
Using MPI RMA in
Graph Analytics

Sayan Ghosh,

Computer Scientist

Physical and Computational Sciences Directorate,
Pacific Northwest National Laboratory

Graph algorithms
• Combinatorial (graph) algorithms are key

enablers in data analytics
• Graph coloring, matching, community

detection, centralities, traversals, etc.
• Relatively less computation and more

memory accesses
• Exact algorithms exorbitant – heuristics

or approximation algorithms favored
• Graphs are multifarious, distributed-

memory poses challenges
• Asynchronous, irregular and adversarial

communication patterns
• Network contention can further exacerbate

performance

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS SPECIAL SECTIONS , VOL. 1, NO. 1, FEB 2021 1

Characterizing Performance of Graph
Neighborhood Communication Patterns

Sayan Ghosh, Nathan R. Tallent, and Mahantesh Halappanavar

Abstract—Distributed-memory graph applications are increasingly important. Many such workloads rely on the graph neighborhood
communication pattern, i.e., asynchronous communication between a vertex and its neighbors, which is fundamentally different than
the Graph500 benchmark. The pattern is adversarial for communication software and hardware due to high message injection rates
and input-dependent, many-to-one traffic with variable destinations and volumes. We present benchmarks and performance analysis of
graph neighborhood communication on modern large-scale network interconnects from four supercomputers: ALCF Theta, NERSC
Cori, OLCF Summit and R-CCS Fugaku.
Our benchmarks characterize communication from the perspectives of latency and throughput. Benchmark parameters make it
possible to mimic complex application behaviors from by real world or synthetic graphs by varying distribution, remote edges, message
volume, and per-vertex work. We find that minor changes in the input graph can substantially increase latencies; and contention can
develop in memory caches and network stacks before the network. Further, latencies and contention vary significantly by vertex
neighborhood, providing a motivation for exploring more asynchronous algorithms. Our results help analysts and developers
understand the performance implications of this important pattern.

F

1 INTRODUCTION

With the convergence of analytics and high performance
computing, distributed-memory graph applications are an
increasingly important workload. Many of these workloads
rely on graph neighborhood communication, i.e., asyn-
chronous communication between a vertex and its neigh-
bors. Important examples include graph clustering [1]–[4]
and weighted matching [5]–[7], algorithms commonly used
at the core of analytics and scientific applications. The graph
neighborhood communication pattern is notably different
than the stencil pattern found in most scalable scientific ap-
plications. Stencil communication involves nearest-neighbor
exchanges of fixed-size messages within a fixed process
neighborhood, usually organized in a logical 2-D or 3-
D Cartesian grid. Thus, the stencil pattern communicates
with a small, fixed number of neighbors, using fixed-sized
messages. However, graph neighborhood patterns differ
fundamentally.

Graph neighborhood patterns are irregular in nature.
One of the popular benchmarks in this category is the
Graph500 benchmark [8] that employs a breadth-first search
(BFS) as one of the key algorithms. Graph traversal in a
breadth-first manner is indeed a fundamental operation
in many graph algorithms. However, the traversal varies
broadly based on a given context. For example, weights and
vertex status are used in weighted matching, including a
mix of breadth-first and depth-first searches. We therefore
posit that a single breadth-first search by itself is not a
representative kernel for benchmarking purposes.

Consider Fig. 1, comparing the BFS and graph neigh-
borhood patterns. The top of the figure shows algorithms
for each pattern, respectively. For simplicity, the algorithms
assume shared memory; in distributed-memory, any remote
neighbor generates communication. The key observation is

• S. Ghosh, N. Tallent and M. Halappanavar are with the Advanced
Computing, Mathematics, and Data Division, Pacific Northwest National
Laboratory, Richland, WA, 99354. E-mail: {sg0, tallent, hala}@pnnl.gov

Manuscript received February 24, 2021.

