
NVSHMEM: CUDA-INTEGRATED COMMUNICATION FOR NVIDIA GPUS
JIM DINAN

v Compute on GPU
v Communication from CPU
Synchronization at boundaries

Commonly used model, but –
q Offload latencies in critical path
q Communication is not overlapped

Hiding increases code complexity,
Not hiding limits strong scaling

CPU-INITIATED COMMUICATION
GPU CPU PCIe/Network

cuda_kernel<<<>>>

MPI_Isend

MPI_Wait

cudaStreamSynchronize

iterate

GPU-INITIATED COMMUNICATION
GPUCPU

v Compute on GPU
v Communication from GPU

Benefits -
q Eliminates offload latencies
q Compute and communication overlap
q Latencies hidden by threading
q Easier to express algorithms with inline

communication

Improving performance while
making it easier to program

PCIe/Network

cuda_kernel<<<>>>

cudaStreamSynchronize

nvshmem_put

nvshmem_quiet

nvshmem_put

nvshmem_put

nvshmem_put

nvshmem_put

Overview of NVSHMEM

NVSHMEM Latest Features

Performance Case Studies

Upcoming Features and Conclusion

NVSHMEM

Aggregate the memory of multiple GPUs in a cluster into a
distributed global address space

• Data access via put, get, atomic APIs

• Collective communication APIs

Communication integrated with CUDA execution model

1. GPU kernel-initiated operations

2. Operations on CUDA streams/graphs

3. CPU initiated operations

Can be used together with a CPU OpenSHMEM or MPI library
for host memory communication

OpenSHMEM, Adapted for Best Performance on NVIDIA GPU Clusters

Switch

Switch

CPU

CPU

CPU

CPU

Symmetric
Memory

DGX A100 DGX A100

GPU/PE 0
Memory

Private

GPU/PE 1
Memory

Private

GPU/PE N
Memory

Private

Symmetric Heap

Pa
rt

it
io

ne
d

G
lo

ba
l

Ad
dr

es
s

Sp
ac

e

NVSHMEM SYMMETRIC MEMORY MODEL

Symmetric objects are allocated collectively with the same size on every PE
Symmetric memory: nvshmem_malloc(…); Private memory: cudaMalloc(…)

Read: nvshmem_get(…); Write: nvshmem_put(…); Atomic: nvshmem_atomic_add(…)
Flush writes: nvshmem_quiet(); Order writes: nvshmem_fence()

Synchronize: nvshmem_barrier(); Poll: nvshmem_wait_until(…)

Individual Partitions are Aggregated into a Global Address Space

1st nvshmem_malloc

2nd nvshmem_malloc

Registered buffer

OPTIMIZED FOR NVLINK COMMUNICATION

NVSHMEM seamlessly:
• Scales-up using NVLink and PCIe
• Scales-out using InfiniBand, RoCE, …

Internally uses CUDA IPC and cuMem APIs to
map symmetric memory of peer PEs into
virtual address space:

q nvshmem_put/get on device
→ load/store

q nvshmem_put/get_on_stream
→ cudaMemcpyAsync

q nvshmem_ptr direct pointer bypass
→ kernel direct load/store

Seamlessly Scale-up to 256 GPUs Using 4th Generation NVLink

4th Generation NVLink Scale-Up

GPU 0

Virtual
Address

Physical
Address

GPU 7 GPU 248

Virtual
Address

Physical
Address

Virtual
Address

Physical
Address

Virtual
Address

GPU 255

Physical
Address

Node 0 Node 31

…

…

…

InfiniBand/RoCE Scale-Out

SCALE-UP AND SCALE-OUT BANDWIDTH

Multi-GPU

PCIe
NVLink

Multi-node

InfiniBand
RoCE

Theoretical Peer-to-Peer
Bisection Bandwidth (GB/s)

Theoretical Network Injection +
Ejection Bandwidth Per GPU (GB/s)

25

50

100

100Gb ConnectX-5 (DGX-2 V100)

200Gb ConnectX-6 (DGX A100)

400Gb ConnectX-7 (DGX H100)

64

128

2400

2400

3600
57600

PCI Gen4 x16

PCI Gen5 x16

2nd Gen NVLink (DGX-2 V100)

