-

T e\

\ ! \l ‘ "
' v

AR ¢

i‘\\%

NVIDIA.
i A \
. - " v »

_
\e _

~EXPERIENCES WITH MPI RMA AS A FOUNDATIONAL-COMMUNICATION

ABSTRACTION FOR ONE-SIDED PROGRAMMING MODELS
JEFF HAMMOND, PRINCIPAL ENGINEER

OUTLINE

Background on MPI-3 RMA

Summary of efforts to use MPI-3 RMA

Overview of ARMCI-MPI

Overview of OSHMPI v1

My thoughts on the past, present and future of RMA

MOTIVATION FOR USING MPI

| don't always compute In parallel

Most programmers have better things to
do than debug runtime system issues.
HPC ubiquity requires things to just work.

Complex software needs a language-
agnostic* and language-interoperable
programming model / runtime.

Very few HPC applications bottleneck in
communication, so compromising on
performance to get portability is a good
idea.

* C/C++, Fortran (3x), Python, C++, Java, C#, D, Go, Perl,
Ruby, Rust, Julia, Ocaml, Haskell, Pascal, Ada, ..., but but when | do, | prefer MPI.
apparently not COBOL.

NVIDIA.

HISTORICAL CONTEXT

* Prior to MPI-3, there was a lot of debate about
MPI versus PGAS, which was a two-sided versus
one-sided debate.

* MP| Forum aspired to make MPI-3 RMA suitable
for use in the following:

* SHMEM
» Global Arrays (or ARMCI)

» Fortran coarrays
- UPC

* MPl RMA working group aspired to make RMA
suitable for use on the following:

» Bad networks
* Good networks
* Imaginary networks

'y
-
, —

<X NVIDIA.

STATUS OF RMA USAGE (INCOMPLETE)

Model Project Status

Global Arrays ARMCI-MPI In production for NWChem
OpenSHMEM OSHMPI Useful for research, SMPs
OpenSHMEM OSHMPI v2 OpenSHMEM 1.4 compliant
Fortran coarrays OpenCoarrays GCC 5+

Fortran coarrays

Intel Fortran

Supported in releases since ~2015

Fortran coarrays CAF 2.0 Published

UPC GUPC Evaluated but not using
Grappa Grappa Prod. w/ P2P+NBC, no RMA
HPX HPX Production w/ P2P, no RMA
Chapel Chapel Discussed

6
NVIDIA.

Supporting the Global Arrays PGAS Model Using MPI One-Sided Communication

James Dinan, Pavan Balaji, Sriram Krishnamoorthy Vinod Tipparaju
Jetf R. Hammond Pacific Northwest National Laboratory IEEE Member?
Argonne National Laboratory sriram@ pnnl.gov tipparajuv@ieee.org
{dinan,balaji,jhammond} @anl.gov

ARMCI MPI-2 RMA
No handles for data, just pointers Opaque handles for data (windows)
Sequential consistency to same RMA operations unordered
location
Separate local and remote Local=remote completion
completion
Nonblocking RMA Nonblocking essentially impossible
Atomic operations No atomic operations

Asynchronous progress guarantee No asynchronous progress guarantee

NVIDIA.

Blue Gene/P Cray XT5

ARMCI-MP| CCSD === ARMCI-MP| CCSD ==

CCSD Time (min)

....... ¢ ... ARMCI-Native CCSD ==t==x ARMCI-Native CCSD ==#==- . Native = ~1 year
c
£
O
£
|_
a
%,
@,
@,
0 256 512 768 1024 0 2048 4096 6144 8192 10240 12288
Number of Nodes Number of Cores
InfiniBand Cluster Cray XE6

102
ARMCI-MPI CCSD == 0 ARMCI-MPI CCSD ==

ARMCI-Native CCSD ==#==-) ARMCI-Native CCSD ==w==-
ARMCI-MPI (T) ==esees = 85 . ARMCI-MPI (T) ++eseen -

= ARMCI-Native (] = ARMCI-Native (T)
£ 68 <€ £ <
o < o <
(D) (D)

= o1 € = £
o g o g
O 4 = O =
& ®

17

0

192 224 256 288 320 352 384 744 1488 2232 2976 3720 4464 5208 5952
Number of Cores Number of Cores

NVIDIA.