Input : G(V, E) , s 2 V
Q. enqueue ((v i s i t (s))
while (!Q. empty ()) :

u = Q. dequeue ()
for v in neighbor (u) :

i f (! v i s i t e d (v) :
Q. enqueue ((v i s i t (v))

Input : G(V, E)
for u in V:

for v in neighbor (u) :
v i s i t (v)

Fig. 1: Algorithms and pair-wise communication for (a) BFS
and (b) Graph neighborhood. Communication is shown as a
heat map of bytes per process pair, where black is 0 bytes.

that the number of traversed edges bounds communication,
with a simplifying assumption that cut or remote edges
are distributed uniformly at random. BFS traverses edges
proportional to |V | edges in the entire graph (from source
vertices). In contrast, the graph neighborhood pattern tra-
verses edges proportional to |E| originating from vertices,
and may therefore be called vertex neighborhood commu-
nication. Whereas vertex neighborhood induces communi-
cation for all remote edges, with BFS many remote edges
never induce communication. In effect, vertex neighborhood
typically induces more communication — about |E|/|V |
(average degree) times more — with larger impact from
high degree vertices and vertices along the critical path in
a given context. The bottom portion of Fig. 1 depicts one
performance implication using heat maps of inter-process
message exchange volumes. The heat maps show volume
of communication between each process pair. Focus on
black regions indicating no communication (as colors are not
calibrated). The BFS heat map (generated using Graph500)
shows a significant number of pairs for which there is
no communication (black). For vertex neighborhood, every

Pair-wise communication volume for BFS (left)
and Graph neighborhood (right) for same graph

Communication is shown as a heat map of
bytes/process pair, black is 0 bytes

Graph500 or traversal-based algorithms are
not necessarily representative use cases!

2
Ghosh, S., Tallent, N. R., and Halappanavar, M. 2021. Characterizing Performance of Graph Neighborhood
Communication Patterns. IEEE Transactions on Parallel and Distributed Systems, 33(4), 915-928.

Graph applications: clustering and matching

• Graph Clustering using Louvain
• Access pattern: Neighborhood search

and determine target community
• Synchronization: Tasks require global

knowledge, all-to-all pattern
• Latency of message exchanges

• Graph Maximum Weighted Matching
• Access pattern: Neighborhood search

and determine heaviest active neighbor
• Synchronization: Tasks are

asynchronous, individual completion
• Bandwidth (queue of messages)

Communication traces, purple
denotes synchronization

Goal: Identify subset of edges s.t
no two edges are incident on the
same vertex.

Goal: Identify tightly knit groups
that strongly correlate to one
another within their group, and
sparsely so, outside.

Ghosh S, Halappanavar M, Kalyanaraman A, Khan A, Gebremedhin A. Exploring MPI Communication Models for Graph Applications Using Graph
Matching as a Case Study. In 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS) 2019 May 20 (pp. 761-770). IEEE. Codes: https://github.com/Exa-Graph

Ghosh S, Halappanavar M, Tumeo A, Kalyanaraman A, Lu H, Chavarria-Miranda D, Khan A, Gebremedhin A. Distributed louvain algorithm for graph
community detection. In 2018 IEEE international parallel and distributed processing symposium (IPDPS) 2018 May 21 (pp. 885-895). IEEE.

3

Communication pattern

• Asynchronous point-to-point updates
• MPI Send/Recv has been supporting

messaging needs of parallel graph
applications

• Send/Recv matches well with the owner
computes model

• However, MPI offers other models – better suited
to reduce synchronization and exploiting
neighborhood communication patterns

4

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS SPECIAL SECTIONS , VOL. 1, NO. 1, FEB 2021 4

4.1 Vertex neighborhood pattern
Neighborhood data exchanges are a mainstay of distributed-
memory graph applications, often depicting the vertex neigh-
borhood communication pattern, in which the owner of a
vertex performs asynchronous message exchanges with re-
mote neighbors of a local vertex. Algorithm 1 illustrates the
core idea of the vertex neighborhood communication pattern
through an example involving standard nonblocking MPI
point-to-point functions. In this communication pattern, an
arbitrary amount of many-to-one (incast) short-large mes-
sage exchanges are probable depending on the input graph,
making it a challenging workload for modern networks.
Such workloads where multiple requests converge on the
same source inducing hotspots that potentially lead to tree
saturation under suboptimal congestion management.

