
PMPI SUCCESSOR
RESTART 2017

Code Name QMPI

LLNL-PRES-xxxxxx
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC



Why redo PMPI?
• Weak symbol intersection is brittle

• Depends on the OS

• Limited to a single tool
• One set of indirections

• Forces tools to be monolithic
• Single shared library



Requirements
• Support multiple concurrent tools in a single process
• Link time or runtime enablement
• Low to no overhead when no tool is attached

• Possibility for zero overhead when disabled
• No loss of functionality compared to existing PMPI

• Complete coverage of all MPI routines (except where exempted 
already in MPI 3)

• Complete coverage of all tool functionality
• Incl. changes to parameters or routines used

• All language bindings (C, mpif.h, use mpi, use mpif08)
• Support for pre and post call activation

• Basically wrapper functionality
• Tools can implement functionality in C (in one place) regardless 

of language bindings used
• Integration with MPI thread support

Vorführender
Präsentationsnotizen
C vs. Fortran – what to do if some types are different (e.g., request type for NEC MPI)What about Fortran only functions?



QMPI:
A VIEW FROM THE TOOL
Focus: Interface the tool would see

Let’s ignore:
Configuration issues, Initialization, Complex Tool DAGs, …



Groundrules
• Maintain the wrapping concept

• Only way to maintain all functionality
• Interface and all tools will be C only

• Fortran mapping has to be taken care of by the MPI library
• Tools are responsible for matching runtimes when using C++

• Support for simple tool stacks only
• Nested wrapping 
• No DAGs, no inter-tool services, no coordination, no dependencies

• Tools are by default independent of each other
• Can run on their own
• Can assume a standard compliant implementation of MPI routines to build 

upon (the old PMPI interface)
• Have to provide a standard compliant implementation of MPI, which 

consists of:
• Wrapped routine (defined MPI routines – or close to, see below)
• MPI routines not wrapped (when MPI=PMPI)



Tools Responsibilities
• Tools implement wrapper routines

• Set of routines with well defined names
• One name defined for each MPI routine
• Extended prototype with extra fields
• E.g.: QMPI_Comm_rank(MPI_Comm comm, int *rank, <extra data>)

• Tool routines must call “follow on routine”, the match to the old PMPI
• Assigned by MPI during initialization
• Can be actual MPI or another tool – transparent

• Routines not implemented are handled by MPI
• Automatically set to a “follow-on” routine

• The implemented wrappers combined with all default routines 
(which can be assumed to adhere to the MPI standard) must 
again implement a coherent version of the MPI standard

Vorführender
Präsentationsnotizen
Does it have to be a well defined routine?



Basic Wrapping
• Each tool implements a set of routines it wraps
• Tools have independent instances

• Separate storage space
• Each tool instance has the following “available”:

• A functional table with all “PMPI” / follow on routines
• A pointer to store internal information

• Wrapping process:
Int QMPI_X(…)
{

qmpi_x_t pqmpi_x;
MPI_Table_query(“QMPI_X”, &pqmpi_x,table);
... Do work ...
err=pqmpi_x(...);
... Do work ...
return err;

}
• Note: query routine should be called once during initialization



Multiple Tools

App

Exposed MPI_Send

Plugin 1: Profile tool (QMPI_Send interface)

Plugin 2: Trace tool (QMPI_Send interface)

Actual MPI_Send

Guts of MPI_Send



Magic Data Available to Tools
• Each tool instance needs two pieces of data

• Pointer to its own state
• Pointer to a table of PMPI functions to call

• Question where does it get that data from?
• Pointer to instance state must be passed in from previous tool

• Pointer must be used to store PMPI function table
• Pointer must be used to store pointer to instance for follow on tool

• Basically: context for all tools gets handed down

• Where does this data come from originally?
• Setup during intialization routine

• Passes in context for follow-on tool
• Passes in PMPI function table

• Tools then stores that information



Concept 1: Function Tables
• Used to store one function pointer for each MPI function

• Describes complete interface

• Tools can use that to query “follow-on functions”

• Specified as opaque objects



APIs for Function Tables
• Create a Table

• Out: table handle
• Destroy a Table

• In/Out: table handle
• Copy a Table

• In: src and dst table handles
• Query one Function

• In: table handle, function ID or name
• Out: function

• Set one Function
• In: table handle, function ID or name, function

• Unset one Function
• In: table handle, function ID or name

• Needs enumeration of all MPI functions
• Alternative: strings (?)

• Likely to contain other tool routines (init/finalize/…)

Vorführender
Präsentationsnotizen
Should we let MPI own all tables – tools can’t create, destroy, copy them – we can just manipulate themWe still pass a opaque objects from/to tools



Concept 2: Tools and Instances
• Tools expose a set of intercepted routines

• Typically implemented as a shared library
• Magically gets loaded

• Let’s discuss that later
• Doesn’t do anything by itself

• No automatic interception
• Just provides routines

• Tool instances are built from tools
• Use the set of intercepted routines
• Instances have their own context

• Instances don’t share context
• Context = void pointer to store information



Bringup steps (before MPI_Init)
• Step 1: tools get registered

• This loads the tools 
• MPI now knows about them

• Step 2: tools get initialized
• Make their wrapped functions known
• Provide meta data

• Step 3: MPI creates a list of tool to instantiate
• Let’s leave that to magic
• Result is an ordered list of tools to create instances for

• Step 4: tools instances get initialized
• Tools get context
• Done bottom up (see late why)



Step 1: Tool Registration
• Option 1 / Callback

• MPI searches for available intercepts and remembers them
• Tool implements a well defined callback routine (special QMPI routine)
• Routine gets called from MPI 
• Tools fills out a “who am I” record and returns it
• Returns pointer to initialization routine

• Option 2 / Self registration
• Tool gets “magically” initialized (ini routines)
• Tool registers itself by calling the MPI function for tool registration
• Tool passes that table to MPI
• Tools fills out a “who am I” record and passes it
• Provides pointer to initialization routine

Should we allow (or enable for the future) dynamic registration?
What about dynamic addition of routines?

