
User Level Failure
Mitigation Reading

Aurelien Bouteiller for the Error
Management WG

Dec, 2016 MPI Forum, Dallas, TX

User Level Failure Mitigation:
Specification Status

• Adds 3 error codes and 5 functions to manage process crash
• Error codes: interrupt operations that may block due to process crash
• MPI_COMM_FAILURE_ACK/GET_ACKED: continued operation with ANY-SOURCE

RECV and observation known failures
• MPI_COMM_REVOKE lets applications interrupt operations on a communicator
• MPI_COMM_AGREE: synchronize failure knowledge in the application
• MPI_COMM_SHRINK: create a communicator excluding failed processes

• Similar WIN/FILE_REVOKE
2

Resilience Extensions for MPI: ULFM
ULFM provides targeted interfaces to empower recovery strategies with adequate options to restore
communication capabilities and global consistency, at the necessary levels only.

Sequoia AMG is an unstructured physics mesh application with a complex
communication pattern that employs both point-to-point and collective
operations. Its failure free performance is unchanged whether it is deployed
with ULFM or normal Open MPI.

The failure of rank 3 is detected and managed by rank 2 during the 512 bytes
message test. The connectivity and bandwidth between rank 0 and rank 1
are unaffected by failure handling activities at rank 2.

CONTINUE ACROSS ERRORS

In ULFM, failures do not alter the state of MPI communicators.
Point-to-point operations can continue undisturbed between
non-faulty processes. ULFM imposes no recovery cost on simple
communication patterns that can proceed despite failures.

GROUP EXCEPTIONS

Consistent reporting of failures would add an unacceptable
performance penalty. In ULFM, errors are raised only at ranks where
an operation is disrupted; other ranks may still complete their
operations. A process can use MPI_[Comm,Win,File]_revoke to
propagate an error notification on the entire group, and could, for
example, interrupt other ranks to join a coordinated recovery.

COLLECTIVE OPERATIONS

Allowing collective operations to operate on damaged MPI objects
(Communicators, RMA windows or Files) would incur unacceptable
overhead. The MPI_Comm_shrink routine builds a replacement
communicator, excluding failed processes, which can be used to
resume collective communications, spawn replacement processes,
and rebuild RMA Windows and Files.

Master

W1

W2

Wn

Send (W1,T1)
Submit T1

Send (W2,T1)
Resubmit

Recv (ANY)
Detected W1

Recv(P1): failure
P2 calls RevokeP1

P2

P3

Pn

Recv(P1) Recv(P1): revoked

R
e

c
o

v
e

r
y

P1

P2

P3

Pn

B
c

a
s

t

B
c

a
s

t

S
h
r
in
k

B
c

a
s

t

B
A

N
D

W
I
D

T
H

(
G

b
i
t
/
s

)

MESSAGE SIZE (Bytes)

ULFM Fault Tolerant MPI Performance with failures
IMB Ping-pong between ranks 0 and 1 (IB20G)

Open MPI
FT Open MPI (w/failure at rank 3)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

L
A

T
E

N
C

Y

(
u

s
)

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

1 4 16 64 256 1K

-1%

-0.5%

+0%

+0.5%

+1%

8 16 32 64 128 256 512

D
I
F

F
E

R
E

N
C

E

I
N

R

U
N

N
I
N

G

T

I
M

E

NUMBER OF PROCESSES

Sequoia AMG Performance with Fault Tolerance

N
o

n
-
F

T

i
s

f
a

s
t
e

r
U

L
F

M

i
s

f
a

s
t
e

r

OPEN MPI ULFM IMPLEMENTATION PERFORMANCE

Spaw
n

2. NON-UNIFORM FAILURE KNOWLEDGE
This section discusses the rationale behind the proposed

design that justifies the introduction of the Revoke opera-
tion. We take the perspective of the performance conscious
MPI implementor, and analyze the unacceptable overhead
resulting from requiring uniformity of failure knowledge. We
then present the issues that arise when this requirement is
dropped, and the modus-operandi of the Revoke interface to
resolve them. The proposed design does indeed permit min-
imal overhead on failure free performance, as has been illus-
trated by the implementation presented in [7]. A more gen-
eral presentation of the ulfm interface can be found in [6].

2.1 Failure Detection
Failure detection has proven to be a complex but crucial

area of fault tolerance research. Although in the most ad-
verse hypothesis of a completely asynchronous system, fail-
ures (even simple processes crash, as we consider here) are
intractable in theory [17], the existence of an appropriate
failure detector permits resolving most of the theoretical
impossibilities [11]. However, requiring complete awareness
(thus active monitoring) of failures of every process by every
other process would generate an immense amount of system
noise (from heartbeat messages injected into the network
and the respective treatments on the computing resources
to respond to them), and it is known that MPI communi-
cation performance is very sensitive to system noise [23].
Fortunately, processes that are not trying to communicate
with a dead process do not need, a priori, to be aware of
its failure, as their operations are with alive processors and
therefore deadlock-free. As a consequence, failure detection
in ulfm only requires to detect failures of processes that are
direct partners in a communication operation.

