7

Pacific
Northwest

NATIONAL LABORATORY

Using MPI RMA in
Graph Analytics

Sayan Ghosh,

Computer Scientist

Physical and Computational Sciences Directorate,
Pacific Northwest National Laboratory

ENERGY BATTELLE

PNNL is operated by Battelle for the U.S. Department of Energy

y Gl o BF
L |
e
» . 3

P

Graph algorithms

* Combinatorial (graph) algorithms are key
enablers in data analytics
* Graph coloring, matching, community
detection, centralities, traversals, etc.
* Relatively less computation and more
memory accesses

* Exact algorithms exorbitant — heuristics
or approximation algorithms favored

* Graphs are multifarious, distributed-
memory poses challenges

* Asynchronous, irregular and adversarial
communication patterns

* Network contention can further exacerbate
performance

Ghosh, S., Tallent, N. R., and Halappanavar, M. 2021. Characterizing Performance of Graph Neighborhood
Communication Patterns. IEEE Transactions on Parallel and Distributed Systems, 33(4), 915-928.

Input: G(V,E), s €
Q.enqueue ((visit(s)
while (!Q.empty())
u = Q.dequeue()
for v in neighbor(u):
if (!visited(v):
Q.enqueue ((visit(v))

\4
)

Pacific
Northwest

NATIONAL LABORATORY

Input: G(V,E)
for u in V:

for v in neighbor(u):
visit (v)

TOTAL VOLUME BYTES
All Paths

Pair-wise communication volume for BFS (left)
and Graph neighborhood (right) for same graph

Communication is shown as a heat map of
bytes/process pair, black is 0 bytes

Graph500 or traversal-based algorithms are
not necessarily representative use cases!

Graph applications: clustering and matching e

Northwest

NATIONAL LABORATORY

inter-cluster

* Graph Clustering using Louvain edges
* Access pattern: Neighborhood search \
and determine target community %&’
* Synchronization: Tasks require global ntra-luster
edges
knowledge, all-to-all pattern Goal: Identify tightly knit groups
that strongly correlate to one
* Latency of message exchanges another within their group, and
sparsely so, outside. I Communication traces, purple
denotes synchronization

* Graph Maximum Weighted Matching

* Access pattern: Neighborhood search
and determine heaviest active neighbor

* Synchronization: Tasks are
asynchronous, individual completion

Goal: |dentify subset of edges s.t

o) BandW|dth (queue Of messageS) no two edges are incident on the

same vertex.

Ghosh S, Halappanavar M, Tumeo A, Kalyanaraman A, Lu H, Chavarria-Miranda D, Khan A, Gebremedhin A. Distributed louvain algorithm for graph
community detection. In 2018 IEEE international parallel and distributed processing symposium (IPDPS) 2018 May 21 (pp. 885-895). IEEE.

S Ghosh S, Halappanavar M, Kalyanaraman A, Khan A, Gebremedhin A. Exploring MPI Communication Models for Graph Applications Using Graph . . .
i Matching as a Case Study. In 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS) 2019 May 20 (pp. 761-770). IEEE. Codes: https://github.com/Exa-Graph 3

~7

Communication pattern Pacific

Northwest
® Asynchronous point-to-point updates ® Send/Recv matches well with the owner
: computes model
®* MPI Send/Recv has been supporting
messaging needs of parallel graph ‘ Input: Gi; = (V;, E;) portion of the graph G in rank i.
. . 1: while true do
applications 2. X, < Recv messages
3: for {z,y} € X, do 2
Graph Adjacency matrix Per-process CSR 4: Compute(x,y) {local computation}
0 1 2 3 5: forveV;do
Process #0 6: for u € Neighbor(v) do
0O(1]1 rowptr: 02 4
e 7: Compute(u,v) {local computation} — 1
1lolo]1 colidx: 1203
_________________________________ 8: if owner(u) # i then
110|101 Process #1 9: Nonblocking Send(u, v) to owner(u)
o|1]1]0 rOV‘_’pt'?: 024 10: if processed all neighbors then }3
colidx: 0312 11: break and output data
Vertex-based graph distribution over two
processes for undirected graph with 4 vertices ®* However, MPI offers other models — better suited
and 8 edges. Ghost vertices for processes #0 to reduce synchronization and exploiting
and #1, respectively: 2 and 3; 0 and 1. neighborhood communication patterns]

Calculating remote offset for RMA e

Northwest

® Trivial to calculate vertex owner in a
vertex-based distribution

®* However, RMA versions must calculate
remote offset — challenging for sparse
data

