

1

(Advanced) TEM Scripting User Guide
Copyright (c) 2020, 2021 by Thermo Fisher Scientific. All rights reserved.

Document status: v2.4 proposal

Contents

Introduction .. 3

Navigation... 3

Copy vs Reference.. 4

Capability-driven.. 4

Threading.. 4

Supported Cameras .. 4

Performing Camera Acquisitions .. 5

Dose Fractions ... 6

EER ... 6

File naming ... 6

Continuous Acquisition Recording .. 7

Image and file formats .. 7

Dose Fractions ... 7

EER ... 7

Final image.. 7

Metadata... 8

Failures .. 8

No license ... 8

Inconsistency in parameters.. 8

Camera in use .. 9

Camera offline ... 9

Storage server unavailable ... 9

Camera Support ... 9

Supported Electron Sources ... 9

Interface Description .. 9

IInstrument interface ... 9

Acquisitions interface...10

CameraSingleAcquisition interface ..10

CameraContinuousAcquisition interface ...11

AcquiredImage interface...12

2

Camera interface ...13

CameraSettings interface ..14

CameraAcquisitionCapabilities interface ...16

Phaseplate interface ...17

Source interface ..18

Feg ..18

FegFlashing ..18

EnergyFilter interface...19

Slit...19

HighTensionEnergyShift ...20

ZeroLossPeakAdjustment..20

EnergyRange...21

AutoLoader interface ...21

TemperatureControl interface ..23

AutoloaderCompartment ...23

ColumnCompartment ...24

Dewar ..24

Client script examples..25

Image Acquisition and Phase Plate ...25

FEG Source ..27

Cold FEG Source ..28

Energy Filter...29

C# example EnergyFilter navigation ...29

C# example Slit movements...29

C# example Slit Width manipulation ...29

C# example Slit Width error ..30

C# example HighTensionEnergyShift manipulation ..30

C# example HighTensionEnergyShift error ..30

C# example ZeroLossPeakAdjustment manipulation ...30

C# example ZeroLossPeakAdjustment error ...30

AutoLoader and TemperatureControl..31

3

Introduction

TEM Scripting is a scripting adapter component that enables customers and 3rd party applications to

automate the operation of their TEM microscope. It provides an interface through which scripts can

control all TEM subsystems and perform acquisitions with the available detectors.

The interface is limited in scope such in order to make it stable

across many TEM Server releases.

The existing TEM Scripting component does not properly support

the Falcon cameras especially for handling the dose fractions that

these cameras produce.

A new component is provided that directly interfaces with the TEM

Server, providing access to single image acquisitions from the

Falcon cameras. The component has been named AdvancedTemScripting.

Interface Structure and Concepts

The Advanced Scripting component provides a COM-based interface. COM is broadly supported in

various scripting (and more general, application) environments. The set of interfaces is structured such as

to allow easy usage from single-threaded clients (such as scripts): only calls, no events or callbacks,

synchronous calls, polling for state, no concurrency.

Navigation

The main interface is IInstrument. From this, all other interfaces are reached by navigating through a tree-

like structure. The Instrument object that implements IInstrument is creatable and the created instance is

owned by the client (script) that created it. As long as the client holds on to the Instrument object, it can

use it to navigate the subsystem tree. Discarding the Instrument object breaks the connection of the client

to the server and renders any references obtained during navigation invalid.

Camera FindCameraByName(string name, CameraList cameras)

{

4

 foreach(Camera c in cameras)

 if (c.Name == name)

 return c;

 return null;

}

var instrument = new TEMAdvancedScripting.Instrument();

var csa = instrument.Acquisitions.CameraSingleAcquisition;

var allCameras = instrument.Acquisitions.Cameras;

var singleAcquisitionCameras = csa.SupportedCameras;

var falconCamera = FindCameraByName(”BM-Falcon”, singleAcquisitionCameras);

csa.Camera = falconCamera;

var cs = csa.CameraSettings;

Copy vs Reference

Simple objects are returned as copies (aka “data” objects”). Any changes to such objects are not applied

to the underlying system. This currently only applies to objects like the FrameRange. For example:

FrameRangeList dfd = cs.DoseFractionsDefinition;

dfd[0].Begin = 2; // This will not modify the range value

Objects that are parts of the navigation tree are returned by reference and any action or change performed

on them affects the state of the scripting component. For example, changing values on the

CameraSettings object retrieved through the CameraSingleAcquisition will apply the changed values:

cs.ExposureTime = 0.25; // This will be applied

Objects that originate in capabilities are read-only values that can be selected from a list and applied. This

currently refers to Binning:

BinningList binnings = cc.SupportedBinnings;

cs.Binning = binnings[0];

Capability-driven

To avoid an extensive system of interface inheritance the interfaces are designed to be capability-driven.

