Original text from MPI-3.1

3.2. BLOCKING SEND AND RECEIVE OPERATIONS 25

3.2.2 Message Data

The send buffer specified by the MPI_SEND operation consists of count successive entries of
the type indicated by datatype, starting with the entry at address buf. Note that we specify
the message length in terms of number of elements, not number of bytes. The former is
machine independent and closer to the application level.

The data part of the message consists of a sequence of count values, each of the type
indicated by datatype. count may be zero, in which case the data part of the message is
empty. The basic datatypes that can be specified for message data values correspond to the
basic datatypes of the host language. Possible values of this argument for Fortran and the
corresponding Fortran types are listed in Table 3.1.

MPI datatype Fortran datatype
MPI_INTEGER INTEGER
MPI_REAL REAL
MPI_DOUBLE_PRECISION | DOUBLE PRECISION
MPI_COMPLEX COMPLEX
MPI_LOGICAL LOGICAL
MPI_CHARACTER CHARACTER (1)
MPI_BYTE

MPI_PACKED

Table 3.1: Predefined MPI datatypes corresponding to Fortran datatypes

Possible values for this argument for C and the corresponding C types are listed in
Table 3.2.

The datatypes MPI_BYTE and MPI_PACKED do not correspond to a Fortran or C
datatype. A value of type MPI_BYTE consists of a byte (8 binary digits). A byte is
uninterpreted and is different from a character. Different machines may have different
representations for characters, or may use more than one byte to represent characters. On
the other hand, a byte has the same binary value on all machines. The use of the type
MPI_PACKED is explained in Section 4.2.

MPI requires support of these datatypes, which match the basic datatypes of Fortran
and ISO C. Additional MPI datatypes should be provided if the host language has additional
data types: MPI_DOUBLE_COMPLEX for double precision complex in Fortran declared
to be of type DOUBLE COMPLEX; MPI_REAL2, MPI_REAL4, and MPI_REALS8 for Fortran
reals, declared to be of type REAL*2, REAL*4 and REAL*8, respectively; MPI_INTEGER1,
MPI_INTEGER2, and MPI_INTEGER4 for Fortran integers, declared to be of type
INTEGER*1, INTEGER#*2, and INTEGER#*4, respectively; etc.

Rationale. One goal of the design is to allow for MPI to be implemented as a
library, with no need for additional preprocessing or compilation. Thus, one cannot
assume that a communication call has information on the datatype of variables in the
communication buffer; this information must be supplied by an explicit argument.
The need for such datatype information will become clear in Section 3.3.2. (End of
rationale.)

The datatypes MPI_AINT, MPI_OFFSET, and MPI_COUNT correspond to the MPI-
defined C types MPI_Aint, MPI_Offset, and MPI_Count and their Fortran equivalents

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

© 4] ~ =] [oy) - w [-

[[[e~ =~ > -~ [w w w w w w w w w w [[V M [N) [V N [V [= = [= = = = [[=
~ =] (o)) - w N - o © oo ~ [=2] ot [w N - o © oo ~ (=] a - w %) - (=) © oo ~ (=2} ot = w [- o

'S
oo

26

INTEGER (KIND=MPI_ADDRESS_KIND), INTEGER (KIND=MPI_OFFSET_KIND), and INTEGER
(KIND=MPI_COUNT_KIND) . This is described in Table 3.3. All predefined datatype handles
are available in all language bindings. See Sections 17.2.6 and 17.2.10 on page 658 and 666

CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI datatype C datatype
MPI_CHAR char
(treated as printable character)
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int

MPI_LONG_LONGL_INT
MPI_LONG_LONG (as a synonym)
MPI_SIGNED_CHAR

MPI_UNSIGNED_CHAR

MPI_UNSIGNED_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_UNSIGNED_LONG_LONG
MPI_FLOAT

MPI_DOUBLE
MPI_LONG_DOUBLE
MPI_WCHAR

MPI_C_BOOL
MPI_INT8_T
MPI_INT16_T
MPI_INT32_T
MPI_INT64_T
MPI_UINT8_T
MPI_UINT16_T
MPI_UINT32_T
MPI_UINT64_T
MPI_C_COMPLEX

MPI_C_FLOAT_COMPLEX (as a synonym)

MPI_C_DOUBLE_COMPLEX
MPI_C_LONG_DOUBLE_COMPLEX
MPI_BYTE

MPI_PACKED

signed long long int
signed long long int
signed char
(treated as integral value)
unsigned char
(treated as integral value)
unsigned short int
unsigned int

unsigned long int
unsigned long long int
float

double

long double

wchar_t
(defined in <stddef .h>)
(treated as printable character)
_Bool

int8_t

intl16_t

int32_t

int64_t

uint8_t

uintl6_t

uint32_t

uint64_t

float _Complex

float _Complex

double _Complex

long double _Complex

Table 3.2: Predefined MPI datatypes corresponding to C datatypes

for information on interlanguage communication with these types.

supported in C and Fortran.