MPI-3 UPDATE

ARMCI MPI-3 RMA
No handles for data, just pointers Opaque handles for data (windows)
Sequential consistency to same Accumulate operations ordered to
location same location
Separate local and remote Separate local and remote
completion completion
Nonblocking RMA Nonblocking feasible
Atomic operations Atomic operations sufficient

Asynchronous progress guarantee No asynchronous progress guarantee

NVIDIA.

https://github.com/pmodels/armci-mpi

NWCHEM SCF PERFORMANCE

NWChem 6.3/ARMCI-MPI3/Casper NWChem 6.5/ARMCI-DMAPP
(built by NERSC, Nov. 2014)

1 -2830.4366669992 69.6 1 -2830.4366670018 67.6
2 -2831.3734512508 78.8 2 -2831.3734512526 85.5
3 -2831.5712563433 86.9 3 -2831.5713109544 105.4
4 -2831.5727802438 96.1 4 -2831.5727856636 126.6
5 -2831.5727956882 110.0 5 -2831.5727956992 161.7
6 -2831.5727956978 127.8 6 -2831.5727956998 190.9

Running on 8 nodes with 24 ppn. Casper uses 2 ppn for comm.

NVIDIA.

NWCHEM SCF PERFORMANCE

NWChem 6.3/ARMCI-MPI3/Casper NWChem Dev/ARMCI-MPIPR
(built by NERSC, Sept. 2015)

1 -2830.4366669990 69.3 1 -2830.4366669999 61.4
2 -2831.3734512499 77.1 2 -2831.3734512509 69.3
3 -2831.5712604368 84.6 3 -2831.5713109521 77.8
4 -2831.5727804428 93.0 4 -2831.5727856618 87.3
5 -2831.5727956927 107.3 5 -2831.5727956974 103.9
6 6 7

-2831.5727956977 128.0 -2831.5727956980 125.

Running on 8 nodes with 24 ppn. Both use 2 ppn for comm.

NVIDIA.

ARMCI-MPI + CASPER

Asynchronous progress is important

Implementation .8 I
rigina
» Dedicate process(es) for communication, - —
similar to ARMCI. 15 = Thread(}
* Intercept all RMA calls and redirect using 19 - @ Thread(D)
shared-memory (requires Win_allocate) 3
o 9 -
E
Application usage " 6
- NWChem on 40K+ cores of Cray XC30. 5
- Bandwidth-limited CCSD(T) for (H,0),,.
0 .

1704 3072 6144 12288
Number of Cores

M. Si, A. J. Pena, J. Hommond, P. Balaji, M. Takagi, Y. Ishikawa. IPDPS15.
“Casper: An Asynchronous Progress Model for MPI RMA on Many-Core Architectures.” ST NVIDIA

ARMCI-MPI SUMMARY

Made NWChem universally portable:
Only ran on Blue Gene/Q because of ARMCI-MPI (but MPI-2 RMA ®)

Ran on ARM32 out-of-the-box in 2013
No weird failures on IB or problems with >>2GB arrays

But
Asynchronous progress is still a problem. Casper is not always better.
Latency is too high. ARMCI over two-sided often wins for DFT code.
Open-MPI correctness issues in RMA are still causing problems for users and developers.

A direct port of Global Arrays would have been better (but much more work)...

NVIDIA.

Implementing OpenSHMEM using MPI-3
one-sided communication

Jeff R. Hammond®!, Sayan Ghosh?, and Barbara M. Chapman?

