
For Issue #493 “Issue N - Progress-Section in terms-2.tex - for RC-4-June”

(The blue text are only title lines for the review process. They are not planned being included into the
MPI standard)

The goal of this text is to describe the reality of MPI-4.0 (and older) more understandable, accurately
and precisely, i.e. not to change anything.

It should be placed in MPI-4.1 as a new Section 2.9 Progress (after error handling, before
implementation issues).

2.9 Progress

Definition of a “progress chunk”:

For a stage of an MPI operation (or parts of it) to be completed, it is often necessary for one or more other
MPI processes to perform some activities.
These activities may occur during the starting or completing MPI procedures for the operation or they may be
separated from the operation-related MPI procedures. We name an activity separated in this way a progress
chunk. An example of a progress chunk is the transfer of message data from a buffered mode send operation
that completed before the matching receive operation was started.

Definition of a “blocked MPI procedure call”:

An MPI procedure is blocked if it delays its return until some specific activity or state-change has occurred in
another MPI process.

A blocked MPI procedure call can be
 - a non-local MPI procedure call that delays its return until a specific semantically-related MPI call on
another MPI process, or
 - a local MPI procedure call that delays its return until some unspecific MPI call in another MPI process
causes a specific state-change in that MPI process, or
 - an MPI finalization procedure (MPI_FINALIZE or MPI_SESSION_FINALIZE) that delays its return or
exit because the MPI finalization must guarantee that all remaining progress chunks will be executed before
the MPI finalization is finished.

Some examples of a non-local blocked MPI procedure call:

- MPI_SSEND delays its return until the matching receive operation is started at the destination MPI
process (for example, by a call to MPI_RECV or to MPI_IRECV).

- MPI_RECV delays its return until the matching send operation is started at the source MPI process
(for example, by a call to MPI_SEND or to MPI_ISEND).

Some examples of a local blocked MPI procedure call:
- MPI_RSEND, when the message data cannot be entirely buffered, delays its return until the

destination MPI process has received the portion of message data that cannot be buffered, which may
require one or more unspecific MPI procedure call(s) at the destination MPI process.

- MPI_RECV, in the use case when the message was buffered at the source MPI process (e.g. with
MPI_BSEND), delays its return until the message is received, which may require one or more
unspecific MPI procedure calls at the source MPI process to send the buffered data.

Definition of “progress”:

All MPI processes are required to “guarantee progress”, i.e., all progress chunks will eventually be
executed. This guarantee is required to be provided by

 blocked MPI procedures, and

Kommentiert [RR1]: Wording: chunk is used, e.g., in
OpenMP schedules and often, the default chunk size is 1.
Chunk is rarely used in MPI-4.0 and none of these uses
would be conflicting with this usage because it is always a
chunk of xxx and xxx is different. Only here it is progress.

Kommentiert [RR2]: Example would be sending out the
buffered message of a Bsend, i.e., doing a progress chunk

 repeatedly called MPI test procedures (see below) that return flag=false.

The progress must be provided independently of whether a progress chunk belongs to a specific session
or to the world model (see Sections 11.2 and 11.3). Other ways of fulfilling this guarantee are possible
and permitted (for example, a dedicated progress thread, or off-loading to a network interface controller
(NIC)).

MPI test procedures are MPI_TEST, MPI_TESTANY, MPI_TESTALL, MPI_TESTSOME MPI_IPROBE,
MPI_IMPROBE, MPI_REQUEST_GET_STATUS, MPI_WIN_TEST, and MPI_PARRIVED.

Definition of “strong progress”:

Strong progress is provided by an MPI implementation if all local procedures return independently of MPI
procedure calls in other MPI processes (operation-related or not).

Definition of “weak progress”:

An MPI implementation provides weak progress if it does not provide strong progress.

Correctness of applications when using MPI implementations with different quality of progress.