If there is an accompanying C++ compiler then the datatypes in Table 3.4 are also

3.2. BLOCKING SEND AND RECEIVE OPERATIONS 27

MPI datatype | C datatype | Fortran datatype

MPI_AINT MPI_Aint INTEGER (KIND=MPI_ADDRESS_KIND)
MPI_OFFSET | MPI_Offset | INTEGER (KIND=MPI_OFFSET_KIND)
MPI_COUNT MPI_Count INTEGER (KIND=MPI_COUNT_KIND)

Table 3.3: Predefined MPI datatypes corresponding to both C and Fortran datatypes

MPT datatype C++ datatype
MPI_CXX_BOOL bool
MPI_CXX_FLOAT_COMPLEX std::complex<float>
MPI_CXX_DOUBLE_COMPLEX std::complex<double>
MPI_CXX_LONG_DOUBLE_COMPLEX | std::complex<long double>

Table 3.4: Predefined MPI datatypes corresponding to C++ datatypes

3.2.3 Message Envelope

In addition to the data part, messages carry information that can be used to distinguish
messages and selectively receive them. This information consists of a fixed number of fields,
which we collectively call the message envelope. These fields are

source
destination
tag
communicator

The message source is implicitly determined by the identity of the message sender. The
other fields are specified by arguments in the send operation.

The message destination is specified by the dest argument.

The integer-valued message tag is specified by the tag argument. This integer can be
used by the program to distinguish different types of messages. The range of valid tag
values is 0, . .., UB, where the value of UB is implementation dependent. It can be found by
querying the value of the attribute MPI_TAG_UB, as described in Chapter 8. MPI requires
that UB be no less than 32767.

The comm argument specifies the communicator that is used for the send operation.
Communicators are explained in Chapter 6; below is a brief summary of their usage.

A communicator specifies the communication context for a communication operation.
Each communication context provides a separate “communication universe”: messages are
always received within the context they were sent, and messages sent in different contexts
do not interfere.

The communicator also specifies the set of processes that share this communication
context. This process group is ordered and processes are identified by their rank within
this group. Thus, the range of valid values for dest is 0, ..., n—1U{MPI_PROC_NULL}, where
n is the number of processes in the group. (If the communicator is an inter-communicator,
then destinations are identified by their rank in the remote group. See Chapter 6.)

A predefined communicator MPI_COMM_WORLD is provided by MPI. It allows com-
munication with all processes that are accessible after MPI initialization and processes are
identified by their rank in the group of MPI_COMM_WORLD.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

674

ANNEX A. LANGUAGE BINDINGS SUMMARY

Named Predefined Datatypes

Fortran types

C type: MPI_Datatype
Fortran type: INTEGER
or TYPE(MPI_Datatype)

MPI_INTEGER
MPI_REAL
MPI_DOUBLE_PRECISION
MPI_COMPLEX
MPI_LOGICAL
MPI_CHARACTER
MPI_AINT
MPI_COUNT
MPI_OFFSET
MPI_BYTE
MPI_PACKED

INTEGER

REAL

DOUBLE PRECISION

COMPLEX

LOGICAL

CHARACTER (1)

INTEGER (KIND=MPI_ADDRESS_KIND)
INTEGER (KIND=MPI_COUNT_KIND)
INTEGER (KIND=MPI_OFFSET_KIND)
(any Fortran type)

(any Fortran type)

Named Predefined Datatypes' | C++ types

C type: MPI_Datatype
Fortran type: INTEGER
or TYPE(MPI_Datatype)

MPI_CXX_BOOL
MPI_CXX_FLOAT_COMPLEX
MPI_CXX_DOUBLE_COMPLEX

bool
std::complex<float>
std: :complex<double>

MPI_CXX_LONG_DOUBLE_COMPLEX | std::complex<long double>

LIf an accompanying C++ compiler is missing, then the
MPI datatypes in this table are not defined.

