-
-
Notifications
You must be signed in to change notification settings - Fork 35.4k
/
PMREMGenerator.js
868 lines (581 loc) · 23 KB
/
PMREMGenerator.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
import NodeMaterial from '../../../materials/nodes/NodeMaterial.js';
import { getDirection, blur } from '../../../nodes/pmrem/PMREMUtils.js';
import { equirectUV } from '../../../nodes/utils/EquirectUVNode.js';
import { uniform } from '../../../nodes/core/UniformNode.js';
import { uniformArray } from '../../../nodes/accessors/UniformArrayNode.js';
import { texture } from '../../../nodes/accessors/TextureNode.js';
import { cubeTexture } from '../../../nodes/accessors/CubeTextureNode.js';
import { float, vec3 } from '../../../nodes/tsl/TSLBase.js';
import { uv } from '../../../nodes/accessors/UV.js';
import { attribute } from '../../../nodes/core/AttributeNode.js';
import { OrthographicCamera } from '../../../cameras/OrthographicCamera.js';
import { Color } from '../../../math/Color.js';
import { Vector3 } from '../../../math/Vector3.js';
import { BufferGeometry } from '../../../core/BufferGeometry.js';
import { BufferAttribute } from '../../../core/BufferAttribute.js';
import { RenderTarget } from '../../../core/RenderTarget.js';
import { Mesh } from '../../../objects/Mesh.js';
import { PerspectiveCamera } from '../../../cameras/PerspectiveCamera.js';
import { MeshBasicMaterial } from '../../../materials/MeshBasicMaterial.js';
import { BoxGeometry } from '../../../geometries/BoxGeometry.js';
import {
CubeReflectionMapping,
CubeRefractionMapping,
CubeUVReflectionMapping,
LinearFilter,
NoBlending,
RGBAFormat,
HalfFloatType,
BackSide,
LinearSRGBColorSpace
} from '../../../constants.js';
const LOD_MIN = 4;
// The standard deviations (radians) associated with the extra mips. These are
// chosen to approximate a Trowbridge-Reitz distribution function times the
// geometric shadowing function. These sigma values squared must match the
// variance #defines in cube_uv_reflection_fragment.glsl.js.
const EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ];
// The maximum length of the blur for loop. Smaller sigmas will use fewer
// samples and exit early, but not recompile the shader.
const MAX_SAMPLES = 20;
const _flatCamera = /*@__PURE__*/ new OrthographicCamera( - 1, 1, 1, - 1, 0, 1 );
const _cubeCamera = /*@__PURE__*/ new PerspectiveCamera( 90, 1 );
const _clearColor = /*@__PURE__*/ new Color();
let _oldTarget = null;
let _oldActiveCubeFace = 0;
let _oldActiveMipmapLevel = 0;
// Golden Ratio
const PHI = ( 1 + Math.sqrt( 5 ) ) / 2;
const INV_PHI = 1 / PHI;
// Vertices of a dodecahedron (except the opposites, which represent the
// same axis), used as axis directions evenly spread on a sphere.
const _axisDirections = [
/*@__PURE__*/ new Vector3( - PHI, INV_PHI, 0 ),
/*@__PURE__*/ new Vector3( PHI, INV_PHI, 0 ),
/*@__PURE__*/ new Vector3( - INV_PHI, 0, PHI ),
/*@__PURE__*/ new Vector3( INV_PHI, 0, PHI ),
/*@__PURE__*/ new Vector3( 0, PHI, - INV_PHI ),
/*@__PURE__*/ new Vector3( 0, PHI, INV_PHI ),
/*@__PURE__*/ new Vector3( - 1, 1, - 1 ),
/*@__PURE__*/ new Vector3( 1, 1, - 1 ),
/*@__PURE__*/ new Vector3( - 1, 1, 1 ),
/*@__PURE__*/ new Vector3( 1, 1, 1 )
];
//
// WebGPU Face indices
const _faceLib = [
3, 1, 5,
0, 4, 2
];
const direction = getDirection( uv(), attribute( 'faceIndex' ) ).normalize();
const outputDirection = vec3( direction.x, direction.y, direction.z );
/**
* This class generates a Prefiltered, Mipmapped Radiance Environment Map
* (PMREM) from a cubeMap environment texture. This allows different levels of
* blur to be quickly accessed based on material roughness. It is packed into a
* special CubeUV format that allows us to perform custom interpolation so that
* we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
* chain, it only goes down to the LOD_MIN level (above), and then creates extra
* even more filtered 'mips' at the same LOD_MIN resolution, associated with
* higher roughness levels. In this way we maintain resolution to smoothly
* interpolate diffuse lighting while limiting sampling computation.
