-
-
Notifications
You must be signed in to change notification settings - Fork 35.4k
/
Curve.js
416 lines (248 loc) · 7.81 KB
/
Curve.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import { clamp } from '../../math/MathUtils.js';
import { Vector2 } from '../../math/Vector2.js';
import { Vector3 } from '../../math/Vector3.js';
import { Matrix4 } from '../../math/Matrix4.js';
/**
* Extensible curve object.
*
* Some common of curve methods:
* .getPoint( t, optionalTarget ), .getTangent( t, optionalTarget )
* .getPointAt( u, optionalTarget ), .getTangentAt( u, optionalTarget )
* .getPoints(), .getSpacedPoints()
* .getLength()
* .updateArcLengths()
*
* This following curves inherit from THREE.Curve:
*
* -- 2D curves --
* THREE.ArcCurve
* THREE.CubicBezierCurve
* THREE.EllipseCurve
* THREE.LineCurve
* THREE.QuadraticBezierCurve
* THREE.SplineCurve
*
* -- 3D curves --
* THREE.CatmullRomCurve3
* THREE.CubicBezierCurve3
* THREE.LineCurve3
* THREE.QuadraticBezierCurve3
*
* A series of curves can be represented as a THREE.CurvePath.
*
**/
class Curve {
constructor() {
this.type = 'Curve';
this.arcLengthDivisions = 200;
}
// Virtual base class method to overwrite and implement in subclasses
// - t [0 .. 1]
getPoint( /* t, optionalTarget */ ) {
console.warn( 'THREE.Curve: .getPoint() not implemented.' );
return null;
}
// Get point at relative position in curve according to arc length
// - u [0 .. 1]
getPointAt( u, optionalTarget ) {
const t = this.getUtoTmapping( u );
return this.getPoint( t, optionalTarget );
}
// Get sequence of points using getPoint( t )
getPoints( divisions = 5 ) {
const points = [];
for ( let d = 0; d <= divisions; d ++ ) {
points.push( this.getPoint( d / divisions ) );
}
return points;
}
// Get sequence of points using getPointAt( u )
getSpacedPoints( divisions = 5 ) {
const points = [];
for ( let d = 0; d <= divisions; d ++ ) {
points.push( this.getPointAt( d / divisions ) );
}
return points;
}
// Get total curve arc length
getLength() {
const lengths = this.getLengths();
return lengths[ lengths.length - 1 ];
}
// Get list of cumulative segment lengths
getLengths( divisions = this.arcLengthDivisions ) {
if ( this.cacheArcLengths &&
( this.cacheArcLengths.length === divisions + 1 ) &&
! this.needsUpdate ) {
return this.cacheArcLengths;
}
this.needsUpdate = false;
const cache = [];
let current, last = this.getPoint( 0 );
let sum = 0;
cache.push( 0 );
for ( let p = 1; p <= divisions; p ++ ) {
current = this.getPoint( p / divisions );
sum += current.distanceTo( last );
cache.push( sum );
last = current;
}
this.cacheArcLengths = cache;
return cache; // { sums: cache, sum: sum }; Sum is in the last element.
