U A BV

==\ \

LICL

INNOVATIVE
User Level Failure
Mitigation Reading LTS

TENNESSEE

KNOXVILLE

Aurelien Bouteiller for the Error
Management WG

Dec, 2016 MPI Forum, Dallas, TX

B]] 4

User Level Failure Mitigation:
| Specification Status

JE
Recv(P,): Failed P1

T P, calls Revoke
P, % ¢ Pz
P —; ; e— E’J o

2 .

—A ; a— ,—Z (B §
P, —— p— N . - P

Plan A Plah B

« Adds 3 error codes and 5 functions to manage process crash

« Error codes: interrupt operations that may block due to process crash

« MPI_COMM_FAILURE_ACK/GET_ACKED: continued operation with ANY-SOURCE
RECV and observation known failures

« MPI_COMM_REVOKE lets applications interrupt operations on a communicator
« MPI_COMM_AGREE: synchronize failure knowledge in the application
« MPI_COMM_SHRINK: create a communicator excluding failed processes

 Similar WIN/FILE_REVOKE

8 5y | 1 4

KUser Level Failure Mitigation:

Implementations
* Implementation

available in Open MPI
and MPICH

« Open MPI implementation updated
in-sync with Open MPI 2.x

« Scalable fault tolerant algorithms
demonstrated in practice (SC’'14,
EuroMPI'15, SC’'15, SC’'16)

Shared Memory Ping-pong Performance

£l] /% Point to point
i /7 performance
: z zsm,fw unchanged
With FT
/| enabled

160

140 |
120 | .-

100 | .

ERA Topologies (Cray XC30)

__e— ERA(flat binary tree)
ERA(bin/star tree)
—~— ERA(bin/bin tree)
Open MPI Allreduce(4Bytes)
—+— Cray Allreduce(4Bytes)

i i i i
1k 2k 3k 4k
#processes

Fault Tolerant Agreement costs
approximately 2x Allreduce

(fICL B TENNE

5k 6k

THB UNIVBRSITY OF

KNOXV[LLE

— /2% T \WY

—————
O g

—

VA B V

User Level Fallure Mltlgatlon MapReduce

MapReduce Job

i N ‘ N

g Distributed Distributed 5

Master Master

|| Task Task :

Fonix Framework

0.35 _ : Balancer Balancer '

‘rfe”rh’gg;gam“ 3.8TB/s (Failure Hdir) (Failure Har) |:
0.3 garbage collection Lo : MapRed P MapRed P :
06TBIs 24TBIs N e
= 025 - 1.2TB/s 9.6TB/s
. MPI ULFM
E 0.2 |
£
o
_g 0.15 0.2TB/s
% or 0.1TB/s Figure 2: The architecture of FT-MRMPI.
o ° 0.7TB/s
0.05 | = ! ! 1 X10 Language
- - - W X10 over Sockets (IP over Infiniband)
(0} —

Time in seconds

N

14
M X10 over ULFM (Infiniband)
7000 279> 096 8000 756‘25 3256 64000 7 250002 5004 > 12
Core count
10
Fig. 3. Checkpoint time for different core counts (8.6 MB/core). The numbers 8
above each test show the aggregated bandwidth (the total checkpoint size over : 6
the average checkpoint time).
4
Domain Decom posmon PDE

mean of rho at t=0.06 mean of rho at t=0.06 0

kg/m?>
20.0 20.0 20.0 Non Resilient Resilient no failure Resilient with a failure
(3 checkpoints + 1 restore)

17.5 17.5 17.5

e g 9 The performance improvement due to using ULFM
q 10.0 100 1o V1.0 for running the LULESH proxy application [3]

7:5 7.5 7.5 (a shock hydrodynamics stencil based simulation) |

5.0 5.0 5.0 . .