2.2 Local versus Uniform Error Reporting
Another natural preconception is to consider that detec-

tion of failures at any rank results in MPI automatically
altering the state of all communication objects in which the
associated process appears (i.e. communicators, windows,
etc.). In such a model, it is understood that the failure
“damages”the communication object and renders it inappro-
priate for further communications. However, a complication
is hidden in such an approach: the state of MPI communi-
cation objects is the aggregate state of individual views by
each process of the distributed system. As failure aware-
ness is not expected to be global, the implementation would
then require internal and asynchronous propagation of fail-
ure detection, again, a process that is prone to introduce jit-
ter. Furthermore, some recovery patterns (typical in PDE
solvers [1], as an example) do not require advanced, nor
collective, corrective actions and can continue between non-
failed processes on the unmodified communication object.
As a consequence, ulfm never automatically modifies the
state of communication objects. Even if it contains failed
processes, a communicator remains a valid communication
object, until explicitly required. Therefore, error reporting
is not intended to indicate that a process failed, but to indi-
cate that an operation cannot deliver the normal semantic
at the local rank: when a failure happened, but an MPI
operation can proceed without disruption, it completes nor-
mally; when the failed process is supposed to participate in
the result of the operation, it is obviously impossible for the
operation to succeed, and an appropriate error is returned.

P1

P2

P3

Pn
Recv(Pn-1)

Recv(P1)

Recv(P[3:n]): Revoked

Recv(P1): Failed
P2 calls Revoke

Plan A Plan B

R
ecovery

Figure 1: The transitive communication pattern in

plan A must be interrupted before any process can

switch to the recovery communication pattern plan
B. By revoking the communication context, P2 en-

sures that all possibly unmatched operations in plan
A, which could provoke deadlocks, are interrupted.

Errors can then be captured by the application by setting
the appropriate MPI_ERRHANDLER.
An additional criterion to consider is that some MPI op-

erations are collective, or have a matching call at some other
process (e.g. Send/Recv). Convenience would call for the
same error be returned uniformly at all ranks that partici-
pated in the communication. This would easily permit track-
ing the global progress of the application (and then infer a
consistent, synchronized recovery point). However, the per-
formance consequences are dire, as it requires that every
communication concludes with an agreement operation be-
tween its participants in order to determine the global suc-
cess or failure of the communication, as viewed by each pro-
cess. Such an operation cannot be possibly achieved in less
than the cost of an AllReduce, even without accounting for
the cost of actually tolerating failures during the operation,
and would thus impose an enormous overhead on communi-
cation. In regard to the goal of maintaining an unchanged
level of performance, it is clearly unacceptable to double,
at best, the cost of all latency bound communication opera-
tions, especially when no failure has occurred. Furthermore,
it is already customary for MPI operations to have a local
only semantic, for example, when an MPI_REDUCE completes
at a non-root process, there is no guarantee that the root
has received the result of the collective operation yet. The
semantic only specifies that when the operation completes,
the local input bu↵er can be reused.
As a consequence, in ulfm, the reporting of errors has a lo-

cal operation semantic: the local completion status (in error,
or successfully) cannot be used to assume if the operation
has failed or succeeded at other ranks. In many applications,
this uncertainty is manageable, because the communication
pattern is simple enough. In some cases, however, the com-
munication pattern does not allow such flexibility, and the
application thereby requires an operation to resolve that un-
certainty, as described below.

2.3 Dependencies Between Processes
If the communication pattern is complex, the occurrence

of failures has the potential to deeply disturb the application
and prevent an e↵ective recovery from being implemented.
Consider the example in Figure 1: as long as no failure oc-
curs, the processes are communicating in a point-to-point
pattern (called plan A). Process Pk is waiting to receive a
message from Pk�1, then sends a message to Pk+1 (when

User Level Failure Mitigation:
Implementations
• Implementation

available in Open MPI
and MPICH
• Open MPI implementation updated

in-sync with Open MPI 2.x
• Scalable fault tolerant algorithms

demonstrated in practice (SC’14,
EuroMPI’15, SC’15, SC’16)

3

Introduction Early Returning Agreement Performance Evaluation Conclusion

ERA performance depending on the tree topology

���

���

���

���

����

����

����

����

�� �� �� �� �� ��

��

����������

��������������������������

��������������������
������������������
�����������������
��������������������������
����������������������

Practical Scalable Consensus 23/ 32

Fault Tolerant Agreement costs
approximately 2x Allreduce

B
a
n

d
w

id
th

 (
G

b
it

/s
)

Message Size (Bytes)

Shared Memory Ping-pong Performance

Open MPI
FT Open MPI

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

1 4 16 64 256 1K 4K 16K 64K 256K 1M

L
a
te

n
c
y
 (

u
s
)

 0.5

 1

 1.5

 2

 2.5

 3

1 4 16 64 256 1K

Point to point
performance
unchanged
With FT
enabled

User Level Failure Mitigation:
User Adoption

• Fortran CoArrays “failed images”
uses ULFM-RMA to support Fortran
TS 185084

Resilient X10 over Fault Tolerant MPI

Sara Hamouda1, Benjamin Herta2, Josh Milthorpe1,2, David Grove2, Olivier Tardieu2

1Australian National University, 2IBM T. J. Watson Research Center

Resilient X10

X10 is an APGAS programming language

that is designed to provide a simple and

clean programming model for developing

scale-out applications.

As supercomputers grow larger, the Mean

Time Between Failure reduces, and the

need for writing fault tolerance

applications becomes more critical.

