
EXPERIENCES WITH MPI RMA AS A FOUNDATIONAL COMMUNICATION
ABSTRACTION FOR ONE-SIDED PROGRAMMING MODELS
JEFF HAMMOND, PRINCIPAL ENGINEER

OUTLINE

•Background on MPI-3 RMA
•Summary of efforts to use MPI-3 RMA
•Overview of ARMCI-MPI
•Overview of OSHMPI v1
•My thoughts on the past, present and future of RMA

MOTIVATION FOR USING MPI

• Most programmers have better things to
do than debug runtime system issues.
HPC ubiquity requires things to just work.

• Complex software needs a language-
agnostic* and language-interoperable
programming model / runtime.

• Very few HPC applications bottleneck in
communication, so compromising on
performance to get portability is a good
idea.

4

* C/C++, Fortran (3x), Python, C++, Java, C#, D, Go, Perl,
Ruby, Rust, Julia, Ocaml, Haskell, Pascal, Ada, … , but
apparently not COBOL.

HISTORICAL CONTEXT

• Prior to MPI-3, there was a lot of debate about
MPI versus PGAS, which was a two-sided versus
one-sided debate.

• MPI Forum aspired to make MPI-3 RMA suitable
for use in the following:
• SHMEM
• Global Arrays (or ARMCI)
• Fortran coarrays
• UPC

• MPI RMA working group aspired to make RMA
suitable for use on the following:
• Bad networks
• Good networks
• Imaginary networks

STATUS OF RMA USAGE (INCOMPLETE)

Model Project Status

Global Arrays ARMCI-MPI In production for NWChem

OpenSHMEM OSHMPI Useful for research, SMPs

OpenSHMEM OSHMPI v2 OpenSHMEM 1.4 compliant

Fortran coarrays OpenCoarrays GCC 5+

Fortran coarrays Intel Fortran Supported in releases since ~2015

Fortran coarrays CAF 2.0 Published

UPC GUPC Evaluated but not using

Grappa Grappa Prod. w/ P2P+NBC, no RMA

HPX HPX Production w/ P2P, no RMA

Chapel Chapel Discussed
6

ARMCI
•No handles for data, just pointers
• Sequential consistency to same
location
• Separate local and remote
completion
•Nonblocking RMA
•Atomic operations
•Asynchronous progress guarantee

MPI-2 RMA
•Opaque handles for data (windows)
•RMA operations unordered

•Local=remote completion

•Nonblocking essentially impossible
•No atomic operations
•No asynchronous progress guarantee

Native = ~1 year

MPI-3 UPDATE
https://github.com/pmodels/armci-mpi

ARMCI
•No handles for data, just pointers
• Sequential consistency to same
location
• Separate local and remote
completion
•Nonblocking RMA
•Atomic operations
•Asynchronous progress guarantee

MPI-3 RMA
•Opaque handles for data (windows)
•Accumulate operations ordered to
same location
• Separate local and remote
completion
•Nonblocking feasible
•Atomic operations sufficient
•No asynchronous progress guarantee

https://github.com/pmodels/armci-mpi

NWCHEM SCF PERFORMANCE

NWChem 6.3/ARMCI-MPI3/Casper

iter energy time
---- ---------------- -----
1 -2830.4366669992 69.6
2 -2831.3734512508 78.8
3 -2831.5712563433 86.9
4 -2831.5727802438 96.1
5 -2831.5727956882 110.0
6 -2831.5727956978 127.8

NWChem 6.5/ARMCI-DMAPP
(built by NERSC, Nov. 2014)

iter energy time
---- ---------------- -----
1 -2830.4366670018 67.6
2 -2831.3734512526 85.5
3 -2831.5713109544 105.4
4 -2831.5727856636 126.6
5 -2831.5727956992 161.7
6 -2831.5727956998 190.9

10

Running on 8 nodes with 24 ppn. Casper uses 2 ppn for comm.

NWCHEM SCF PERFORMANCE

NWChem 6.3/ARMCI-MPI3/Casper

iter energy time
---- ---------------- -----
1 -2830.4366669990 69.3
2 -2831.3734512499 77.1
3 -2831.5712604368 84.6
4 -2831.5727804428 93.0
5 -2831.5727956927 107.3
6 -2831.5727956977 128.0

NWChem Dev/ARMCI-MPIPR
(built by NERSC, Sept. 2015)

iter energy time
---- ---------------- -----
1 -2830.4366669999 61.4
2 -2831.3734512509 69.3
3 -2831.5713109521 77.8
4 -2831.5727856618 87.3
5 -2831.5727956974 103.9
6 -2831.5727956980 125.7

11

Running on 8 nodes with 24 ppn. Both use 2 ppn for comm.

