
virtual, 2

TERM:virtual topology, 2

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

	Process Topologies
	Introduction
	Virtual Topologies
	Embedding in MPI
	Overview of the Functions
	Topology Constructors
	Cartesian Constructor
	Cartesian Convenience Function: MPI_DIMS_CREATE
	Graph Constructor
	Distributed Graph Constructor
	Topology Inquiry Functions
	Cartesian Shift Coordinates
	Partitioning of Cartesian Structures
	Low-Level Topology Functions

	Neighborhood Collective Communication
	Neighborhood Gather
	Neighbor Alltoall

	Nonblocking Neighborhood Communication
	Nonblocking Neighborhood Gather
	Nonblocking Neighborhood Alltoall

	Persistent Neighborhood Communication
	Persistent Neighborhood Gather
	Persistent Neighborhood Alltoall

	An Application Example

