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The MPI standard has historically employed a “weak” progress model for overalapping communication, I/O,
and computation with ‘nonblocking’ API calls. Weak progress means that the MPI library must be entered
for nonblocking operations to be guaranteed of making progress toward completion. A “strong” progress
model would mean that nonblocking operations would progress asynchronously toward completion, without
requiring that the MPI library be entered for that progress to occur. Comment

[QK1]: Is
there a
definitive
description
of weak
and strong
progress to
refer to?

This proposal describes extensions to MPI that allow applications to request strong progress from an MPI
implementation, and to optionally perform ‘true’ asynchronous operations.

Add
‘strong’
progress
to MPI
Init, or
session
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1. Introduction

The goal of this RFC is to present a proposal for improving performance of MPI applications in 3 primary
ways: reduce synchronization penalties for collective operations, fully overlap communication, I/O, and
computation, and enable more MPI operations to execute concurrently with application computation. Expand on

the goals

2. Background: MPI Today

MPI currently provides two kinds of communication and I/O operations: blocking and nonblocking (which are
also sometimes called “immediate”). Blocking operations do not return until the operation is complete (or an
error occurs). Nonblocking operations return immediately and provide a “request” object (MPI_Request)
to the caller, which can use the request to check for the operation’s completion (or error). Initially, nonblocking
operations appear to meet the goals for strong progress with asynchronous operation, but there are many
restrictions and caveats to them, as shown below.

To begin with, a simple set of blocking MPI operations might look like this:

Rank 0 Rank 1

MPI_Send(...)
MPI_Send(...)
...
MPI_Send(...)

MPI_Recv(...)
MPI_Recv(...)
...
MPI_Recv(...)

Clearly, there’s no way to overlap these communication operations with any computation, as all the MPI
operations are blocking.

Attempting to use nonblocking MPI operations might look something like this:

Rank 0 Rank 1

MPI_Isend(..., &req[0])
MPI_Isend(..., &req[1])
...
MPI_Isend(..., &req[n])
[Compute]
MPI_Waitall(..., n+1, req)

MPI_Irecv(..., &req[0])
MPI_Irecv(..., &req[1])
...
MPI_Irecv(..., &req[n])
[Compute]
MPI_Waitall(..., n+1, req)

However, using nonblocking operations has many drawbacks:

a) Nonblocking operations are not guaranteed to make progress unless the MPI library is entered

b) An application must track individual nonblocking operations with a request object for each one

c) There is no way to indicate dependencies between nonblocking operations

d) There is no way to invoke a user operation for asynchronous execution1

e) Applications and middleware libraries can’t easily nest asynchronous operations on or around the MPI
API

1Generalized requests are not a solution that meets the requirements outlined here.
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f) A result from one asynchronous operation can’t be used as a “future” value for another operation

g) There are no asynchronous operations for memory allocation or release, as well as local memory
movement

h) Many file operations are not supported

The asynchronous operations described in this document correct the drawbacks of nonblocking operations as
well as put new capabilities into the hands of application developers.

3. Motivation / Etc.
Include
bench-
marks that
show the
benefit
of over-
lapping
communi-
cation and
I/O with
computa-
tion

4. Overview

Building a robust set of extensions to add “true” asynchronous operations to MPI can achieve the goal of
improving application performance by enabling full overlap with computation, which can reduce the costs for
communication and I/O to nearly zero.

Additional benefits of achieving the primary performance goals in an elegant and well-designed way are:
an improved ‘user experience’ for developers using asynchronous (currently ‘nonblocking’) operations,
hiding the latency of operations, exposing more opportunities for optimizing performance of MPI operations,
enabling offload of more operations to networking hardware, and enabling applications to build powerful
data movement orchestration operations.

4.1. Deferred Operations

This document describes two mechanisms for executing asynchronous MPI operations: defining an aggregated
set of operations (a “graph”) to execute later and executing operations immediately in an ordered manner
(a “stream”). Each of those mechanisms relies on a new concept: “deferred” MPI operations. Deferred
operations are very similar to persistent operations, but are designed to cover all kinds of MPI operations,
unlike persistent operations, which focus on communication operations.2 3

Executing deferred MPI operations in a “fully” asynchronous manner, which are guaranteed to complete
without re-entering the MPI implementation, requires strong progress, described in section 4.3.

Listings 1 and 2 are pseudocode examples that shows the approach, with graphs and streams.

Implementing deferred operations in this way allows for a single API definition for each operation, which
returns a MPI_Token object that can be added to a graph or enqueued on a stream.

4.1.1. Data Dependencies For Deferred Operations

Deferred operations may have data dependencies on values produced in earlier operations, as well as produce
values that later operations may wish to consume. MPI operations have two kinds of data dependencies:
strong dependencies, which involve handles of objects, and weak dependencies, which involve the contents
of objects. For example, a strong dependency is created by the MPI_File file handle produced from a
deferred call to MPI_File_open that is used in a later deferred call to MPI_File_get_size. A weak

2Deferred operations can cover MPI_File_open, MPI_Comm_create, etc. along with MPI_Send and related operations
that are covered by the set of persistent operations.

3Nonblocking operations will not work, because they are allowed to start execution immediately and are not compatible with the
approach described here.
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// Info keys control graph execution behavior
MPIX_Graph_create(session, info, &graph);
...
// Define deferred operations and add to graph
MPIX_File_open_def(..., &token);
MPIX_Graph_add(graph, &token, <dependency info>);
...
MPIX_File_read_def(..., &token);
MPIX_Graph_add(graph, &token, <dependency info>);
...
MPIX_File_close_def(..., &token);
MPIX_Graph_add(graph, &token, <dependency info>);
...
MPIX_Bcast_def(..., &token);
MPIX_Graph_add(graph, &token, <dependency info>);
...
// Create deferred operation token for graph
MPIX_Graph_def(graph, info, &token);
...
// Create an [inactive] request for the graph token
MPIX_Execute_init(token, info, MPIX_OFFLOAD_CUDA, &cuda_stream, &req);
...
// Start execution of graph
MPIX_Start(req);
...
<compute or other overlap w/graph execution>
...
// Conclude graph's operations
MPI_Wait(&req, &status);

Listing 1. – Deferred operations added to graphs

data dependency is demonstrated by the data in a buffer from a deferred call to MPI_Recv being used as the
source buffer for a deferred call to MPI_Bcast that has a dependency on the call to MPI_Recv.

4.2. Aggregating Deferred Operations: MPI Graphs and Streams

Graphs and streams are the core objects that “hold” deferred operations. Deferred operations can be
added to a graph, with optional dependencies on other asynchronous operations. Dependencies between
deferred operations can describe a directed graph and deferred operations without dependencies can execute
concurrently. Deferred operations added to a stream execute in FIFO order, without requiring explicit
dependencies, but also without the possible concurrent execution that is possible with graphs.4

MPI graphs have an additional supporting object: variables. MPI graphs allow the composition of Turing-
complete data movement kernels using graph variables to control the execution of if/else blocks and loops.
Graph variables are also used to parameterize graphs, allowing for their re-use with new inputs.

4For full details on graph and stream construction rules, see sections A.3.3 and A.4.2 respectively.
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// Info keys control stream execution behavior
MPIX_Stream_create(session, info, MPIX_OFFLOAD_CUDA, &cuda_stream, &stream);
...
// Pause stream from processing operations that are added
MPIX_Stream_pause(stream);
...
// Define deferred operations and enqueue into stream
MPIX_File_open_def(..., &token);
MPIX_Stream_enqueue(stream, &token);
...
MPIX_File_read_def(..., &token);
MPIX_Stream_enqueue(stream, &token);
...
MPIX_File_close_def(..., &token);
MPIX_Stream_enqueue(stream, &token);
...
MPIX_Bcast_def(..., &token);
MPIX_Stream_enqueue(stream, &token);
...
// Start processing all the enqueued operations
MPIX_Stream_resume(stream);
...
// Ensure that all operations currently on stream have finished
MPIX_Stream_sync(stream); // Optional
...

Listing 2. – Deferred operations added to streams

4.2.1. Errors When Executing Deferred Operations Asynchronously

There can be many asynchronous operations in an aggregation object5, possibly executing concurrently.
Additionally, data dependencies on information sent from other MPI ranks at runtime are possible. This
complex and unpredictable environment argues against investing in mechanisms to resume/restart from
failures.

Therefore, if an error occurs when executing a deferred operation in an aggregation object, the aggregation
object will permanently stop scheduling new operations for execution. Existing operations that are executing
will be allowed to complete, but no further operations will be started.

When an error occurs, only three actions on the aggregation object are possible: use the “introspection” API
routines on the object (mainly to query about the failed operation, although any introspection operation can
be called), duplicate the object (for possible possible “restart from the beginning”), and free the object6.

4.3. Strong Progress
Describe
enabling
strong
progress
in MPI
sessions,
similar to
enabling
threading

5. Approach

Add de-
scription
of ap-
proach
taken,
based on
A

5An MPI graph or stream
6You can autopsy or clone it before you bury it, but it’s dead.
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6. New API Routines

6.1. Deferred MPI Operations

TODO: Describe memory operation APIs... Discuss
deferred
operations,
how they
are simi-
lar / dif-
ferent to
persistent
and non-
blocking
operations.

Mention
that de-
ferred per-
sistent,
nonblock-
ing, and
partitioned
operations
are possi-
ble.

Create
table of
important
deferred
operations,
including
file I/O,
and alloc /
free mem.

MPIX_ZZZ_DEF(..., token)
- ... existing parameters for operation

OUT token deferred operation token (handle)

MPIX ZZZ DEF corresponds to a deferred version of the MPI_ZZZ operation. The token object may be
added to a graph or stream.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_OP_DEF(op, extra_state, token)

IN op function pointer to user callback to invoke

IN extra state pointer to extra state for user callback

OUT token deferred operation token (handle)

MPIX OP DEF creates a deferred invocation of a user callback.7 User callbacks invoked through this
mechanism are designed to be “support” routines, not intensive computations. The token object may be
added to a graph or stream.

