
D R A F T

Document for a Standard Message-Passing Interface

Message Passing Interface Forum

January 25, 2022
This work was supported in part by NSF and ARPA under NSF contract

CDA-9115428 and Esprit under project HPC Standards (21111).

This is the result of a LaTeX run of a draft of a single chapter of the MPIF Final
Report document.

ii

Chapter 16

Process Fault Tolerance

16.1 Introduction

In distributed systems with numerous or complex components, a serious risk is that a com-
ponent fault manifests as a process failure that disrupts the normal execution of a long
running application. A process failure is a common outcome for many hardware, network,
or software faults that cause a process to crash; it can be more formally defined as a
fail-stop failure: the affected MPI process unexpectedly and permanently stops communi-
cating. This chapter introduces MPI features that support the development of applications,
libraries, and programming languages that can tolerate MPI process failures. The primary
goal is to specify error classes and interfaces that permit users to continue simple MPI com-
munication (e.g., some point-to-point patterns) after failures have impacted the execution
and rebuild MPI objects (communicators, files, etc.) as needed to restore the full capability
of MPI to carry out application elaborate communication operations (like collective commu-
nications), or dynamic process operations (allowing for spawning replacement processes).
This specification does not include mechanisms to restore the application data lost due to
process failures. The literature is rich with diverse fault tolerance techniques that the users
may employ at their discretion, including checkpoint-restart, algorithmic dataset recovery,
and continuation ignoring failed MPI processes. All these fault tolerance approaches benefit
from, and often require, the definitions and interfaces specified in this chapter in order to
resume communicating after a failure.

The expected behavior of MPI in the case of an MPI process failure is defined by
the following statements: any MPI operation that involves a failed process must not block
indefinitely but either succeed or raise an MPI error (see Section 16.2); an MPI operation
that does not involve a failed process will complete normally, unless interrupted by the user
through provided functionality. Errors indicate only the local impact of the failure on an
operation, and make no guarantee that other processes have also been notified of the same
failure. Asynchronous failure propagation is not guaranteed or required, and users must
exercise caution when determining the set of processes where a failure has been detected
and raised an error. If an application needs global knowledge of failures, it can use the
interfaces defined in Section 16.3 to explicitly propagate the notification of locally detected
failures.

Some usage patterns on reliable machines do not require fault tolerance. An MPI
implementation that does not tolerate process failures must never raise a fault tolerance
error (as listed in Section 16.4). Applications using the interfaces defined in this chapter

Unofficial Draft for Comment Only 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2 CHAPTER 16. PROCESS FAULT TOLERANCE

must be portable across MPI implementations (including those which do not provide fault
tolerance, but in this case the interfaces may exhibit undefined behavior after a process
failure at any MPI process.) Fault tolerant applications may determine if the implementation
supports fault tolerance by querying the predefined attribute MPI_FT on MPI_COMM_WORLD

(see 9.1.2.)

Advice to users. The MPI standard does not specify transparent process recovery
upon MPI process failure. In particular, restoring the lost dataset, spawning spare
processes or taking other recovery actions are the responsibility of the user.

Many of the operations and semantics described in this chapter are applicable only
when the MPI application has replaced the default error handler
MPI_ERRORS_ARE_FATAL on the communicators and windows it uses. (End of advice
to users.)

16.2 Failure Notification

This section specifies the behavior of an MPI communication operation when failures occur
on MPI processes involved in the communication. An MPI process is considered involved in
a communication (for the purpose of this chapter) if any of the following is true:

• The process is in the group over which the operation is collective.

• The process is a destination or a specified or matched source in a point-to-point
communication.

• The operation is an MPI_ANY_SOURCE receive operation and the process belongs to
the source group.

• The process is a specified target in a remote memory operation.

An operation involving a failed MPI process must always complete in a finite amount of
time (possibly by raising one of the process failure error classes listed in Section 16.4). If an
operation does not involve a failed MPI process (such as a point-to-point message between
two non-failed MPI processes), it must not raise a fault tolerance error.

Advice to implementors. An MPI implementation may provide failure detection only
for MPI processes involved in an ongoing operation and may postpone detection of
other failures until necessary. Moreover, as long as an implementation can complete
operations, it may choose to delay raising an error. Another valid implementation
might choose to raise an error as quickly as possible. (End of advice to implementors.)

When an operation raises a fault tolerance error it may not satisfy its specification (like
any other error, see 9.4). Note that the reminder of this chapter defines operations that
maintain full specification semantic after raising a fault tolerance error; such exceptions will
be explicitely stated.

Nonblocking operations do not raise fault tolerance errors during creation or initiation.
The corresponding completion call raises a fault tolerance error when appropriate.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

16.2. FAILURE NOTIFICATION 3

16.2.1 Point-to-Point and Collective Communication

An MPI implementation raises errors of the following classes in order to notify users that
a point-to-point communication operation could not complete successfully because of the
failure of at least one involved MPI process:

• MPI_ERR_PROC_FAILED_PENDING indicates, for a nonblocking communication, that
the communication is a receive operation from MPI_ANY_SOURCE and no send op-
eration has matched, yet a potential sending MPI process has failed. Neither the
operation nor the request identifying the operation is completed.

• In all other cases, the operation raises an error of class MPI_ERR_PROC_FAILED to indi-
cate that the failure prevents the operation from following its failure-free specification.
If there is a request identifying a point-to-point communication, it is completed. Com-
munication involving the failed MPI process, initiated on this communicator after the
error raised, must also raise an error of class MPI_ERR_PROC_FAILED.

When a collective operation cannot be completed because of the failure of an involved
MPI process, the collective operation raises an error of class MPI_ERR_PROC_FAILED.

Advice to users.

Depending on how the collective operation is implemented and when an MPI process
failure occurs, some participating MPI processes may raise an error while other MPI
processes return successfully from the same collective operation. For example, in
MPI_BCAST, the root process may succeed before a failed MPI process disrupts the
operation, resulting in some other processes raising an error.

(End of advice to users.)

Advice to users.