*
* Paper: Fast, Accurate Image-Based Lighting
* https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view
*/
class PMREMGenerator {
constructor( renderer ) {
this._renderer = renderer;
this._pingPongRenderTarget = null;
this._lodMax = 0;
this._cubeSize = 0;
this._lodPlanes = [];
this._sizeLods = [];
this._sigmas = [];
this._lodMeshes = [];
this._blurMaterial = null;
this._cubemapMaterial = null;
this._equirectMaterial = null;
this._backgroundBox = null;
}
get _hasInitialized() {
return this._renderer.hasInitialized();
}
/**
* Generates a PMREM from a supplied Scene, which can be faster than using an
* image if networking bandwidth is low. Optional sigma specifies a blur radius
* in radians to be applied to the scene before PMREM generation. Optional near
* and far planes ensure the scene is rendered in its entirety (the cubeCamera
* is placed at the origin).
*
* @param {Scene} scene - The scene to be captured.
* @param {Number} [sigma=0] - The blur radius in radians.
* @param {Number} [near=0.1] - The near plane distance.
* @param {Number} [far=100] - The far plane distance.
* @param {RenderTarget?} [renderTarget=null] - The render target to use.
* @return {RenderTarget} The resulting PMREM.
*/
fromScene( scene, sigma = 0, near = 0.1, far = 100, renderTarget = null ) {
this._setSize( 256 );
if ( this._hasInitialized === false ) {
console.warn( 'THREE.PMREMGenerator: .fromScene() called before the backend is initialized. Try using .fromSceneAsync() instead.' );
const cubeUVRenderTarget = renderTarget || this._allocateTargets();
this.fromSceneAsync( scene, sigma, near, far, cubeUVRenderTarget );
return cubeUVRenderTarget;
}
_oldTarget = this._renderer.getRenderTarget();
_oldActiveCubeFace = this._renderer.getActiveCubeFace();
_oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel();
const cubeUVRenderTarget = renderTarget || this._allocateTargets();
cubeUVRenderTarget.depthBuffer = true;
this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget );
if ( sigma > 0 ) {
this._blur( cubeUVRenderTarget, 0, 0, sigma );
}
this._applyPMREM( cubeUVRenderTarget );
this._cleanup( cubeUVRenderTarget );
return cubeUVRenderTarget;
}
async fromSceneAsync( scene, sigma = 0, near = 0.1, far = 100, renderTarget = null ) {
if ( this._hasInitialized === false ) await this._renderer.init();
return this.fromScene( scene, sigma, near, far, renderTarget );
}
/**
* Generates a PMREM from an equirectangular texture, which can be either LDR
* or HDR. The ideal input image size is 1k (1024 x 512),
* as this matches best with the 256 x 256 cubemap output.
*
* @param {Texture} equirectangular - The equirectangular texture to be converted.
* @param {RenderTarget?} [renderTarget=null] - The render target to use.
* @return {RenderTarget} The resulting PMREM.
*/
fromEquirectangular( equirectangular, renderTarget = null ) {
if ( this._hasInitialized === false ) {
console.warn( 'THREE.PMREMGenerator: .fromEquirectangular() called before the backend is initialized. Try using .fromEquirectangularAsync() instead.' );
this._setSizeFromTexture( equirectangular );
const cubeUVRenderTarget = renderTarget || this._allocateTargets();
this.fromEquirectangularAsync( equirectangular, cubeUVRenderTarget );
return cubeUVRenderTarget;
}
return this._fromTexture( equirectangular, renderTarget );
}
async fromEquirectangularAsync( equirectangular, renderTarget = null ) {
if ( this._hasInitialized === false ) await this._renderer.init();
return this._fromTexture( equirectangular, renderTarget );
}
/**
* Generates a PMREM from an cubemap texture, which can be either LDR
* or HDR. The ideal input cube size is 256 x 256,
* as this matches best with the 256 x 256 cubemap output.