S s as o s running on 64 processes on 16 nodes with

0.0 0.0 0.0

(a) failure-free (b) few failures (c) many failures « Fortran COArrayS “failed i magesn '
| Figure 5. Results of the FT-MLMC implementation for three different failure scenarios. [| uses U LFM_R MA tO Su pport FO rtra n B
And many more... TS 18508

T~ iy) > amnmnrTe

-_— 7 1% A% Q. N

Chanées since Sept. Reading

5dec522 (HEAD -> ulfm/master) Merge branch 'mpi-3.x' into ulfm/master

10c8bdd (, ulfm/septl6/index)
Adding index terms

bf6ec8e reordering comm_join

403a67f (, ulfm/septl6/spawn) Clarification of Spawn
and hard/soft semantic.

d84e6al more t0O

d398ace (, ulfm/septl6/t0) Fix the changelog

7ced80c raise exceptions—> raise an error of class

a76b04b (, ulfm/septl6/shrinkv3) Reworking SHRINK

according to Sept. 2016..
bd98b37 Fix incorrect use of MPI_ERR_CLASS
T3d81b9 Add "at that process" also to qualify where it becomes local

443accl (, ulfm/septl6/statusv2) Have only error
codes remain defined in ..

L ANWSEEER YV

Index

* Rolf reported we were missing general index terms

« We had the C/Fotran indexes, but missing the "terms” index

. Important Terms have been added to the index (pp738,739)

@@ -1850,7 +1850,7 @@ connected processes is not
defined.
\end{itemize}

\begin{implementors}
- An \MPI/ implementation that tolerates process
failures (as defined
+ An \MPI/ implementation that tolerates process

failures\mpitermindex{fault
tolerance! finalize}\mpitermindex{fault
tolerance!process failure} (as defined

in Chapter~\ref{sec:ft-notification:init-
finalize}) remains in a

defined state after a process has failed. In
practice, it may be

difficult to distinguish between a process
failure and an

fairness, 44, 64
fault tolerance, 343, 601
ack, 609, 609
agree, 610, 611
communicator, 603, 607
dynamic process, 604
error classes, 613
finalize, 361, 400, 602
I/0, 606, 612
inquiry, 338, 602
mitigation, 607
notification, 602, 613
one-sided, 605, 611
process failure, 20, 400, 601
revoke, 607, 611, 612
shrink, 608
startup, 602
file, 493
process creation, 373
process failure fault tolerance, 601
process group, 29

V\ B

A O

g
&/

Changelog

« Changelog modified using macros and standard “look n feel”

« Putin page ordering as it should

+++ b/chap-changes/changes.tex
@@ -18,23 +18,30 @@ Changes in
Annexes~\ref{sec:change}.2--\ref{sec:changes:last}
were already introduced in the corresponding
sections

in previous versions of this standard.

+\section{Changes from Version 3.1 to Version 4.0}
%T0DO: change the version
+\label{subsec:31to040}

+ \subsection{Changes from Version 3.1 to Version +

4.0}
+ \label{sec:changes-31-40}

\begin{enumerate}

\item
+ Section~\ref{sec:terms-errorhandling} on
page~\pageref{sec:terms-errorhandling}, and
\MPIIIIDOTI/ Section~2.8 on page~2
0.\newline
+ Added a reference to Chapter~\ref{chap:ft}
about process failures.
+ \item
+ Section~\ref{subsec:inquiry-inquiry} on
page~\pageref{subsec:inquiry-inquiry}, and
\MPIIIIDOTI/ Section~8.1.2 on page 335.\newline
+ Added the \const{MPI_FT} predefined
attribute.

+ \item
+ Section~\ref{sec:errorhandler} on
page~\pageref{sec:errorhandler}, and \MPIIIIDOTI/
Sections~8.3 on page~340.
+ Section~\ref{sec:ei-error-classes} on
page~\pageref{sec:ei-error-classes}, and
\MPIIIIDOTI/ Section~8.4 on page 347.\newline
+ Listed the additional error classes for
process failure handling.
+ \item
Section~\ref{sec:inquiry-startup} on
page~\pageref{sec:inquiry-startup}, and \MPIIIIDOTI/
Section~8.7 on page~359.
+ Section~\ref{subsec:disconnect} on
page~\pageref{subsec:disconnect}, and \MPIIIIDOTI/
Section~10.5.4 on page~398. \newline
+ Clarified the semantic of
\mpifunc{MPI_FINALIZE} with respect to process
failures.
+ \item

Additional Chapter~\ref{chap:ft} added on
page~\pageref{chap:ft}.