Algorithm 1 Graph vertex neighborhood communication pattern
assuming a vertex-based graph distribution.
Input: Gi = (Vi[Vg, Ei) portion of the (undirected) graph G on
rank i, where Vi are the “local” vertices and Vg are the “ghost”
vertices (vertices not owned by rank i) that have an edge with
a vertex v, where v 2 Vi. ng = |Vg|.

1: ncurr
g ng

2: while true do
3: found Probe for incoming messages
4: if found then
5: Recv matched message
6: ncurr

g � = 1
7: for v 2 Vi do
8: for u 2 Neighbor(v) do
9: if owner(u) 6= i then

10: Nonblocking Send to owner(u)
11: if !ncurr

g then
12: Wait on Nonblocking Send request handles
13: break

The input graph distribution across the processes im-
plicitly form a process graph, encapsulating the vertices and
edges of the original graph. The nodes of a process graph are
processes owning portions of the original graph. The overall
latency experienced by the distinct process neighborhoods
in a process graph might be inconsistent, due to differences
in the physical proximity of nodes or routing policies.

4.2 Graph distribution and Process graphs
Given the importance of the process graph for communi-
cation, we provide both default input-graph distributions
and subsequent process-graph transformations. The trans-
formations represent a wide range of process graphs, for
both real-world and synthetic graphs.

The provided input-graph distributions are vertex-based
and edge-based. The vertex-based approach distributes in-
put vertices and their edge lists evenly across available
processes. Each process stores the subset of vertices that
it owns, and also keeps track of a “ghost” copy for any
vertex that has an edge to any of its local vertices but is
owned by a different (remote) process. Henceforth, we refer
to the latter set of vertices as the “ghost” vertices. Fig. 5
demonstrates the vertex-based graph distribution between
2 processes, each process maintaining its subgraph in CSR
format [27]. An alternative edge-based distribution balances
edge distributions to reduce the number of “ghost” vertices
and communication. This distribution maintains roughly
equivalent edge lists but may result in an an uneven number
of vertices per process (and additional file I/O).

0 1

2 3

Graph Adjacency matrix

0
1
2
3

0 1 2 3
10 0

0 0

1

1 1

1
1

1
1

0
0

0
0

Per-process CSR

Process #0
rowptr: 0 2 4
colidx: 1 2 0 3
Process #1
rowptr: 0 2 4
colidx: 0 3 1 2

Fig. 5: Vertex-based graph distribution over two processes for
undirected graph with 4 vertices and 8 edges. Ghost vertices
for processes #0 and #1, respectively: 2 and 3; 0 and 1.

The process-graph transformations are summarized in
Fig. 4. For a real-world graph, a percentage of edges can be
removed from either of the default process graphs, reducing
communication edges. For the synthetic graph (discussed
in the next section), which begins with an optimal process
graph, a percentage of edges can be added, increasing
communication edges indefinitely. These two transforms,
with varying degrees of noise, will lead to a process graph
that are representative of the structures from real world
instances, including those cases where graph partitioners
are employed. In particular, the transformations can make
the process graph nearly equivalent to one generated by graph
partitioners, which aim to minimize the number of cut-edges
while keeping the number of vertices in each partition to
roughly the same size [28]. For a real-world graph with the
vertex-distribution, as communication edges are removed, a
near optimal partitioning is reached.

Since graph partitioning is NP-hard, it rarely viable,
including for important scale free graphs with small world
connectivity [29]. Nevertheless, we represent its effects to
understand implications of vertex neighborhood patterns.

4.3 Synthetic input graph generation
In addition to the ability to execute on instances of real-
world graphs, the graph-based benchmark features a paral-
lel in-memory synthetic graph generator using the random
geometric graph (RGG) model [30]. RGG has applications in
several domains such as wireless networks [31], [32]. Graphs
generated using the RGG model also exhibit good commu-
nity structure at different scales of graphs as exhibited by
higher values of modularity values [33], and is therefore of
interest to this work.