*
* @param {Texture} cubemap - The cubemap texture to be converted.
* @param {RenderTarget?} [renderTarget=null] - The render target to use.
* @return {RenderTarget} The resulting PMREM.
*/
fromCubemap( cubemap, renderTarget = null ) {
if ( this._hasInitialized === false ) {
console.warn( 'THREE.PMREMGenerator: .fromCubemap() called before the backend is initialized. Try using .fromCubemapAsync() instead.' );
this._setSizeFromTexture( cubemap );
const cubeUVRenderTarget = renderTarget || this._allocateTargets();
this.fromCubemapAsync( cubemap, renderTarget );
return cubeUVRenderTarget;
}
return this._fromTexture( cubemap, renderTarget );
}
async fromCubemapAsync( cubemap, renderTarget = null ) {
if ( this._hasInitialized === false ) await this._renderer.init();
return this._fromTexture( cubemap, renderTarget );
}
/**
* Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
* your texture's network fetch for increased concurrency.
*/
async compileCubemapShader() {
if ( this._cubemapMaterial === null ) {
this._cubemapMaterial = _getCubemapMaterial();
await this._compileMaterial( this._cubemapMaterial );
}
}
/**
* Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
* your texture's network fetch for increased concurrency.
*/
async compileEquirectangularShader() {
if ( this._equirectMaterial === null ) {
this._equirectMaterial = _getEquirectMaterial();
await this._compileMaterial( this._equirectMaterial );
}
}
/**
* Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
* so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
* one of them will cause any others to also become unusable.
*/
dispose() {
this._dispose();
if ( this._cubemapMaterial !== null ) this._cubemapMaterial.dispose();
if ( this._equirectMaterial !== null ) this._equirectMaterial.dispose();
if ( this._backgroundBox !== null ) {
this._backgroundBox.geometry.dispose();
this._backgroundBox.material.dispose();
}
}
// private interface
_setSizeFromTexture( texture ) {
if ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ) {
this._setSize( texture.image.length === 0 ? 16 : ( texture.image[ 0 ].width || texture.image[ 0 ].image.width ) );
} else { // Equirectangular
this._setSize( texture.image.width / 4 );
}
}
_setSize( cubeSize ) {
this._lodMax = Math.floor( Math.log2( cubeSize ) );
this._cubeSize = Math.pow( 2, this._lodMax );
}
_dispose() {
if ( this._blurMaterial !== null ) this._blurMaterial.dispose();
if ( this._pingPongRenderTarget !== null ) this._pingPongRenderTarget.dispose();
for ( let i = 0; i < this._lodPlanes.length; i ++ ) {
this._lodPlanes[ i ].dispose();
}
}
_cleanup( outputTarget ) {
this._renderer.setRenderTarget( _oldTarget, _oldActiveCubeFace, _oldActiveMipmapLevel );
outputTarget.scissorTest = false;
_setViewport( outputTarget, 0, 0, outputTarget.width, outputTarget.height );
}
_fromTexture( texture, renderTarget ) {
this._setSizeFromTexture( texture );
_oldTarget = this._renderer.getRenderTarget();
_oldActiveCubeFace = this._renderer.getActiveCubeFace();
_oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel();
const cubeUVRenderTarget = renderTarget || this._allocateTargets();
this._textureToCubeUV( texture, cubeUVRenderTarget );
this._applyPMREM( cubeUVRenderTarget );
this._cleanup( cubeUVRenderTarget );
return cubeUVRenderTarget;
}
_allocateTargets() {
const width = 3 * Math.max( this._cubeSize, 16 * 7 );
const height = 4 * this._cubeSize;
const params = {
magFilter: LinearFilter,
minFilter: LinearFilter,
generateMipmaps: false,
type: HalfFloatType,
format: RGBAFormat,
colorSpace: LinearSRGBColorSpace,
//depthBuffer: false
};
const cubeUVRenderTarget = _createRenderTarget( width, height, params );
if ( this._pingPongRenderTarget === null || this._pingPongRenderTarget.width !== width || this._pingPongRenderTarget.height !== height ) {
if ( this._pingPongRenderTarget !== null ) {