NOTE: The definition of the user callback would probably look like:

void (*op)(MPIX_Graph *graph, void *extra_state)

Possibly
other pa-
rameters?

The op callback receives a pointer to the MPIX_Graph that it was invoked from, as well as the extra_state
specified in the MPIX OP DEF call. The graph parameter may be used for calls to MPIX GRAPH VAR GET
and MPIX GRAPH VAR SET, to access the graph’s variables.

NOTE: This is designed as an “escape hatch” for user operations that should execute in a graph or stream,
but aren’t covered by the current deferred operations in the MPI API.

There are
potentially
lots of
sharp
edges
here, so
we should
add more
caution-
ary notes
and user
guidance.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_EXECUTE(token, info, loc, loc_info)
IN token deferred operation token (handle)

IN info info object (handle)

IN loc type offload type (handle)

IN loc info pointer to offload location info (choice)

MPIX EXECUTE executes the deferred operation specified in token. The deferred token object is not
consumed by this operation, allowing it to be used for multiple execute operation. Hints may be provided by
the info argument. The execution offload type of the operation is specified by loc_type, with additional
information provided in loc_info. Valid values for loc_type are given in <side document>, but

CUDA,
ROCM,
pthread,
etc.

implementations must at least support MPIX LOC INPLACE, for local execution without offload.

7MPI generalized requests are similar, but are not able to be invoked from a graph or stream.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_EXECUTE_INIT(token, info, loc_type, loc_info, req)

IN token deferred operation token (handle)

IN info info object (handle)

IN loc type offload type (handle)

IN loc info pointer to offload location info (choice)

OUT req request object (handle)

MPIX EXECUTE INIT is a persistent version of MPIX EXECUTE, returning an inactive request object in
req. The request must be passed to a function in the MPI Start family of operations to become active.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_TOKEN_FREE(token)
INOUT token deferred operation token (handle)

MPIX TOKEN FREE releases a deferred operation and sets the value of token to MPIX_TOKEN_NULL.
Freeing a token has no effect on deferred operations or requests which have used the token already.

6.2. Graph Management

TODO: Describe graph management APIs... Probably
need to
introduce
operation
IDsMPIX_GRAPH_CREATE(session, info, graph)

IN session session (handle)

IN info info object (handle)

OUT graph graph object (handle)

MPIX GRAPH CREATE creates a new graph object in the specified session. An info object is provided in
order to support optimization hints and other information that may be nonstandard.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_GRAPH_DUP(graph, info, newgraph)

IN graph graph (handle)

IN info info object (handle)

OUT newgraph copy of graph (handle)

MPIX GRAPH DUP duplicates the existing graph graph. Hints provided by the argument info are
associated with the output graph newgraph.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_GRAPH_ADD(graph, token, op_id, dep_op_id)

INOUT graph graph (handle)

INOUT token deferred operation token (handle)

OUT op id operation ID (non-negative integer)

IN dep op id operation ID (non-negative integer)

MPIX GRAPH ADD adds the deferred operation token to the graph graph. The graph takes ownership
of the deferred token object, freeing it and setting token to MPIX_TOKEN_NULL.

Optionally an operation ID op_id can be returned to the application to refer to this operation in the graph,
to create dependencies on it. NULL may be passed to indicate that no operation ID should be returned.

dep_op_idmay also optionally be provided, to create a dependency on an earlier operation already added to
the graph. MPIX_DEP_NONE may be passed to indicate that the added operation has no parent dependency.

NOTE: Operation IDs are only valid for creating dependencies between operations in the same graph.
Using an operation ID from one graph in another graph is not supported and may cause undefined behavior.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_GRAPH_JOIN(graph, count, array_of_dep_op_ids, op_id)

INOUT graph graph (handle)

IN count array size (non-negative integer)

IN array of dep op ids

array of dependent operation IDs

(array of non-negative integers)

OUT op id operation ID (non-negative integer)

MPIX GRAPH JOIN provides the capability to have many-parent to one-child relationships in a graph.
MPIX GRAPH JOIN produces an operation ID op_id that can be used as a dependent operation ID for
further operations in the graph that depend on all the operations in array_of_dep_op_ids completing
before the operation can execute. All of the operation IDs in array_of_dep_op_ids must be from
operations in graph.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_GRAPH_IF_ELSE(graph, var, true_graph, false_graph,
op_id, dep_op_id)

INOUT graph graph (handle)

IN var id variable identifier (non-negative integer)

INOUT true graph graph (handle)

INOUT false graph graph (handle)

OUT op id operation ID (non-negative integer)

IN dep op id operation ID (non-negative integer)

MPIX GRAPH IF ELSE adds a conditional dependency to graph. If the value of the graph variable
var_id is non-zero, the true_graph graph will be the child of the MPIX GRAPH IF ELSE dependency
and if var is zero, the false_graph graph will be the child of the dependency.

The MPIX GRAPH IF ELSE operation copies both the true_graph and the false_graph, Comment
[QK2]: Or
increments
the refcount
on?

allowing them to be re-used for other purposes (and eventually released with MPIX GRAPH FREE).
MPIX_GRAPH_NULL may be passed for either the true or false graph handles, indicating that there is
no child dependency for that condition.

Optionally an operation ID op_id can be returned to the application to refer to this operation in the graph,
to create dependencies on it. dep_op_id may also optionally be provided, to create a dependency on an
earlier operation already added to the graph.

NOTE: Examining the graph variable within the MPIX GRAPH IF ELSE operation could have weak
data dependencies on other concurrently executing operations in the graph and create race conditions when
the graph is executed. Application developers can use other organizational dependencies as preludes to
MPIX GRAPH IF ELSE to eliminate such race conditions.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_GRAPH_WHILE(graph, var_id, sub_graph, op_id, dep_op_id)

INOUT graph graph (handle)

IN var id graph variable (handle)

INOUT sub graph graph (handle)

OUT op id operation ID (non-negative integer)

IN dep op id operation ID (non-negative integer)

MPIX GRAPH WHILE adds a loop to graph. If the value of the graph variable var_id is non-zero, the
sub_graph graph will be executed.

The MPIX GRAPH WHILE operation copies the sub_graph, allowing it to be re-used for other Comment
[QK3]: Or
increments
the refcount
on?

purposes (and eventually released with MPIX GRAPH FREE).

Optionally an operation ID op_id can be returned to the application to refer to this operation in the graph,
to create dependencies on it. dep_op_id may also optionally be provided, to create a dependency on an
earlier operation already added to the graph.

NOTE: Examining the graph variable within the MPIX GRAPH WHILE operation could have weak data
dependencies on other concurrently executing operations in the graph and create race conditions when
the graph is executed. Application developers can use other organizational dependencies as preludes to
MPIX GRAPH WHILE to eliminate such race conditions.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_GRAPH_GOTO(graph, dest_op_id, dep_op_id)

INOUT graph graph (handle)

IN dest op id operation ID (non-negative integer)

IN dep op id operation ID (non-negative integer)

MPIX GRAPH GOTO transfers the flow of control within graph to another operation in the graph,
dest_op_id.

Optionally an operation ID, dep_op_id, may be provided, to create a dependency on an earlier operation
already added to the graph.

NOTE: It is possible to create > 1 MPIX GRAPH GOTO operation as a dependency on dep_op_id,
starting concurrent execution of the dest_op_id for each MPIX GRAPH GOTO operation.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_GRAPH_SET_DEP_OP(graph, op_id, dep_op_id)

INOUT graph graph (handle)

IN op id operation ID (non-negative integer)

IN dep op id operation ID (non-negative integer)

MPIX GRAPH SET DEP OP sets or modifies the dest_op_id for op_id in graph. The value 0 may
be passed for dest_op_id to remove the dependent operation for op_id. dep_op_id may not be set to
the same value as op_id.

NOTE: Application developers should take care not to create dependency loops.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_GRAPH_NOP(graph, op_id, dep_op_id)

INOUT graph graph (handle)

IN op id operation ID (non-negative integer)

IN dep op id operation ID (non-negative integer)

MPIX GRAPH NOP creates a “no op” operation in graph.

Optionally an operation ID op_id can be returned to the application to refer to this operation in the graph,
to create dependencies on it. dep_op_id may also optionally be provided, to create a dependency on an
earlier operation already added to the graph.

NOTE: MPIX GRAPH NOP and MPIX GRAPH SET DEP OP may be useful when creating and updating
‘placeholder’ operations as destinations when constructing complex control flows for graphs.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_GRAPH_SET_PARAM(graph, var_id, value / alias_var_id)

INOUT graph graph (handle)

IN var id parameter variable identifier (non-negative integer)

IN value or pointer to parameter value (choice) or alias variable

alias var id identifier (non-negative integer)

MPIX GRAPH SET PARAM is overloaded to accept either a variable ID or a pointer to a value. If a variable
ID is passed, the graph parameter variable, var_id, must be a reference parameter variable and if a pointer to
a value is passed, the graph parameter variable must be a value parameter (see MPIX GRAPH VAR CREATE
for more information). Graph parameter variables can be set or changed at any time before or after
MPIX GRAPH DEF is called.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_GRAPH_DEF(graph, info, token)

INOUT graph graph (handle)

IN info info object (handle)

IN token deferred operation token (handle)

MPIX GRAPH DEF binds the parameters for the graph graph to a deferred operation token token. Further
changes to the parameters for the graph do not change the parameters for the initialized graph associated
with token. The deferred operation token representing the initialized graph may be added to another graph
(with MPIX GRAPH ADD), enqueued in a stream (with MPIX STREAM ENQUEUE), or executed with
MPIX EXECUTE or MPIX IEXECUTE.

NOTE: If any parameter variables are defined but not set for the graph (with MPIX GRAPH SET PARAM),
MPIX GRAPH DEF will fail.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_GRAPH_FREE(graph)
INOUT graph graph (handle)

MPIX GRAPH FREE frees graph and sets it to MPIX_GRAPH_NULL.
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6.2.1. Graph Variables

TODO: Describe graph variables and APIs...