Optional datatypes (Fortran) | Fortran types

C type: MPI_Datatype
Fortran type: INTEGER
or TYPE(MPI_Datatype)

MPI_DOUBLE_COMPLEX

MPI_INTEGER1
MPI_INTEGER2
MPI_INTEGER4
MPI_INTEGERS
MPI_INTEGER16
MPI_REAL2
MPI_REAL4
MPI_REALS
MPI_REAL16
MPI_COMPLEX4
MPI_COMPLEXS
MPI_COMPLEX16
MPI_COMPLEX32

DOUBLE COMPLEX
INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
INTEGER*16
REALx*2
REAL*4
REALx*8
REAL*16
COMPLEX*4
COMPLEX*8
COMPLEX*16
COMPLEX*32

New / proposed text

Tables and text have been moved
around.

The modified text has
been colored red, but the text
movement has not been specifically
annotated — compare it to the
original 3.1 text to see the
movement.

3.2. BLOCKING SEND AND RECEIVE OPERATIONS 25

3.2.2 Message Data

The send buffer specified by the MPI_SEND operation consists of count successive entries of
the type indicated by datatype, starting with the entry at address buf. Note that we specify
the message length in terms of number of elements, not number of bytes. The former is
machine independent and closer to the application level.

The data part of the message consists of a sequence of count values, each of the type
indicated by datatype. count may be zero, in which case the data part of the message is
empty. The basic datatypes that can be specified for message data values correspond to
the basic datatypes of the host language. Possible values of this argument for C and the
corresponding C types are listed in Table 3.1.

If there is an accompanying Fortran compiler, then the datatypes in Table 3.2 are also
supported.

Similarly, if there is an accompanying C++ compiler, then the datatypes in Table 3.3
are also supported.

The datatypes MPI_BYTE and MPI_PACKED do not correspond to a Fortran or C
datatype. A value of type MPI_BYTE consists of a byte (8 binary digits). A byte is
uninterpreted and is different from a character. Different machines may have different
representations for characters, or may use more than one byte to represent characters. On
the other hand, a byte has the same binary value on all machines. The use of the type
MPI_PACKED is explained in Section 4.2.

MPI requires support of these datatypes, which match the basic datatypes of ISO C
and, if an accompanying compiler is available, Fortran. Additional MPI datatypes should
be provided if the host language has additional data types: MPI_DOUBLE_COMPLEX for
double precision complex in Fortran declared to be of type DOUBLE COMPLEX; MPI_REAL?2,
MPI_REAL4, and MPI_REALS for Fortran reals, declared to be of type REAL*2 REAL*4 and
REAL*8, respectively; MPI_INTEGER1, MPI_INTEGER2, and MPI_INTEGER4 for Fortran
integers, declared to be of type INTEGER*1, INTEGER*2, and INTEGER*4, respectively; etc.

Rationale. One goal of the design is to allow for MPI to be implemented as a
library, with no need for additional preprocessing or compilation. Thus, one cannot
assume that a communication call has information on the datatype of variables in the
communication buffer; this information must be supplied by an explicit argument.
The need for such datatype information will become clear in Section 3.3.2. (End of
rationale.)

The datatypes MPI_AINT, MPI_OFFSET, and MPI_COUNT correspond to the MPI-
defined C types MPI_Aint, MPI_Offset, and MPI_Count and their Fortran equivalents
INTEGER (KIND=MPI_ADDRESS_KIND), INTEGER (KIND=MPI_OFFSET_KIND), and
INTEGER (KIND=MPI_COUNT_KIND) . This is described in Table 3.4. All supported prede-
fined datatype handles are available in all supported language bindings. See Sections 17.2.6
and 17.2.10 on page 658 and 666 for information on interlanguage communication with
these types.

3.2.3 Message Envelope

In addition to the data part, messages carry information that can be used to distinguish
messages and selectively receive them. This information consists of a fixed number of fields,
which we collectively call the message envelope. These fields are

Unofficial Draft for Comment Only

1 ticketJMS.
., ticketJMS.
12

15 ticketJMS.
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38

* ticketJMS.
* ticket JMS.