Note that communicator creation functions (e.g., MPI_COMM_DUP or
MPI_COMM_SPLIT) are collective operations. As such, if a failure happened during
the call, an error might be raised at some MPI processes while others succeed and
obtain a new communicator handle. Although it is valid to communicate between
MPI processes that succeeded in creating the new communicator handle, the user is
responsible for ensuring a consistent view of the communicator creation, if needed.
A conservative solution is to check the global outcome of the communicator creation
function with MPI_COMM_AGREE (defined in Section 16.3.1), as illustrated in Ex-
ample 16.1. (End of advice to users.)

After an MPI process failure, MPI_COMM_FREE (as with all other collective opera-
tions) may not complete successfully at all processes. For any MPI process that receives
the return code MPI_SUCCESS, the behavior is defined in Section 7.4.3. If an MPI process
raises a process failure error (classes MPI_ERR_PROC_FAILED or MPI_ERR_REVOKED), the
communicator handle comm is set to MPI_COMM_NULL; however, the implementation makes
no guarantee about the success or failure of the MPI_COMM_FREE operation, locally or
remotely.

Advice to users. Users are encouraged to call MPI_COMM_FREE on communicators
they do not wish to use anymore, even when they contain failed MPI processes. Al-
though the operation may raise a fault tolerance error and not synchronize properly,

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 CHAPTER 16. PROCESS FAULT TOLERANCE

this gives a high quality implementation an opportunity to release local resources and
memory consumed by the object. (End of advice to users.)

16.2.2 Dynamic Process Management

Rationale. As with communicator creation functions, if a failure happens during a dy-
namic process management operation, an error might be raised at some MPI processes
while others succeed and obtain a new valid communicator. For most communicator
creation functions, users can validate the success of the operation by communicat-
ing on a pre-existing communicator spanning over the same group of processes (in
the worst case, from MPI_COMM_WORLD). This is however not always possible for
dynamic process management operations, since these operations can create a new
intercommunicator between previously disconnected MPI processes. The following
additional failure case semantics allow for users to validate, on the created intercom-
municator itself, the success of the dynamic process management operation. (End of
rationale.)

If the MPI implementation raises a fault tolerance error at the root process in
MPI_COMM_ACCEPT or MPI_COMM_CONNECT, the corresponding operation must also
raise a fault tolerance error at its root process.

Advice to users. The root process of an operation can succeed when a fault tolerance
error is raised at some other non-root process. (End of advice to users.)

When using the intercommunicator returned from MPI_COMM_SPAWN,
MPI_COMM_SPAWN_MULTIPLE, or MPI_COMM_GET_PARENT, a communication for which
the root process of the spawn operation is the source or the destination must not deadlock.
When the root process raises a fault tolerance error from a spawn operation, no MPI pro-
cesses are spawned.

Advice to implementors. An implementation is allowed to abort a spawned MPI
process during MPI_INIT when it cannot setup an intercommunicator with the root
process of the spawn operation because of a process failure.

An implementation may report it spawned all the requested MPI processes even when a
process created from MPI_COMM_SPAWN or MPI_COMM_SPAWN_MULTIPLE failed,
and instead delay raising a fault tolerance error to a later communication involving
this process. (End of advice to implementors.)

Advice to users. To determine how many new MPI processes have effectively been
spawned, the normal semantics for hard and soft spawn applies: if the requested
number of processes is unavailable for a hard spawn, an error of class MPI_ERR_SPAWN

is raised (possibly leaving MPI in an undefined state), and an appropriate error code
is set in the array_of_errcodes parameter. Note however that an implementation may
report that it has spawned the requested number of MPI processes even when some
MPI processes have failed before exiting MPI_INIT. This condition can be detected
by communicating over the created intercommunicator with these processes.(End of
advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

16.2. FAILURE NOTIFICATION 5

Advice to implementors. MPI_COMM_JOIN does not require any supplementary
semantics. When the remote MPI process on the fd socket has failed, the operation
succeeds and sets intercomm to MPI_COMM_NULL. (End of advice to implementors.)

After an MPI process failure, MPI_COMM_DISCONNECT (as with all other collective
operations) may not complete successfully at all MPI processes. For any process that receives
the return code MPI_SUCCESS, the behavior is defined in 11.10.4. If an MPI process raises a
fault tolerance error (classes MPI_ERR_PROC_FAILED or MPI_ERR_REVOKED), the commu-
nicator handle comm is set to MPI_COMM_NULL; however, the implementation makes no
guarantee about the success or failure of the MPI_COMM_DISCONNECT operation, locally
or remotely.

Advice to users. Users are encouraged to call MPI_COMM_DISCONNECT on com-
municators they do not wish to use anymore, even when they contain failed MPI
processes. Although the operation may raise a fault tolerance error and not synchro-
nize properly, this gives a high quality implementation an opportunity to release local
resources and memory consumed by the object. (End of advice to users.)

16.2.3 One-Sided Communication

When an operation on a window raises a fault tolerance error, the state of all data held
in memory exposed by that window becomes undefined at all MPI processes for which
a one-sided communication operation could have modified local data in that window (a
target in a remote write, or accumulate operation, or an origin in a remote read operation),
and the operation completion has not been semantically guaranteed (as an example by a
successful synchronization between the origin and the target, after the origin had issued an
MPI_WIN_FLUSH).

Advice to users. Assessing if a particular portion of the exposed memory remains
correct is the responsibility of the user. Note that in passive target mode, when an
error is raised at the origin, the target memory data may become undefined before a
synchronization raises an error at the target.

The exposed memory data becomes undefined for all uses, not only the window in
which the error was raised. Any overlapping windows or uses involving shared memory
also read undefined data (even if they do not involve MPI calls). (End of advice to
users.)

Advice to implementors. A high quality implementation should limit the scope of the
exposed memory that becomes undefined (for example, only the memory addresses
and ranges that have been targeted by a remote write, or accumulate, or have been
an origin in a remote read). In that case, we encourage implementations to document
the provided behavior, and to expose the availability of this feature at runtime, as
an example by caching an implementation specific attribute on the window. (End of
advice to implementors.)