Advice to users. The type of progress may influence the performance of MPI operations. A correct MPI
application must be written under the assumption that only weak progress is provided. Every MPI application
that is correct under weak progress will be correctly executed if strong progress is provided. The other way
around, i.e. that correctness under the assumption of strong progress implies also correctness if only weak
progress is provided, is not proven, but the MPI standard is designed such that it should be true. (End of
advice to users.)

Rationale. The design of MPI restricts any use of synchronization methods that are not based on MPI
communication procedures, which would likely result in deadlock without guaranteed strong progress in
MPI, see for example Section 2.7 and Example 12.x in Section 12.7.3. (End of rationale.)

Further reading
For further rules, see Sect 2.4.2 the definition on local MPI procedures, Sect. 3.5 on point-to-point
communication, and especially Sect. 3.7.4, paragraphs “Progress” on page 75, especially the paragraph on
MPI_TEST, Sect. 3.8.1 and 3.8.2 on MPI_(I)(M)PROBE, Sect. 3.8.4 the advice to implementors for
MPI_TEST_CANCELLED, Sect. 4.2.2 on MPI_PARRIVED, especially the paragraph on repeated calls to
MPI_PARRIVED, Sect. 5.12 on collective procedure, Sect. 11.2.2 Example 11.6 on MPI_FINALIZE and
especially the related advice to implementors, Sect. 11.3.1. on MPI_SESSION_FINALIZE, especially the
paragraph on "MPI_SESSION_FINALIZE may be synchronizing" together with the related rationale, the
first advice to implementors and Example 11.8, Sect. 11.6 on MPI and threads, Sect. 12.7.3 on progress with
one-sided communication, especially the rationale at the end, and Sect. 14.6.3 on MPI parallel file I/O.

Limits of minimal progress / special rule for shared memory RMA (this restriction would be new in MPI-4.1,
but it was always reality since the MPI shared memory was introduced in MPI-3.0):

(To be added in the RMA chapter, e.g. at the end of RMA Section 12.7.3 Progress)

Kommentiert [RR3]: Comment from RMA WG meeting
Oct. 27, 2022: one may add an additional environmental
inquiry (like MPI_TAG_UB or MPI_IO) in MPI_4.0 Section
9.1.2.

In principle, there are many options (by Dan):
The potential future enquiry mechanism for strong progress
could be:
- a global attribute
- a global info key-value pair
- an object-specific attribute/info
- an operation-specific attribute/info
- a combination of some/all of the above
- an assertion "user does not need strong progress" -- scoped
global/per-object/per-operation
- a requested/provided "request strong progress; provided?"
-- scoped global/per-object/per-operation

This question is outside of the scope of this issue.
This issue is of course the basis for such an additionally
possible issue.

Kommentiert [RR4]: MPI_4.0, page 24, lines 19-27:
“This document specifies the behavior of a parallel program
assuming that only MPI
calls are used. The interaction of an MPI program with
other possible means of communication,
I/O, and process management is not specified. Unless
otherwise stated in the
specification of the standard, MPI places no requirements
on the result of its interaction
with external mechanisms that provide similar or
equivalent functionality. This includes,
but is not limited to, interactions with external mechanisms
for process control, shared and
remote memory access, file system access and control,
interprocess communication, process
signaling, and terminal I/O.”
(Highlighting by the author of this comment)

The MPI standard does not support the use of MPI shared memory loads and/or stores for synchronizing
purposes between MPI processes. If this rule is ignored then a deadlock may occur if an MPI implementation
does not provide strong progress as shown in Example 12.x.

Example 12.x. Possible deadlock through the use of a shared memory variable for synchronization.
comm_sm shall be a shared memory communicator with at least two processes. win_sm is a shared memory
window with the AckInRank0 as window portion in process rank 0.