}
updateArcLengths() {
this.needsUpdate = true;
this.getLengths();
}
// Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant
getUtoTmapping( u, distance ) {
const arcLengths = this.getLengths();
let i = 0;
const il = arcLengths.length;
let targetArcLength; // The targeted u distance value to get
if ( distance ) {
targetArcLength = distance;
} else {
targetArcLength = u * arcLengths[ il - 1 ];
}
// binary search for the index with largest value smaller than target u distance
let low = 0, high = il - 1, comparison;
while ( low <= high ) {
i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats
comparison = arcLengths[ i ] - targetArcLength;
if ( comparison < 0 ) {
low = i + 1;
} else if ( comparison > 0 ) {
high = i - 1;
} else {
high = i;
break;
// DONE
}
}
i = high;
if ( arcLengths[ i ] === targetArcLength ) {
return i / ( il - 1 );
}
// we could get finer grain at lengths, or use simple interpolation between two points
const lengthBefore = arcLengths[ i ];
const lengthAfter = arcLengths[ i + 1 ];
const segmentLength = lengthAfter - lengthBefore;
// determine where we are between the 'before' and 'after' points
const segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength;
// add that fractional amount to t
const t = ( i + segmentFraction ) / ( il - 1 );
return t;
}
// Returns a unit vector tangent at t
// In case any sub curve does not implement its tangent derivation,
// 2 points a small delta apart will be used to find its gradient
// which seems to give a reasonable approximation
getTangent( t, optionalTarget ) {
const delta = 0.0001;
let t1 = t - delta;
let t2 = t + delta;
// Capping in case of danger
if ( t1 < 0 ) t1 = 0;
if ( t2 > 1 ) t2 = 1;
const pt1 = this.getPoint( t1 );
const pt2 = this.getPoint( t2 );
const tangent = optionalTarget || ( ( pt1.isVector2 ) ? new Vector2() : new Vector3() );
tangent.copy( pt2 ).sub( pt1 ).normalize();
return tangent;
}
getTangentAt( u, optionalTarget ) {
const t = this.getUtoTmapping( u );
return this.getTangent( t, optionalTarget );
}
computeFrenetFrames( segments, closed ) {
// see http://www.cs.indiana.edu/pub/techreports/TR425.pdf
const normal = new Vector3();
const tangents = [];
const normals = [];
const binormals = [];
const vec = new Vector3();
const mat = new Matrix4();
// compute the tangent vectors for each segment on the curve
for ( let i = 0; i <= segments; i ++ ) {
const u = i / segments;
tangents[ i ] = this.getTangentAt( u, new Vector3() );
}
// select an initial normal vector perpendicular to the first tangent vector,
// and in the direction of the minimum tangent xyz component
normals[ 0 ] = new Vector3();
binormals[ 0 ] = new Vector3();
let min = Number.MAX_VALUE;
const tx = Math.abs( tangents[ 0 ].x );
const ty = Math.abs( tangents[ 0 ].y );
const tz = Math.abs( tangents[ 0 ].z );
if ( tx <= min ) {
min = tx;
normal.set( 1, 0, 0 );
}
if ( ty <= min ) {
min = ty;
normal.set( 0, 1, 0 );
}
if ( tz <= min ) {
normal.set( 0, 0, 1 );
}
vec.crossVectors( tangents[ 0 ], normal ).normalize();
normals[ 0 ].crossVectors( tangents[ 0 ], vec );
binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] );
// compute the slowly-varying normal and binormal vectors for each segment on the curve
for ( let i = 1; i <= segments; i ++ ) {
normals[ i ] = normals[ i - 1 ].clone();
binormals[ i ] = binormals[ i - 1 ].clone();
vec.crossVectors( tangents[ i - 1 ], tangents[ i ] );
if ( vec.length() > Number.EPSILON ) {
vec.normalize();
const theta = Math.acos( clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors
normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) );
}
binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );
}
// if the curve is closed, postprocess the vectors so the first and last normal vectors are the same
if ( closed === true ) {
let theta = Math.acos( clamp( normals[ 0 ].dot( normals[ segments ] ), - 1, 1 ) );
theta /= segments;
if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) {
theta = - theta;
}
for ( let i = 1; i <= segments; i ++ ) {
// twist a little...
normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) );
binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );
}
}
return {
tangents: tangents,
normals: normals,
binormals: binormals
};
}
clone() {
return new this.constructor().copy( this );
}
copy( source ) {
this.arcLengthDivisions = source.arcLengthDivisions;
return this;
}
toJSON() {
const data = {
metadata: {
version: 4.6,
type: 'Curve',
generator: 'Curve.toJSON'
}
};
data.arcLengthDivisions = this.arcLengthDivisions;
data.type = this.type;
return data;
}
fromJSON( json ) {
this.arcLengthDivisions = json.arcLengthDivisions;
return this;
}
}
export { Curve };