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Background of MPI and OpenSHMEM

▪ MPI and OpenSHMEM are both programming models for large-scale distributed 

memory systems (a.k.a most supercomputers today)

▪ OpenSHMEM employs a Partitioned Global Address Space (PGAS) abstract which 

provides a “global view of shared memory” among compute 

processes/nodes/blades. It allows user to use PUT/GET operation (similar to 

memory read/write semantic) to access this globally shared memory. Under the 

hood, these accesses will be performed through communication between compute 

nodes.

▪ MPI is traditionally focus on high-performance communication between 

processes/nodes, and has been well optimized to run on different architectures and 

hardware (e.g. CPUs and GPUs)
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Overview of OpenSHMEM over MPI

▪ OSHMPI: an OpenSHMEM library built on top of MPI

– A portable OpenSHMEM implementation

• If there is MPI on the machine, the user can run OpenSHMEM 

application and expect good performance 

– A performant OpenSHMEM implementation

• Leveraging the high-performance MPI library

– A GPU-aware OpenSHMEM implementation

• Support CPU-initiated GPU communication

• Leverage highly-optimized GPU-aware MPI implementations
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Major Technical Challenges of the Project

▪ OpenSHMEM has always focused on high levels of performance

– Any overhead is too much overhead

– Encouraged “native” down-to-the-metal implementations

– Intent is to get to close to zero instructions from the application to the network hardware

▪ Why does OpenSHMEM over MPI not perform well?

– Challenge 1: MPI implementations have not been traditionally optimized for PUT/GET operations

• Many MPI implementations focus their effort on optimizing SEND/RECV and Collective operations (e.g. 

reduce, broadcast, etc.)

– Challenge 2: MPI standard is too generic compared with OpenSHMEM

• E.g., MPI allows PUT/GET communication with weird unstructured data structures

– Even if OpenSHMEM/MPI does not need this functionality, MPI implementations still have to check
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SHMEM RMA and MPI RMA Semantics

▪ OpenSHMEM

– Symmetric heap or global variable are 

remote accessible

– Use absolute virtual address of remote 

buffer

– Define separate function for each data 

type (e.g., shmem_int_put)

– Support only basic datatype

▪ MPI

– Expose a remote accessible memory region as 

window

– A window object is associated with a 

communicator (group of processes)

– Use displacement of remote buffer

– Use generic MPI datatype object

– Support both basic and user-defined datatypes

MPI_PUT(source, src_count=nelems, 
                  src_dtype=MPI_INT,

pe, dest_disp=0x1000, dest_count=nelems, 
                 dest_type=MPI_INT, win);

Remote 
process

Private
Memory

win
win.base=0x8a000

dest=0x8b000

MPI Internal:
• Translate pe in win->comm 

to network addr;
• Decode src_dtype and 

dest_dtype;
• Translate dest_disp to 

absolute virtual addr;
...

shmem_int_put_nbi(dest=0x8b00, source, nelems, pe);
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SHMEM PUT latency Evaluation

▪ Measured latency between two processes

▪ Targeted implementations:

– OFI: ideal performance

– SOS: native OpenSHMEM implementation

– OSHMPI/MPICH-CH3/OFI: original 

implementation before this project

– OSHMPI/MPICH-CH4/OFI: with optimized MPI 

RMA
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shmem_putmem(dest, source, nelems, pe);
shmem_quiet();

NOTE:
• Experiments based on: OSHMPI 2.0b1, MPICH-3.3, SOS-1.4.2, and OFI 1.7.0
• Disabled SHM optimizations in MPICH for fair comparison with SOS in intra-socket test
• Changes in SOS to ensure direct OFI data transfer and similar environment as of MPICH/OFI:
        Disabled SOS’s bounce buffer, disabled OFI domain thread, reduce frequent calls to fi_cntr_wait at shmem_quiet

shmem_putmem + quiet latency 
on Argonne Bebop (Intel Broadwell, Omni-Path)

Intra-socket latency

Inter-node latency

Improvement by prereq

Focus of this project



Breakdown of SHMEM_PUTMEM Implementation

shmem_putmem(dest, source, nelems, pe);