Non-synchronizing one-sided communication operations (as an example MPI_GET,
MPI_PUT) whose outputs are undefined, due to an MPI process failure, are not required to
raise a fault tolerance error. However, if a communication cannot complete correctly due
to process failures, the synchronization operation must raise a fault tolerance error at least
at the origin.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6 CHAPTER 16. PROCESS FAULT TOLERANCE

Advice to implementors. Non-synchronizing operations (MPI_WIN_FLUSH_LOCAL,
MPI_WIN_FLUSH_LOCAL_ALL) are not required to raise a fault tolerance error. (End
of advice to implementors.)

Advice to users. As with collective operations over MPI communicators, active target
one-sided synchronization operations may raise a fault tolerance error at some MPI
process while the corresponding operation returned MPI_SUCCESS at some other MPI
process. (End of advice to users.)

Passive target synchronization operations may raise a process failure error when any
MPI process in the window has failed (even when the target specified in the argument of
the passive target synchronization has not failed).

Rationale. An implementation of passive target synchronization may need to com-
municate with non-target MPI processes in the window, as an example, a previous
owner of an access epoch on the target window. (End of rationale.)

After an MPI process failure, MPI_WIN_FREE (as with all other collective operations)
may not complete successfully at all MPI processes. For any process that receives the return
code MPI_SUCCESS, the behavior is defined in Section 12.2.5. If a process raises a process
failure error (classes MPI_ERR_PROC_FAILED or MPI_ERR_REVOKED), the window handle
win is set to MPI_WIN_NULL; however, the implementation makes no guarantee about the
success or failure of the MPI_WIN_FREE operation, locally or remotely.

Advice to users. Users are encouraged to call MPI_WIN_FREE on windows they do
not wish to use anymore, even when they contain failed MPI processes. Although the
operation may raise a fault tolerance error and not synchronize properly, this gives
a high quality implementation an opportunity to release local resources and memory
consumed by the object. Before calling MPI_WIN_FREE, it may be required to call
MPI_WIN_REVOKE to close an epoch that couldn’t be completed as a consequence
of a process failure (see Section 16.3.2). (End of advice to users.)

16.2.4 I/O

This section defines the behavior of I/O operations when MPI process failures prevent their
successful completion. I/O backend failure error classes and their consequences are defined
in Section 14.7.

If am MPI process failure prevents a file operation from completing, an MPI error of
class MPI_ERR_PROC_FAILED is raised. Once an MPI implementation has raised an error of
class MPI_ERR_PROC_FAILED, the state of the file pointers involved in the operation that
raised the error is undefined.

Advice to users. Since collective I/O operations may not synchronize with other MPI
processes, process failures may not be reported during a collective I/O operation.
Users are encouraged to use MPI_COMM_AGREE on a communicator containing the
same group as the file handle when they need to deduce the completion status of
collective operations on file handles and maintain a consistent view of file pointers.
The file pointer can be reset by using MPI_FILE_SEEK with the MPI_SEEK_SET update
mode. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

16.3. FAILURE MITIGATION FUNCTIONS 7

After an MPI process failure, MPI_FILE_CLOSE (as with all other collective operations)
may not complete successfully at all MPI processes. For any MPI process that receives the
return code MPI_SUCCESS, the behavior is defined in Section 14.2.2. If an MPI process
raises a process failure error (classes MPI_ERR_PROC_FAILED or MPI_ERR_REVOKED), the
file handle fh is set to MPI_FILE_NULL; however, the implementation makes no guarantee
about the success or failure of the MPI_FILE_CLOSE operation, locally or remotely.

Advice to users. Users are encouraged to call MPI_FILE_CLOSE on files they do
not wish to use anymore, even when they contain failed MPI processes. Although the
operation may raise a fault tolerance error and not synchronize properly, this gives
a high quality implementation an opportunity to release local resources and memory
consumed by the object. (End of advice to users.)

16.3 Failure Mitigation Functions

16.3.1 Communicator Functions

Process failure notification is not global in MPI. MPI processes that do not call operations
involving a failed MPI process are possibly never notified of its failure (see Section 16.2). If
a notification must be propagated, MPI provides a function to revoke a communicator at
all members.

MPI_COMM_REVOKE(comm)

IN comm communicator (handle)

C binding
int MPI_Comm_revoke(MPI_Comm comm)

Fortran 2008 binding
MPI_Comm_revoke(comm, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_COMM_REVOKE(COMM, IERROR)

INTEGER COMM, IERROR

This function notifies all MPI processes in the groups (local and remote) associated
with the communicator comm that this communicator is revoked. The revocation of a
communicator by any MPI process completes non-local MPI operations on comm at all MPI
processes by raising an error of class MPI_ERR_REVOKED (with the exception of
MPI_COMM_SHRINK, MPI_COMM_AGREE, and MPI_COMM_IAGREE). This function is
not collective and therefore does not have a matching call on remote MPI processes. All non-
failed MPI processes belonging to comm will be notified of the revocation despite failures.

A communicator is revoked at a given MPI process either when
MPI_COMM_REVOKE is locally called on it, or when any MPI operation on comm raises an
error of class MPI_ERR_REVOKED at that process. Once a communicator has been revoked
at an MPI process, all subsequent non-local operations on that communicator (with the

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8 CHAPTER 16. PROCESS FAULT TOLERANCE

same exceptions as above), are considered local and must complete by raising an error of
class MPI_ERR_REVOKED at that MPI process.

MPI_COMM_IS_REVOKED(comm, flag)

IN comm communicator (handle)

OUT flag true if the communicator is revoked (logical)

C binding
int MPI_Comm_is_revoked(MPI_Comm comm, int *flag)

Fortran 2008 binding
MPI_Comm_is_revoked(comm, flag, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_COMM_IS_REVOKED(COMM, FLAG, IERROR)

INTEGER COMM, IERROR

LOGICAL FLAG

Returns flag = true if the communicator associated with the handle comm is revoked
at the calling process. It returns flag = false otherwise. The operation is local.