this._dispose();
}
this._pingPongRenderTarget = _createRenderTarget( width, height, params );
const { _lodMax } = this;
( { sizeLods: this._sizeLods, lodPlanes: this._lodPlanes, sigmas: this._sigmas, lodMeshes: this._lodMeshes } = _createPlanes( _lodMax ) );
this._blurMaterial = _getBlurShader( _lodMax, width, height );
}
return cubeUVRenderTarget;
}
async _compileMaterial( material ) {
const tmpMesh = new Mesh( this._lodPlanes[ 0 ], material );
await this._renderer.compile( tmpMesh, _flatCamera );
}
_sceneToCubeUV( scene, near, far, cubeUVRenderTarget ) {
const cubeCamera = _cubeCamera;
cubeCamera.near = near;
cubeCamera.far = far;
// px, py, pz, nx, ny, nz
const upSign = [ 1, 1, 1, 1, - 1, 1 ];
const forwardSign = [ 1, - 1, 1, - 1, 1, - 1 ];
const renderer = this._renderer;
const originalAutoClear = renderer.autoClear;
renderer.getClearColor( _clearColor );
renderer.autoClear = false;
let backgroundBox = this._backgroundBox;
if ( backgroundBox === null ) {
const backgroundMaterial = new MeshBasicMaterial( {
name: 'PMREM.Background',
side: BackSide,
depthWrite: false,
depthTest: false
} );
backgroundBox = new Mesh( new BoxGeometry(), backgroundMaterial );
}
let useSolidColor = false;
const background = scene.background;
if ( background ) {
if ( background.isColor ) {
backgroundBox.material.color.copy( background );
scene.background = null;
useSolidColor = true;
}
} else {
backgroundBox.material.color.copy( _clearColor );
useSolidColor = true;
}
renderer.setRenderTarget( cubeUVRenderTarget );
renderer.clear();
if ( useSolidColor ) {
renderer.render( backgroundBox, cubeCamera );
}
for ( let i = 0; i < 6; i ++ ) {
const col = i % 3;
if ( col === 0 ) {
cubeCamera.up.set( 0, upSign[ i ], 0 );
cubeCamera.lookAt( forwardSign[ i ], 0, 0 );
} else if ( col === 1 ) {
cubeCamera.up.set( 0, 0, upSign[ i ] );
cubeCamera.lookAt( 0, forwardSign[ i ], 0 );
} else {
cubeCamera.up.set( 0, upSign[ i ], 0 );
cubeCamera.lookAt( 0, 0, forwardSign[ i ] );
}
const size = this._cubeSize;
_setViewport( cubeUVRenderTarget, col * size, i > 2 ? size : 0, size, size );
renderer.render( scene, cubeCamera );
}
renderer.autoClear = originalAutoClear;
scene.background = background;
}
_textureToCubeUV( texture, cubeUVRenderTarget ) {
const renderer = this._renderer;
const isCubeTexture = ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping );
if ( isCubeTexture ) {
if ( this._cubemapMaterial === null ) {
this._cubemapMaterial = _getCubemapMaterial( texture );
}
} else {
if ( this._equirectMaterial === null ) {
this._equirectMaterial = _getEquirectMaterial( texture );
}
}
const material = isCubeTexture ? this._cubemapMaterial : this._equirectMaterial;
material.fragmentNode.value = texture;
const mesh = this._lodMeshes[ 0 ];
mesh.material = material;
const size = this._cubeSize;
_setViewport( cubeUVRenderTarget, 0, 0, 3 * size, 2 * size );
renderer.setRenderTarget( cubeUVRenderTarget );
renderer.render( mesh, _flatCamera );
}
_applyPMREM( cubeUVRenderTarget ) {
const renderer = this._renderer;
const autoClear = renderer.autoClear;
renderer.autoClear = false;
const n = this._lodPlanes.length;
for ( let i = 1; i < n; i ++ ) {
const sigma = Math.sqrt( this._sigmas[ i ] * this._sigmas[ i ] - this._sigmas[ i - 1 ] * this._sigmas[ i - 1 ] );
const poleAxis = _axisDirections[ ( n - i - 1 ) % _axisDirections.length ];
this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis );
}
renderer.autoClear = autoClear;
}
/**
* This is a two-pass Gaussian blur for a cubemap. Normally this is done
* vertically and horizontally, but this breaks down on a cube. Here we apply
* the blur latitudinally (around the poles), and then longitudinally (towards
* the poles) to approximate the orthogonally-separable blur. It is least
* accurate at the poles, but still does a decent job.