By applying the HBI principle, Resilient X10 will ensure that statement D executes after Task C nishes, despite the loss of the
synchronization construct (nish) at place p

try{ /*Task A*/

 at (p) { /*Task B*/

 finish { at (q) async { /*Task C*/ } }

 }

} catch(dpe:DeadPlaceException){ /*recovery steps*/}

D;

Place r Place p Place q

Resilient X10 over MPI ULFM

CBA

finish
{@q async C;}Happens Before Invariance

Principle (HBI):
Failure of a place should not alter
the happens before relationship
between statements at the
remaining places.

val wordCount = new AtomicInteger();

val refCount = GlobalRef(wordCount);

finish for (p in Place.places()) {

 val files = getFilesForPlace(p);

 at (p) async { //create task at place p

 val pCount = countWords(files, “ibm”);

 at (refCount.home)

 refCount().addAndGet(pCount);

 }

} print(wordCount);

Resilient X10 [1] allows X10 programs to survive process failures.

By introducing the Happens Before Invariance Principle, it guarantees the

correct repair of the global program structure after a failure.

Conclusion: Using a fault tolerant MPI

implementation (ULFM), resilient X10 applications can

achieve better performance with the optimized MPI

communication routines and the support for high

speed network protocols provided by MPI (e.g.

Infiniband verbs).

Although MPI is the preferred transport layer for scale-out computing,

Resilient X10 was initially supported only over sockets.

ULFM (User-Level Failure Mitigation) is the most recent proposed

specification for fault tolerant MPI [2]. An implementation of ULFM is available

based on OpenMPI 1.7.

We integrated X10 with ULFM to allow Resilient X10 applications to benefit

from the scalability and performance of MPI.

References:

[1] D. Cunningham, D. Grove, B. Herta, A. Iyengar, K. Kawachiya, H. Murata, V. Saraswat, M. Takeuchi, and O. Tardieu. "Resilient X10: Efficient failure-aware programming." ACM SIGPLAN

Notices 49, no. 8 (2014): 67-80.

[2] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and J. J. Dongarra. An evaluation of user-level failure mitigation support in MPI. Springer Berlin Heidelberg, 2012.

[3] J. Milthorpe, D. Grove, B. Herta, and O. Tardieu. Exploring the APGAS programming model using the LULESH proxy application. In Runtime Systems for Extreme Scale Programming Models

and Architectures Workshop, SC 2015.

Sample X10 program performing distributed word count

Non Resilient Resilient no failure Resilient with a failure
(3 checkpoints + 1 restore)

0

2

4

6

8

10

12

14

16

X10 over Sockets (IP over Infiniband)

X10 over ULFM (Infiniband)

T
im

e
 i
n

 s
e

c
o

n
d

s

The performance improvement due to using ULFM

v1.0 for running the LULESH proxy application [3]

(a shock hydrodynamics stencil based simulation)

running on 64 processes on 16 nodes with

problem size 203 per process. The cluster is an

AMD64 Linux cluster, each node having 16G RAM

and 2 quad core AMD Opteron 2356 processors.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

1000 2197 4096 8000 15625 32768 64000 125000
250047

Ch
eck

poi
nt t

ime
 (s)

Core count

garbage collection
memcpy()
communication

0.1TB/s
0.2TB/s

0.7TB/s

0.6TB/s
1.2TB/s

2.4TB/s

3.8TB/s

9.6TB/s

16.8TB/s

Fig. 3. Checkpoint time for different core counts (8.6 MB/core). The numbers
above each test show the aggregated bandwidth (the total checkpoint size over
the average checkpoint time).

MB per node). The bars represent the average among all
checkpoints, all cores, throughout the five repetitions, while
error bars indicate variability (including minimum, maximum,
first, and third quartile). The three different sub-bars show
the three different processes that the checkpoint algorithm
requires. Clearly, the communication cost dominates the ex-
ecution. The lower plot in Figure 2 shows that the checkpoint
time is linearly dependent on data size (for sizes greater than
1 MB/core), as expected.

The overhead caused by each array size strongly influences
the choice of the size to be used in the rest of the experiments
of this paper – 50 grid points per core, which corresponds to
8.58 MB of the yspc array.

Weak scalability. Figure 3 shows how checkpointing scales
to 250k cores as we increase total the number of cores
while achieving similar average checkpoint time, sustaining
a bandwidth of 16.8 TB/s in the test with a higher number of
cores. Again, the checkpoint procedure is dominated mostly
by the transfer cost. As expected, the memcpy time remains
constant throughout all executions, and the garbage collection
cost is negligible.

The lower communication time of the tests with less than
4k cores is due to the configured group size. In small tests it
was set to 16 nodes, while in bigger ones was set to 96 nodes
(the Cray XK7 cabinet size). As the group size is increased,
messages must traverse more Gemini nodes [53] to reach the
destination.

The minimum of each test (the lower point on the error
bars) is in all cases close to the third quartile. Furthermore,
the median (the white line inside the error bar) is below 0.075
in all cases but in the 64k test. These observations indicate that
25% of cores finish the checkpoint process within a reasonably
small time window and half of them take less than 0.075 s,
while others take more time. As this paper is not focused on
the checkpointing process, no further analysis of this behavior
is provided.

Assuming a linear relationship between checkpoint size
and checkpoint writing time in ADIOS, we can extrapolate
a production run’s checkpoint time assuming 8.58 MB/core.
This would be translated to a 90-second checkpoint write

overhead and a 72-second checkpoint read overhead, a 750-
fold increase in the checkpoint time, compared to 0.12 s with
250k ranks obtained with Fenix (Figure 3). Regarding data
recovery time, our implementation only requires the transfer of
the checkpoints to the failed nodes, a process whose overhead
can be expected to be the same as checkpoint time.

Compared to other studies, such as CRUISE [37] (an
extension of SCR [42]), our implementation is slower. This
is mainly due to the fact that we have to send the checkpoint
remotely in order to tolerate entire-node failures, while tests
done in [37] only store checkpoints in local main memory.