MPIX_GRAPH_VAR_CREATE(graph, var_id, scope, type)

INOUT graph graph object (handle)

IN var id variable identifier (non-negative integer)

IN scope scope of variable (handle)

IN datatype datatype of variable (handle)

MPIX GRAPH VAR CREATE creates a new variable in the specified graph, graph, identified with
var_id. datatype must be an atomic MPI datatype8. The scope of the variable is one of the fol- Maybe

a better
word than
‘scope’?

lowing values, with the associated meaning:

� MPIX GRAPH VAR VAL PARAM – a variable that is used as a parameter for the graph, and must
initialized with a value using MPIX GRAPH SET PARAM before the graph starts execution.

� MPIX GRAPH VAR REF PARAM – a variable that is an alias for a variable in the application or
another graph variable in an outer scope, and must initialized with MPIX GRAPH SET PARAM
before the graph starts execution.

� MPIX GRAPH VAR LOCAL – a variable that is initialized to “all zeroes” when the graph starts
execution, and is not aliased to a variable in an outer scope.

Variables may be declared at any point during a graph’s definition, but assignments for all value or reference
parameter variables defined anywhere in the graph must be provided before MPIX GRAPH DEF is called on
the graph.

Reference parameters are aliases for application variables or graph variables in an outer graph scope. The
reference parameter can be thought of an an RMA window on the aliased application or outer graph variable.
The value in the aliased variable is not valid for inspection through the aliased variable until the graph
completes execution.

Graph variables are valid sources and destinations where memory buffers are specified for all deferred MPI
data movement operations, such as MPIX REDUCE DEF and MPIX SEND DEF, etc. Graph variables
can also be used for ‘IN’ parameters to deferred MPI operations and as ‘future’ values from deferred MPI
operations with ‘OUT’ parameters, such as MPI FILE OPEN, etc.

Graph variables may be of a “local” MPI type, allowing a variable to be used as a parameter of the same type
for deferred operations. For example, a graph variable may be created with a type of MPI TYPE FILE and
used in all the places where an MPI FILE * operation accepts (an an ‘IN’ parameter) or returns (as an ‘OUT’
parameter) a parameter of type MPI_File. Local MPI data types are described in section 6.6.

Should an application wish to set the value of a graph variable during execution of a graph or preserve a
variable’s value before the graph completes execution, the MPIX COPY MEM DEF operation should be
used with a graph variable as the source or destination buffer (or both).

8Including MPI_AINT, MPI_COUNT, and `local' MPI data types like MPI_FILE, MPI_STATUS, etc.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_GRAPH_VAR_SET(graph, var_id, value)

INOUT graph graph (handle)

IN var id parameter variable identifier (non-negative integer)

IN value pointer to new value for variable (choice)

MPIX GRAPH VAR SET sets the value of variable var_id in graph graph to the value pointed to by the
value pointer.

Graph variables set before MPIX GRAPH DEF is called will be associated with the graph token created by
MPIX GRAPH DEF and later calls to MPIX GRAPH VAR SET will not affect the values for the variables
associated with that token.

Graph variables set to values in a user callback (with MPIX OP DEF) are reflected in the values for those
variables when the callback completes. Race conditions around graph variables may exist depending on the
graph’s operations and an application developer should use operation dependencies within the graph to avoid
them.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_GRAPH_VAR_GET(graph, var_id, value)

INOUT graph graph (handle)

IN var id parameter variable identifier (non-negative integer)

OUT value pointer to a location to place the value for variable (choice)

MPIX GRAPH VAR GET retrieves the value of variable var_id in graph graph into the location pointed
to by the value pointer.

Graph variable values retrieved within a user callback (with MPIX OP DEF) reflect the value of those
variables when MPIX GRAPH VAR GET is invoked. Race conditions around graph variables may exist
depending on the graph’s operations and an application developer should use operation dependencies within
the graph to avoid them.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_GRAPH_VAR_REDUCE(graph, in_var1_id, in_var2_id,
var_op, out_var_id, op_id, dep_op_id)

INOUT graph graph (handle)

IN in var1 id variable identifier (non-negative integer)

IN in var2 id variable identifier (non-negative integer)

IN var op operation (handle)

IN out var id variable identifier (non-negative integer)

IN op id operation ID (non-negative integer)

IN dep op id operation ID (non-negative integer)

MPIX GRAPH VAR REDUCE is similar to MPI REDUCE LOCAL, but performs an operation op on
two graph variables, in_var1_id and in_var2_id and places the result in out_var_id. All three
variables must belong to the same graph, graph.

var_op may be any of the predefined reduction operations defined for MPI REDUCE, with the ex-
ception of MPI MAXLOC and MPI MINLOC. Additionally, the following operations are defined for
MPIX GRAPH VAR REDUCE:

� MPIX LESS THAN OR EQUAL – produces a non-zero or TRUE value when the value of in_var1_id
is less than or equal to the value of in_var2_id, i.e. in var1 id ≤ in var2 id.

� MPIX LESS THAN – produces a non-zero or TRUE value when the value of in_var1_id is less
than the value of in_var2_id, i.e. in var1 id < in var2 id.

� MPIX EQUAL – produces a non-zero or TRUE value when the value of in_var1_id is equal to
the value of in_var2_id, i.e. in var1 id = in var2 id.

� MPIX NOT EQUAL – produces a non-zero or TRUE value when the value of in_var1_id is not
equal to the value of in_var2_id, i.e. in var1 id 6= in var2 id.

� MPIX GREATER THAN – produces a non-zero or TRUE value when the value of in_var1_id
is greater than the value of in_var2_id, i.e. in var1 id > in var2 id.

� MPIX GREATER THAN OR EQUAL – produces a non-zero or TRUE value when the value of
in_var1_id is greater than or equal to the value of in_var2_id, i.e. in var1 id ≥ in var2 id.

Optionally an operation ID op_id can be returned to the application to refer to this operation in the graph,
to create dependencies on it. dep_op_id may also optionally be provided, to create a dependency on an
earlier operation already added to the graph.
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6.3. Stream Management

TODO: Describe stream management APIs...

MPIX_STREAM_CREATE(session, info, loc_type, loc_info, stream)

IN session session (handle)

IN info info object (handle)

IN loc type offload type (handle)

IN loc info pointer to offload info (choice)

OUT stream stream object (handle)

MPIX STREAM CREATE creates a new stream object in the specified session. An info object is provided in
order to support optimization hints and other information that may be nonstandard. The execution offload
type of the operation is specified by loc_type, with additional information provided in loc_info.
Valid values for loc_type are given in <side document>, but implementations must at least support CUDA,

ROCM,
pthread,
etc.

MPIX LOC INPLACE, for local execution without offload.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_STREAM_ENQUEUE(stream, token)

INOUT stream stream (handle)

INOUT token deferred operation token (handle)

MPIX STREAM ENQUEUE adds the deferred operation token to the stream stream. The stream takes
ownership of the deferred token object, freeing it and setting token to MPIX_TOKEN_NULL.

Deferred operations enqueued in a stream are executed in the order they are added to the stream, i.e.
‘FIFO’ ordering. Deferred operation tokens may be individual operations, e.g. from MPIX SEND DEF,
MPIX FILE OPEN DEF, etc, or entire graphs, i.e. tokens returned from MPIX GRAPH DEF.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_STREAM_PAUSE(stream)
INOUT stream stream (handle)

MPIX STREAM PAUSE pauses execution of deferred operations on a stream, stream. Deferred operations
may continue to be enqueued on the stream, but none will begin executing until MPIX STREAM RESUME
is called.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_STREAM_IS_PAUSED(stream, paused)

IN stream stream (handle)

OUT paused flag indicating stream is paused (logical)

MPIX STREAM IS PAUSED queries whether execution of deferred operations on a stream, stream, is
paused.



RFC-Amazon-2022-03-01.v12

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_STREAM_RESUME(stream)
INOUT stream stream (handle)

MPIX STREAM RESUME resumes execution of deferred operations on a stream, stream.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_STREAM_SYNC(stream)
INOUT stream stream (handle)

MPIX STREAM SYNC blocks until all enqueued operations on stream at the time it is called have finished
execution. Deferred operations enqueued (with another thread) after this routine is called, but before it returns,
are not included in the list of operations blocked for.

NOTE: If MPIX STREAM SYNC is called on a paused stream, the stream will resume and complete the
deferred operations enqueued when MPIX STREAM SYNC was called.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_STREAM_ISYNC(stream, request)

INOUT stream stream (handle)

OUT request request object (handle)

MPIX STREAM ISYNC is a nonblocking form of MPIX STREAM SYNC. The request, request, will
complete when all the enqueued operations on stream at the time MPIX STREAM ISYNC is called have
finished execution. Deferred operations enqueued after this routine is called are not included in the list of
operations the request applies to.

NOTE: If MPIX STREAM ISYNC is called on a paused stream, the stream’s execution is not resumed. A
paused stream must be resumed with either MPIX STREAM RESUME or MPIX STREAM SYNC.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIX_STREAM_FREE(stream)
INOUT stream stream (handle)

MPIX STREAM FREE frees stream and sets it to MPIX STREAM NULL.



RFC-Amazon-2022-03-01.v12

6.4. Memory Operations

TODO: Describe memory operation APIs...

MPIX_COPY_MEM(dst, src, size)
INOUT dst pointer to beginning of destination memory segment (choice)

IN src pointer to beginning of sourc memory segment (choice)

IN size size of memory segment in bytes (non-negative integer)

MPIX COPY MEM copies size bytes from memory area src to memory area dst. If dst and src
overlap, behavior is undefined. Add de-

ferred
version
of this rou-
tine also

NOTE: This is the same behavior as Standard C memcpy.

Maybe we
want mem-
move also
/ instead?

NOTE: MPIX COPY MEM DEF is the mechanism for setting / getting values for graph variables.

6.5. Synchronization Operations

TODO: Describe new synchronization operation APIs...