41
42
43
44
45
46
47

48

© 4] ~ =] [oy) - w [-

> [[e~ =~ > -~ [w w w w w w w w w w [[V M [N) [V N [V [= = [= = = = [[=
~ =] (o)) - w N - o © oo ~ [=2] ot [w N - o © oo ~ (=] a - w %) - (=) © oo ~ (=2} ot = w [- o

'S
oo

26 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_LONG_LONGL_INT
MPI_LONG_LONG (as a synonym)
MPI_SIGNED_CHAR

MPI_UNSIGNED_CHAR

MPI_UNSIGNED_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_UNSIGNED_LONG_LONG
MPI_FLOAT

MPI_DOUBLE
MPI_LONG_DOUBLE
MPI_WCHAR

MPI_C_BOOL

MPI_INT8_T

MPI_INT16_T

MPI_INT32_T

MPI_INT64_T

MPI_UINT8_T

MPI_UINT16_T

MPI_UINT32_T

MPI_UINT64_T

MPI_C_COMPLEX
MPI_C_FLOAT_COMPLEX (as a synonym)
MPI_C_DOUBLE_COMPLEX
MPI_C_LONG_DOUBLE_COMPLEX
MPI_BYTE

MPI_PACKED

MPI datatype C datatype
MPI_CHAR char
(treated as printable character)
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int

signed long long int
signed long long int
signed char
(treated as integral value)
unsigned char
(treated as integral value)
unsigned short int
unsigned int

unsigned long int
unsigned long long int
float

double

long double

wchar_t
(defined in <stddef .h>)
(treated as printable character)
_Bool

int8_t

intl16_t

int32_t

int64_t

uint8_t

uintl6_t

uint32_t

uint64_t

float _Complex

float _Complex

double _Complex

long double _Complex

Table 3.1: Predefined MPI datatypes corresponding to C datatypes

source
destination
tag

communicator

The message source is implicitly determined by the identity of the message sender. The

other fields are specified by arguments in the send operation.

Unofficial Draft for Comment Only

3.2. BLOCKING SEND AND RECEIVE OPERATIONS 27

MPI datatype Fortran datatype
MPI_INTEGER INTEGER
MPI_REAL REAL
MPI_DOUBLE_PRECISION | DOUBLE PRECISION
MPI_COMPLEX COMPLEX
MPI_LOGICAL LOGICAL
MPI_CHARACTER CHARACTER (1)
MPI_BYTE

MPI_PACKED

Table 3.2: Predefined MPI datatypes corresponding to Fortran datatypes

MPI datatype C++ datatype
MPI_CXX_BOOL bool
MPI_CXX_FLOAT_COMPLEX std::complex<float>
MPI_CXX_DOUBLE_COMPLEX std::complex<double>
MPI_CXX_LONG_DOUBLE_COMPLEX | std::complex<long double>

Table 3.3: Predefined MPI datatypes corresponding to C++ datatypes

The message destination is specified by the dest argument.

The integer-valued message tag is specified by the tag argument. This integer can be
used by the program to distinguish different types of messages. The range of valid tag
values is 0, ..., UB, where the value of UB is implementation dependent. It can be found by
querying the value of the attribute MPI_TAG_UB, as described in Chapter 8. MPI requires
that UB be no less than 32767.

The comm argument specifies the communicator that is used for the send operation.
Communicators are explained in Chapter 6; below is a brief summary of their usage.

A communicator specifies the communication context for a communication operation.
Fach communication context provides a separate “communication universe”: messages are
always received within the context they were sent, and messages sent in different contexts
do not interfere.

The communicator also specifies the set of processes that share this communication
context. This process group is ordered and processes are identified by their rank within
this group. Thus, the range of valid values for dest is 0, ...,n—1U{MPI_PROC_NULL}, where
n is the number of processes in the group. (If the communicator is an inter-communicator,
then destinations are identified by their rank in the remote group. See Chapter 6.)

A predefined communicator MPI_COMM_WORLD is provided by MPI. It allows com-
munication with all processes that are accessible after MPI initialization and processes are
identified by their rank in the group of MPI_COMM_WORLD.

Advice to users. Users that are comfortable with the notion of a flat name space
for processes, and a single communication context, as offered by most existing com-
munication libraries, need only use the predefined variable MPI_COMM_WORLD as the
comm argument. This will allow communication with all the processes available at
initialization time.

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

48

28

CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI datatype | C datatype | Fortran datatype

MPI_AINT MPI_Aint INTEGER (KIND=MPI_ADDRESS_KIND)
MPI_OFFSET | MPI_Offset | INTEGER (KIND=MPI_OFFSET_KIND)
MPI_COUNT MPI_Count INTEGER (KIND=MPI_COUNT_KIND)

Table 3.4: Predefined MPI datatypes corresponding to both C and Fortran datatypes

Users may define new communicators, as explained in Chapter 6. Communicators
provide an important encapsulation mechanism for libraries and modules. They allow
modules to have their own disjoint communication universe and their own process
numbering scheme. (End of advice to users.)