Advice to users. In a multithreaded application, a thread calling
MPI_COMM_IS_REVOKED may return flag = true before the operation that raises
the first exception of class MPI_ERR_REVOKED has completed in a concurrent thread.
(End of advice to users.)

MPI_COMM_SHRINK(comm, newcomm)

IN comm communicator (handle)

OUT newcomm communicator (handle)

C binding
int MPI_Comm_shrink(MPI_Comm comm, MPI_Comm *newcomm)

Fortran 2008 binding
MPI_Comm_shrink(comm, newcomm, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Comm), INTENT(OUT) :: newcomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_COMM_SHRINK(COMM, NEWCOMM, IERROR)

INTEGER COMM, NEWCOMM, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

16.3. FAILURE MITIGATION FUNCTIONS 9

This collective operation creates a new intra- or intercommunicator
newcomm from the intra- or intercommunicator comm, respectively, by excluding the group
of failed MPI processes as agreed upon during the operation. The groups of newcomm must
include every MPI process that returns from MPI_COMM_SHRINK, and it must exclude
every MPI process whose failure caused an operation on comm to raise an MPI error of class
MPI_ERR_PROC_FAILED or MPI_ERR_PROC_FAILED_PENDING at a member of the groups of
newcomm, before that member initiated MPI_COMM_SHRINK. This call is semantically
equivalent to an MPI_COMM_SPLIT operation that would succeed despite failures, where
members of the groups of newcomm participate with the same color and a key equal to their
rank in comm.

This function never raises an error of class MPI_ERR_PROC_FAILED or
MPI_ERR_REVOKED. The defined semantics of MPI_COMM_SHRINK are maintained when
comm is revoked, or when the group of comm contains failed MPI processes.

Advice to users. MPI_COMM_SHRINK is a collective operation, even when comm is
revoked.

The group of newcomm may still contain failed MPI processes, whose failure will be
detected in subsequent MPI operations. (End of advice to users.)

MPI_COMM_ISHRINK(comm, newcomm, request)

IN comm communicator (handle)

OUT newcomm communicator (handle)

OUT request communication request (handle)

C binding
int MPI_Comm_ishrink(MPI_Comm comm, MPI_Comm *newcomm,

MPI_Request *request)

Fortran 2008 binding
MPI_Comm_ishrink(comm, newcomm, request, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Comm), INTENT(OUT), ASYNCHRONOUS :: newcomm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_COMM_ISHRINK(COMM, NEWCOMM, REQUEST, IERROR)

INTEGER COMM, NEWCOMM, REQUEST, IERROR

MPI_COMM_ISHRINK is a nonblocking variant of MPI_COMM_SHRINK. With the
exception of its nonblocking behavior, the semantics of MPI_COMM_ISHRINK are as if
MPI_COMM_SHRINK was executed at the time MPI_COMM_ISHRINK is called. All re-
strictions and assumptions for nonblocking collective operations (see Section 6.12) apply to
MPI_COMM_ISHRINK and the returned request.

Note that, as with MPI_COMM_IDUP (see Section 7.4.2), it is erroneous to use
newcomm before request has completed.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10 CHAPTER 16. PROCESS FAULT TOLERANCE

MPI_COMM_GET_FAILED(comm, failedgrp)

IN comm communicator (handle)

OUT failedgrp group of failed processes (handle)

C binding
int MPI_Comm_get_failed(MPI_Comm comm, MPI_Group *failedgrp)

Fortran 2008 binding
MPI_Comm_get_failed(comm, failedgrp, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Group), INTENT(OUT) :: failedgrp

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_COMM_GET_FAILED(COMM, FAILEDGRP, IERROR)

INTEGER COMM, FAILEDGRP, IERROR

This local operation returns the group failedgrp of processes from the communicator
comm that are locally known to have failed. The failedgrp can be empty, that is, equal to
MPI_GROUP_EMPTY.

For any two groups obtained from calls to that routine at the same MPI process with the
same comm, the smallest group is a prefix of the largest group, that is, the same processes
have the same ranks in the two groups up to the size of the smallest group.

Advice to users. MPI makes no assumption about asynchronous progress of the
failure detection. A valid MPI implementation may choose to update the group of
locally known failed MPI processes only when it enters a function that must raise a
fault tolerance error.

It is possible that only the calling MPI process has detected the reported failure. If
global knowledge is necessary, MPI processes detecting failures should use the call
MPI_COMM_REVOKE. (End of advice to users.)

MPI_COMM_ACK_FAILED(comm, nack, nacked)

IN comm communicator (handle)

IN nack Maximum number of process failures to acknowledge

(integer)

OUT nacked Number of process failures acknowledged (integer)

C binding
int MPI_Comm_ack_failed(MPI_Comm comm, int nack, int *nacked)

Fortran 2008 binding
MPI_Comm_ack_failed(comm, nack, nacked, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: nack

INTEGER, INTENT(OUT) :: nacked

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

Aurelien Bouteiller

Aurelien Bouteiller

16.3. FAILURE MITIGATION FUNCTIONS 11

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_COMM_ACK_FAILED(COMM, NACK, NACKED, IERROR)

INTEGER COMM, NACK, NACKED, IERROR

This local operation gives the users a way to acknowledge locally notified failures on
comm. The operation acknowledges the first nack process failures on comm, that is, it
acknowledges the failure of members with a rank lower than nack in the group that would
be produced by a concurrent call to MPI_COMM_GET_FAILED on the same comm.

The operation also sets the value of nacked to the current number of acknowledged
process failures in comm, that is, a process failure has been acknowledged on comm if and
only if the rank of the process is lower than nacked in the group that would be produced
by a subsequent call to MPI_COMM_GET_FAILED on the same comm.

nacked can be larger than nack when process failures have been acknowledged in a prior
call to MPI_COMM_ACK_FAILED.