D. Validating Optimal Checkpoint Rate

Young’s formula [56], [58] can be used to determine TC ,
the optimal interval between two consecutive checkpoints,
depending on the MTBF of the system (TF) and the checkpoint
time (TS). The checkpoint time has been determined in Section
V-C. As in the previous weak scalability test, checkpoint size
is 8.58 MB/core, which leads to TS = 0.0748 s in the case
of 2197 cores (Figure 3). For a system with one million
nodes, each with an MTBF of 3 years, the overall system
MTBF will drop to TF = 94.608 seconds. Using second-order
approximation for exponential distribution [56], [58], TC is
expressed as follows:

TC =
√
2TSTF =

√
2 · 0.0748s · 94.608s = 3.76s (2)

As the average S3D iteration time is 1.182 s with 50 grid points
per core (over five executions of a failure- and checkpoint-free
experiment on 2197 cores), TC can be expressed as 3 S3D
iterations rounded due to the fact that checkpoints are triggered
by the application only at the end of iterations. Using the same
procedure as in equation 2, we obtained the optimal number
of iterations between checkpoints for system’ MTBFs of 47
seconds (TC = 2) and 189 seconds (TC = 4).

As suggested in [58], we want to verify the proper usage of
the formula, i.e. the correct parameter settings and the correct
rounding of TC from seconds to application iterations. To do
that, we evaluated the total cost induced by a set of uniformly
distributed, independent failures, for several given checkpoint
rates. Specifically, assuming an MTBF of 94 seconds we used
a Poisson distribution4 to obtain ten random possible failure
timestamps within the 94-second time frame. We obtained
the following timestamps: 12, 19, 24, 32, 41, 51, 61, 70, 78,
91. Next, we had to chose 10 different number of iterations
between consecutive checkpoints. As the formula indicated
frequent checkpoints, we concentrated on the smallest five (1-
5). Also, to have an idea of the cost with lower frequency, we
chose the other five to be disperse (10, 20, 30, 40, 50).

For every checkpoint rate, we evaluated the total overhead
of fault tolerance while injecting a failure to every chosen
failure timestamp. The overheads induced in the resulting 100
experiments, each running 90 iterations, are represented in
Figure 4. To determine which is the interval that offers the
lowest overall overhead, Figure 5 shows the average of the
overheads caused by the ten different failures, on each chosen
checkpoint rate. Within the highlighted tests (2, 3, 4, and 5),
checkpointing every three or four iterations offers the best
overall solution, validating in turn the result from Young’s
formula.

4We used R v 3.0.2, rpois() with a seed of 10, λ = 10.

901

(a) failure-free (b) few failures (c) many failures

Figure 5. Results of the FT-MLMC implementation for three different failure scenarios.

In Fig. 5 we show three different results, the mean of the density ⇢ at t = 0.06s,
obtained by FT-MLMC. The result in Fig. 5(a) is computed failure-free. In Fig. 5(b) a
result is shown where 3 out of 46 processes where killed. Figure 5(c) shows the result of
a FT-MLMC run where 9 out of 46 processes where killed, among them both processes
dealing with levels 2, such that all samples of this level are missing. The deterioration of
the result is obvious.

In Fig. 6 several quantities of the FT-MLMC method for different MTBFs are pre-
sented. They are discussed in the next section. Figure 6(a) presents two measurements
for the “intermediate save” strategy. (The results for the “late save” strategy are similar.)
First, we show the percentage of processes failed during the computation. Second, the “at
least a failure” probability is shown which measures the fraction of FT-MLMC runs that
experience at least one failure. (All other FT-MLMC runs are failure-free.) Remember
that standard MPI crashes if a failure occurs.

The measurement of the FT-MLMC error versus MTBF is shown in Fig. 6(b). The
error of the failure-free ALSVID-UQ is shown at MTBF = 2 ·104 s, where the fault
tolerant strategies (“intermediate save” and “late save”) are of the same quality. For
MTBF > 200 s the error remains rather constant. This can be seen for MTBF < 200 s
where the error slightly grows. It explodes at MTBF < 40 s for the “late save” strategy,
and at MTBF < 20 s for the “intermediate save” strategy.

Figure 6(c) shows the measured wall-clock run-time for the two fault tolerant strate-
gies and the failure-free run. Between the two fault tolerant versions no significant dif-
ference is measured. At MTBF = 2 ·104 s we see the small overhead (around 5%) of
both fault tolerant runs, compared to the standard failure-free ALSVID-UQ implemen-
tation. For the fault tolerant versions the run-time remains approximately constant for
MTBF > 100 s. Then the run-time decreases.

Figure 6(d) presents two measurements for the “intermediate save” strategy. (The re-
sults for the “late save” strategy are similar.) The first measurement “all samples failed”
shows how often no samples at all could be computed, since too many processes failed.
Then no FT-MLMC result is computed, such that these runs are ignored in the error com-
putation of Fig. 6(b). The same holds for runs which crashed (indicated by “program
crashed”).

MapReduce Job

MPI

...

ULFM

MapReduce Process

Task
Runner

Distributed
Master

Failure Hdlr

Load
Balancer

MapReduce Process

Task
Runner

Distributed
Master

Failure Hdlr

Load
Balancer

Figure 2: The architecture of FT-MRMPI.