MPI_Put(source, nelems, src_dtype=MPI_BYTE, 
                     pe, disp, nelems, dest_dtype=MPI_BYTE, win);
    Obtain window object (win_ptr);
    Translate pe in win_ptr->comm to network addr(av);
    if(!is_local(av)) {
        Decode src_dtype and dest_dtype (i.e., obtain size, is_contig);
         if ( is_contig ) {
             Obtain OFI parameters;
             Issue OFI write message;
         }   
    }

Obtain dest’s win and disp (relative displacement);

MPI_Win_flush_local(pe, win); /* ensure local completion */
    Obtain window object (win_ptr);
    Wait OFI message completion;
    Make full MPI progress (e.g., point-to-point, coll, 

internal active msg, network, shared memory);

MPI

OFI

OSHMPI

OFI

SOS shmem_putmem(...);

Obtain OFI parameters;
Issue OFI write message;

Wait OFI message local  
Completion (skipped for 
small messages);
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Breakdown of SHMEM_QUIET Implementation

MPI

OFI

OSHMPI

OFI

SOS shmem_quiet();

Wait OFI message completion;

shmem_quiet();

/* ensure remote completion */
MPI_Win_flush_all(win=symm_heap_win); 
Obtain window object (win_ptr);
    Wait OFI message completion;
    Make full MPI progress (e.g., point-to-point, coll, 

internal active msg);

MPI_Win_flush_all(win=symm_data_win); 
    Obtain window object (win_ptr);
    Wait OFI message completion;
    Make full MPI progress;

/* ensure memory updates */ 
MPI_Win_sync(win=symm_heap_win); 
    Obtain window object (win_ptr);
    memory barrier;

MPI_Win_sync(win=symm_data_win); 
    Obtain window object (win_ptr); 
    memory barrier;
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Simple Optimizations
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▪ Datatype decoding

– Datatype is a constant in each SHMEM op but becomes a variable when passing down to MPI

• Compiler cannot optimize, result in 14 additional instructions at PUT fast path

– Optimization: leverage compiler IPO (already provided by mainstream compilers) to optimize code across OSHMPI and 

MPI libraries at link-time

• All instructions can be eliminated by compiler

– Optimization: If both datatypes are the same, only decode once in MPICH. (OpenSHMEM have the same src dest 

datatype)

– Optimization: Typed MPI_PUT to eliminate dtype decoding. i.e. MPIX_Put_int (Also possible with link-time 

optimization/inlining)

▪ Window metadata access

– MPI internal win obj stores metadata, e.g., comm (MPI-specific), network ep, remote mr_rkey...

• Access to MPI win->comm’s attributes causes expensive pointer dereferences at RMA /AMO fast-path

– Optimization: Identify win with COMM_WORLD at win creation and avoid win->comm dereferences at OSHMPI RMA fast 

path (All OSHMPI windows use dup of COMM_WORLD)



RMA Optimizations – Avoid Virtual Address Translation (1)

▪ Unlike OpenSHMEM, MPI defines generic relative offset (displacement) to describe 

remote address in order to support various network

– One requires relative offset such as OFI/psm2

– But another may require absolute vaddr such as OFI/uGNI and UCX

▪ Causes extra virtual address translation in PUT/GET fast path
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shmem_putmem(dest=0x8000, source, nelems, pe);

shmem_putmem @ OSHMPI:
dest_disp = dest – symm_heap.base; /* abs vaddr to offset */
MPI_PUT(source, nelems,  src_dtype, 
                  pe, dest_disp, nelems,  dest_type, win);

MPI_PUT @ MPI:
/* offset to abs vaddr */
[OFI/uGNI, UCX] dest_abs_addr = dest_disp * win->disp_unit + win.winfo[pe].base
[OFI/psm2]          dest_abs_addr = dest_disp * win->disp_unit

▪ Can we get rid of the extra 

address translation?