MPIX_REMOTE_BARRIER(comm, watched, info)
IN comm communicator (handle)

IN watched rank of watched MPI process (integer)

IN info info object (handle)

MPIX REMOTE BARRIER blocks the caller until the watched MPI process has called it. For the
watched process, MPIX REMOTE BARRIER is local and never blocks. An info object is provided in
order to support optimization hints and other information that may be nonstandard. Add de-

ferred
version
of this rou-
tine also

NOTE: MPIX REMOTE BARRIER DEF can be used to create inter-graph dependencies between concur-
rently executing graphs.
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C Typedefs Local Type Name
MPI Comm MPI LOCAL TYPE COMM

MPI Datatype MPI LOCAL TYPE DATATYPE

MPI Errhandler MPI LOCAL TYPE ERRHANDLER

MPI File MPI LOCAL TYPE FILE

MPI Group MPI LOCAL TYPE GROUP

MPI Info MPI LOCAL TYPE INFO

MPI Message MPI LOCAL TYPE MESSAGE

MPI Op MPI LOCAL TYPE OP

MPI Request MPI LOCAL TYPE REQUEST

MPI Session MPI LOCAL TYPE SESSION

MPI Status MPI LOCAL TYPE STATUS

const char * MPI LOCAL TYPE STRING

MPI Win MPI LOCAL TYPE WIN

Table 1 – C Typedefs and equivalent Local Data Types

6.6. Local MPI Data Types

TODO: Describe local MPI data types

TODO: Note ‘const char *’ as MPI LOCAL TYPE STRING

7. Use Cases

Use cases that demonstrate the need and applicability of these new capabilities are given below.

7.1. Use Case #1: Communication and Computation Overlap

This example code demonstrates overlapping compute with communication, including: broadcasting the
direction of neighbors to exchange with for the next timestep computation and a exchange of data between
neighbors, all of which occurs asynchronously, overlapping the current compute step.

1 MPIX_Graph graph;
2 MPIX_Token token;
3 MPI_Request req;
4 enum {BCAST_VAL, DECR_VAL}; // Graph variable IDs
5

6 // Create graph for each timestep
7 MPIX_Graph_create(session, info, &graph);
8

9 // Create a value parameter graph variable to hold the broadcast information
10 MPIX_Graph_var_create(&graph, BCAST_VAL, MPIX_GRAPH_VAR_VAL_PARAM, MPI_INT);
11

12 // Create a local graph variable to hold the constant '-1'
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13 int dec_value = -1;
14 MPIX_Graph_var_create(&graph, DECR_VAL, MPI_INT);
15 MPIX_Graph_var_set(&graph, DECR_VAL, &dec_value);
16

17 // Define deferred bcast w/a graph variable and add to graph
18 // Note: The graph variable ID is passed for the buffer pointer
19 unsigned bcast_op_id = 0;
20 MPIX_Bcast_def(BCAST_VAL, ..., &token);
21 MPIX_Graph_add(&graph, &token, &bcast_op_id, MPIX_DEP_NONE);
22

23 // Define sub-graph for 'while' loop
24 MPIX_Graph_create(session, info, &while_graph);
25 // Exchange with neighbor
26 unsigned sendrecv_op_id = 0;
27 MPIX_Sendrecv_def(..., &token);
28 MPIX_Graph_add(&while_graph, &token, &sendrecv_op_id, MPIX_DEP_NONE);
29 // Decrement loop counter
30 // NOTE: Use of var IDs from outer graph is OK, as variable IDs are resolved

when MPIX_Graph_def is called↪→

31 MPIX_Graph_var_reduce(&while_graph, BCAST_VAL, DECR_VAL, MPI_SUM, BCAST_VAL,
NULL, sendrecv_op_id);↪→

32

33 // While value of var ID 'BCAST_VAL' is non-zero, execute sub-graph
34 MPIX_Graph_while(&graph, BCAST_VAL, &while_graph, NULL, bcast_op_id);
35

36 // Free sub-graph for while loop
37 MPIX_Graph_free(&while_graph);
38

39 while(<more timesteps>) {
40 // Set parameter (var ID 'BCAST_VAL') for this execution of the graph
41 MPIX_Graph_set_param(&graph, BCAST_VAL, <neighbor exchange value>);
42

43 // Create deferred operation token for parameterized graph
44 MPIX_Graph_def(graph, info, &token);
45

46 // Create an [inactive] request for the graph token
47 MPIX_Execute_init(token, info, MPIX_OFFLOAD_CUDA, &cuda_stream, &req);
48

49 // Release token for parameterized graph
50 MPIX_Token_free(&token);
51

52 // Start execution of graph
53 MPI_Start(&req);
54

55 <compute current timestep>
56

57 // Conclude graph's operations, if it's not finished yet
58 MPI_Wait(&req, &status);
59 } // timestep loop
60

61 // Free graph
62 MPIX_Graph_free(&graph);

Listing 3. – Data-dependent communication operations

This use case shows a fairly straightforward overlap of compute and communication. If the # of neighbor
exchanges didn’t depend on the the information being broadcast, this could be done with nonblocking
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operations today. However, the runtime data dependency makes this impossible with today’s calls, without
waiting for the broadcast to complete before issuing the sendrecv calls.

7.2. Use Case #2: Asynchronously Allocate and Receive Unknown Message

This example code demonstrates receiving an unknown-sized message in the background, with the buffer
allocated asynchronously as well.

Although MPI_Iprobe and MPI_Irecv provide partial functionality needed for this use case, they can’t
provide the ‘future’ values needed (for the message size and allocated buffer), the necessary dependencies
between operations, or the asynchronous memory allocation. All of these features must be present to allow
this sequence of operations to execute independently of the application.

1 MPIX_Graph graph;
2 MPIX_Token token;
3 MPI_Request req;
4 enum {MSG_LEN, MSG_BUF_PTR}; // Graph variable IDs
5

6 // Create graph
7 MPIX_Graph_create(session, info, &graph);
8

9 // Create a reference parameter graph variable to alias the graph variable to
an application buffer pointer↪→

10 MPIX_Graph_var_create(&graph, MSG_BUF_PTR, MPIX_GRAPH_VAR_REF_PARAM,
MPI_AINT);↪→

11

12 // Create a local graph variable to hold the message size
13 MPIX_Graph_var_create(&graph, MSG_LEN, MPIX_GRAPH_VAR_LOCAL, MPI_COUNT);
14

15 // Receive the buffer size into a graph variable
16 unsigned size_recv_op_id = 0;
17 MPIX_Recv_def(MSG_LEN, 1, MPI_COUNT, MPI_ANY_SOURCE, MPI_ANY_TAG, comm,

MPI_STATUS_IGNORE, &token);↪→

18 MPIX_Graph_add(&graph, &token, &size_recv_op_id, MPIX_DEP_NONE);
19

20 // Allocate memory for the message, using the 'future' value for the message
size and returning a future for the buffer pointer↪→

21 unsigned buf_alloc_op_id = 0;
22 MPIX_Alloc_mem_def(MSG_LEN, MPI_INFO_NULL, MSG_BUF_PTR, &token);
23 MPIX_Graph_add(&graph, &token, &buf_alloc_op_id, size_recv_op_id);
24

25 // Receive the actual message
26 unsigned msg_recv_op_id = 0;
27 MPIX_Recv_def(MSG_BUF_PTR, MSG_LEN, MPI_BYTE, MPI_ANY_SOURCE, MPI_ANY_TAG,

comm, MPI_STATUS_IGNORE, &token);↪→

28 MPIX_Graph_add(&graph, &token, &msg_recv_op_id, buf_alloc_op_id);
29

30 // Alias graph parameter for message buffer to application pointer to buffer
31 void *msg_buf = NULL;
32 MPIX_Graph_set_param(&graph, MSG_BUF_PTR, &msg_buf);
33

34 // Create deferred operation token for parameterized graph
35 MPIX_Graph_def(graph, info, &token);
36

37 // Free graph
38 MPIX_Graph_free(&graph);
39
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40 // Create an [inactive] request for the graph token
41 MPIX_Execute_init(token, info, MPIX_OFFLOAD_PTHREAD, NULL, &req);
42

43 // Release token for parameterized graph
44 MPIX_Token_free(&token);
45

46 // Start execution of graph
47 MPI_Start(&req);
48

49 <compute>
50

51 // Conclude graph's operations, if it's not finished yet
52 MPI_Wait(&req, &status);
53

54 // Use the message buffer
55 <use msg_buf>

Listing 4. – Asynchronously allocate space for and receive message of unknown length

7.3. Use Case #3: Prefetch compressed data from file and broadcast to other ranks

This example code demonstrates asynchronously pre-fetching a compressed file on rank 0, decompressing it,
and broadcasting the resulting buffer to the other ranks.

This use case demonstrates the power of offloading operations to a “very smart NIC”, one which can run both
communication and I/O operations asynchronously from the application. The code below offloads file I/O,
memory allocation, invoking a user callback, and communication, allowing the application to continue to
perform computation in the foreground while all of the data movement and preparation operations for the
next timestep occur in the background.

