
MPI One-Sided & 
Asynchronous Task Models
Marc Snir
Huang Vu-Dang, Omri Mor, Jiakun Yan



Expected NIC Hardware Evolution
• Terabits of data
• Message rate > 1B/sec
• Faster NIC-CPU connection

• Hardware acceleration of 
the handling of incoming 
messages is essential

• Parallelism in message-
handling is essential

• NIC can touch system 
memory with acceptable 
overhead

2



Lifetime of a message (schematic)
• Key bottleneck: Demultiplexing (matching table)
–moving each incoming message to the right place
– signaling consumer of message arival

• Put handles first issue (message carries destination 
buffer address)

• Put does not handle second issue

3

producers
queue NICproducers

producers NIC queue producers
producers

consumers
N

etw
ork



How is target process informed that a 
remote access is complete?

• Source process ensures completion at 
target, then uses 2-sided communication 
to inform target of completion
– Not truly one-sided
– Not faster than “fake” one-sided using 

message-passing 

4

ORIGIN 
PROCESS

TARGET
PROCESS

rput

flush

send
irecv

test/wait



“Fake” One-sided communication

• 4 MPI calls at target
• Twice polling or waiting 

at target
• Rendezvous under the 

cover

5

send

improbe

test/wait

imrecv

test/wait



One-sided communication using active-
messages (GASNet)

• Very general
• Hard to accelerate

• Can we accelerate 
specific, frequently used 
handlers?

• In particular, can we 
accelerate signaling 
message arrival?

6

put(data, handle)

Invoke 
handler



Remote signaling of RDMA Completion

• Target NIC “knows” when RDMA is complete at target
– E.g., Infiniband can enqueue entry to completion 

queue at target 
– Needed for error recovery

• MPI does not seem to take advantage of this

7



Asynchronous Task Model

• Hybrid dataflow computation model: Graph of
– Nodes: Sequential tasks
– Edges: Dependencies 
– Task is executed when all the dependencies are satisfied.

• Graph and mapping of tasks to nodes is statically defined or 
expanded dynamically ahead of its evaluation.
– PaRSEC, HPX, Legion…

• Graph analysis libraries have similar logic
• Communication is not symmetric (not ping-pong) and can 

be very irregular
• Number of pending communications can be very large

8



Communication Requirements
1. Instantiating and mapping dataflow graph
2. Communicating data for internode dependencies
• One-sided is good match for 2nd requirement
• But need to know when all dependencies are satisfied

• No need to wake-up a task when its dependencies are 
satisfied. One only need to mark the task as runnable
– The scheduler is invoked by a thread when it becomes idle
– The scheduler picks a runnable task for execution and 

assign it to the thread for execution
• Signaling RDMA Completion =(possibly) marking a task as 

runnable – The consumer of the signal is the scheduler

9



Marking a Task as Runnable
Current Practice

• A master thread polls for incoming message and keeps 
track of satisfied dependencies (send-receive)

• When a task is runnable it is moved to runnable queue
• An idle thread communicates with the master thread

to get work

• MPI polls IB queue; Master thread polls requests

10



Marking a task as runnable
• Simple most case: Message arrival is signaled by decrementing a 

counter; task is runnable if counter is zero.
• Basic data structure: vector of (short) counters
– Scalability achieved using vector of vectors of counters.

• One queue per thread, with work stealing for load balancing
• Three main operations:
– Set counter (done by the runtime when task is created)
– Decrement counter (done by the communication library when a 

message arrives)
– Find a zero counter (done by the scheduler to schedule a runnable 

task)
• Accelerated using count leading zero (vector) hardware

• HV Dang, M Snir -Fult: Fast user-level thread scheduling using bit-vectors

11



Some (old) results – Latency (blocking 
send/recv pingpong)

12

• ~2018



Message rate (64 byte)

• MPI without 
ANY_SOURCE, ANY_TAG
– no central queues needed 

• Unlike MPI, 
ANY_SOURCE is 
supported, but indicated 
by the send

13



Marking a task as runnable (2)

• More conventional design: Message arrival is signaled 
by decrementing a counter; if the counter is zero then 
an entry is appended to a queue

• Basic data structure: linked list
• Basic operation done by communication library: 
decrement counter; 
if (counter == 0) 

atomic exchange of two pointers

– Easy to move to NIC (?)

14



Can this be retrofitted into MPI?
• First thought

put_notify(…, remote_request)

• If communication pattern repeats then need two copies of 
each persistent request in order to avoid races

15

put_notify(…,rr1)

put_notify(…,rr2) waitall(rr1,rr2)

startall(rr1,rr2)



MPI Fundamental Issue with Blocking Calls

• MPI “knows” that a MPI_Wait is satisfied; the 
scheduler does not know that
– The scheduler does not know that a blocked task has 

become runnable
– Significant performance issue when there is a large 

number of tasks blocked on MPI communications
• An event that completes a blocking call should 

communicate to the scheduler to mark the blocked 
task as runnable
– Or manipulate by itself the scheduler data structures

16



Can this be retrofitted into MPI?
• Second thought

put_notify(…, remote_semaphore)

• Scheduler is aware of semaphore logic
• May prefer a “restricted” binary semaphore, were P and V 

calls always alternate, in order to enable a more efficient 
implementation

17

put_notify(…,sem)

sem.P() executed by the task that 
needs the data or code that generates 
the task

MPI executes sem.V() 
upon message arrival



Counting Depdences: Need variant of 
counting semaphore

• sem.P(count): sets the semaphore to count and 
blocks until count == 0

• sem.V(): decrements the counter by one
• Restricted use: a sem.P(count) is succeeded by 
count sem.V() operations

18



Same approach works with other 
communications

• For example
– recv(…,sem)

• Caller blocks. When receive is satisfied, MPI executes 
the prescribed synchronization operation

• This is a specialized active message handler, that can 
be implemented in software, or could be accelerated 
by NIC

19



20

Packaging

MPI Library

MPI 
synchronization 

methods

POSIX pthread
library Argobots qthreads



Summary
• MPI was designed as a pure communication library
• End-to-end performance is affected by awkward interfacing to other 

runtime components.
– Scheduler (CPU manager)
– Memory manager
– Energy manager ??

• In order to reduce the effective communication latency, one needs to 
consider not only buffer to buffer delay, but also producer to consumer 
signaling delay.
– And running benchmarks where CPUs are not only busy 

communicating
• MPI needs to interact with (CPU/GPU) scheduler, in order to 

avoid polling

21



The End

22


