-
-
Notifications
You must be signed in to change notification settings - Fork 35.4k
/
TorusKnotGeometry.js
167 lines (105 loc) · 4.16 KB
/
TorusKnotGeometry.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import { BufferGeometry } from '../core/BufferGeometry.js';
import { Float32BufferAttribute } from '../core/BufferAttribute.js';
import { Vector3 } from '../math/Vector3.js';
class TorusKnotGeometry extends BufferGeometry {
constructor( radius = 1, tube = 0.4, tubularSegments = 64, radialSegments = 8, p = 2, q = 3 ) {
super();
this.type = 'TorusKnotGeometry';
this.parameters = {
radius: radius,
tube: tube,
tubularSegments: tubularSegments,
radialSegments: radialSegments,
p: p,
q: q
};
tubularSegments = Math.floor( tubularSegments );
radialSegments = Math.floor( radialSegments );
// buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
// helper variables
const vertex = new Vector3();
const normal = new Vector3();
const P1 = new Vector3();
const P2 = new Vector3();
const B = new Vector3();
const T = new Vector3();
const N = new Vector3();
// generate vertices, normals and uvs
for ( let i = 0; i <= tubularSegments; ++ i ) {
// the radian "u" is used to calculate the position on the torus curve of the current tubular segment
const u = i / tubularSegments * p * Math.PI * 2;
// now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead.
// these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions
calculatePositionOnCurve( u, p, q, radius, P1 );
calculatePositionOnCurve( u + 0.01, p, q, radius, P2 );
// calculate orthonormal basis
T.subVectors( P2, P1 );
N.addVectors( P2, P1 );
B.crossVectors( T, N );
N.crossVectors( B, T );
// normalize B, N. T can be ignored, we don't use it
B.normalize();
N.normalize();
for ( let j = 0; j <= radialSegments; ++ j ) {
// now calculate the vertices. they are nothing more than an extrusion of the torus curve.
// because we extrude a shape in the xy-plane, there is no need to calculate a z-value.
const v = j / radialSegments * Math.PI * 2;
const cx = - tube * Math.cos( v );
const cy = tube * Math.sin( v );
// now calculate the final vertex position.
// first we orient the extrusion with our basis vectors, then we add it to the current position on the curve
vertex.x = P1.x + ( cx * N.x + cy * B.x );
vertex.y = P1.y + ( cx * N.y + cy * B.y );
vertex.z = P1.z + ( cx * N.z + cy * B.z );
vertices.push( vertex.x, vertex.y, vertex.z );
// normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)
normal.subVectors( vertex, P1 ).normalize();
normals.push( normal.x, normal.y, normal.z );
// uv
uvs.push( i / tubularSegments );
uvs.push( j / radialSegments );
}
}
// generate indices
for ( let j = 1; j <= tubularSegments; j ++ ) {
for ( let i = 1; i <= radialSegments; i ++ ) {
// indices
const a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 );
const b = ( radialSegments + 1 ) * j + ( i - 1 );
const c = ( radialSegments + 1 ) * j + i;
const d = ( radialSegments + 1 ) * ( j - 1 ) + i;
// faces
indices.push( a, b, d );
indices.push( b, c, d );
}
}
// build geometry
this.setIndex( indices );
this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
// this function calculates the current position on the torus curve
function calculatePositionOnCurve( u, p, q, radius, position ) {
const cu = Math.cos( u );
const su = Math.sin( u );
const quOverP = q / p * u;
const cs = Math.cos( quOverP );
position.x = radius * ( 2 + cs ) * 0.5 * cu;
position.y = radius * ( 2 + cs ) * su * 0.5;
position.z = radius * Math.sin( quOverP ) * 0.5;
}
}
copy( source ) {
super.copy( source );
this.parameters = Object.assign( {}, source.parameters );
return this;
}
static fromJSON( data ) {
return new TorusKnotGeometry( data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q );
}
}
export { TorusKnotGeometry };