Advice to implementors. The message envelope would normally be encoded by a
fixed-length message header. However, the actual encoding is implementation depen-
dent. Some of the information (e.g., source or destination) may be implicit, and need
not be explicitly carried by messages. Also, processes may be identified by relative
ranks, or absolute ids, etc. (End of advice to implementors.)

3.2.4 Blocking Receive

The syntax of the blocking receive operation is given below.

MPI_RECV (buf, count, datatype, source, tag, comm, status)

ouT buf initial address of receive buffer (choice)
IN count number of elements in receive buffer (non-negative in-
teger)
IN datatype datatype of each receive buffer element (handle)
IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
ouT status status object (Status)
int MPI_Recv(void* buf, int count, MPI_Datatype datatype, int source,

MPI_

MPI_

int tag, MPI_Comm comm, MPI_Status *status)

Recv(buf, count, datatype, source, tag, comm, status, ierror)

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count, source, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)
<type> BUF (%)

Unofficial Draft for Comment Only

10

11

12

13

14

15

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

674 ANNEX A. LANGUAGE BINDINGS SUMMARY

Named Predefined Datatypes ‘[ticketJl\/IS.]1 Fortran types

C type: MPI_Datatype
Fortran type: INTEGER
or TYPE(MPI_Datatype)

MPI_INTEGER
MPI_REAL
MPI_DOUBLE_PRECISION
MPI_COMPLEX
MPI_LOGICAL
MPI_CHARACTER
MPI_AINT
MPI_COUNT
MPI_OFFSET
MPI_BYTE
MPI_PACKED

INTEGER

REAL

DOUBLE PRECISION

COMPLEX

LOGICAL

CHARACTER (1)

INTEGER (KIND=MPI_ADDRESS_KIND)
INTEGER (KIND=MPI_COUNT_KIND)
INTEGER (KIND=MPI_OFFSET_KIND)
(any Fortran type)

(any Fortran type)

[ticketJMS.]! If an accompanying Fortran compiler is missing, then the
[ticketJMS.] MPI datatypes in this table are not defined.

Named Predefined Datatypes' | C++ types
C type: MPI_Datatype

Fortran type: INTEGER

or TYPE(MPI_Datatype)

MPI_CXX_BOOL bool

MPI_CXX_FLOAT_COMPLEX
MPI_CXX_DOUBLE_COMPLEX
MPI_CXX_LONG_DOUBLE_COMPLEX

std::complex<float>
std: :complex<double>
std::complex<long double>

L If an accompanying C++ compiler is missing, then the
MPI datatypes in this table are not defined.

Unofficial Draft for Comment Only

A.1. DEFINED VALUES AND HANDLES

Optional datatypes (Fortran) ‘[ticketJl\/[S.]1

Fortran types

C type: MPI_Datatype
Fortran type: INTEGER
or TYPE(MPI_Datatype)

MPI_DOUBLE_COMPLEX
MPI_INTEGER1
MPI_INTEGER2
MPI_INTEGER4
MPI_INTEGERS
MPI_INTEGER16
MPI_REAL2
MPI_REAL4
MPI_REALS
MPI_REAL16
MPI_COMPLEX4
MPI_COMPLEXS
MPI_COMPLEX16
MPI_COMPLEX32

DOUBLE COMPLEX
INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
INTEGER*16
REAL*2
REAL*4
REAL*8
REAL*16
COMPLEX*4
COMPLEX*8
COMPLEX*16
COMPLEX*32

[ticketJMS.]! If an accompanying Fortran compiler is missing, then the

[ticketJMS.] MPI datatypes in this table are not defined.

Datatypes for reduction functions (C)

C type: MPI_Datatype

Fortran type: INTEGER or TYPE(MPI_Datatype)

MPI_FLOAT_INT
MPI_DOUBLE_INT
MPI_LONG_INT
MPI_2INT
MPI_SHORT_INT
MPI_LONG_DOUBLEL_INT

Datatypes for reduction functions (Fortran)

C type: MPI_Datatype

Fortran type: INTEGER or TYPE(MPI_Datatype)

MPI_2REAL
MPI_2DOUBLE_PRECISION
MPI_2INTEGER

Reserved communicators

C type: MPI_Comm

Fortran type: INTEGER or TYPE(MPI_Comm)

MPI_COMM_WORLD
MPI_COMM_SELF

Communicator split type constants

C type: const int (or unnamed enum)

Fortran type: INTEGER

MPI_COMM_TYPE_SHARED

Unofficial Draft for Comment Only

675

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