\newline
- Added API to handle process failures.
+ Added functions and semantics to handle
process failures.

\end{enumerate}

NSV

Exceptions -> error codes

« From Bill during Sept 16 reading

The terminology “raise an exception of class ...” is unusual
"] » Correct terminology is “raise the error code(s) ...”

« Multiple instances have been replaced (examples below)

\error{MPI_ERR_REVOKED} at that process. Once a window has been
revoked at a process, all subsequent RMA operations on that window
are considered local and RMA synchronizations must complete by

-raising an exception of class \error{MPI_ERR_REVOKED} at that

+raising an error of class \error{MPI_ERR_REVOKED} at that
process. In addition, the current epoch is closed and RMA operations
originating from this process are interrupted and completed with
undefined outputs.

The mechanisms for handling process failures are defined in
Chapter~\ref{chap:ft}.

When a process failure happens, the \MPI/ implementation may raise one of the
\MPI/
—-exceptions related to process failure as defined in that chapter.
+error classes related to process failure as defined in that chapter.

In this case, the \MPI/ implementation is still in a defined state and
continues to operate.

V\ B

O

g A
L7y

S | /MRS . s o e 2 e D

L ANWSEEER YV

) Bug in Example

-« Putting the error code from MPI_Error_class in the

| error class variable is wrong
* Found by Geoffroy Vallee

@@ -1021,7 +1020,7 @@ while(gnorm > epsilon) {
/* Add a computation iteration to converge and
compute local norm in lnorm x/
rc = MPI_Allreduce(&lnorm, &gnorm, 1, MPI_DOUBLE,

MPI_MAX, comm);
- ec = MPI_Error_class(rc, &ec);

+ MPI_Error_class(rc, &ec);

if((MPI_ERR_PROC_FAILED == ec) ||
(MPI_ERR_REVOKED == ec) ||

V\ B

B

g
&/

S\ \ ava G s ey o | | | | Bam B

NSV

Intro c%hapter missing a short
descriptive of Chapt 15 (FT)

 All chapters have a short introduction

« Additional chapter 15 found (myself proof reading) to not have one
« Short intro added for uniformity

@@ -459,6 +459,12 @@ analyzers, and other tools to obtain data about the
operation of \MPI/
processes. This chapter includes Section~\ref{sec:prof} (\nameref{sec:prof}),
which was a chapter in previous versions of \MPI/.
\item
+Chapter~\ref{chap:ft}, \nameref{chap:ft},
+covers interfaces that allow developers to design applications tolerant to
+process failures. The interfaces presented in this chapter define the state
+of the \MPI/ library after a process crash, and provide supplementary
+interfaces to restore the communication capabilities of \MPI/.
+\item
Chapter~\ref{chap:deprecated}, \nameref{chap:deprecated}, describes routines
that
are kept for reference. However usage of these functions is discouraged, as
they may be deleted in future versions of the standard.

V\ B

O

ooy
L7y

S\ \ s f o~ —

— Y T T

‘Error codes remain defined but the
remainder of status remains undefined,

|« During the Sept 16. plenary, it was decided that the

status should remain an undefined output parameter
(although as noted during the June 16 plenary, the
ERROR field must remain defined, duh).

a synchronizing operation may not have synchronized) and
the content of the output buffers, targeted memory, or
-output parameters (except for status objects and error
return codes) is \emph{undefined}. Exceptions to this
+output parameters. Exceptions to this

rule are explicitly stated in the remainder of this

chapter.
+Error codes returned from a function, output in arrays of

error codes, or
+in status objects remain defined after an operation raised

a

V\ B

N N

e —
bhe /,

>

Shrink

- "failed processes” contributing implicitly found confusing

« Definition now explicit the content of the groups of the produced communicator

@@ -502,23 +517,22 @@ This collective operation creates a new intra- or intercommunicator
respectively, by excluding the group of failed processes as agreed
upon during the operation.
-The group of \mpiarg{newcomm} must include (at least) every process that returns from
-\mpifunc{MPI_COMM_SHRINK}, and it must exclude (at least)
+The groups of \mpiarg{newcomm} must include every process that returns from
+\mpifunc{MPI_COMM_SHRINK}, and it must exclude
every process whose failure caused an operation on \mpiarg{comm} to raise an
+\MPI/ error of class
\error{MPI_ERR_PROC_FAILED} or
\error{MPI_ERR_PROC_FAILED_PENDING}
-at a member of the group of \mpiarg{newcomm}, before that member initiated
+at a member of the groups of \mpiarg{newcomm}, before that member initiated
\mpifunc{MPI_COMM_SHRINK}.