After an MPI process failure is acknowledged on comm, unmatched
MPI_ANY_SOURCE receive operations on the same comm that would have raised an error of
class MPI_ERR_PROC_FAILED_PENDING (see Section 16.2.1) proceed without further raising
errors due to this acknowledged failure. Also, MPI_COMM_AGREE on the same comm
will not raise an error of class MPI_ERR_PROC_FAILED due to this acknowledged failure
(according to the specification found later in this section).

Advice to users. One may query, without side effect, for the number of currently
aknowledged process failures in comm by supplying 0 in nack. Conversely, one may
unconditionally acknowledge all currently known process failures in
comm by supplying the size of the group of comm in nack. Note that the number of
acknowledged processes, as returned in nacked, can be smaller or larger than the value
supplied in nack; It is however never larger than the size of the group returned by a
subsequent call to MPI_COMM_GET_FAILED.

Calling MPI_COMM_ACK_FAILED on a communicator with failed MPI processes has
no effect on collective operations (except for MPI_COMM_AGREE). If a collective
operation would raise an error due to the communicator containing a failed process
(as defined in Section 16.2.1), it can continue to raise an error even after the failure
has been acknowledged. In order to use collective operations between MPI processes
of a communicator that contains failed MPI processes, users should create a new
communicator by calling MPI_COMM_SHRINK. (End of advice to users.)

MPI_COMM_AGREE(comm, flag)

IN comm communicator (handle)

INOUT flag bitwise ‘AND’ of contributed values (integer)

C binding
int MPI_Comm_agree(MPI_Comm comm, int *flag)

Fortran 2008 binding
MPI_Comm_agree(comm, flag, ierror)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12 CHAPTER 16. PROCESS FAULT TOLERANCE

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(INOUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_COMM_AGREE(COMM, FLAG, IERROR)

INTEGER COMM, FLAG, IERROR

The purpose of this collective communication is to agree on the integer value flag and
on the group of failed processes in comm.

On completion, all non-failed MPI processes have agreed to set the output integer value
of flag to the result of a bitwise ‘AND’ operation over the contributed input values of flag.
If comm is an intercommunicator, the value of flag is a bitwise ‘AND’ operation over the
values contributed by the remote group.

When an MPI process fails before contributing to the operation, the flag is computed
ignoring its contribution, and MPI_COMM_AGREE raises an error of class
MPI_ERR_PROC_FAILED. However, if all MPI processes have acknowledged this failure prior
to the call to MPI_COMM_AGREE, using MPI_COMM_ACK_FAILED, the error related to
this failure is not raised. When an error of class MPI_ERR_PROC_FAILED is raised, it is
consistently raised at all MPI processes, in both the local and remote groups (if applicable).

After MPI_COMM_AGREE raised an error of class MPI_ERR_PROC_FAILED, the group
produced by a subsequent call to MPI_COMM_GET_FAILED on comm contains every MPI
process that didn’t contribute to the computation of flag.

Advice to users. Using a combination of MPI_COMM_ACK_FAILED and
MPI_COMM_AGREE as illustrated in Example 16.3, users can propagate and synchro-
nize the knowledge of failures across all MPI processes in comm. When MPI_SUCCESS

is returned locally from MPI_COMM_AGREE, the operation has not raised an error of
class MPI_ERR_PROC_FAILED at any MPI process and thereby returned MPI_SUCCESS

at all other MPI processes. (End of advice to users.)

This function never raises an error of class MPI_ERR_REVOKED. The defined semantics
of MPI_COMM_AGREE are maintained when comm is revoked, or when the group of comm
contains failed MPIprocesses.

Advice to users. MPI_COMM_AGREE is a collective operation, even when comm is
revoked. (End of advice to users.)

MPI_COMM_IAGREE(comm, flag, request)

IN comm communicator (handle)

INOUT flag bitwise ‘AND’ of contributed values (integer)

OUT request communication request (handle)

C binding
int MPI_Comm_iagree(MPI_Comm comm, int *flag, MPI_Request *request)

Fortran 2008 binding
MPI_Comm_iagree(comm, flag, request, ierror)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

16.3. FAILURE MITIGATION FUNCTIONS 13

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(INOUT), ASYNCHRONOUS :: flag

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_COMM_IAGREE(COMM, FLAG, REQUEST, IERROR)

INTEGER COMM, FLAG, REQUEST, IERROR

This function has the same semantics as MPI_COMM_AGREE except that it is non-
blocking.

16.3.2 One-Sided Functions

MPI_WIN_REVOKE(win)

IN win window object (handle)

C binding
int MPI_Win_revoke(MPI_Win win)

Fortran 2008 binding
MPI_Win_revoke(win, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_WIN_REVOKE(WIN, IERROR)

INTEGER WIN, IERROR

This function notifies all MPI processes in the group associated with the window win
that this window is revoked. The revocation of a window by any MPI process completes
RMA operations on win at all MPI processes and RMA synchronizations on win raise an
error of class MPI_ERR_REVOKED. This function is not collective and therefore does not
have a matching call on remote MPI processes. All non-failed MPI processes belonging to
win will be notified of the revocation despite failures.

A window is revoked at a given MPI process either when MPI_WIN_REVOKE is locally
called on it, or when any MPI operation on win raises an error of class MPI_ERR_REVOKED

at that process. Once a window has been revoked at an MPI process, all subsequent RMA
operations on that window are considered local and RMA synchronizations must complete
by raising an error of class MPI_ERR_REVOKED at that process. In addition, the current
epoch is closed and RMA operations originating from this MPI process are interrupted and
completed with undefined outputs.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14 CHAPTER 16. PROCESS FAULT TOLERANCE

MPI_WIN_IS_REVOKED(win, flag)

IN win window object (handle)

OUT flag true if the window is revoked (logical)

C binding
int MPI_Win_is_revoked(MPI_Win win, int *flag)

Fortran 2008 binding
MPI_Win_is_revoked(win, flag, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_WIN_IS_REVOKED(WIN, FLAG, IERROR)

INTEGER WIN, IERROR

LOGICAL FLAG

Returns flag = true if the window associated with the handle win is revoked at the
calling process. It returns flag = false otherwise. The operation is local.