Process with rank 0 Process with rank 1

MPI_Win_shared_query(win, MPI_Win_shared_query(win,
 /*rank=*/ 0, ..., AckInRank0); /*rank=*/ 0, ..., AckInRank0);

*myAck = 0;
MPI_Win_fence(win_sm) MPI_Win_fence(win_sm)
MPI_Buffer_attach(myHugeBuffer, ...);
MPI_Bsend(myHugeMessage, ...,
 /*rank=*/ 1, ..., comm_sm);
sleep(10); // to guarantee that the while-loop starts
 // after rank 1 is blocked in MPI_Recv
 sleep(5); // to ensure
 // that the MPI_Bsend
 // in rank 0 returned
 MPI_Recv(&myHugeMessage, ...
 /*rank=*/ 0, ..., comm_sm,
...);
 *AckInRank0 = 222;
while(*AckInRank0 != 222)
 /*empty polling loop*/;
MPI_Buffer_detach(&pTemp, &size);
// deadlock // deadlock

As long the MPI_Recv in process rank 1 is blocked until an unspecific MPI procedure call in process rank 0
happens to send the buffered data, then the subsequent statement cannot change the value of the shared
window buffer AckInRank0. As long as this value is not changed, the while loop in process rank 0 will not
return and therefore the next MPI procedure call (MPI_Buffer_detach) cannot happen, which is then a
deadlock.
(End of example 12.x)

Note that both communication patterns (A) BSEND-RECV-DETACH and (B) the shared memory store/load
for synchronization purpose, can be in different software layers and each layer would work properly, but the
combination of (A) and (B) can cause the deadlock.

Other issues related to this issue:

Progress rule for MPI_REQUEST_GET_STATUS
 see Issue #468
“Issue K - MPI_REQUEST_GET_STATUS with same progress as MPI_TEST - for RC-4-June”,
https://github.com/mpi-forum/mpi-issues/issues/468
and https://github.com/mpi-forum/mpi-standard/pull/667

Progress rule for MPI_WIN_TEST
 see Issue #499
“Errata Issue O - MPI_WIN_TEST with same progress as MPI_TEST”,
https://github.com/mpi-forum/mpi-issues/issues/499
and https://github.com/mpi-forum/mpi-standard/pull/729

Kommentiert [RR5]: MPI_Recv and MPI_Buffer_attach:
mixed notation, because it cites the call in language C in the
verbatim above.

Kommentiert [RR6]: I put this note outside of the
example because it is an important observation that should
not be only part of the example.

Other activities outside of the scope of this issue:

Progress rule for MPI_WIN_SYNC

History of changes
Rolf Rabenseifner, Oct. 4, 2022
Dan Holmes, Oct. 5, 2022
Rolf Rabenseifner, Oct. 18, 2022
Joseph Schuchart, Oct. 18, 2022
Dan Holmes, Oct. 18, 2022
Rolf Rabenseifner, Oct. 19, 2022
Dan Holmes, Oct. 21, 2022
Rolf Rabenseifner, Oct. 25, 2022
Dan Holmes, Oct. 25, 2022
Rolf Rabenseifner, Oct. 25, 2022
Rolf Rabenseifner, Oct.26, 2022
Claudia Blaas-Schenner, Oct. 27, 2022
Rolf Rabenseifner, Oct. 31, 2022
Dan Holmes, Oct. 31, 2022
Rolf Rabenseifner, Nov. 1, 2022

Kommentiert [RR7]: (by Dan)
IMHO, clarification of the relationship between
MPI_WIN_SYNC and progress should be done by the RMA
WG; there are two reasonable options for them to consider
but both are outwith the remit of our issue/PR:
1) Add a sentence like "Repeated calls to MPI_WIN_SYNC do
not, by themselves, guarantee progress for any MPI
operations."
2) Add a sentence like "Repeated calls to MPI_WIN_SYNC
must guarantee progress for all enabled MPI operations."
Whichever is chosen, I would like to see the example we
discussed in the joint WG meeting included and elucidated.

See Issue #636 “add example showing impact of
progresss”
https://github.com/mpi-forum/mpi-
issues/issues/636