%

This call is semantically equivalent to an

\mpifunc{MPI_COMM_SPLIT} operation that would succeed despite

-failures, where processes participate with the same

-color and a key equal to their rank in \mpiarg{comm}, except failed

-processes, which implicitly contribute the color \const{MPI_UNDEFINED}.
+failures, where members of the groups of \mpiarg{newcomm} participate with the same
+color and a key equal to their rank in \mpiarg{comm}.

MPI_Comm_Disconnect semantic

« The semantic (and text) is identical to MPI_Comm_free

+++ b/chap-ft/ft.tex

@@ -290,6 +290,23 @@ processes in a hard spawn, an exception of class
undefined state). In a soft spawn, an appropriate error code is set
in the \mpiarg{array_of_errcodes} parameter. \end{users}

+\par After a process failure, \mpifunc{MPI_COMM_DISCONNECT} (as with all
+other collective operations) may not complete successfully at all ranks. For
+any rank that receives the return code \const{MPI_SUCCESS}, the behavior is
+defined in~\ref{subsec:disconnect}. If a rank raises a process failure
+exception (\error{MPI_ERR_PROC_FAILED} or \error{MPI_ERR_REVOKED}), the
+communicator handle \mpiarg{comm} is set to \const{MPI_COMM_NULL}; however,
+the implementation makes no guarantee about the success or failure of the
+\mpifunc{MPI_COMM_DISCONNECT} operation, locally or remotely.
+
+\begin{users} Users are encouraged to call \mpifunc{MPI_COMM_DISCONNECT}

on communicators they do not wish to use anymore, even when they

contain failed processes. Although the operation may raise a

process failure exception and not synchronize properly, this

gives a high quality implementation an opportunity to release

local resources and memory consumed by the object.
+\end{users}
+

MPI;Com m_spawn soft/hard

« Text found too oblique/unclear during Sept 16 reading
 Text verified for correctness (found correct) and clarified

B @@ -270,18 +270,15 @@ process during \mpifunc{MPI_INIT} when it cannot setup an
intercommunicator with the root process of the spawn operation
because of a process failure.

Bl -An implementation may report it spawned all the requested processes
-in \mpifunc{MPI_COMM_SPAWN} or \mpifunc{MPI_COMM_SPAWN_MULTIPLE}
-and instead raise a process failure error when these processes
-are later involved in a communication. \end{implementors}
+An implementation may report it spawned all the requested processes even
+when a process created from \mpifunc{MPI_COMM_SPAWN} or \mpifunc{MPI_COMM_SPAWN_MULTIPLE}
failed, and instead delay raising a process failure error to a later communication involving this
process. \end{implementors}

\begin{users} To determine how many new processes have effectively

been spawned, the normal semantic for hard and soft spawn applies: if
-a failure has prevented spawning the requested number of
-processes in a hard spawn, an error of class
-\error{MPI_ERR_SPAWN} is raised (leaving \MPI/ in an
—-undefined state). In a soft spawn, an appropriate error code is set
-in the \mpiarg{array_of_errcodes} parameter. \end{users}
+the requested number of processes is unavailable for a hard spawn, an error
+of class \error{MPI_ERR_SPAWN} is raised (possibly leaving \MPI/ in an
+undefined state), and an appropriate error code is set
+in the \mpiarg{array_of_errcodes} parameter. Note however that an implementation may report that
it has spawned the requested number of processes even when some processes have failed before exiting
\mpifunc{MPI_INIT}. This condition can be detected by communicating over the created
intercommunicator with these processes.\end{users}

0\ T

27 st R

ey

\par After a process failure, \mpifunc{MPI_COMM_DISCONNECT} (as with all

Nnther Frollective aneratinnce) mav nont comnlete clicrcecefiillvy A+ 211 nraceccec Enr