® Assuming passive target communication

10|

® A process maintains two O(#neighbor) =

buffers (see P7)
® One for storing prefix sums of FOCRL«P2 B3 B
(#ghosts — 1)

® Second buffer obtained through
alltoall exchanges of the above
buffer among neighbors

Performance of matching/clustering P

Northwest

NATIONAL LABORATORY

E, Edges in process graph

2% A ' NsR = o4 ' ' ' d Degree stats (max/avg/stddev)
g NCL =
§ 128 | 5X § — p ‘ |Ep | ‘ Amax ‘ davg ‘ 0d
£ g 32 = 1 Friendster on 2K/4K processes
:é_’ 64 | “’g_’ 3) 6X 2048 | 2.09E+06 | 2047 | 2045 | 2045.29
5 | 2X o s X ' 4096 | 8.33E+06 | 4095 | 4069 | 4069.87
;3: 32 | ;8: er Orkut on 512/2K processes
& H [W H 512 [1.30E+05 | 511 | 509 | 509.03
16 8 gl 2048 | 1.84E+06 | 2047 | 1797 | 1808.03
1024 2048 4096 512 024 .
Processes Processes , NCL/RMA must communicate an
(a) Friendster (1K-4K processes) (b) Orkut (512-2K processes) extra data point (action), increasing
2K to 4K processes: E,, increases 4x 512 to 2K processes: E,, increases 14x communication overhead at scale

Graph Matching performance on NERSC Cori

. 1024 processes 2048 processes
Versions Tirs Time Q | Tirs Time Q | Clustering is a nondeterministic problem
NBSR 111 745.80 0.6155 127 498.89 0.6177
COLL 109 732 41 0.6159 141 554.08 0.6204 Dissimilar number of iterations across
SR 111 | 783.94 | 0.6157 || 103 |[[423.43[] 0.6191 | Versions affect execution time and
RMA 109 | 782.47 | 0.6162 || 111[]|589.47 || 0.6190 | modularities (metric of quality)

Graph Clustering #iterations, execution time (in secs.) and Modularity
(Q) of Friendster (65.6M vertices, 1.8B edges) on 1024/2048 processes

MP| RMA alternatives: UPC++

* MPI-3 features such as Passive RMA and Neighborhood Collectives can be
difficult to program or may have overheads
= Status of proposal for RPC in MPI RMA ??7?
" Neighborhood collective currently uses point-to-point internally (no h/w collectives)

* C++ enables performance portability models and modern applications —
C++ interface of MPI is deprecated since MPI 2.2

* UPC++ has convenient one-sided, serialization/non-contiguous support and
RPC interfaces; targets both performance and programmability

UPC++ Graph Matching performance

* UPC++-RMA performance O UPCe+ VP
competitive to MPI-RMA = ;
o I
* UPC++-RPC provides much ‘; 100 !
better programmability = - B TH
(reduced ~100 LoC) % 10 : - -
" RPC provides mechanism to % i
combine outgoing data with |
: : 1 I
remote-side logic o & N

GraphElem data_0 ¢ ,QN N ,% %

GraphElem data_1 @Q Q\ Q Q\ Q\

current = upcxx::when_a curre @ @ @
upcxx::rpc(target, [data 0, data_1](upcxx::dist object<MaxEdgeMatchUPXRPC*>& dobj)

MaxEdgeMatchUPXRPC *here = *dobj;

heze->deactivate edge(data 0, data)i W 1024 processes (64 nodes) W 2048 processes (128 nodes)

// recalculate mate[x]
if (here->mate [here->g ->global to_local(data 0)] == data_ 1) {

, here—>find mate(data 0); Using cray-mpich/7.7.10 and upcxx/2020.3.8-snapshot on NERSC Cori (Haswell),
he Geb)): input graph is com-Friendster (1.8B edges).

Acknowledgements

* Mahantesh Halappanavar, Nathan Tallent and Antonino Tumeo (PNNL)
= Discussions on graph algorithms, implementations and performance analysis

* PAGODA team members, LBNL
" For all the help and support with UPC++ version of Graph Matching

°* PNNL Data-Model Convergence PACER LDRD project
°* ECP ExaGraph Co-Design center

Thank you

Pacific
Northwest

NATIONAL LABORATORY

UPC++ versions:
https://github.com/Exa-Graph/mel-upx

MPI versions:
https://github.com/Exa-Graph/mel
https://github.com/Exa-Graph/miniVite

https://github.com/Exa-Graph/mel-upx
https://github.com/Exa-Graph/mel-upx
https://github.com/Exa-Graph/mel-upx
https://github.com/Exa-Graph/mel
https://github.com/Exa-Graph/miniVite