2.4 Our Opportunities
We have found that we can force all processes of an MPI

program to exit if any of them detect an error using current
MPI semantics. This mimics failure detection and notifica-
tion. All the processes are terminated, and the user has to
restart the failed MapReduce application as a new job. For
this reason, the checkpoint/restart fault tolerance model [8,
40] is a logically first option for MapReduce because the
recovered application can continue processing from the lat-
est checkpoint rather than starting over. Despite the ad-
ditional overhead that the checkpoint/restart model intro-
duces, it has distinct advantages in its compatibility with
gang scheduling and it requires no changes to MPI.

Fault tolerance is one of the major focuses in the future
MPI standard. One of the proposals is User Level Failure
Mitigation (ULFM) proposed in our prior work. It enables
application-level fault tolerance by o↵ering interfaces to ap-
plications and libraries to mitigate failure. It allows a failed
MPI program to recover without restarting the job and en-
ables us to use the detect/resume fault tolerance model [15]
to recover a failed job without restarting it completely. It
provides an automated and e�cient fault tolerant job execu-
tion for MapReduce by redistributing the workload of failed
processes to the surviving ones.

To build a fault tolerant MapReduce in HPC with these
models, we need a new framework that traces the job exe-
cution state and manages workload distribution so that the
work of failed processes can be correctly saved and recovered.
These fault tolerance models also need to be carefully tai-
lored to adapt to MapReduce in HPC clusters. Next section,
we present FT-MRMPI, a novel framework for MapReduce
in MPI that supports both fault tolerance models.

3. SYSTEM DESIGN
FT-MRMPI is a fault tolerant MapReduce framework im-

plemented on MPI. It tracks a consistent state during job
execution and supports e�cient fault tolerance through two
models: checkpoint/restart and detect/resume. The check-
point/restart model o↵ers the basic fault tolerance using the
current MPI semantics. The detect/resume model enables
automated in-place recovery and a more e�cient job execu-
tion engine.

3.1 Overview
Figure 2 shows the structure of a MapReduce application

using FT-MRMPI. FT-MRMPI consists of four components:
TaskRunner, Master, FailureHandler, and LoadBalancer. It

provides a set of interfaces that enable progress tracking of
user-defined tasks. The master is a thread dedicated to job
management. It handles the data operations during check-
pointing and recovery. It also monitors the job execution
status in each process and maintains the global state consis-
tency. The failure handler is a customized MPI error handler
that performs the failure notification, state preservation, and
recovery. The load balancer estimates the completion time
of each process and redistributes the workload to mitigate
load imbalance after recovery from failures. We briefly de-
scribe some major features of FT-MRMPI in the following.

3.2 Task Runner
The lifespan of a MapReduce job can be divided into

three phases: map, shu✏e, and reduce. The map and re-
duce phases are mainly user-defined logics that read input
data, process each record, and writes output results. It is
not trivial to trace the consistent states in all three phases
at a fine granularity.
FT-MRMPI’s task runner provides a set of user-customizable

interfaces for the map and reduce phases. It embeds the
tracing feature into the user-defined logic.
Table 1 shows the interfaces for map and reduce phases

in FT-MRMPI. The main purpose of these new interfaces
is to delegate the essential operations in a MapReduce job
to the library. For example, instead of writing the file op-
erations in the map function, users are expected to tell the
library how the input data should be tokenized and how the
output records should be serialized. This can be achieved
by extending the FileRecordReader and the FileRecord-

Writer class templates. The library will perform the read
and write operations for a MapReduce job and track the
progress at fine granularity. Similarly, the user can also ex-
tend the KVWriter and the KMVReader class templates in case
of special operations is needed when handling the interme-
diate data.
After delegating the I/O operations to the library, the im-

plementation of the map and reduce functions can be largely
simplified. The map and reduce functions only need to con-
tain the job logic that needs to be applied to individual
records. We provide the Mapper and the Reducer class tem-
plates for defining map and reduce functions.
With the interfaces, FT-MRMPI generalizes the workflow

of map and reduce phases. Algorithm 1 shows an example of
a map task in FT-MRMPI. The loop in the map task reads
input data using the record reader that a user provides and
applies the user-defined map function to each input record.
Each iteration has a commit operation that tells FT-MRMPI
that the processing of the current record is finished, and the
task has reached a consistent state. The workflow of the
reduce phase follows the same loop structure.
The state tracing in the shu✏e phase is relatively simple

because no user code is involved. FT-MRMPI traces the
send and receive for each memory bu↵er in data transmission
stage as well as the merging on each partition.

3.3 Distributed Masters
Although a process-local consistent state is su�cient for

fault tolerance in the map and reduce phases. It is not
enough for the shu✏e phase. Unlike the other phases that
have no inter-process coordination, the shu✏e phase has col-
lective communication between all processes. In the shu✏e
phase, all processes in the MapReduce job exchange interme-