1 MPIX_Graph graph;
2 MPIX_Token token;
3 MPI_Request req;
4 enum {FILE_NAME, BCAST_COMM, BUF_LEN, BUF_PTR, // Graph parameter variable IDs
5 FILE_HANDLE, FILE_SIZE, COMP_BUF_PTR}; // Graph variable IDs
6

7 // Create graph
8 MPIX_Graph_create(session, info, &graph);
9

10 // Create a reference parameter graph variable to hold the decompressed buffer
size and pointer↪→

11 MPIX_Graph_var_create(&graph, BUF_LEN, MPIX_GRAPH_VAR_REF_PARAM, MPI_COUNT);
12 MPIX_Graph_var_create(&graph, BUF_PTR, MPIX_GRAPH_VAR_REF_PARAM, MPI_AINT);
13

14 // Create a local graph variable to hold the communicator to use for
broadcasting data within the graph↪→

15 MPIX_Graph_var_create(&graph, BCAST_COMM, MPIX_GRAPH_VAR_LOCAL,
MPI_LOCAL_TYPE_COMM);↪→

16

17 // Rank 0 does the file I/O and bcasts the decompressed data
18 if (0 == rank) {
19 // Create a value parameter graph variable for the filename
20 MPIX_Graph_var_create(&graph, FILE_NAME, MPIX_GRAPH_VAR_VAL_PARAM,

MPI_LOCAL_TYPE_STRING);↪→

21

22 // Create a local graph variable to hold the file handle
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23 MPIX_Graph_var_create(&graph, FILE_HANDLE, MPIX_GRAPH_VAR_LOCAL,
MPI_LOCAL_TYPE_FILE);↪→

24

25 // Open the file
26 unsigned file_open_op_id = 0;
27 MPIX_File_open_def(MPI_COMM_SELF, FILE_NAME, MPI_MODE_RDONLY |

MPI_MODE_SEQUENTIAL, MPI_INFO_NULL, FILE_HANDLE, &token);↪→

28 MPIX_Graph_add(&graph, &token, &file_open_op_id, MPIX_DEP_NONE);
29

30 // Create a local graph variable to hold the file's size
31 MPIX_Graph_var_create(&graph, FILE_SIZE, MPIX_GRAPH_VAR_LOCAL, MPI_OFFSET);
32

33 // Get the file's size
34 unsigned file_size_op_id = 0;
35 MPIX_File_get_size_def(FILE_HANDLE, FILE_SIZE, &token);
36 MPIX_Graph_add(&graph, &token, &file_size_op_id, file_open_op_id);
37

38 // Create a local graph variable to hold the pointer to the buffer with
compressed data↪→

39 MPIX_Graph_var_create(&graph, COMP_BUF_PTR, MPIX_GRAPH_VAR_LOCAL, MPI_AINT);
40

41 // Allocate buffer for compressed data
42 unsigned alloc_comp_buf_op_id = 0;
43 MPIX_Alloc_mem_def(FILE_SIZE, MPI_INFO_NULL, COMP_BUF_PTR, &token);
44 MPIX_Graph_add(&graph, &token, &alloc_comp_buf_op_id, file_size_op_id);
45

46 // Read compressed data
47 unsigned file_read_op_id = 0;
48 MPIX_File_read_def(FILE_HANDLE, COMP_BUF_PTR, FILE_SIZE, MPI_BYTE,

MPI_STATUS_IGNORE, &token);↪→

49 MPIX_Graph_add(&graph, &token, &file_read_op_id, alloc_comp_buf_op_id);
50

51 // Close file
52 // NOTE: Concurrent with decompressing data
53 MPIX_File_close_def(FILE_HANDLE, &token);
54 MPIX_Graph_add(&graph, &token, NULL, file_read_op_id);
55

56 // Decompress data with user callback
57 // NOTE: Concurrent with closing the file
58 //
59 // The decompression function would look something like this:
60 // void decompress_fn(MPIX_Graph *graph, void *extra_state)
61 // {
62 // MPI_Offset compressed_size = 0;
63 // void *compressed_buf = NULL;
64 // MPI_Count decompressed_size = 0;
65 // void *decompressed_buf = NULL;
66 //
67 // MPIX_Graph_var_get(graph, FILE_SIZE, &compressed_size);
68 // MPIX_Graph_var_get(graph, COMP_BUF_PTR, &compressed_buf);
69 // <decompression routine>(/*IN:*/compressed_size, /*IN:*/compressed_buf,

/*OUT:*/&decompressed_size, /*OUT:*/&decompressed_buf);↪→

70 // MPIX_Graph_var_set(graph, BUF_LEN, &decompressed_size);
71 // MPIX_Graph_var_set(graph, BUF_PTR, &decompressed_buf);
72 // }
73 unsigned decomp_op_id = 0;
74 MPIX_Op_def(&decompress_fn, NULL, &token);
75 MPIX_Graph_add(&graph, &token, &decomp_op_id, file_read_op_id);
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76

77 // Bcast the decompressed buffer size, from rank 0
78 unsigned size_bcast_op_id = 0;
79 MPIX_Bcast_def(BUF_LEN, 1, MPI_COUNT, 0, BCAST_COMM, &token);
80 MPIX_Graph_add(&graph, &token, &size_bcast_op_id, decomp_op_id);
81

82 // Bcast the decompressed buffer, from rank 0
83 MPIX_Bcast_def(BUF_PTR, BUF_LEN, MPI_BYTE, 0, BCAST_COMM, &token);
84 MPIX_Graph_add(&graph, &token, NULL, size_bcast_op_id);
85 } // end (0 == rank)
86 else { // (0 != rank)
87 // Receive the decompressed buffer size bcast from rank 0
88 unsigned size_bcast_op_id = 0;
89 MPIX_Bcast_def(BUF_LEN, 1, MPI_COUNT, 0, BCAST_COMM, &token);
90 MPIX_Graph_add(&graph, &token, &size_bcast_op_id, MPIX_DEP_NONE);
91

92 // Allocate buffer for decompressed data
93 unsigned alloc_decomp_buf_op_id = 0;
94 MPIX_Alloc_mem_def(BUF_LEN, MPI_INFO_NULL, BUF_PTR, &token);
95 MPIX_Graph_add(&graph, &token, &alloc_decomp_buf_op_id, size_bcast_op_id);
96

97 // Receive the decompressed buffer bcast from rank 0
98 MPIX_Bcast_def(BUF_PTR, BUF_LEN, MPI_BYTE, 0, BCAST_COMM, &token);
99 MPIX_Graph_add(&graph, &token, NULL, alloc_decomp_buf_op_id);

100 } // end (0 != rank)
101

102 // Set communicator for bcast operations in graph
103 MPI_Comm graph_comm = MPI_COMM_WORLD;
104 MPIX_Graph_var_set(&graph, BCAST_COMM, &graph_comm);
105

106 // Prefetch next timestep's data from disk while current timestep is
computing↪→

107 while(<more timesteps>) {
108 // Rank 0 does the file I/O and bcasts the decompressed data
109 if (0 == rank) {
110 const char *filename = <filename for timestep 'n'>;
111 MPIX_Graph_set_param(&graph, FILE_NAME, &filename);
112 }
113

114 // Alias graph parameters for decompressed data buffer info to application
variables↪→

115 void *buf_ptr = NULL;
116 MPI_Count buf_len = 0;
117 MPIX_Graph_set_param(&graph, BUF_PTR, &buf_ptr);
118 MPIX_Graph_set_param(&graph, BUF_LEN, &buf_len);
119

120 // Create deferred operation token for parameterized graph
121 MPIX_Graph_def(graph, info, &token);
122

123 // Create an [inactive] request for the graph token
124 MPIX_Execute_init(token, info, MPIX_OFFLOAD_NITRO, NULL, &req);
125

126 // Release token for parameterized graph
127 MPIX_Token_free(&token);
128

129 // Start execution of graph
130 MPI_Start(&req);
131
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132 <compute>
133

134 // Conclude graph's operations, if it's not finished yet
135 MPI_Wait(&req, &status);
136

137 <swap data buffers for next timestep>
138 }
139

140 // Free graph
141 MPIX_Graph_free(&graph);

Listing 5. – Asynchronously prefetch a compressed file on rank 0 and broadcast the decompressed buffer to other ranks

7.4. Use Case #4: Offload Collective I/O For Writing Checkpoint File

This example code demonstrates asynchronously writing a checkpoint, using collective I/O.

This use case again shows fully overlapping I/O with compute. In particular, this example includes concur-
rently executing collective I/O operations, and using the “join” operator to create a single dependency for the
file close operation to depend on.

1 MPIX_Graph graph;
2 MPIX_Token token;
3 MPI_Request req;
4 enum {FILE_NAME, FILE_COMM, // Graph parameter variable IDs for file
5 BUF1_OFFSET, BUF1_PTR, BUF1_COUNT, BUF1_TYPE, // Graph parameter

variable IDs for buffer #1↪→

6 BUF2_OFFSET, BUF2_PTR, BUF2_COUNT, BUF2_TYPE, // Graph parameter
variable IDs for buffer #2↪→

7 BUF3_OFFSET, BUF3_PTR, BUF3_COUNT, BUF3_TYPE, // Graph parameter
variable IDs for buffer #3↪→

8 FILE_HANDLE}; // Graph local variable IDs for file
9

10 // Create graph
11 MPIX_Graph_create(session, info, &graph);
12

13 // Create a value parameter graph variable for the filename and file's
communicator↪→

14 MPIX_Graph_var_create(&graph, FILE_NAME, MPIX_GRAPH_VAR_VAL_PARAM,
MPI_LOCAL_TYPE_STRING);↪→

15 MPIX_Graph_var_create(&graph, FILE_COMM, MPIX_GRAPH_VAR_VAL_PARAM,
MPI_LOCAL_TYPE_COMM);↪→

16

17 // Create a value parameter graph variables for the three buffers to write
18 MPIX_Graph_var_create(&graph, BUF1_OFFSET, MPIX_GRAPH_VAR_VAL_PARAM,

MPI_OFFSET);↪→

19 MPIX_Graph_var_create(&graph, BUF1_PTR, MPIX_GRAPH_VAR_VAL_PARAM, MPI_AINT);
20 MPIX_Graph_var_create(&graph, BUF1_COUNT, MPIX_GRAPH_VAR_VAL_PARAM,

MPI_COUNT);↪→

21 MPIX_Graph_var_create(&graph, BUF1_TYPE, MPIX_GRAPH_VAR_VAL_PARAM,
MPI_LOCAL_TYPE_DATATYPE);↪→

22

23 MPIX_Graph_var_create(&graph, BUF2_OFFSET, MPIX_GRAPH_VAR_VAL_PARAM,
MPI_OFFSET);↪→

24 MPIX_Graph_var_create(&graph, BUF2_PTR, MPIX_GRAPH_VAR_VAL_PARAM, MPI_AINT);
25 MPIX_Graph_var_create(&graph, BUF2_COUNT, MPIX_GRAPH_VAR_VAL_PARAM,

MPI_COUNT);↪→
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26 MPIX_Graph_var_create(&graph, BUF2_TYPE, MPIX_GRAPH_VAR_VAL_PARAM,
MPI_LOCAL_TYPE_DATATYPE);↪→

27

28 MPIX_Graph_var_create(&graph, BUF3_OFFSET, MPIX_GRAPH_VAR_VAL_PARAM,
MPI_OFFSET);↪→

29 MPIX_Graph_var_create(&graph, BUF3_PTR, MPIX_GRAPH_VAR_VAL_PARAM, MPI_AINT);
30 MPIX_Graph_var_create(&graph, BUF3_COUNT, MPIX_GRAPH_VAR_VAL_PARAM,