Dest virtual address translation in OSHMPI/MPICH path



RMA Optimizations - Avoid Virtual Address Translation (2)

▪ Optimization: MPIX_PUT|GET_ABS (extension of MPI standard):

▪ Allows the user to directly specify absolute virtual address as dest

▪ Pros: Directly benefits networks that require physical remote address (e.g., OFI/uGNI, UCX)

▪ Cons: For networks that prefer relative offset (e.g., OFI/psm2), extra translation is required

▪ Can be avoided by passing an info hint at window creation that only XXX_ABS will be used, thus the 

window base can be registered as MPI_BOTTOM

▪ Instruction “relative offset = dest - MPI_BOTTOM” can be eliminated by compiler, eventually becomes 

the same as “relative offset = dest”
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shmem_putmem(dest=0x8000, source, nelems, pe);

shmem_putmem @ OSHMPI:
MPIX_PUT_ABS(source, nelems,  src_dtype, 
                              pe, dest, nelems,  dest_type, win);

MPI_PUT @ MPI:
[OFI/uGNI, UCX] dest_abs_addr = dest

Using PUT_ABS in OSHMPI/MPICH path



RMA Optimizations – Eliminate MPI Full-Progression (1)

12

▪ MPI makes expensive “full progress”

– To ensure prompt progress for all MPI 

communication types (i.e., point-to-point, 

collectives, active-message based routines).

– Expensive network progress polling 

functions. E.g., fi_cq_read, 

ucp_worker_progress

▪ We may not need the “full progress” in 

the OSHMPI/MPI context?

Progression in shmem_putmen #Instr

Flush_local: wait network completion
• Ensure remote completion of outstanding PUT
• OFI: waiting on OFI counters by calling fi_cntr_read
• UCX: ucp_ep_flush

38

Flush_local: MPI full progress
• Ensure MPI-layer progression for send/receive, 

collectives, active message based RMA
• OFI: polling incoming CQE by calling fi_cq_read
• UCX: ucp_tag_probe_nb + ucp_worker_progress

24

Progression in shmem_quiet #Instr

Flush_all: wait network completion 14

Flush_all: MPI full progress 24



RMA Optimizations – Eliminate MPI Full-Progression (2)

▪ Breakdown of required progression:

1. Progress for MPI coll/pt2pt:  Full progress will always be triggered at the context of collectives and pt2pt 

(e.g., in MPI_Wait) to ensure their progression

2. Progress for MPI RMA AM: If we know all RMA/AMO operations are directly offloaded to the network 

hardware (or SW emulation),  MPI AM progression can be safely eliminated

3. Progress for OFI/UCX internal AM (for network SW emulation): Can still be triggered by waiting on 

network completion in flush (e.g., fn_cntr_read in OFI, ucp_ep_flush in UCX) 

▪ Optimization (generic approach to avoid progression-2):

– User hints: specify extended info ”accumulate_op_types” and “rma_op_types” at window creation to 

describe the used AMO/RMA op, each with all  datatypes and max element counts

• E.g., “accumulate_op_types:cswap” = “int:1,long:1,longlong:1,uint:1,ulong:1,ulonglong:1,...” in OSHMPI

– Network capability: query network the supported atomics/RMA with all possible datatypes and count limit 

at MPI_Init

– MPI full progress can be safely skipped at win_flush{local, all} if all user-required AMO/RMA are supported 

by the network
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Performance After Optimizations
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▪ OSU benchmark osu_oshm_put 

▪ Over OFI/Intel Omni-Path:

– Optimized OSHMPI/MPICH delivers similar results 

as that of SOS in internode latency

– No visible gap in internode message rate (graph 

omitted)

▪ Over UCX/Mellanox ConnectX-5:

– OSHMPI/MPICH delivers only ~5% additional 

overhead compared to OSHMEM in internode 

latency

– No visible gap in internode message rate (graph 

omitted)

Internode Latency on Argonne Bebop
(OFI, Intel Broadwell, Omni-Path)

Internode Latency on Argonne JLSE
(UCX, Intel Xeon Gold,  ConnectX-5 EDR)



OSHMPI AMO: Mismatched Atomic Semantics in MPI (1)

▪ Problem statement: Mismatched atomics semantics in OpenSHMEM and MPI

– OpenSHMEM ensures atomicity between two different atomic operations (e.g., finc and fset)

– MPI accumulate operations guarantee atomicity only between “same_op” operation or 

“same_op_no_op” operation (e.g., only when every PE performs finc, or finc + fetch)