*
* @param {RenderTarget} cubeUVRenderTarget - The cubemap render target.
* @param {Number} lodIn - The input level-of-detail.
* @param {Number} lodOut - The output level-of-detail.
* @param {Number} sigma - The blur radius in radians.
* @param {Vector3} [poleAxis] - The pole axis.
*/
_blur( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) {
const pingPongRenderTarget = this._pingPongRenderTarget;
this._halfBlur(
cubeUVRenderTarget,
pingPongRenderTarget,
lodIn,
lodOut,
sigma,
'latitudinal',
poleAxis );
this._halfBlur(
pingPongRenderTarget,
cubeUVRenderTarget,
lodOut,
lodOut,
sigma,
'longitudinal',
poleAxis );
}
_halfBlur( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) {
const renderer = this._renderer;
const blurMaterial = this._blurMaterial;
if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) {
console.error( 'blur direction must be either latitudinal or longitudinal!' );
}
// Number of standard deviations at which to cut off the discrete approximation.
const STANDARD_DEVIATIONS = 3;
const blurMesh = this._lodMeshes[ lodOut ];
blurMesh.material = blurMaterial;
const blurUniforms = blurMaterial.uniforms;
const pixels = this._sizeLods[ lodIn ] - 1;
const radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 );
const sigmaPixels = sigmaRadians / radiansPerPixel;
const samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES;
if ( samples > MAX_SAMPLES ) {
console.warn( `sigmaRadians, ${
sigmaRadians}, is too large and will clip, as it requested ${
samples} samples when the maximum is set to ${MAX_SAMPLES}` );
}
const weights = [];
let sum = 0;
for ( let i = 0; i < MAX_SAMPLES; ++ i ) {
const x = i / sigmaPixels;
const weight = Math.exp( - x * x / 2 );
weights.push( weight );
if ( i === 0 ) {
sum += weight;
} else if ( i < samples ) {
sum += 2 * weight;
}
}
for ( let i = 0; i < weights.length; i ++ ) {
weights[ i ] = weights[ i ] / sum;
}
targetIn.texture.frame = ( targetIn.texture.frame || 0 ) + 1;
blurUniforms.envMap.value = targetIn.texture;
blurUniforms.samples.value = samples;
blurUniforms.weights.array = weights;
blurUniforms.latitudinal.value = direction === 'latitudinal' ? 1 : 0;
if ( poleAxis ) {
blurUniforms.poleAxis.value = poleAxis;
}
const { _lodMax } = this;
blurUniforms.dTheta.value = radiansPerPixel;
blurUniforms.mipInt.value = _lodMax - lodIn;
const outputSize = this._sizeLods[ lodOut ];
const x = 3 * outputSize * ( lodOut > _lodMax - LOD_MIN ? lodOut - _lodMax + LOD_MIN : 0 );
const y = 4 * ( this._cubeSize - outputSize );
_setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize );
renderer.setRenderTarget( targetOut );
renderer.render( blurMesh, _flatCamera );
}
}
function _createPlanes( lodMax ) {
const lodPlanes = [];
const sizeLods = [];
const sigmas = [];
const lodMeshes = [];
let lod = lodMax;
const totalLods = lodMax - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length;
for ( let i = 0; i < totalLods; i ++ ) {
const sizeLod = Math.pow( 2, lod );
sizeLods.push( sizeLod );
let sigma = 1.0 / sizeLod;
if ( i > lodMax - LOD_MIN ) {
sigma = EXTRA_LOD_SIGMA[ i - lodMax + LOD_MIN - 1 ];
} else if ( i === 0 ) {
sigma = 0;
}
sigmas.push( sigma );
const texelSize = 1.0 / ( sizeLod - 2 );
const min = - texelSize;
const max = 1 + texelSize;
const uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ];
const cubeFaces = 6;
const vertices = 6;
const positionSize = 3;
const uvSize = 2;
const faceIndexSize = 1;
const position = new Float32Array( positionSize * vertices * cubeFaces );
const uv = new Float32Array( uvSize * vertices * cubeFaces );
const faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces );
for ( let face = 0; face < cubeFaces; face ++ ) {
const x = ( face % 3 ) * 2 / 3 - 1;
const y = face > 2 ? 0 : - 1;
const coordinates = [
x, y, 0,
x + 2 / 3, y, 0,
x + 2 / 3, y + 1, 0,
x, y, 0,
x + 2 / 3, y + 1, 0,
x, y + 1, 0
];
const faceIdx = _faceLib[ face ];
position.set( coordinates, positionSize * vertices * faceIdx );
uv.set( uv1, uvSize * vertices * faceIdx );
const fill = [ faceIdx, faceIdx, faceIdx, faceIdx, faceIdx, faceIdx ];
faceIndex.set( fill, faceIndexSize * vertices * faceIdx );
}
const planes = new BufferGeometry();
planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) );
planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) );
planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) );
lodPlanes.push( planes );
lodMeshes.push( new Mesh( planes, null ) );
if ( lod > LOD_MIN ) {
lod --;
}
}
return { lodPlanes, sizeLods, sigmas, lodMeshes };
}
function _createRenderTarget( width, height, params ) {
const cubeUVRenderTarget = new RenderTarget( width, height, params );
cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
cubeUVRenderTarget.texture.isPMREMTexture = true;
cubeUVRenderTarget.scissorTest = true;
return cubeUVRenderTarget;
}
function _setViewport( target, x, y, width, height ) {
target.viewport.set( x, y, width, height );
target.scissor.set( x, y, width, height );
}
function _getMaterial( type ) {
const material = new NodeMaterial();
material.depthTest = false;
material.depthWrite = false;
material.blending = NoBlending;
material.name = `PMREM_${ type }`;
return material;
}
function _getBlurShader( lodMax, width, height ) {
const weights = uniformArray( new Array( MAX_SAMPLES ).fill( 0 ) );
const poleAxis = uniform( new Vector3( 0, 1, 0 ) );
const dTheta = uniform( 0 );
const n = float( MAX_SAMPLES );
const latitudinal = uniform( 0 ); // false, bool
const samples = uniform( 1 ); // int
const envMap = texture( null );
const mipInt = uniform( 0 ); // int
const CUBEUV_TEXEL_WIDTH = float( 1 / width );
const CUBEUV_TEXEL_HEIGHT = float( 1 / height );
const CUBEUV_MAX_MIP = float( lodMax );
const materialUniforms = {
n,
latitudinal,
weights,
poleAxis,
outputDirection,
dTheta,
samples,
envMap,
mipInt,
CUBEUV_TEXEL_WIDTH,
CUBEUV_TEXEL_HEIGHT,
CUBEUV_MAX_MIP
};
const material = _getMaterial( 'blur' );
material.uniforms = materialUniforms; // TODO: Move to outside of the material
material.fragmentNode = blur( { ...materialUniforms, latitudinal: latitudinal.equal( 1 ) } );
return material;
}
function _getCubemapMaterial( envTexture ) {
const material = _getMaterial( 'cubemap' );
material.fragmentNode = cubeTexture( envTexture, outputDirection );
return material;
}
function _getEquirectMaterial( envTexture ) {
const material = _getMaterial( 'equirect' );
material.fragmentNode = texture( envTexture, equirectUV( outputDirection ), 0 );
return material;
}
export default PMREMGenerator;