MPI_COUNT);↪→

31 MPIX_Graph_var_create(&graph, BUF3_TYPE, MPIX_GRAPH_VAR_VAL_PARAM,
MPI_LOCAL_TYPE_DATATYPE);↪→

32

33 // Create a local graph variable to hold the file handle
34 MPIX_Graph_var_create(&graph, FILE_HANDLE, MPIX_GRAPH_VAR_LOCAL,

MPI_LOCAL_TYPE_FILE);↪→

35

36 // Create the file
37 unsigned file_create_op_id = 0;
38 MPIX_File_open_def(FILE_COMM, FILE_NAME, MPI_MODE_CREATE | MPI_MODE_RDWR,

MPI_INFO_NULL, FILE_HANDLE, &token);↪→

39 MPIX_Graph_add(&graph, &token, &file_create_op_id, MPIX_DEP_NONE);
40

41 // Collectively write all three buffers, concurrently
42 unsigned file_write_buf_op_ids[3] = {0, 0, 0};
43 MPIX_File_write_at_all_c_def(FILE_HANDLE, BUF1_OFFSET, BUF1_PTR, BUF1_COUNT,

BUF1_TYPE, MPI_STATUS_IGNORE, &token);↪→

44 MPIX_Graph_add(&graph, &token, &file_write_buf_op_ids[0], file_create_op_id);
45

46 MPIX_File_write_at_all_c_def(FILE_HANDLE, BUF2_OFFSET, BUF2_PTR, BUF2_COUNT,
BUF2_TYPE, MPI_STATUS_IGNORE, &token);↪→

47 MPIX_Graph_add(&graph, &token, &file_write_buf_op_ids[1], file_create_op_id);
48

49 MPIX_File_write_at_all_c_def(FILE_HANDLE, BUF3_OFFSET, BUF3_PTR, BUF3_COUNT,
BUF3_TYPE, MPI_STATUS_IGNORE, &token);↪→

50 MPIX_Graph_add(&graph, &token, &file_write_buf_op_ids[2], file_create_op_id);
51

52 // Create a 'join' operation ID, for all writes
53 unsigned join_writes_op_id = 0;
54 MPIX_Graph_join(&graph, 3, file_write_buf_op_ids, &join_writes_op_id);
55

56 // Close file
57 // NOTE: Depends on join of all concurrent collective writes
58 MPIX_File_close_def(FILE_HANDLE, &token);
59 MPIX_Graph_add(&graph, &token, NULL, join_writes_op_id);
60

61 // Compute, then write checkpoint, overlapped with next compute
62 boolean checkpoint_io_started = FALSE;
63 while(<more timesteps>) {
64 <compute>
65

66 // Make certain that previous checkpoint has completed
67 if (checkpoint_io_started) {
68 MPI_Wait(&req, &status);
69 checkpoint_io_started = FALSE;
70 }
71

72 // Write checkpoint
73 if (<time to make a checkpoint>) {
74 const char *filename = <checkpoint filename>;
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75 MPI_Comm file_comm = <communicator for file I/O>;
76

77 // Set filename & communicator
78 MPIX_Graph_set_param(&graph, FILE_NAME, &filename);
79 MPIX_Graph_set_param(&graph, FILE_COMM, &file_comm);
80

81 // Set buffer info
82 MPIX_Graph_set_param(&graph, BUF1_OFFSET, &buf1_off[rank]);
83 MPIX_Graph_set_param(&graph, BUF1_PTR, &buf1_ptr[rank]);
84 MPIX_Graph_set_param(&graph, BUF1_COUNT, &buf1_count[rank]);
85 MPIX_Graph_set_param(&graph, BUF1_TYPE, &buf1_type[rank]);
86

87 MPIX_Graph_set_param(&graph, BUF2_OFFSET, &buf2_off[rank]);
88 MPIX_Graph_set_param(&graph, BUF2_PTR, &buf2_ptr[rank]);
89 MPIX_Graph_set_param(&graph, BUF2_COUNT, &buf2_count[rank]);
90 MPIX_Graph_set_param(&graph, BUF2_TYPE, &buf2_type[rank]);
91

92 MPIX_Graph_set_param(&graph, BUF3_OFFSET, &buf3_off[rank]);
93 MPIX_Graph_set_param(&graph, BUF3_PTR, &buf3_ptr[rank]);
94 MPIX_Graph_set_param(&graph, BUF3_COUNT, &buf3_count[rank]);
95 MPIX_Graph_set_param(&graph, BUF3_TYPE, &buf3_type[rank]);
96

97 // Create deferred operation token for parameterized graph
98 MPIX_Graph_def(graph, info, &token);
99

100 // Create an [inactive] request for the graph token
101 MPIX_Execute_init(token, info, MPIX_OFFLOAD_NITRO, NULL, &req);
102

103 // Release token for parameterized graph
104 MPIX_Token_free(&token);
105

106 // Start execution of graph
107 MPI_Start(&req);
108

109 // Indicate that the I/O has started
110 checkpoint_io_started = TRUE;
111

112 <swap data buffers for next timestep>
113 }
114 }
115

116 // Free graph
117 MPIX_Graph_free(&graph);

Listing 6. – Asynchronously write checkpoint file with collective I/O

7.5. Use Case #5: Data Dependent Asynchronous Communication

This example code demonstrates conditionally executing communication operations, depending on data
values across the application.

This use case creates a reusable parameterized graph that is invoked to overlap with computation. It uses an
asynchronous data dependency to control execution of a sub-graph of asynchronous communication, all of
which can be offloaded or executed in the background.

Note that executing this graph is not the same as passing parameters to a subroutine in the application that
invokes asynchronous operations. Such a subroutine would need to block on the allreduce operations in order
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to compare the results. However, the ‘IfElse’ operation used in the graph is asynchronously executed in the
same manner as the asynchronous communication operations and is managed by MPI, not the application. A
similar result to the graph execution could be created by running such a subroutine in an application thread,
but that would prevent the MPI implementation from seeing the ‘big picture’ of all the planned operations
and reduce opportunities for optimizing the operations in the graph.

1 MPIX_Graph graph, subgraph;
2 MPIX_Token token;
3 MPI_Request req;
4 enum {GRAPH_COMM, VAR_A, VAR_B, SEND_BUF, RECV_BUF, // Graph parameter

variable IDs for conditional communication↪→

5 COMP_VAL}; // Graph parameter variable IDs for comparison
6

7 // Create main graph
8 MPIX_Graph_create(session, info, &graph);
9

10 // Create value parameter graph variables for graph communications
11 MPIX_Graph_var_create(&graph, GRAPH_COMM, MPIX_GRAPH_VAR_VAL_PARAM,

MPI_LOCAL_TYPE_COMM);↪→

12

13 // Create value parameter graph variables for controlling data exchange
14 MPIX_Graph_var_create(&graph, VAR_A, MPIX_GRAPH_VAR_VAL_PARAM, MPI_INT);
15 MPIX_Graph_var_create(&graph, VAR_B, MPIX_GRAPH_VAR_VAL_PARAM, MPI_INT);
16

17 // Create a value parameter graph variables for the send & recv buffers
18 MPIX_Graph_var_create(&graph, SEND_BUF, MPIX_GRAPH_VAR_VAL_PARAM, MPI_AINT);
19 MPIX_Graph_var_create(&graph, RECV_BUF, MPIX_GRAPH_VAR_VAL_PARAM, MPI_AINT);
20

21 // Concurrently perform all reduce operations on 'A' and 'B'
22 unsigned allreduce_op_ids[2];
23 MPIX_Allreduce_def(MPI_IN_PLACE, VAR_A, 1, MPI_INT, MPI_MAX, GRAPH_COMM,

&token);↪→

24 MPIX_Graph_add(&graph, &token, NULL, &allreduce_op_ids[0]);
25

26 MPIX_Allreduce_def(MPI_IN_PLACE, VAR_B, 1, MPI_INT, MPI_MAX, GRAPH_COMM,
&token);↪→

27 MPIX_Graph_add(&graph, &token, NULL, &allreduce_op_ids[1]);
28

29 // Create a 'join' operation ID, for all writes
30 unsigned join_reduces_op_id = 0;
31 MPIX_Graph_join(&graph, 2, allreduce_op_ids, &join_reduces_op_id);
32

33 // Create a reference parameter graph variable for comparison result
34 MPIX_Graph_var_create(&graph, COMP_VAL, MPIX_GRAPH_VAR_REF_PARAM, MPI_INT);
35

36 // Compare 'A' and 'B' values from allreduce operations
37 unsigned compare_op_id = 0;
38 MPIX_Graph_var_reduce(&graph, VAR_A, VAR_B, MPIX_LESS_THAN_OR_EQUAL, COMP_VAL,

&compare_op_id, join_reduces_op_id);↪→

39

40 // Create sub-graph, for if/else
41 MPIX_Graph_create(session, info, &subgraph);
42

43 // Sendrecv operation for if/else
44 MPIX_Sendrecv_def(SEND_BUF, 2, MPI_FLOAT, (rank + 1) % num_ranks, 0, RECV_BUF,

2, MPI_FLOAT, (num_ranks + (rank - 1)) % num_ranks, 0, GRAPH_COMM,
MPI_STATUS_IGNORE);

↪→

↪→

45 MPIX_Graph_add(&subgraph, &token, NULL, MPIX_DEP_NONE);
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46

47 // Execute subgraph if 'A' <= 'B'
48 MPIX_Graph_IfElse(&graph, COMP_VAL, &subgraph, MPIX_GRAPH_NULL, NULL,

compare_op_id);↪→

49

50 // Free subgraph
51 MPIX_Graph_free(&subgraph);
52

53 // Set communicator for all graph executions
54 MPI_Comm graph_comm = <communicator>;
55 MPIX_Graph_set_param(&graph, GRAPH_COMM, &graph_comm);
56

57 int comp_val = 0;
58 while(<more timesteps>) {
59 // Check results of previous timestep's graph execution
60 if (<timestep > 0>) {
61 // Make certain that graph has completed
62 MPI_Wait(&req, &status);
63