3rd Gen NVLink (DGX A100)

4th Gen NVLink (DGX H100)

4th Gen NVLink (32 DGX H100)

THREAD-LEVEL COMMUNICATION

q Allows fine grained communication and overlap
q Efficient mapping to NVLink network on DGX systems

__global__ void stencil_single_step(float *u, float *v, …) {
int ix = get_ix(blockIdx, blockDim, threadIdx);
int iy = get_iy(blockIdx, blockDim, threadIdx);

compute(u, v, ix, iy);
// Thread-level data communication API
if (iy == 1)

nvshmem_float_p(u+(ny+1)*nx+ix, u[nx+ix], top_pe);
if (iy == ny)

nvshmem_float_p(u+ix, u[ny*nx+ix], bottom_pe);
}

for (int iter = 0; iter < N; iter++) {
swap(u, v);
stencil_single_step<<<..., stream>>>(u, v, …);
nvshmem_barrier_all_on_stream(stream);

}

𝑛𝑥

𝑛𝑦

PE i

PE i-1

PE i+1

THREAD-GROUP COMMUNICATION

PE i

PE i-1

PE i+1

q NVSHMEM operations can be issued by all threads in a block/warp
q More efficient data transfers over networks like IB
q Still allows inter-warp/inter-block overlap

__global__ void stencil_single_step(float *u, float *v, …) {
int ix = get_ix(blockIdx, blockDim, threadIdx);
int iy = get_iy(blockIdx, blockDim, threadIdx);

compute(u, v, ix, iy);

// Thread block-level communication API
int boffset = get_block_offet(blockIdx,blockDim);
if (blockIdx.y == 0)
nvshmemx_float_put_nbi_block(u+(ny+1)*nx+boffset, u+nx+boffset, blockDim.x, top_pe);

if (blockIdx.y == (blockDim.y-1))
nvshmemx_float_put_nbi_block(u+boffset, u+ny*nx+boffset, blockDim.x, bottom_pe);

}

for (int iter = 0; iter < N; iter++) {
swap(u, v);
stencil_single_step<<<..., stream>>>(u, v, …);
nvshmem_barrier_all_on_stream(stream);

}

Data

𝑛𝑦

𝑛𝑥

IN-KERNEL SYNCHRONIZATION

Collective or Point-to-point synchronization across PEs within a kernel
Offload larger portion of application to the same CUDA kernel

Sync.
__global__ void stencil_multi_step(float *u, float *v, int N, int *sync, …) {
int ix = get_ix(blockIdx, blockDim, threadIdx);
int iy = get_iy(blockIdx, blockDim, threadIdx);

for (int iter = 0; iter < N; iter++) {
swap(u, v);
compute(u, v, ix, iy);
// Thread block-level data exchange (assume even/odd iter buffering)
int boffset = get_block_offet(blockIdx,blockDim);
if (blockIdx.y == 0)
nvshmemx_float_put_nbi_block(u+(ny+1)*nx+boffset, u+nx+boffset, blockDim.x, top_pe);

if (blockIdx.y == (blockDim.y-1))
nvshmemx_float_put_nbi_block(u+boffset, u+ny*nx+boffset, blockDim.x, bottom_pe);

this_grid.sync();
if (!tid) nvshmem_barrier();
this_grid.sync();

}
}

Be aware of synchronization
costs. Best synchronization

approach is application
dependent!

PE i

PE i-1

PE i+1

Data

𝑛𝑦

𝑛𝑥

More details: https://github.com/NVIDIA/multi-gpu-programming-models

https://github.com/NVIDIA/multi-gpu-programming-models

STREAM-ORDERED OPERATIONS

Not always optimal to move all communication
or synchronization into CUDA kernels
Inter-CTA synchronization (e.g. grid.sync())
latencies can be longer than kernel launch
latencies
Allows mixing fine-grained communication +
coarse-grained synchronization

NVSHMEM CPU-initiated Operations Enqueued on CUDA Streams and Graphs

GPU 0 GPU 1PCIe/Network

nvshmem_barrier_all_on_stream

COLLECTIVE KERNEL LAUNCH

CUDA’s throughput computing model allows (encourages) grids much larger than a GPU can fit

Inter-kernel synchronization requires producer and consumer threads to execute concurrently