– Cannot use MPI accumulates to directly implement OSHMPI atomics 

▪ Workaround in OSHMPI: implement active messages based AMO via MPI PT2PT

– While ensuring correctness, performance is suboptimal due to additional costs such as manual 

progress polling (or enabling additional async thread) in OSHMPI

– Support AMO with GPU memory heap becomes complex, i.e., OSHMPI layer has to handle 

vendor-specific GPU atomic reduce operations
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OSHMPI AMO: Mismatched Atomic Semantics in MPI (2)
▪ Solution: Proposals to MPI standard (implementation is already available in OSHMPI/MPICH/OFI)

– Replace original “accumulate_ops” with more specific “which_accumulate_ops=sum,replace...“

– Default value is “all”, which excepts MPI to guarantee atomicity between all atomic operations, 

same to OpenSHMEM spec.

• Allow OSHMPI to directly use MPI accumulates in AMO

• Performance impact: no network supports MPI atomic PROD, MINLOC, MAXLOC. Thus, the default “all” 

disallows utilization of network hardware atomics

– Not a problem for OSHMPI, because we need only a subset of MPI ops 

(cswap,sum,no_op,replace,band,bor,bxor), which are likely supported by major networks

▪ Further investigations 

– Remote atomics are also limited by datatypes, number of elements, and required ordering of each op (e.g., 

some MPI <op,dataype> may not be supported by OFI provider, no war|waw|raw ordering support)

• MPI MUST ensure all remote atomics to the same memory location can use hardware atomics 

• Involves additional checks before issuing network atomics, may increase software overhead 
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OSHMPI AMO: Performance Evaluation

▪ Platform: Argonne Theta

– KNL nodes with Cray Aries network

▪ Evaluation with modified osu_oshm_atomics

– All-to-one pattern: Let every PE issue AMO to PE 0

• Mimic use of AMOs in real applications

– SOS/OFI-gni: native implementation 

– OSHMPI/AMO-AM: MPI PT2PT based AM

– OSHMPI/AMO-direct: Directly use MPI accumulates and 

enable network atomics

– Result summary: Obviously direct AMO is more scalable 

than AM-based AMO; maintain low overhead with 

increasing number of PEs
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* Summary of used MPI hints in AMO-direct:
• Required MPI hints to enable direct use of MPI accumulates: 

which_accumulate_ops=“cswap,sum,no_op,replace,band,bor,bxor”
• Additional hints to enable network atomics: 

disable_shm_accumulate=true, accumulate_ordering=none,

Performance on Haswell (NERSC Cori): SOS 2.5us, 
OSHMPI/direct-amo 4.21us

Improved 
in current 
study



Memory Space API with Memory Kinds

▪ Memory space proposal under investigation by the spec committee

– https://github.com/openshmem-org/specification/wiki/Memory-Spaces

– Goal: supporting different kinds of memory for symmetric heap

– Led by Naveen N Ravichandrasekaran@HPE

▪ Memory space prototype in OSHMPI (subset of the entire proposal)

– Omit teams in this prototype, but flexible to extend
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void shmemx_space_create(shmemx_space_config_t space_config, shmemx_space_t * space);
void shmemx_space_destroy(shmemx_space_t space);
void shmemx_space_attach(shmemx_space_t space);
void shmemx_space_detach(shmemx_space_t space);
int shmemx_space_create_ctx(shmemx_space_t space, long options, shmem_ctx_t * ctx);
void *shmemx_space_malloc(shmemx_space_t space, size_t size);
void *shmemx_space_calloc(shmemx_space_t space, size_t count, size_t size);
void *shmemx_space_align(shmemx_space_t space, size_t alignment, size_t size);

typedef struct {
    size_t sheap_size;
    int num_contexts;
    shmemx_space_memkind_t memkind;
} shmemx_space_config_t;

typedef enum {
    SHMEMX_SPACE_HOST,
    SHMEMX_SPACE_CUDA,
    /* Other GPU kinds will be added */
} shmemx_space_memkind_t;

https://github.com/openshmem-org/specification/wiki/Memory-Spaces


Key Semantics of Memory Space in OSHMPI

▪ shmemx_space_create(space_config, *space)

– Allocate space heap based on space_config. sheap_size and memkind

– PE local operation

▪ shmemx_space_attach(space)

– Attach the space to all PEs (i.e., TEAM_WORLD), and prepare necessary communication resources 