And many more…

Fenix Framework

MapReduce

X10 Language

Domain Decomposition PDE

Changes since Sept. Reading

• a

5

$ git log
5dec522 (HEAD -> ulfm/master) Merge branch 'mpi-3.x' into ulfm/master
Aurélien Bouteiller 13 days ago
10c8bdd (origin/ulfm/sept16/index, origin/ulfm/master, ulfm/sept16/index)
Adding index terms Aurélien Bouteiller 13 days ago
bf6ec8e reordering comm_join Bouteiller 2 weeks ago
403a67f (origin/ulfm/sept16/spawn, ulfm/sept16/spawn) Clarification of Spawn
and hard/soft semantic...n Bouteiller 2 weeks ago
d84e6a1 more t0 Aurélien Bouteiller 2 weeks ago
d398ace (origin/ulfm/sept16/t0, ulfm/sept16/t0) Fix the changelog Aurélien
Bouteiller 2 weeks ago
7ced80c raise exceptions-> raise an error of class Aurélien Bouteiller 2 weeks
ago
a76b04b (origin/ulfm/sept16/shrinkv3, ulfm/sept16/shrinkv3) Reworking SHRINK
according to Sept. 2016....Bouteiller 2 weeks ago
bd98b37 Fix incorrect use of MPI_ERR_CLASS Wesley Bland 3 weeks ago
f3d81b9 Add "at that process" also to qualify where it becomes local Aurélien
Bouteiller 10 weeks ago
443acc1 (origin/ulfm/sept16/statusv2, ulfm/sept16/statusv2) Have only error
codes remain defined inBouteiller 10 weeks ago

Index
• Rolf reported we were missing general index terms
• We had the C/Fotran indexes, but missing the ”terms” index

• Important Terms have been added to the index (pp738,739)

6

+++ b/chap-dynamic/dynamic-2.tex
@@ -1850,7 +1850,7 @@ connected processes is not
defined.
\end{itemize}

\begin{implementors}
- An \MPI/ implementation that tolerates process
failures (as defined
+ An \MPI/ implementation that tolerates process
failures\mpitermindex{fault
tolerance!finalize}\mpitermindex{fault
tolerance!process failure} (as defined

in Chapter~\ref{sec:ft-notification:init-
finalize}) remains in a

defined state after a process has failed. In
practice, it may be

difficult to distinguish between a process
failure and an

General Index 737

end of file, 495
envelope, 25, 29
environmental inquiries, 336
equivalent datatypes, 12
error handling, 20, 342

error codes and classes, 350
error handlers, 344, 350, 680
I/O, 557
one-sided communication, 454
resource error, 21

establishing communication, 387
etype, 493, 507
exception, 342
exclusive scan, 196

nonblocking, 216
explicit o↵sets, 509, 511
exposure epoch, 439
extent of datatypes, 86, 107, 108

true extent, 110
external32 – file data representation, 538
extra-state, 685

fairness, 44, 64
fault tolerance, 343, 601

ack, 609, 609
agree, 610, 611
communicator, 603, 607
dynamic process, 604
error classes, 613
finalize, 361, 400, 602
I/O, 606, 612
inquiry, 338, 602
mitigation, 607
notification, 602, 613
one-sided, 605, 611
process failure, 20, 400, 601
revoke, 607, 611, 612
shrink, 608
startup, 602

file, 493
data access, 508

collective operations, 527
explicit o↵sets, 511
individual file pointers, 516
seek, 528
shared file pointers, 524
split collective, 529

end of file, 495
filetype, 494
handle, 495
interoperability, 536
manipulation, 495
o↵set, 16, 494
pointer, 495

size, 495
view, 493, 494, 505

file size, 552
finished, 363
Fortran – language binding, 19, 625
Fortran support, 625

gather, 151
nonblocking, 202

gather-to-all, 167
nonblocking, 206

general datatype, 85
generalized requests, 477, 477
get – in function names, 10
graph – topology, 292, 296
group, 225, 226, 228, 260
group objects, 228

handles, 12, 674
host rank, 337

immediate, 50
inactive, 54
inclusive scan, 195

nonblocking, 215
independent, 399
individual file pointers, 509, 516
info object, 367

file info, 502
keys, 710
values, 710

initiation, 50
inter-communication, 227, 259
inter-communicator, 146, 227, 259

collective operations, 147, 148
interlanguage communication, 686
internal – file data representation, 538
interoperability, 536
intra-communication, 227, 259
intra-communicator, 146, 226, 259

collective operations, 146
intra-communicator objects, 229
I/O, 493
IO rank, 337
is – in function names, 10

language binding, 17, 625
interoperability, 673
summary, 689

lb_marker, 97, 98, 101, 107, 107, 111
erased, 110

local, 11, 39
local group, 240
loosely synchronous model, 287
lower bound, 107

Uno�cial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

738 General Index

lower-bound markers, 106

macros, 20
main thread, 487
matched receives, 71
matching

type, 35, 114, 551
matching probe, 69
memory

allocation, 339
system, 12

memory model, 404, 437
separate, 404, 410
unified, 404, 410

message, 25
data, 27
envelope, 29

modes, 39
module variables, 666
mpi module – Fortran support, 629
mpi_f08 module – Fortran support, 626
mpiexec, 358, 363, 365
mpif.h include file – Fortran support, 631
mpirun, 364
multiple completions, 59

named datatype, 12
names, 387

name publishing, 392
naming objects, 283
native – file data representation, 537
neighborhood collective communication, 316

nonblocking, 326
non-local, 11, 39, 40
nonblocking, 11, 49, 419, 509

communication, 49
completion, 54
Fortran problems, 660
I/O, 510
initiation, 50
request objects, 50

null handle, 54
null processes, 82

o↵set, 16, 494
one-sided communication, 403

Fortran problems, 661
opaque objects, 12, 678
operation completes, 11
origin, 404

pack, 134
canonical, 140

packing unit, 136
parallel procedure, 288

passive target communication, 438
performance variables – tools interface, 582
persistent communication requests, 75