Collective launch guarantees co-residency using CUDA cooperative launch and the requirement of 1PE/GPU

Ensures progress when using device-side inter-kernel synchronization

NVSHMEM Usage CUDA kernel launch

Device-Initiated Communication Execution config syntax <<<...>>>
or launch APIs

Device-Initiated Synchronization nvshmemx_collective_launch

INTEROPERABILITY WITH CUDA GRAPHS

Introduced in CUDA 10.0

Reduces launch overheads

Workflow optimizations

NVSHMEM is composable with Graphs

• On-stream operations as nodes

• CUDA kernels can use NVSHMEM

Graph of Dependencies

End

A

B X

C D

E Y

streams can be
mapped to a

graph

A

B

C

Wait

E

Wait

D

Wait

X

Y

Wait

CUDA Work in Streams

INTEROPERABILITY WITH MPI/OPENSHMEM
Enabled via Attribute-Based Initialization Routine

MPI_Init(&argc, &argv);

MPI_Comm mpi_comm = MPI_COMM_WORLD;
nvshmemx_init_attr_t attr;
attr.mpi_comm = &mpi_comm;
nvshmemx_init_attr(NVSHMEMX_INIT_WITH_MPI_COMM, &attr);

mype_node = nvshmem_team_my_pe(NVSHMEMX_TEAM_NODE);
CUDA_CHECK(cudaSetDevice(mype_node));

shmem_init();

nvshmemx_init_attr_t attr;
nvshmemx_init_attr(NVSHMEMX_INIT_WITH_SHMEM, &attr);

mype_node = nvshmem_team_my_pe(NVSHMEMX_TEAM_NODE);
CUDA_CHECK(cudaSetDevice(mype_node));

OPENSHMEM

Initialize NVSHMEM with
SHMEM default context

MPI

Initialize NVSHMEM using
MPI_COMM_WORLD

Overview of NVSHMEM

NVSHMEM Latest Features

Performance Case Studies

Upcoming Features and Conclusion

NVSHMEM LATEST FEATURES

NVSHMEM 2.5.0 – March, 2022

• Multiple libraries support

• Experimental libfabric and mlx5 transports

• Bootstrap plugins: PMI, PMI-2, and SHMEM

• nvshmem-info utility

NVSHMEM 2.4.1 – November, 2021

• Multi-process GPU sharing (MPG) support

• Local buffer registration API

• Dynamic symmetric heap allocation

Announcing NVSHMEM 2.5.0

Print information about NVSHMEM

Usage: nvshmem-info [options]

Options:
-h This help message
-a Print all output
-n Print version number
-b Print build information
-e Print environment variables
-d Include hidden environment variables in output
-r RST format environment variable output

$./nvshmem-info –e

Standard options:
NVSHMEM_VERSION false (type: bool, default: false)
Print library version at startup
NVSHMEM_INFO false (type: bool, default: false)
Print environment variable options at startup
NVSHMEM_SYMMETRIC_SIZE 1073741824 (type: size, default: 1073741824)
Specifies the size (in bytes) of the symmetric heap memory per PE. The resulting
size is implementation-defined and must be at least as large as the integer
ceiling of the product of the numeric prefix and the scaling factor. The allowed
character suffixes for the scaling factor are as follows:

* k or K multiplies by 2^10 (kibibytes)
* m or M multiplies by 2^20 (mebibytes)
* g or G multiplies by 2^30 (gibibytes)
* t or T multiplies by 2^40 (tebibytes)

For example, string '20m' is equivalent to the integer value 20971520, or 20
mebibytes. Similarly the string '3.1M' is equivalent to the integer value
3250586. Only one multiplier is recognized and any characters following the
multiplier are ignored, so '20kk' will not produce the same result as '20m'

DYNAMIC SYMMETRIC HEAP ALLOCATION IN NVSHMEM

§ NVSHMEM allocates a slab of memory as symmetric heap

§ Suballocate from slab when user calls nvshmem_malloc

§ Drawbacks to this approach:

§ Users must know how much memory ahead of time

§ Reserves memory in NVSHMEM, not available to other code modules

§ Dynamic symmetric heap allocation:

§ Allocate a contiguous slab of virtual address space using CUDA VMM API

§ Dynamically back virtual memory pages with physical memory pages

§ NVSHMEM symmetric objects may span physical allocations

§ Bookkeeping managed by the NVSHMEM runtime

"Dynamic Symmetric Heap Allocation in NVSHMEM." Akhil Langer, Seth Howell, Sreeram Potluri, Jim Dinan, and
Jiri Kraus. Sixth workshop on OpenSHMEM and Related Technologies (OpenSHMEM ’21). September 12-16, 2021.