Advice to users. In a multithreaded application, a thread calling
MPI_WIN_IS_REVOKED may return flag = true before the operation that raises the
first exception of class MPI_ERR_REVOKED has completed in a concurrent thread. (End
of advice to users.)

MPI_WIN_GET_FAILED(win, failedgrp)

IN win window object (handle)

OUT failedgrp (handle)

C binding
int MPI_Win_get_failed(MPI_Win win, MPI_Group *failedgrp)

Fortran 2008 binding
MPI_Win_get_failed(win, failedgrp, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(MPI_Group), INTENT(OUT) :: failedgrp

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_WIN_GET_FAILED(WIN, FAILEDGRP, IERROR)

INTEGER WIN, FAILEDGRP, IERROR

This local operation returns the group failedgrp of MPI processes from the window
win that are locally known to have failed. The failedgrp can be empty, that is, equal to
MPI_GROUP_EMPTY.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

16.3. FAILURE MITIGATION FUNCTIONS 15

Advice to users. MPI makes no assumption about asynchronous progress of the
failure detection. A valid MPI implementation may choose to update the group of
locally known failed MPI processes only when it enters a synchronization function and
must raise a fault tolerance error. (End of advice to users.)

Advice to users. It is possible that only the calling MPI process has detected the
reported failure. If global knowledge is necessary, MPI processes detecting failures
should use the call MPI_WIN_REVOKE. (End of advice to users.)

16.3.3 I/O Functions

MPI_FILE_REVOKE(fh)

IN fh file (handle)

C binding
int MPI_File_revoke(MPI_File fh)

Fortran 2008 binding
MPI_File_revoke(fh, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_FILE_REVOKE(FH, IERROR)

INTEGER FH, IERROR

This function notifies all MPI processes in the group associated with the file handle
fh that this file handle is revoked. The revocation of a file handle by any MPI process
completes non-local MPI operations on fh at all MPI processes by raising an error of class
MPI_ERR_REVOKED. This function is not collective and therefore does not have a matching
call on remote MPI processes. All non-failed MPI processes belonging to fh will be notified
of the revocation despite failures.

A file handle is revoked at a given MPI process either when MPI_FILE_REVOKE is
locally called on it, or when any MPI operation on fh raises an error of class
MPI_ERR_REVOKED at that process. Once a file handle has been revoked at an MPI pro-
cess, all subsequent non-local operations on that file handle are considered local and must
complete by raising an error of class MPI_ERR_REVOKED at that process.

MPI_FILE_IS_REVOKED(fh, flag)

IN fh file (handle)

OUT flag true if the file handle is revoked (logical)

C binding
int MPI_File_is_revoked(MPI_File fh, int *flag)

Fortran 2008 binding
MPI_File_is_revoked(fh, flag, ierror)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16 CHAPTER 16. PROCESS FAULT TOLERANCE

TYPE(MPI_File), INTENT(IN) :: fh

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_FILE_IS_REVOKED(FH, FLAG, IERROR)

INTEGER FH, IERROR

LOGICAL FLAG

Returns flag = true if the file handle associated with fh is revoked at the calling process.
It returns flag = false otherwise. The operation is local.

Advice to users. In a multithreaded application, a thread calling
MPI_FILE_IS_REVOKED may return flag = true before the operation that raises the
first exception of class MPI_ERR_REVOKED has completed in a concurrent thread. (End
of advice to users.)

16.4 Fault Tolerance Error Codes and Classes

Among the error classes defined in Section 9.4, the following are fault tolerance error
classes:

MPI_ERR_PROC_FAILED The operation could not complete because
of an MPI process failure (a fail-stop fail-
ure).

MPI_ERR_PROC_FAILED_PENDING The operation was interrupted by an MPI
process failure (a fail-stop failure). The
request is still pending and the operation
may be completed later.

MPI_ERR_REVOKED The communication object used in the op-
eration has been revoked.

Table 16.1: Fault tolerance error classes

16.5 Examples

16.5.1 Safe Communicator Creation

The example below illustrates how a new communicator can be safely created despite dis-
ruption by MPI process failures. A child communicator is created with MPI_COMM_SPLIT,
then the global success of the operation is verified with MPI_COMM_AGREE. If any MPI g
failed to create the child communicator handle, all MPI processes are notified by the value of
the integer agreed on. MPI processes that had successfully created the child communicator
handle destroy it, as it cannot be used consistently.

Example 16.1 Fault Tolerant Communicator Split Example

int Comm_split_consistent(MPI_Comm parent, int color, int key, MPI_Comm* child)

{

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

16.5. EXAMPLES 17

rc = MPI_Comm_split(parent, color, key, child);

split_ok = (MPI_SUCCESS == rc);

MPI_Comm_agree(parent, &split_ok);

if(split_ok) {

/* All surviving processes have created the "child" comm

* It may contain supplementary failures and the first

* operation on it may raise an error, but it is a

* workable object that will yield well specified outcomes */

return MPI_SUCCESS;

}

else {

/* At least one process did not create the child comm properly

* if the local process did succeed in creating it, it disposes

* of it, as it is a broken, inconsistent object */

if(MPI_SUCCESS == rc) {

MPI_Comm_free(child);

}

return MPI_ERR_PROC_FAILED;

}

}

16.5.2 Obtaining the consistent group of failed processes

Users can invoke MPI_COMM_GET_FAILED, MPI_WIN_GET_FAILED, to obtain the group
of failed MPI processes, as detected at the local MPI process. However, these operations are
local, thereby the invocation of the same function at another MPI process can result in a
different group of failed processes being returned.

In the following examples, we illustrate two different approaches that permit obtaining
the consistent group of failed MPI processes across all MPI processes of a communicator.
The first one employs MPI_COMM_SHRINK to create a temporary communicator excluding
failed MPI processes. The second one employs MPI_COMM_AGREE to synchronize the set
of acknowledged failures.