Fortran problems, 661
PMPI_, 563
point-to-point communication, 25
portable datatype, 12
ports, 387
predefined datatype, 12
predefined reduction operations, 178
private window copy, 437
probe, 66
probe, matching, 69
process creation, 373
process failure fault tolerance, 601
process group, 29
processes, 20
processor name, 338
profiling interface, 563
prototype definitions, 704

deprecated, 709
public window copy, 437

rank, 228
ready, 40, 49, 50

nonblocking, 49
ready send, 42
receive, 25, 26, 30

bu↵er, 26
complete, 49
context, 260
start call, 49

reduce, 176
nonblocking, 211

reduce-scatter, 192
nonblocking, 213, 214

reduction operations, 175, 681
predefined, 178
process-local, 191
scan, 195
user-defined, 185

related, 136
relative displacement, 16, 103
remote group, 240
Remote Memory Access, see RMA
removed interfaces, 623
removed names and functions, 17
request complete

I/O, 510
request objects, 50
resource error, 21
RMA, 403

communication calls, 419
request-based, 432

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Uno�cial Draft for Comment Only

Changelog
• Changelog modified using macros and standard “look n feel”
• Put in page ordering as it should

7

+++ b/chap-changes/changes.tex
@@ -18,23 +18,30 @@ Changes in
Annexes~\ref{sec:change}.2--\ref{sec:changes:last}
were already introduced in the corresponding
sections
in previous versions of this standard.

+\section{Changes from Version 3.1 to Version 4.0}
%TODO: change the version
+\label{subsec:31to40}
+ \subsection{Changes from Version 3.1 to Version
4.0}
+ \label{sec:changes-31-40}

\begin{enumerate}
\item

+ Section~\ref{sec:terms-errorhandling} on
page~\pageref{sec:terms-errorhandling}, and
\MPIIIIDOTI/ Section~2.8 on page~2
0.\newline
+ Added a reference to Chapter~\ref{chap:ft}
about process failures.
+ \item
+ Section~\ref{subsec:inquiry-inquiry} on
page~\pageref{subsec:inquiry-inquiry}, and
\MPIIIIDOTI/ Section~8.1.2 on page 335.\newline
+ Added the \const{MPI_FT} predefined
attribute.

+ \item
+ Section~\ref{sec:errorhandler} on
page~\pageref{sec:errorhandler}, and \MPIIIIDOTI/
Sections~8.3 on page~340.
+ Section~\ref{sec:ei-error-classes} on
page~\pageref{sec:ei-error-classes}, and
\MPIIIIDOTI/ Section~8.4 on page 347.\newline
+ Listed the additional error classes for
process failure handling.
+ \item
+ Section~\ref{sec:inquiry-startup} on
page~\pageref{sec:inquiry-startup}, and \MPIIIIDOTI/
Section~8.7 on page~359.
+ Section~\ref{subsec:disconnect} on
page~\pageref{subsec:disconnect}, and \MPIIIIDOTI/
Section~10.5.4 on page~398. \newline
+ Clarified the semantic of
\mpifunc{MPI_FINALIZE} with respect to process
failures.
+ \item

Additional Chapter~\ref{chap:ft} added on
page~\pageref{chap:ft}.

\newline
- Added API to handle process failures.
+ Added functions and semantics to handle
process failures.

\end{enumerate}

Exceptions -> error codes
• From Bill during Sept 16 reading
• The terminology “raise an exception of class …” is unusual
• Correct terminology is “raise the error code(s) …”

• Multiple instances have been replaced (examples below)

8

The mechanisms for handling process failures are defined in
Chapter~\ref{chap:ft}.
When a process failure happens, the \MPI/ implementation may raise one of the
\MPI/
-exceptions related to process failure as defined in that chapter.
+error classes related to process failure as defined in that chapter.
In this case, the \MPI/ implementation is still in a defined state and
continues to operate.

\error{MPI_ERR_REVOKED} at that process. Once a window has been
revoked at a process, all subsequent RMA operations on that window
are considered local and RMA synchronizations must complete by
-raising an exception of class \error{MPI_ERR_REVOKED} at that
+raising an error of class \error{MPI_ERR_REVOKED} at that
process. In addition, the current epoch is closed and RMA operations
originating from this process are interrupted and completed with
undefined outputs.

Bug in Example

• Putting the error code from MPI_Error_class in the
error class variable is wrong
• Found by Geoffroy Vallee

9

@@ -1021,7 +1020,7 @@ while(gnorm > epsilon) {
/* Add a computation iteration to converge and

compute local norm in lnorm */
rc = MPI_Allreduce(&lnorm, &gnorm, 1, MPI_DOUBLE,

MPI_MAX, comm);
- ec = MPI_Error_class(rc, &ec);
+ MPI_Error_class(rc, &ec);

if((MPI_ERR_PROC_FAILED == ec) ||
(MPI_ERR_REVOKED == ec) ||

Intro chapter missing a short
descriptive of Chapt 15 (FT)
• All chapters have a short introduction
• Additional chapter 15 found (myself proof reading) to not have one
• Short intro added for uniformity

10

+++ b/chap-intro/intro.tex
@@ -459,6 +459,12 @@ analyzers, and other tools to obtain data about the
operation of \MPI/
processes. This chapter includes Section~\ref{sec:prof} (\nameref{sec:prof}),
which was a chapter in previous versions of \MPI/.
\item
+Chapter~\ref{chap:ft}, \nameref{chap:ft},
+covers interfaces that allow developers to design applications tolerant to
+process failures. The interfaces presented in this chapter define the state
+of the \MPI/ library after a process crash, and provide supplementary
+interfaces to restore the communication capabilities of \MPI/.
+\item
Chapter~\ref{chap:deprecated}, \nameref{chap:deprecated}, describes routines
that
are kept for reference. However usage of these functions is discouraged, as
they may be deleted in future versions of the standard.