64 // Check if graph's condition was met
65 if(comp_val) {
66 <use value in recv_buf>
67 comp_val = 0;
68 }
69 }
70

71 // Application variables on each rank, for graph
72 int a = compute_a(timestep);
73 int b = compute_b(timestep);
74 float sendbuf[2], recvbuf[2];
75

76 <init sendbuf & recvbuf>
77

78 // Set parameters for graph on each rank and execute it
79 MPIX_Graph_set_param(&graph, VAR_A, &a);
80 MPIX_Graph_set_param(&graph, VAR_B, &b);
81 MPIX_Graph_set_param(&graph, SEND_BUF, &sendbuf);
82 MPIX_Graph_set_param(&graph, RECV_BUF, &recvbuf);
83 MPIX_Graph_set_param(&graph, COMP_VAL, &comp_val);
84

85 // Create deferred operation token for parameterized graph
86 MPIX_Graph_def(graph, info, &token);
87

88 // Create an [inactive] request for the graph token
89 MPIX_Execute_init(token, info, MPIX_OFFLOAD_PTHREAD, NULL, &req);
90

91 // Release token for parameterized graph
92 MPIX_Token_free(&token);
93

94 // Start execution of graph
95 MPI_Start(&req);
96

97 <compute>
98

99 }
100

101 // Check results of last timestep's graph execution
102 if (<timestep > 0 >) {



RFC-Amazon-2022-03-01.v12

103 // Make certain that graph has completed
104 MPI_Wait(&req, &status);
105

106 // Check if graph's condition was met
107 if(comp_val)
108 <use value in recv_buf>
109 }
110

111 // Free graph
112 MPIX_Graph_free(&graph);

Listing 7. – Data Dependent Asynchronous Operations
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A. Appendix: An Abstract Data Movement Machine

If there was a chip that provided “assembly” instructions that could be used to implement the MPI operations
described above, what would those instructions be?

A.1. Data Containers

A “container” is an abstraction around a particular sequence of bytes and provides the base object for data
operations.

A container is one of four things: Comment
[QK4]: Elab-
orate on
Ryan
and my
discussion
today about
these types
of memory
/ containers
being
associated
with a
process
space,
except for
storage, etc.

� Local memory – memory at this MPI process, which could be attached to a CPU, GPU, FPGA, etc.

� Remote memory – memory at another MPI process, which could (also) be attached to a CPU, GPU,
FPG, etc.

� Abstract machine memory – memory in one of the abstract ‘data movement machines’ being described

Need a
better
word than
‘abstract
machine’.
Maybe
“virtual”,
“transient”,
“tempo-
rary”,
or “in-
tragraph”
instead?

here. (More details on this type of memory are outlined below, and are called ‘variables’ there)

� Storage memory – a file on an SSD, HDD, tape, a cloud object, an RMA window, etc. This form of
memory is passive – it doesn’t have an MPI process managing it.

The virtual machine must provide mechanisms to: create new, access existing, release access to, and delete
these types of containers. (i.e. ‘create’, ‘open’, ‘close’, and ‘delete’ container operations)

A.2. Container Operations

The fundamental operations for containers in the virtual machine are abstractions for distributed “copy
data”, “reduce”, “compare”, and “synchronize”. These operations provide the core capabilities necessary to
implement MPI operations, as well as other similar data-oriented frameworks, and are described below.

A.2.1. Abstract Copy Operations

The “abstract copy” (“ACOPY”) operation copies bytes from a list of 1+ source locations to a list of 1+
destination locations. A location is defined as a tuple of {container, offset, length}. The offset and length for
a location tuple describes a byte range in a container.

The ACOPY operation copies bytes from source containers to destination containers, in the order given in
each location list. This copy operation does not require that the lengths of each byte range be equal in the
lists, only that the total number of bytes described by the source location list is equal to the total number of
bytes described by the destination location list. The ACOPY operation also does not require that byte ranges
are non-overlapping, non-repeating, or sorted in any particular order, although that might be imposed by a
higher-level abstraction layer (like MPI!).

This ACOPY operation allows for arbitrary scatter-gather operations between any type of data containers.
Again, higher-level layers (like MPI) may impose various constraints on the location lists, in order to improve
performance or other aspects of execution.
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A.2.2. Abstract Reduce Operations

Distributed arithmetic operations on data container locations are analogous to the existing MPI ‘reduce’
operation 9 . As such, any type of container (local, remote, abstract machine, or storage) may be used as
inputs to or the output from an abstract reduce (“AREDUCE”) operation:

output = reduce(op, input0, input1, ...)

Valid mathematical operations for the op in an AREDUCE operation must be both commutative and asso-
ciative. Examples include addition, multiplication, logical AND and OR, binary AND and OR, union and
intersection on sets, greatest common divisor, least common multiple, minimum, and maximum.

The AREDUCE operation allows for arbitrary reduce operations between locations in any type of data
container. Again, higher-level layers (like MPI) may impose constraints on the location of inputs, in order to
improve performance or other aspects of execution.

A.2.3. Abstract Comparison Operations

Comparison operations on container locations don’t have a direct analog to an existing MPI operation, but
are closest to a distributed consensus operation10. The abstract comparison (”ACOMPARE”) operation
takes a single primary operand (“primary”), a comparison operation (“op”), a set of n secondary operands
(“secondary0..secondaryn−1”), and a threshold value (“threshold”) as inputs and produces a boolean
output value that is true if more than threshold of the (primary, op, secondary) comparisons are true and
false if the threshold value is not reached.

output = compare(threshold, primary, op, secondary0, secondary1, ...)

Valid comparison operations for the op in an ACOMPARE operation must produce a binary true or false
value for comparing the primary operand to each of the secondary operands. Examples include ==, 6=, <
,≤, >,≥, and possibly others.

This ACOMPARE operation allows for arbitrary comparison operations between locations in any type of
memory container. Again, higher-level layers (like MPI) may impose constraints on the location of inputs, in
order to improve performance or other aspects of execution.

A.2.4. Abstract Synchronization Operations

Synchronization operations on container locations are analogous to the existing MPI ‘barrier’ operation or a
synchronous send+receive pair. Abstract synchronization (“ASYNCHRONIZE”) operations take two forms:

� Data synchronization – Synchronize 2+ processes to be certain that some/all of the processes have the
same data in a container location. 11

� Execution synchronization – Synchronize 2+ processes to be certain that some/all of the processes
have/haven’t reached the same point in executing an application. 12 Need bet-

ter word-
ing here!

Comment
[QK5]: In-
teresting
variations
on barrier
could
include: a
“threshold
barrier”
operations
(“at least
6 of ¡n¿
processes
must have
reached
this barrier
before all
process
may
proceed”),
a “timeout
barrier”
(“if all the
processes
haven’t
reached the
barrier in
¡timeout¿,
return an
error”), a
“remote
barrier”
(”process A
waits until
process B
reaches
the barrier
point,
process
B never
waits”), or
a “batching
barrier”
(“processes
are batched
into sub-
communicators
of size ¡n¿,
as they
arrive at
the barrier,
ideally
based on
hardware
topology”)

A.2.5. Constants

Constant (‘literal’) values, such as ‘3’ or ‘2.1’, can be used in the following operations:

It might
be nec-
essary to
provide
‘casts’ for
constants,
to spec-
ify their
datatype.

� ACOPY – a constant may be used as a source location.

9Note that some existing MPI operations or reduce operators must be built up from multiple ACOPY or AREDUCE operations.
MPI all-reduce and scan operations and the MPI MINLOC and MPI MAXLOC reduce operations are examples of these.

10https://en.wikipedia.org/wiki/Consensus_(computer_science)
11A pair of synchronous send+receive MPI operations is an example of data synchronization.
12The MPI ’barrier’ operation is an example of execution synchronization.

https://en.wikipedia.org/wiki/Consensus_(computer_science)
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� AREDUCE – a constant may be used as an input.

� ACOMPARE – a constant may be used as either a primary or secondary value.

Values for constants used in graph operations are captured during graph definition.

A.3. Graphs

A “virtual task graph” with an execution unit that understands dependencies between 0+ “parent” tasks and 0+
“child” tasks, along with “control flow” operations, and “virtual” memory/registers for the graph execution
unit best describes the next components of the “abstract data movement machine”.

A.3.1. Graph Task Execution Unit

The “graph task execution unit” understands the following types of “task operations” as nodes in the graph:

� Container operations – ACOPY, AREDUCE, ACOMPARE and ASYNCHRONIZE operations on
container locations, as well as container create/access/release/delete operations.

� User operation – an operation that allows an application callback as an operation in the graph.

� Subgraph operation – an entire graph as an “operation” in the current graph. Disallow
‘self’ as
valid “sub-
graph op”
for now,
but con-
sider a
mecha-
nism for
recursion
in the fu-
ture.

A.3.2. Graph Dependency Unit

The “graph dependency unit” manages dependencies between graph tasks, i.e. the edges in the graph. There
are several types of dependencies, but they fundamentally are a mechanism for ordering execution of graph
operations.

Task and Data Dependencies There are two types of dependencies for graph operations: task and data.
Tasks dependencies are explicitly created by an application, by specifying parent operations as ‘input’
dependencies for an operation, all of which must complete before the operation can be executed. Data
dependencies are indirectly created by an application, by using data or values produced by an earlier graph
operation as an input value to another operation.

Task operations (A.3.1) each have a single ‘input’ task dependency (i.e. one parent) and a single ‘output’
task depedency (i.e. one child), as shown in Fig. 1. When their input dependency has been fulfilled (i.e.
their parent task has completed), the task may be scheduled for execution. Correspondingly, when the
task completes, its output dependency is fulfilled and its child task may be scheduled for execution. More
complicated dependencies between graph tasks can be constructed with “organizational” dependencies,
described below.

Each task operation may also have 0+ input data dependencies and 0+ output data dependencies. Data
dependencies are implicitly created between operations when data or values produced by one operation (i.e.
a return value or an “out” parameter) is consumed by another operation (i.e. used as an “in” or “in/out”
parameter). There are two kinds of data dependencies:

� Strong data dependencies – provide or create access to a container (i.e. a file handle, memory buffer,
etc) and can be represented as a “future” value.