Example 16.2 Fault-Tolerant Consistent Group of Failures Example (Shrink variant)

Comm_failure_allget(MPI_Comm c, MPI_Group * g) {

MPI_Comm s; MPI_Group c_grp, s_grp;

/* Using shrink to create a new communicator, the underlying

* group is necessarily consistent across all processes, and excludes

* all processes detected to have failed before the call */

MPI_Comm_shrink(c, &s);

/* Extracting the groups from the communicators */

MPI_Comm_group(c, &c_grp);

MPI_Comm_group(s, &s_grp);

/* s_grp is the group of still alive processes, we want to

* return the group of failed processes. */

MPI_Group_difference(c_grp, s_grp, g);

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

18 CHAPTER 16. PROCESS FAULT TOLERANCE

MPI_Group_free(&c_grp); MPI_Group_free(&s_grp);

MPI_Comm_free(&s);

}

Example 16.3 Fault-Tolerant Consistent Group of Failures Example (Agree variant)

Comm_failure_allget2(MPI_Comm c, MPI_Group * g) {

int rc; int T=1;

int size; int nacked;

MPI_Group gf;

int ranges[3] = {0, 0, 1};

MPI_Comm_size(c, &size);

do {

/* this routine is not pure: calling MPI_Comm_ack_failed

* affects the state of the communicator c */

MPI_Comm_ack_failed(c, size, &nacked);

/* we simply ignore the T value in this example */

rc = MPI_Comm_agree(c, &T);

} while(rc != MPI_SUCCESS);

/* after this loop, MPI_Comm_agree has returned MPI_SUCCESS at

* all processes, so all processes have Acknowledged the same set of

* failures. Let’s get that set of failures in the g group. */

if(0 == nacked) {

*g = MPI_GROUP_EMPTY;

}

else {

MPI_Comm_get_failed(c, &gf);

ranges[1] = nacked - 1;

MPI_Group_range_incl(gf, 1, ranges, g);

MPI_Group_free(&gf);

}

}

16.5.3 Fault-Tolerant Master/Worker

The example below presents a master code that handles worker failures by discarding failed
worker MPI processes and resubmitting the work to the remaining workers. It demonstrates
the different failure cases that may occur when posting receptions from MPI_ANY_SOURCE

as discussed in the advice to users in Section 16.2.1.

Example 16.4 Fault-Tolerant Master Example

int master(void)

{

MPI_Comm_set_errhandler(comm, MPI_ERRORS_RETURN);

MPI_Comm_size(comm, &size);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

Aurelien Bouteiller

Aurelien Bouteiller

16.5. EXAMPLES 19

MPI_Comm_group(comm, &gcomm);

/* ... submit the initial work requests ... */

/* Progress engine: Get answers, send new requests,

and handle process failures */

MPI_Irecv(buffer, 1, MPI_INT, MPI_ANY_SOURCE, tag, comm, &req);

while((active_workers > 0) && work_available) {

rc = MPI_Wait(&req, &status);

if(MPI_SUCCESS == rc) {

/* ... process the answer and update work_available ... */

}

else {

MPI_Error_class(rc, &ec);

if((MPI_ERR_PROC_FAILED == ec) ||

(MPI_ERR_PROC_FAILED_PENDING == ec)) {

/* We ack the full size of comm, so we will ack

* unconditionally. Variable gsize will contain all

* currently known failures. */

MPI_Comm_ack_failed(comm, size, &gsize);

/* ... find the lost work and requeue it ... */

MPI_Comm_get_failed(comm, &g);

granks = (int*) calloc(active_workers-gsize-1, sizeof(int));

cranks = (int*) calloc(active_workers-gsize-1, sizeof(int));

for(i = active_workers; i < gsize; i++)

granks[i-active_workers] = i;

MPI_Group_translate_ranks(g, gsize, granks, gcomm, cranks);

/* iterate over newly failed procs */

for(i = active_workers; i < gsize; i++) {

/* resubmit the work */

}

free(cranks); free(granks);

MPI_Group_free(&g);

active_workers = size - gsize - 1;

/* no need to repost when the request is still pending */

if(ec == MPI_ERR_PROC_FAILED_PENDING)

continue;

}

}

/* get ready to receive more notifications from workers */

MPI_Irecv(buffer, 1, MPI_INT, MPI_ANY_SOURCE, tag, comm, &req);

}

/* ... cancel request and cleanup ... */

}

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Aurelien Bouteiller

Aurelien Bouteiller

20 CHAPTER 16. PROCESS FAULT TOLERANCE

16.5.4 Fault-Tolerant Iterative Refinement

The example below demonstrates a method of fault tolerance for detecting and handling
failures. At each iteration, the algorithm checks the return code of the MPI_ALLREDUCE.
If the return code indicates a process failure for at least one MPI process, the algorithm
revokes the communicator, agrees on the presence of failures, and shrinks it to create a
new communicator. By calling MPI_COMM_REVOKE, the algorithm ensures that all MPI
processes will be notified of process failure and enter the MPI_COMM_AGREE. If an MPI
process fails, the algorithm must complete at least one more iteration to ensure a correct
answer.

Example 16.5 Fault-tolerant iterative refinement with shrink and agreement

while(gnorm > epsilon) {

/* Add a computation iteration to converge and

compute local norm in lnorm */

rc = MPI_Allreduce(&lnorm, &gnorm, 1, MPI_DOUBLE, MPI_MAX, comm);

MPI_Error_class(rc, &ec);

if((MPI_ERR_PROC_FAILED == ec) ||

(MPI_ERR_REVOKED == ec) ||

(gnorm <= epsilon)) {

/* This process detected a failure, but other processes may have

* proceeded into the next MPI_Allreduce. Since this process

* will not match that following MPI_Allreduce, these other

* processes would be at risk of deadlocking. This process thus

* calls MPI_Comm_revoke to interrupt other processes and notify

* them that it has detected a failure and is leaving the

* failure free execution path to go into recovery. */

if(MPI_ERR_PROC_FAILED == ec)