(e.g., register the space heap to existing network endpoint, creating private endpoint for the 

space if space_config.num_contexts > 0)

– Collective operation across all PEs

▪ shmemx_space_create_ctx(space, options, * ctx)

– Return a private communication context (e.g., network endpoint) dedicated to the space

– Allowing fast RMA/AMO: (1) skip dest-based lookup from all spaces (2) can wait for completion 

only on the dedicated context in quiet and fence

– PE local operation
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Implementation of Memory Space Communication in OSHMPI (1)

▪ Memory space can support two types of communication schemes:

– Scheme-1: AMO/RMA with a space context

• The operation can access only to the corresponding space heap. SHMEM_QUIETE will only complete 

operations issued to the space heap

– Scheme-2: AMO/RMA without specific context (CTX_DEFAULT)

• The operation can access to any location of the global symmetric data, symmetric heap, and space 

heap. SHMEM_QUIET ensures completion of all outstanding AMO/RMA.

▪ Communication support for scheme-1 is relatively straightforward

– At collective space_attach call: create a dedicated internal window for each space context 

(number of wins == space_config. num_contexts)

– At each AMO/RMA operation: directly use the dedicated window in MPI operation
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Implementation of Memory Space Communication in OSHMPI (2)

▪ Communication support for scheme-2 is more challenging

– Approach 1: Similar to existing OSHMPI implementation, create separate window for each space 

by using MPI_Win_create

• At each RMA/AMO operation, lookup the corresponding window based on the dest address

• At quiet/fence, flush the default symm_heap|data windows as well as all space windows.

• Cons: Not scalable when number of spaces (=number of MPI windows) becomes large

– Lookup overhead at each OSHMPI RMA/AMO – can be avoided by using space context

– Consume expensive MPI internal resources required by large number of wins (each win 

contains a dup of COMM_WORLD to ensure separate communication environment)

» Limited number of available communicator->context_id (e.g., 2045 in MPICH, 32768 

in Intel MPI, 4095 in IBM Spectrum MPI)

» Memory usage per window per PE is about 6KBytes
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Implementation of Memory Space Communication in OSHMPI (3)

▪ Approach 2: Create a single dynamic window and attach all heaps to this window

– Challenge: Dynamic window is not well optimized by most MPI implementations

• MPI_Win_attach is a local operation. MPI cannot exchange the info of attached memory regions (e.g., 

address, MR key) among processes, thus losing optimization opportunities (e.g., using network RDMA)

– Can we optimize dynamic window RMA in the OSHMPI context?

• In OSHMPI, symmetric heap and global data are always collectively attached at shmem_init. 

space_attach is a collective call, thus space heap is also collectively attached.

• Extended MPI info for collective attach: 

– Specify info “coll_attach” at win_create_dynamic. If it is TRUE, means all attach calls are collective 

– MPI implementation can safely exchange memory region info at win_attach, thus leverage RDMA

• Pros:  Eliminate non-scalable resource consumption (i.e., all spaces share the same window and thus 

the same window internal communicator)  

• Special concern: May require remote MR key lookup at each OP inside MPI on some networks (e.g., 

OFI/uGNI, UCX)

– If dedicated communication resource is needed (e.g., no MR key lookup), create space context !
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Performance Analysis of Memory Space Approaches

▪  ▪ Latency analysis for memory space with 

host memory

– With CTX_DEFAULT, dynamic win reduces up to 

20% overhead compared to win_create

• Flush only a single window at QUIET

– Space CTX further reduces the overhead by 

skipping space traversal at QUIET and space 

lookup at PUT
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Num of spaces Win_create Dynamic win
1 6.1 6.1

16 97.6 6.1
256 1562.0 6.1

4096 24992.0 6.1

Total additional memory usage in OSHMPI/MPICH compared 
to native OpenSHMEM on 1024 processes (in MB)

Intra-socket Latency with 100 spaces on Argonne Bebop



 Other Things

▪ Support for GPU buffers

▪ GPU-Initiated/-Triggered Operations

▪ OpenSHMEM 1.5 New Features

– Teams

– Team-based Collectives

– Nonblocking AMO

▪ OSHMPI inside MPICH
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Thank you!

Yanfei Guo

Argonne National Laboratory

yguo@anl.gov
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