ARMCI-MPI + CASPER
Asynchronous progress is important

Implementation

• Dedicate process(es) for communication,
similar to ARMCI.

• Intercept all RMA calls and redirect using
shared-memory (requires Win_allocate)

Application usage
• NWChem on 40K+ cores of Cray XC30.

• Bandwidth-limited CCSD(T) for (H2O)21.

12

M. Si, A. J. Pena, J. Hammond, P. Balaji, M. Takagi, Y. Ishikawa. IPDPS15.
“Casper: An Asynchronous Progress Model for MPI RMA on Many-Core Architectures.”

ARMCI-MPI SUMMARY

Made NWChem universally portable:

• Only ran on Blue Gene/Q because of ARMCI-MPI (but MPI-2 RMA L)

• Ran on ARM32 out-of-the-box in 2013

• No weird failures on IB or problems with >>2GB arrays

But

• Asynchronous progress is still a problem. Casper is not always better.

• Latency is too high. ARMCI over two-sided often wins for DFT code.

• Open-MPI correctness issues in RMA are still causing problems for users and developers.

A direct port of Global Arrays would have been better (but much more work)…

ARMCI-MPI
•One window for every allocation
(expensive window lookup)
•Reverse-engineered semantics from
PNNL implementation
•Weird contortions for ARMCI groups
•Workarounds for asynchronous
progress problems

OSHMPI v1
• Symmetric heap suballocated from one
window (fast lookup)
•Direct translation from OpenSHMEM
specification
•Weird contortions for SHMEM PE subsets
•Fast path for intranode communication
• Ignores SAME_OP_NO_OP nonsense

https://github.com/jeffhammond/oshmpi

https://github.com/jeffhammond/oshmpi

OSHMPI PUT MESSAGE-RATE ON IB

15

J. R. Hammond, S. Ghosh, and B. M. Chapman, First OpenSHMEM Workshop: Experiences, Implementations and Tools.
“Implementing OpenSHMEM using MPI-3 one-sided communication.”

MPI IMPLEMENTATION OVERHEAD IS (WAS?) HIGH

16

* MVAPICH2(-X) is great. The problem here is MPICH Ch3 (FIXME).

Internode (left), intranode (right). MVAPICH2-X from 2013-2014.

J. R. Hammond, S. Ghosh, and B. M. Chapman, First OpenSHMEM Workshop: Experiences, Implementations and Tools.
“Implementing OpenSHMEM using MPI-3 one-sided communication.”

OSHMPI SUMMARY

• Proved that MPI-3 RMA is a viable back-end for OpenSHMEM (hence v2)

• Easy to install on every platform

• Very good performance in shared memory only because it bypassed RMA altogether

• Very bad performance in distributed memory because of MPI RMA implementations

• Best SHMEM implementation for benchmarks dominated by collectives J

1. IMPLEMENTATIONS ARE THE PROBLEM

• Implementations continue to be bad at performance:
• Latency is not good
•Message-rate is not good
• Bandwidth is inconsistent
• Asynchronous progress is almost non-existent

• Implementations continue to be bad at correctness:
•MPICH (and derivates) are correct almost all of the time…
•NWChem = MPI_Accumulate + MPI_TYPE_SUBARRAY + MPI_SUM + MPI_DOUBLE
• Insufficient to test correctness in shared-memory

2. RMA IS COMPLICATED AND HARD TO USE

•MPI-1 features were easy to use so scientists assume MPI is easy to use,
which is false for RMA
•RMA offers many ways to do the same thing:
•Windows: allocate, create, dynamic, shared
• Sync: fence, PSCW, lock, lock_all, flush, flush_all, flush_local, etc.

•The standard should explicitly recommend allocate + lock_all + flush(_local)
as the preferred RMA motif
•We need a user guide for RMA somewhere, and a set of benchmarks to
determine all the platform-specific dependence of RMA features

3. RMA NEEDS MINOR FIXES

•Users should be allowed to query shared memory in an allocated window:
https://github.com/mpi-forum/mpi-issues/issues/23
•There should be a request-based version of everything:
https://github.com/mpi-forum/mpi-issues/issues/128
•MPI_PROD should be removed (there are zero use cases and zero users)
•The default should be ANY_OP, not SAME_OP_NO_OP
•Nonblocking remote flush is a good idea

https://github.com/mpi-forum/mpi-issues/issues/23
https://github.com/mpi-forum/mpi-issues/issues/128

4. RMA IS THE BEST MODEL FOR GPU COMMUNICATION

•GPUs are really good at moving data of all sizes
• Synchronization is expensive on GPUs due to massive parallelism
• RMA properly separates data movement from synchronization and supports
memory allocation and registration

https://www.nvidia.com/en-us/data-center/nvlink/

https://www.nvidia.com/en-us/data-center/nvlink/