MULTIPROCESS PER GPU (MPG) SUPPORT

NVSHMEM synchronization API requires simultaneous execution of CUDA
kernels for deadlock free execution

NVSHMEM 2.4 adds support for multiple processes sharing a GPU

• CUDA Multi-Process Service (MPS) allows multiple processes to run
simultaneously on the GPU by doing resource sharing

• Users can specify percentage GPU resources used by a process using
CUDA_MPS_ACTIVE_THREAD_PERCENTAGE environment variable

Enable Multiple Processes to Share a GPU

API Configurations
Full MPG Support Entire NVSHMEM API MPS with Sum of active thread

percentages <= 100

Limited MPG
Support

All point-to-point API,
host nvshmem_sync_all*()
host nvshmem_barrier_all*()

• Without MPS
• MPS but sum of active

thread percentanges > 100

NVSHMEM FOR LIBRARIES

Until NVSHMEM 2.5 release, NVSHMEM only supported static linking

• Challenge for libraries because of separate instances of the NVSHMEM library

Challenge: NVSHMEM device API must be statically linked

• Device APIs are not accessible across shared library boundaries

Solution:

• Two libraries: libnvshmem_host.so and libnvshmem_device.a

• NVSHMEM host APIs can be dynamically linked, and connect with

• NVSHMEM device APIs that are statically linked
app.exe

libnvshmem_host.so

libcufft.so
libnvshmem_device.a

app.exe libcufft.so
libnvshmem.alibnvshmem.a

libnvshmem_device.a

Static Linking

Dynamic Linking

BOOTSTRAP

During initialization, NVSHMEM’s bootstrap:

• Gathers information from other PEs, e.g. hostname, GPU sharing, etc.

• Exchanges network addresses and memory registration keys

Bootstrap plugins were introduced in NVSHMEM v2.2.1

• Extended to all bootstraps in 2.5

• Provides flexibility in how NVSHMEM links with bootstrap libraries

Configured using NVSHMEM_BOOTSTRAP* environment variables or
selected by calling nvshmemx_init_attr (See API Documentation)

Source code for bootstrap modules is installed in share/nvshmem

• Allow building bootstraps separately from NVSHMEM library

• Improves portability for binary distribution with NVSHMEM

Flexible NVSHMEM Launching

nvshmem/lib/

libnvshmem.a

libnvshmem_device.a

libnvshmem_host.so

nvshmem_bootstrap_mpi.so

nvshmem_bootstrap_pmi.so

nvshmem_bootstrap_pmi2.so

nvshmem_bootstrap_pmix.so

nvshmem_bootstrap_shmem.so

Dynamic
Linking

Bootstrap
Modules

Static
Linking

LOCAL BUFFER REGISTRATION API

Registered buffers can be used as the local argument in any NVSHMEM API call

• E.g. source for a put, destination for a get, etc.

• Usable for communication between GPUs on the same node and remote GPUs

• Works with host and device Memory

API Signatures:

• int nvshmemx_buffer_register(void *addr, size_t length);

• int nvshmemx_buffer_unregister(void *addr);

• void nvshmemx_buffer_unregister_all(void);

More Flexible Communication

GPU/PE 0 Memory

Private

Symmetric

Get

Overview of NVSHMEM

NVSHMEM Latest Features

Performance Case Studies

Upcoming Features and Conclusion

CUFFTMP – MULTINODE, MULTIPROCESS CUFFT

NVSHMEM enables efficient weak and strong scaling on Selene, DGX-A100 system

GTC Talk: S41491: Recent Developments in NVIDIA Math Libraries

Developer Blog: https://developer.nvidia.com/blog/multinode-multi-gpu-using-nvidia-cufftmp-ffts-at-scale/