� Weak data dependencies – access or modification of the contents of container (i.e. ACOPY, AREDUCE,
ACOMPARE or ASYNCHRONIZE operations on locations within a container).

Strong data dependencies can be reliably tracked between task operations, therefore a dependency between
the operation that generates a future value and any operations that use that value doesn’t need to be explicitly
defined by an application. However, weak dependencies can have ambiguous ordering that only an application
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T

1 Parent

1 Child
Figure 1 – Task dependencies

programmer understands. Operations that rely on ordered access to or modification of the contents of a
container must therefore explicitly define that ordering with task or organizational dependencies between the
operations.

Organizational Dependencies “Organizational” dependencies don’t actually perform any work, they
just provide “connections” in the graph to indicate and manage ordering of task operations. The graph
dependency unit understands the following types of organizational dependencies:

� Unconditional dependencies – Unconditional dependencies connect 0+ input dependencies (“parents”)
to 0+ output dependencies (“children”) without regard to any other state for the graph. All of the input
dependencies for an unconditional organizational operation (if any are defined) must complete before
any of the output dependencies may start execution. The general form of an unconditional dependency
is represented in Fig. 2.

Gen

0+ Parents

0+ Children
Figure 2 – General form of unconditional organizational graph dependencies

Common specialized forms of unconditional dependencies are root, fan-in, fan-out, and leaf, as shown
in Fig. 3.

� Conditional dependencies – Conditional dependencies connect 0+ input dependencies (“parents”) to 0+
output dependencies (“children”) and have a condition that must be met to fulfill the output dependency.
Two forms of conditional organizational dependencies are:
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Root Dependency

Rt
0 Parents

1 Child

Fan-In Dependency

Fi

1+ Parents

1 Child
Fan-Out Dependency

Fo

1 Parent

1+ Children

Leaf Dependency

Lf

1 Parent

0 Children

Figure 3 – Common forms of unconditional organizational graph dependencies
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– Consensus dependencies – Consensus dependencies are fulfilled when a (user-defined) threshold
of their input dependencies are fulfilled, providing a “some but not all” or “enough” form of
dependency, represented in Fig. 4. Comment

[QK6]: Should
the thresh-
old be
constant
or allowed
to depend
on a graph
variable?Threshold

1+ Parents

1 Child
Figure 4 – Threshold organizational graph dependency

– Branch dependencies – Branch dependencies connect a different output dependency to an input
dependency, depending on the state of a graph variable, as shown in Fig. 5.

Note that a graph variable is examined within the branch dependency, which could have weak data
dependencies on other concurrently executing operations in the graph that create race conditions
when the graph is executed. Application developers can use other organizational dependencies as
preludes to the branch dependency to eliminate such race conditions.

If / Else

1 Parent

FT

1 Child 1 Child
Figure 5 – Branch organizational graph dependency

Graph Control Flow “Control flow” operations also don’t perform any work, they just indicate the next
task to execute, as if the destination of the control flow operation was a child dependency of another operation.
However, control flow operations don’t create “full” dependencies in the graph – they are child dependencies
of their parent task, but not parent dependencies of their destination task. Control flow operations act similar
to a ‘goto’ operation in a traditional programming language and are shortened to the ‘AGOTO’ mnemonic in
this document and drawn in diagrams as shown in Fig. 6.

The destination of a control flow operation must be a task where all of the destination task’s descendants
(children, grandchildren, etc) only have parent dependencies that can be traced to the destination task. For
example, in Fig. 7, tasks ‘A’, ‘B’, and ‘C’ in the top row are not valid destination tasks, but task ‘D’ in the
middle row is, as are tasks ‘E’, ‘F’, and ‘G’ in the bottom two rows.

Infinite loops are possible with AGOTO operations, but can be interrupted by a ‘cancel’ operation on the
graph when it is executing.
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Go

1 Parent

1 Destination
Figure 6 – Control flow operation
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‘A’ ‘B’

‘D’

‘E’ ‘F’

‘G’

‘C’

Fo

Figure 7 – Example graph for control flow destinations
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A.3.3. Graph Construction Rules

Any combination of tasks and organizational dependencies is allowed. Tasks can be connected directly
together, as shown in Fig. 8, organizational dependencies can be connected directly together, as shown in Fig.
9, and they can be combined, as shown in Fig. 10.

Tasks, organizational dependencies, and control flow operations can be combined to make data-dependent
loop structures in a graph, as shown in Fig. 11.

Tasks, organizational dependencies, subgraphs, and control flow operations can be combined to make complex
nested graphs, as shown in Fig. 12.

T

T

T

Figure 8 – Connecting multiple task dependencies

A.3.4. Graph Variables

“Graph variables” fill the role of registers and memory for the graph execution virtual machine.

There are three types of graph variables:

� Value parameter variable – a variable that is initialized with a value when the graph starts execution.

� Reference parameter variable – a variable that is an alias for another container location, set when the
graph starts execution.

� Local variable – a variable that is initialized to “all zeroes” when the graph starts execution, and is not
aliased to a container location.
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Fi

Fo

If / Else
FT

Figure 9 – Connecting multiple organizational dependencies

Variables may be declared at any point during a graph’s definition, but assignments for all value or reference
parameter variables defined anywhere in the graph must be provided at the time when the graph starts
execution. The MPI

API will
need to
provide
a way
to pro-
vide val-
ues/assign
references
to parame-
ters when
a graph is
executed.

See if it’s
possible
to support
“string”
types.

The following operations are defined for graph variables:

� Definition – declaring a graph variable. Variables are not explicitly deleted, but any resources associated
with them are released when a graph terminates.

� ACOPY – a graph variable is a valid container location as the source or destination for ACOPY
operations.

� AREDUCE – a graph variable is valid for both input and output locations for AREDUCE operations.

� ACOMPARE – a graph variable is valid for both primary and secondary locations for ACOMPARE
operations.

� ASYNCHRONIZE – a graph variable is valid for data synchronization ASYNCHRONIZE operations.

‘Set’ or ‘get’ operations on graph variables are ACOPY operations between a graph virtual machine container
and another location. If the value of a value parameter or local variable is to be retained after its graph
terminates, the value must be ACOPY’d from the graph variable before graph termination.

A.4. Streams

A “virtual task stream” with an execution unit that understands asynchronous execution of an ordered
sequence of operations, and “virtual” memory/registers for the stream execution unit best describes the next
component of the “abstract data movement machine”.
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Figure 10 – Combining task and organizational dependencies

A.4.1. Stream Task Execution Unit

Streams operate as FIFO queues to execute operations, similar to a conveyor belt: the first operation in a
stream executes to completion and is removed from the stream, then the following operation can be scheduled
for execution. The “stream task execution unit” understands the following types of “task operations” as
‘nodes’ in an ordered sequence:

� Container operations – ACOPY, AREDUCE, ACOMPARE and ASYNCHRONIZE operations on
container locations, as well as container create/access/release/delete operations.

� User operation – an operation that allows an application callback as an operation in the stream.

� Subgraph operation – an entire graph as an “operation” in the current stream. Disallow
nesting
‘sub-
streams’
for now,
but con-
sider in
the future.

A.4.2. Stream Construction Rules

Any combination of tasks and sub-graphs is allowed. Tasks can be inserted as operations in the stream, as
shown in Fig. 13 and sub-graphs can be inserted as stream operations as well, as shown in Fig. 14.

A.4.3. Stream Variables

“Stream variables” fill the role of registers and memory for the stream execution virtual machine and are
identical to the graph variables defined in section A.3.4 except that they are defined for a stream, not a graph.

Comment
[QK7]: Not
certain it
makes
sense to
have vari-
ables for
streams.
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Figure 11 – Combining tasks, organizational dependencies, and control flow operations to create loop in graph
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Figure 12 – Combining tasks, organizational dependencies, and sub-graphs
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Figure 13 – Tasks in a stream
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Figure 14 – Tasks and sub-graphs in a stream
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A.5. Scopes
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B. Appendix: Comparison to proposed Continuations and MPIX Stream
extensions

At first glance, the capabilities described in this document appear similar to the proposed “Continuations”
and “MPIX Stream” extensions.. Add

bibrefs
for these

Continuations allow a user callback to be attached to an nonblocking MPI operation. Then the continuation
callback is invoked when the nonblocking operation completes. Although the capabilities described in
this document do include an asynchronous user callback, they are not directly comparable with the user
callbacks described in this document. A continuation callback could be executed as part of the progress
engine, unless they are explicitly excluded and require that the MPI implementation invoke it when the test
or wait operation is performed on a request. However, the user callbacks described in this document are
standalone asynchronous operations, fully integrated into the flow of other asynchronous communication and
I/O operations.

The MPIX Stream extensions overlaps some of the ideas presented here, in the area of scheduling operations.
However, they are mainly focused on enabling communication with compute endpoints on GPUs and similar
hardware components. The asynchronous operations described in this document are essentially orthogonal to
them, and both extensions can be integrated into the MPI standard without conflict.
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C. Appendix: What this proposal is not

Although the capabilities described here may operate best with an MPI implementation that executes them
with a background thread or on dedicated hardware, that is not a requirement. The capabilities described here
will operate correctly with the typical ‘weak’ progress model for MPI, just not as efficiently as if they were
executing with ‘strong’ progress. If threads or hardware offload are not used, the ‘asynchronous” operations
described here may be implemented in the same way as the “nonblocking” operations are currently.

The operations described here are also not designed to provide the capabilities of a computationally-focused
task execution framework such as CUDA, etc. Although a call to asynchronously execute an application-
provided callback function is provided, it is intended as an “escape hatch” mechanism for short-running
operations.

Likewise, the asynchronous operations described here are primarily data movement operations that have
minimal performance impact on an application’s execution time. A high-quality implementation will schedule
asynchronous data movement operations quickly and give up the CPU as soon as possible.
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D. Appendix: Details for Asynchronous Operations Option #2
Add de-
tails from
lab note-
book here.
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