Vorführender
Präsentationsnotizen
What about a setup where not all processes exists in the beginning of time? Need to make sure we cover the case for static linking



Step 2: Tool Initialization
• MPI calls initialization routines

• Arbitrary order
• MPI passes function table

• Represents all intercepted routines MPI could find
• Typically used for option 1 

• Can be manipulated during the initialization
• Typically used for option 2

• This step could be combined with Step 1

Vorführender
Präsentationsnotizen
The table could be static since it is per tool but then we can’t do it opaque	either table of void* or a huge struct of all pointers with correct prototypes	this would make combining step 1 and 2 possible due to early initialization



Step 3: Magic



Step 3: Magic
• MPI decides on a list of tool instances to use

• Creates a tool stack
• Mechanism open (e.g., Env. Variable)

• These tools are nested 

MPI App

Tool 1 / top 

Tool 2 / top

PMPI Routine

Tool 2 / bottom

Tool 1 / bottom

MPI App

Vorführender
Präsentationsnotizen
Only do a simple listOrder it by explict order or by priorityMPI creates one instance per tool onlyMore complicated things require a separate specification, which is outside of MPI (at least for now)



Step 4: Tool Instance Initialization
• Each tool gets initialized in reverse order

• Instance initialization routine stored in function table for tool

• Initialization routine gets passed
• A void pointer to store tool instance context
• An opaque void pointer

• This is the context for the follow on tool
• A function table containing the PMPI routines

• Who owns this table?
• When can it change and who can do this?
• Or can this just be a tool ID

• Tool responsibilities
• Create storage structure and hook it to void pointer
• Store opaque pointer and function table in that structure



Wrapping
Int QMPI_X(<MPI arguments>, void* context, MPI_blob blob)
{

retrieve function table from context -> next_table
retrieve opaque pointer from context -> next_context
qmpi_x_t pqmpi_x;
MPI_Table_query(“QMPI_X”, &pqmpi_x,next_table);
... Do work ...
err=pqmpi_x(<MPI arguments>, next_context, blob);
... Do work ...
return err;

}

• Note: query routine should be called once during initialization
• Blob contains MPI internal information, such Fortran flag 

Vorführender
Präsentationsnotizen
Or do you want to enforce that this is done every time to allow dynamic tools – tool tables can changeThis requires a fast implementation of the tables – like a real tableIs the table dyamic – who owns the table?The table lookup could also be global with passing an ID 		would allow MPI to change the table dymically	do we want that and how?	Is this a problem when combining with sessions?Should this be combined with MPI_T Events, notification in case of tools have changedGet rid of strings for query routines	may not matter if we change to a table or structNeed some guarantees on when changes to the table happen: perhaps through eventsTool gets passed the new table and swap it in on demand when its ready



What Needs to be Standardized
• Function Tables

• Type and access function

• Shadow API
• All MPI functions with slight modifications
• ”Chance to get it right”

• Initialization routines for tools and tool instances
• Includes the “who am I” record

• Query routines
• Ability to see which tools (and tool instances?) are present 

• Specification of tools to load
• Do we need that or is that out of the specification?



Issues
• Transition between PMPI and QMPI

• Deprecate PMPI
• For a while this needs to be interoperable

• PMPI is likely on top of the new infrastructure
• In intercepts the actual MPI calls from the app

• Threading support
• What if tool needs thread support itself

• Who am I field
• Versioning
• Unique name



Dynamic Tools / Open Issues
• Changing “next tables”

• When can it happen
• Who gets notified
• Thread safety

• Probably should have dynamic updates in tables
• Opaque objects may be too slow

• Newly loaded tools need to be initialized
• Need a barrier?

• What about removing
• Can a tool just finalized itself?



Now What About Complex Tools?
• We do want full PnMPI functionality

• Tool DAGs / Diamond stacks
• Services for intra tool communication
• Support for cooperating tool modules

• BUT: this is not MPI’s task
• Research
• Requires external specification

• However, this proposal allows developers to build tools that
• Are implemented as a tool themselves
• Provide this functionality
• Can integrate existing tools without changes

• No more patching like in PnMPI



Complex Tool Use Cases
• This should be implementable by a new tool that uses the 

interface, without changing the interface
• Only run on certain nodes/processes/communicator

• Argument for centralized table registry?

• Create arbitrary tool DAGs


	PMPI SUCCESSOR�RESTART 2017
	Why redo PMPI?
	Requirements
	QMPI:�A View from the Tool
	Groundrules
	Tools Responsibilities
	Basic Wrapping
	Multiple Tools
	Magic Data Available to Tools
	Concept 1: Function Tables
	APIs for Function Tables
	Concept 2: Tools and Instances
	Bringup steps (before MPI_Init)
	Step 1: Tool Registration
	Step 2: Tool Initialization
	Step 3: Magic
	Step 3: Magic
	Step 4: Tool Instance Initialization
	Wrapping
	What Needs to be Standardized
	Issues
	Dynamic Tools / Open Issues
	Now What About Complex Tools?
	Complex Tool Use Cases