Kernel-Initiated Communication using NVSHMEM

https://developer.nvidia.com/blog/multinode-multi-gpu-using-nvidia-cufftmp-ffts-at-scale/

SV-SIM SCALING WITH NVSHMEM

More details in Ang Li’s GTC Talk: S41855: Scalable Simulation of Quantum Circuit with Noise on GPU-based HPC Systems

Ang Li, et al., “QASMBench: A low-level QASM benchmark suite for NISQ evaluation and simulation.”
arXiv preprint arXiv:2005.13018 (2020). https://github.com/pnnl/QASMBench

Scalable Simulation of Quantum Circuits
SV-Sim scaling-out on IBM PowerPC CPU cores based on OpenSHMEM on Summit

SV-Sim scaling-out on NVIDIA V100 GPUs based on NVSHMEM on Summit

https://github.com/pnnl/QASMBench

Overview of NVSHMEM

NVSHMEM Latest Features

Performance Case Studies

Upcoming Features and Conclusion

LIBFABRIC TRANSPORT

• Experimental libfabric transport added in
NVSHMEM v2.5.0

• The libfabric transport will support HPE
Cray Slingshot-11 networks

• Will be used to support Phase 2 of NERSC-9
Perlmutter system

• Perlmutter Phase 1 system uses
Slingshot-10 configuration
• NVIDIA Mellanox ConnectX-5 HCAs
• Supported via existing NVSHMEM ibverbs

transport

Supporting Phase 2 of NERSC-9 Perlmutter System

Image credit: National Energy Research Scientific Computing Center

GPU INITIATED COMMUNICATION TRANSPORT

Experimental DevX transport added in 2.5.0

• Supports NVIDIA Mellanox networks

• Runs directly over Mellanox software stack and bypasses
Verbs API for performance critical operations

• Avoids need for GDRCopy by leveraging native atomics

Precursor to GPU Initiated Communication Transport

• CPU proxy thread will no longer be needed for kernel-
initiated communication

• Increased parallelism will lead to improved throughput
of small message sizes

Tighter Integration With Mellanox

For more information, see: S41825: Latest on NVIDIA Magnum IO GPUDirect Technologies

LESSONS FOR MPI RMA

One-sided communication is a good fit for GPU initiated communication
• Simple protocols allow GPU to fully perform communication
• Enables a model where all operations map to GPUDirect RDMA
• Asynchronous data movement is a good fit for data parallel computation (massively multithreaded)
• Application chooses synchronization that’s compatible with data parallel execution model

Some MPI RMA features are contra-indicated
• Window synchronization models can force synchronization that is inefficient or deadlock prone in a data parallel execution model
• Window synchronization (e.g. lock/unlock) can violate the “simple protocols” observation
• Window creation model chosen by the user may not be conducive to IPC (peer-to-peer communication)
• Accumulate ordering hurts performance on weakly consistent SM

RMA is an incomplete PGAS model
• Point-to-point synchronization (put-and-notify, wait)
• Atomic limitations prevent building important things, like scalable MCS locks (mix CAS and ADD)
• Not possible to request only ordering (nvshmem_fence)
• Bulk synchronous RMA completion can require applications to mix active and passive target synchronization models

SUMMARY

NVSHMEM seamlessly scales from,

• Node-level GPU programming with NVLink connected GPUs

• Multi-node GPU clusters connected with InfiniBand or RoCE

NVSHMEM provides Stream/Graph, GPU kernel-initiated, and CPU
initiated APIs

• Integration with CUDA programming model can improve
performance and improve ease of scaling to GPU clusters

NVSHMEM is a PGAS Library for Clusters of NVIDIA GPUs

Switch

Switch

CPU

CPU

CPU

CPU

NVSHMEM STATUS

q Available to download at https://developer.nvidia.com/nvshmem

q Available in upcoming NVIDIA HPC SDK release, containers available through NGC

Latest release: NVSHMEM 2.5.0, March 2022

Implementation Features

§ NVLink and PCIe P2P support
§ InfiniBand and RoCE support
§ X86 and Power9 support
§ Interoperable with MPI and OpenSHMEM

New Features

§ Dynamic linking support
§ Multiprocess per GPU support
§ Flexible bootstrapping
§ User-allocated buffer registration

https://developer.nvidia.com/nvshmem