ARMCI-MPI OSHMPI v1
One window for every allocation Symmetric heap suballocated from one
(expensive window lookup) window (fast lookup)
Reverse-engineered semantics from Direct translation from OpenSHMEM
PNNL implementation specification
Weird contortions for ARMCI groups Weird contortions for SHMEM PE subsets
Workarounds for asynchronous Fast path for intranode communication

progress problems lgnores SAME_OP_NO_OP nonsense

NVIDIA.

https://github.com/jeffhammond/oshmpi

Log Rate (Messages/s)

wd
-
o

b
-

—t
-

—b
-

N

()}

o

OSHMPI PUT MESSAGE-RATE ON IB

7
OSHMP| —— w OSHMP| ——
GASNet Puona GASNet - e
Portals4 =108 & Portals4
MVAPICH2-X A - ... MVAPICH2-X 0
MLNX ---=-- o LR\ MLNX ---»--
R el
210
o)
=
4
210
o
S 10°
5 10 15 20 25 10° 0 5 10 15 20
2 2 2 2 2 2 2 2 2 2

Message size (bytes) Message size (bytes)

Figure: Intranode (left) and internode (right).

J. R. Hammond, S. Ghosh, and B. M. Chapman, First OpenSHMEM Workshop: Experiences, Implementations and Tools.
“Implementing OpenSHMEM using MPI-3 one-sided communication.”

< NVIDIA.

Log Message Rate (Messages/s)

— —4 4 —d
- - - -
[& m ~

b
-
o

MPI IMPLEMENTATION OVERHEAD IS (WAS?) HIGH

bk
-
o

MP|-3
OpenSHME Meeens

—d
-
~

.-
. O"
> ..

ik
-
(o)}

Log Message Rate (Messages/s)
S o

55 510 515 520 525 o0 55 510 515
Message size (bytes) Message size (bytes)

Internode (left), intranode (right). MVAPICH2-X from 2013-2014.

J. R. Hammond, S. Ghosh, and B. M. Chapman, First OpenSHMEM Workshop: Experiences, Implementations and Tools.
“Implementing OpenSHMEM using MPI-3 one-sided communication.”

220

<X NVIDIA.

OSHMPI SUMMARY

Proved that MPI-3 RMA is a viable back-end for OpenSHMEM (hence v2)

Easy to install on every platform

Very good performance in shared memory only because it bypassed RMA altogether
Very bad performance in distributed memory because of MPI RMA implementations
Best SHMEM implementation for benchmarks dominated by collectives ©

NVIDIA.

1. IMPLEMENTATIONS ARE THE PROBLEM

Implementations continue to be bad at performance:
Latency is not good
Message-rate i1s not good
Bandwidth is inconsistent
Asynchronous progress is almost non-existent

Implementations continue to be bad at correctness:

MPICH (and derivates) are correct almost all of the time...
NWChem = MPI_Accumulate + MPI_TYPE_SUBARRAY + MPI_SUM + MP|_DOUBLE
Insufficient to test correctness in shared-memory

NVIDIA.

2. RMA IS COMPLICATED AND HARD TO USE

MPI-1 features were easy to use so scientists assume MPI is easy to use,
which is false for RMA

RMA offers many ways to do the same thing:
Windows: allocate, create, dynamic, shared
Sync: fence, PSCW, lock, lock_all, flush, flush_all, flush_local, etc.

The standard should explicitly recommend allocate + lock_all + flush(_local)
as the preferred RMA motif

We need a user guide for RMA somewhere, and a set of benchmarks to
determine all the platform-specific dependence of RMA features

NVIDIA.

3. RMA NEEDS MINOR FIXES

Users should be allowed to query shared memory in an allocated window:
There should be a request-based version of everything:

MPI_PROD should be removed (there are zero use cases and zero users)
The default should be ANY_OP, not SAME_OP_NO_OP
Nonblocking remote flush is a good idea

NVIDIA.

https://github.com/mpi-forum/mpi-issues/issues/23
https://github.com/mpi-forum/mpi-issues/issues/128

4. RMA IS THE BEST MODEL FOR GPU COMMUNICATION

* GPUs are really good at moving data of all sizes

* Synchronization is expensive on GPUs due to massive parallelism

* RMA properly separates data movement from synchronization and supports
memory allocation and registration

To Slingshot

https://www.nvidia.com/en-us/data-center/nvlink/

< NVIDIA.

https://www.nvidia.com/en-us/data-center/nvlink/