MPI_Comm_revoke(comm);

/* About to leave: let’s be sure that everybody

received the same information */

allsucceeded = (rc == MPI_SUCCESS);

rc = MPI_Comm_agree(comm, &allsucceeded);

MPI_Error_class(rc, &ec);

if(ec == MPI_ERR_PROC_FAILED || !allsucceeded) {

MPI_Comm_shrink(comm, &comm2);

MPI_Comm_free(comm); /* Release the revoked communicator */

comm = comm2;

gnorm = epsilon + 1.0; /* Force one more iteration */

}

}

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

Bibliography

Unofficial Draft for Comment Only 21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Index

MPI_ANY_SOURCE, 2, 3, 11, 18
MPI_Comm, 7–12
MPI_COMM_NULL, 3, 5
MPI_COMM_WORLD, 2, 4
MPI_ERR_PROC_FAILED, 3, 5–7, 9, 11, 12, 16
MPI_ERR_PROC_FAILED_PENDING, 3, 9, 11,

16
MPI_ERR_REVOKED, 3, 5–9, 12–16
MPI_ERR_SPAWN, 4
MPI_ERRORS_ARE_FATAL, 2
MPI_File, 15
MPI_FILE_NULL, 7
MPI_FT, 2
MPI_Group, 9, 14
MPI_GROUP_EMPTY, 10, 14
MPI_Request, 12
MPI_SEEK_SET, 6
MPI_SUCCESS, 3, 5–7, 12
MPI_Win, 13, 14
MPI_WIN_NULL, 6

EXAMPLES:Comm_failure_allget example,
17

EXAMPLES:Comm_failure_allget2 example,
18

EXAMPLES:Fault-tolerant iterative refine-
ment with shrink and agreement, 20

EXAMPLES:Master example, 18
EXAMPLES:MPI_COMM_ACK_FAILED, 18
EXAMPLES:MPI_COMM_AGREE, 16, 18,

20
EXAMPLES:MPI_COMM_FREE, 16, 17, 20
EXAMPLES:MPI_COMM_GET_FAILED, 18
EXAMPLES:MPI_COMM_GROUP, 17
EXAMPLES:MPI_COMM_REVOKE, 20
EXAMPLES:MPI_COMM_SHRINK, 17, 20
EXAMPLES:MPI_COMM_SPLIT, 16
EXAMPLES:MPI_GROUP_DIFFERENCE,

17
EXAMPLES:MPI_GROUP_FREE, 17

MPI_ALLREDUCE, 20
MPI_BCAST, 3
MPI_COMM_ACCEPT, 4
MPI_COMM_ACK_FAILED, 11, 12
MPI_COMM_ACK_FAILED(comm, nack, nacked),

10
MPI_COMM_AGREE, 3, 6, 7, 11–13, 16, 17,

20
MPI_COMM_AGREE(comm, flag), 11
MPI_COMM_CONNECT, 4
MPI_COMM_DISCONNECT, 5
MPI_COMM_DUP, 3
MPI_COMM_FREE, 3
MPI_COMM_GET_FAILED, 11, 12, 17
MPI_COMM_GET_FAILED(comm, failedgrp),

10
MPI_COMM_GET_PARENT, 4
MPI_COMM_IAGREE, 7
MPI_COMM_IAGREE(comm, flag, request),

12
MPI_COMM_IDUP, 9
MPI_COMM_IS_REVOKED, 8
MPI_COMM_IS_REVOKED(comm, flag), 8
MPI_COMM_ISHRINK, 9
MPI_COMM_ISHRINK(comm, newcomm, request),

9
MPI_COMM_JOIN, 5
MPI_COMM_REVOKE, 7, 10, 20
MPI_COMM_REVOKE(comm), 7
MPI_COMM_SHRINK, 7, 9, 11, 17
MPI_COMM_SHRINK(comm, newcomm), 8
MPI_COMM_SPAWN, 4
MPI_COMM_SPAWN_MULTIPLE, 4
MPI_COMM_SPLIT, 3, 9, 16
MPI_FILE_CLOSE, 7
MPI_FILE_IS_REVOKED, 16
MPI_FILE_IS_REVOKED(fh, flag), 15
MPI_FILE_REVOKE, 15
MPI_FILE_REVOKE(fh), 15
MPI_FILE_SEEK, 6

22

INDEX 23

MPI_GET, 5
MPI_INIT, 4
MPI_PUT, 5
MPI_WIN_FLUSH, 5
MPI_WIN_FLUSH_LOCAL, 6
MPI_WIN_FLUSH_LOCAL_ALL, 6
MPI_WIN_FREE, 6
MPI_WIN_GET_FAILED, 17
MPI_WIN_GET_FAILED(win, failedgrp), 14
MPI_WIN_IS_REVOKED, 14
MPI_WIN_IS_REVOKED(win, flag), 14
MPI_WIN_REVOKE, 6, 13, 15
MPI_WIN_REVOKE(win), 13

TERM:error handling
fault tolerance, 1

ack, 11
agree, 12, 13
communicator, 3, 7
dynamic process, 4
fault tolerance error, 1, 16
I/O, 6, 15
inquiry, 2
mitigation, 7
notification, 2, 16
one-sided, 5, 13
revoke, 7, 8, 13–16
shrink, 8, 9

process failure, 1

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

	16 Process Fault Tolerance
	16.1 Introduction
	16.2 Failure Notification
	16.2.1 Point-to-Point and Collective Communication
	16.2.2 Dynamic Process Management
	16.2.3 One-Sided Communication
	16.2.4 I/O

	16.3 Failure Mitigation Functions
	16.3.1 Communicator Functions
	16.3.2 One-Sided Functions
	16.3.3 I/O Functions

	16.4 Fault Tolerance Error Codes and Classes
	16.5 Examples
	16.5.1 Safe Communicator Creation
	16.5.2 Obtaining the consistent group of failed processes
	16.5.3 Fault-Tolerant Master/Worker
	16.5.4 Fault-Tolerant Iterative Refinement