Error codes remain defined but the
remainder of status remains undefined,
• During the Sept 16. plenary, it was decided that the

status should remain an undefined output parameter
(although as noted during the June 16 plenary, the
ERROR field must remain defined, duh).

11

a synchronizing operation may not have synchronized) and
the content of the output buffers, targeted memory, or

-output parameters (except for status objects and error
return codes) is \emph{undefined}. Exceptions to this
+output parameters. Exceptions to this
rule are explicitly stated in the remainder of this

chapter.
+Error codes returned from a function, output in arrays of
error codes, or
+in status objects remain defined after an operation raised
a

Shrink
• ”failed processes” contributing implicitly found confusing
• Definition now explicit the content of the groups of the produced communicator

12

@@ -502,23 +517,22 @@ This collective operation creates a new intra- or intercommunicator
respectively, by excluding the group of failed processes as agreed
upon during the operation.
%

-The group of \mpiarg{newcomm} must include (at least) every process that returns from
-\mpifunc{MPI_COMM_SHRINK}, and it must exclude (at least)
+The groups of \mpiarg{newcomm} must include every process that returns from
+\mpifunc{MPI_COMM_SHRINK}, and it must exclude
every process whose failure caused an operation on \mpiarg{comm} to raise an

+\MPI/ error of class
\error{MPI_ERR_PROC_FAILED} or
\error{MPI_ERR_PROC_FAILED_PENDING}

-at a member of the group of \mpiarg{newcomm}, before that member initiated
+at a member of the groups of \mpiarg{newcomm}, before that member initiated
\mpifunc{MPI_COMM_SHRINK}.
%
This call is semantically equivalent to an
\mpifunc{MPI_COMM_SPLIT} operation that would succeed despite

-failures, where processes participate with the same
-color and a key equal to their rank in \mpiarg{comm}, except failed
-processes, which implicitly contribute the color \const{MPI_UNDEFINED}.
+failures, where members of the groups of \mpiarg{newcomm} participate with the same
+color and a key equal to their rank in \mpiarg{comm}.

MPI_Comm_Disconnect semantic
• The semantic (and text) is identical to MPI_Comm_free

13

+++ b/chap-ft/ft.tex
@@ -290,6 +290,23 @@ processes in a hard spawn, an exception of class
undefined state). In a soft spawn, an appropriate error code is set
in the \mpiarg{array_of_errcodes} parameter. \end{users}

+\par After a process failure, \mpifunc{MPI_COMM_DISCONNECT} (as with all
+other collective operations) may not complete successfully at all ranks. For
+any rank that receives the return code \const{MPI_SUCCESS}, the behavior is
+defined in~\ref{subsec:disconnect}. If a rank raises a process failure
+exception (\error{MPI_ERR_PROC_FAILED} or \error{MPI_ERR_REVOKED}), the
+communicator handle \mpiarg{comm} is set to \const{MPI_COMM_NULL}; however,
+the implementation makes no guarantee about the success or failure of the
+\mpifunc{MPI_COMM_DISCONNECT} operation, locally or remotely.
+
+\begin{users} Users are encouraged to call \mpifunc{MPI_COMM_DISCONNECT}
+ on communicators they do not wish to use anymore, even when they
+ contain failed processes. Although the operation may raise a
+ process failure exception and not synchronize properly, this
+ gives a high quality implementation an opportunity to release
+ local resources and memory consumed by the object.
+\end{users}
+

MPI_Comm_spawn soft/hard
• Text found too oblique/unclear during Sept 16 reading
• Text verified for correctness (found correct) and clarified

14

+++ b/chap-ft/ft.tex
@@ -270,18 +270,15 @@ process during \mpifunc{MPI_INIT} when it cannot setup an
intercommunicator with the root process of the spawn operation
because of a process failure.

-An implementation may report it spawned all the requested processes
-in \mpifunc{MPI_COMM_SPAWN} or \mpifunc{MPI_COMM_SPAWN_MULTIPLE}
-and instead raise a process failure error when these processes
-are later involved in a communication. \end{implementors}
+An implementation may report it spawned all the requested processes even
+when a process created from \mpifunc{MPI_COMM_SPAWN} or \mpifunc{MPI_COMM_SPAWN_MULTIPLE}
failed, and instead delay raising a process failure error to a later communication involving this
process. \end{implementors}

\begin{users} To determine how many new processes have effectively
been spawned, the normal semantic for hard and soft spawn applies: if

-a failure has prevented spawning the requested number of
-processes in a hard spawn, an error of class
-\error{MPI_ERR_SPAWN} is raised (leaving \MPI/ in an
-undefined state). In a soft spawn, an appropriate error code is set
-in the \mpiarg{array_of_errcodes} parameter. \end{users}
+the requested number of processes is unavailable for a hard spawn, an error
+of class \error{MPI_ERR_SPAWN} is raised (possibly leaving \MPI/ in an
+undefined state), and an appropriate error code is set
+in the \mpiarg{array_of_errcodes} parameter. Note however that an implementation may report that
it has spawned the requested number of processes even when some processes have failed before exiting
\mpifunc{MPI_INIT}. This condition can be detected by communicating over the created
intercommunicator with these processes.\end{users}

\par After a process failure, \mpifunc{MPI_COMM_DISCONNECT} (as with all
other collective operations) may not complete successfully at all processes. For