{0,0}

{0,1/p}

{0,2/p}

{0,3/p}

{1/p,1}

{2/p,1}

{3/p,1}

{4/p,1}

0
1
2

3
4
5

6
7
8

9
10
11

0 1 2 3 4 5 6 7 8 9 10 11
Fig. 6: Adjacency matrix of a random geometric graph (RGG)
on 4 processes. Vertices owned by a process can only have
remote edges owned by its up and/or down neighbor.

A k-D random geometric graph with n vertices, G(n, d),
is a graph generated by randomly placing n vertices in a k-

Vertex-based graph distribution over two
processes for undirected graph with 4 vertices
and 8 edges. Ghost vertices for processes #0
and #1, respectively: 2 and 3; 0 and 1.

1

2

3

Calculating remote offset for RMA

• Trivial to calculate vertex owner in a
vertex-based distribution

• However, RMA versions must calculate
remote offset – challenging for sparse
data

• Assuming passive target communication
• A process maintains two O(#neighbor)

buffers (see P7)
• One for storing prefix sums of

(#ghosts – 1)
• Second buffer obtained through

alltoall exchanges of the above
buffer among neighbors

5

Performance of matching/clustering
𝑬𝒑 Edges in process graph

d Degree stats (max/avg/stddev)

5x

2x

2K to 4K processes: 𝑬𝒑 increases 4x 512 to 2K processes: 𝑬𝒑 increases 14x

3x 2.6x

NCL/RMA must communicate an
extra data point (action), increasing
communication overhead at scale

6

Graph Matching performance on NERSC Cori

Graph Clustering #iterations, execution time (in secs.) and Modularity
(Q) of Friendster (65.6M vertices, 1.8B edges) on 1024/2048 processes

Clustering is a nondeterministic problem

Dissimilar number of iterations across
versions affect execution time and
modularities (metric of quality)

7

MPI RMA alternatives: UPC++

• MPI-3 features such as Passive RMA and Neighborhood Collectives can be
difficult to program or may have overheads
§ Status of proposal for RPC in MPI RMA ???
§ Neighborhood collective currently uses point-to-point internally (no h/w collectives)

• C++ enables performance portability models and modern applications –
C++ interface of MPI is deprecated since MPI 2.2

• UPC++ has convenient one-sided, serialization/non-contiguous support and
RPC interfaces; targets both performance and programmability

8

UPC++ Graph Matching performance

• UPC++-RMA performance
competitive to MPI-RMA
• UPC++-RPC provides much

better programmability
(reduced ~100 LoC)
§ RPC provides mechanism to

combine outgoing data with
remote-side logic 1

10

100

1000

UPX
-RPC

UPX
-RMA

MPI-P
2P

MPI-R
MA

MPI-N
CL

MPI-N
RM

MPI-N
CN

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
S.

)

1024 processes (64 nodes) 2048 processes (128 nodes)

UPC++ MPI

Using cray-mpich/7.7.10 and upcxx/2020.3.8-snapshot on NERSC Cori (Haswell),
input graph is com-Friendster (1.8B edges).

9

Acknowledgements

• Mahantesh Halappanavar, Nathan Tallent and Antonino Tumeo (PNNL)
§ Discussions on graph algorithms, implementations and performance analysis

• PAGODA team members, LBNL
§ For all the help and support with UPC++ version of Graph Matching

• PNNL Data-Model Convergence PACER LDRD project

• ECP ExaGraph Co-Design center

Thank you

10

UPC++ versions:
https://github.com/Exa-Graph/mel-upx

MPI versions:
https://github.com/Exa-Graph/mel
https://github.com/Exa-Graph/miniVite

https://github.com/Exa-Graph/mel-upx
https://github.com/Exa-Graph/mel-upx
https://github.com/Exa-Graph/mel-upx
https://github.com/Exa-Graph/mel
https://github.com/Exa-Graph/miniVite