This means that starting with a basic set of operations and properties on the main interface of e.g. a

detector other sets of operations and properties (or features) that more specialized versions of the detector

provide are organized into navigable subsystems or subsets of operations and properties.

For such cases test functions are provided (Has__, Is__, Can__, Supports__) that can be used before

accessing the respective setting or operation.

Threading

The interfaces are not meant to be accessed from multiple threads concurrently.

Supported Cameras

The Acquisitions object contains all the use-cases and detectors available. The list of cameras returned

through the Acquisitions object contains all the cameras that TEMAdvancedScripting supports. Currently,

these are: Ceta 1, Ceta 2, Falcon 3 and Falcon 4.

5

Two use-cases are supported at this moment: the CameraSingleAcquisition and

CameraContinuousAcquisition.

The list of cameras returned by CameraSingleAcquisition contains the subset of all the cameras that can

participate in the use-case, which actually are all cameras.

var instrument = new TEMAdvancedScripting.Instrument();

var allCameras = instrument.Acquisitions.Cameras;

var singleAcquisitionCameras =

instrument.Acquisitions.CameraSingleAcquisition.SupportedCameras;

The list of cameras returned by CameraContinuousAcquisition contains the subset of all the cameras that can

participate in the use-case, which actually is only Ceta2.

var instrument = new TEMAdvancedScripting.Instrument();

var allCameras = instrument.Acquisitions.Cameras;

var continuousAcquisitionCameras =

instrument.Acquisitions.CameraContinuousAcquisition.SupportedCameras;

Performing Camera Acquisitions

The example code for performing a simple single image acquisition looks like this:

Camera FindCameraByName(string name, CameraList cameras)

{

 foreach(Camera c in cameras)

 if (c.Name == name)

 return c;

 return null;

}

var instrument = new TEMAdvancedScripting.Instrument();

var csa = instrument.Acquisitions.CameraSingleAcquisition;

var allCameras = instrument.Acquisitions.Cameras;

var singleAcquisitionCameras = csa.SupportedCameras;

var falconCamera = FindCameraByName(“BM-Falcon”, singleAcquisitionCameras);

csa.Camera = falconCamera;

var cs = csa.CameraSettings;

// Perform any settings necessary; some examples:

cs.ExposureTime = cs.ExposureTimeRange.Max;

if (cs.SupportsDriftCorrection)

 cs.AlignImage = true;

// Here: Optionally, setup the dose fractions

dfd = cs.DoseFractionsDefinition;

dfd.Clear();

dfd.AddRange(fs1, fe1); dfd.AddRange(fs2, fe2);

//...

dfd.AddRange(fsn, fen);

assert(fsx < fex);

assert(fen <= cs.CalculateNumberOfFrames());

// Perform the acquisition; the final image is received as a return value

var img = csa.Acquire();

var metadata = img.Metadata;

// Here: Save or otherwise use the image and metadata

6

// ...

// Wait for the camera to become available for another acquisition csa.Wait();

// or

// while (csa.IsActive) sleep(some);

// Here: Access and process images available at cs.PathToImageStorage

Figure 1 Basic single-image camera acquisition

When the instrument object is released, all other objects become invalid references that can no longer be

used.

To perform an acquisition with a camera, it has to be added to a use-case. In the example above, the use-

case only accepts one camera. Then the acquisition is triggered by calling the Acquire method on the

single acquisition use-case. Configuration of the camera takes place through the CameraSettings object.

Dose Fractions

A single acquisition returns one image called the “final image” which is the integrated image over the

exposure time. The Falcon cameras can also provide intermediate images called “dose fractions”. The

dose fractions are temporarily stored on the camera device itself until they get downloaded.

When defining fractions the client needs to know the number of frames that the acquisition will produce.

This depends on acquisition settings, especially on the exposure time. So it is wise to first configure all

settings and leave dose fractions for last, when the number of frames has settled.

The TEM scripting component will download the dose fractions to either a local directory (hardcoded to:

c:\OffloadData) or to a storage server (hardcoded to: \\192.168.10.2\OffloadData) before allowing the

client to perform a new acquisition. The download itself takes place asynchronously so the script may

perform other operations while the download is in progress. Before attempting to start a new acquisition

the script should Wait() for the previous one to finish.

After the Wait() returns the images will be available at the location indicated by

PathToImageStorage which can either be a local directory or a UNC path to a directory on the storage.

EER

The Falcon 4 camera supports storing every captured electron counted camera frame within the EER file

format. EER is a “special” dose fraction scheme and downloading of the images (to the storage server) is

handled the same as for Dose Fractions, only the file format and extension differs.

EER can only be enabled in case Electron Counting is enabled and can not be used in combination with

dose fractions.

File naming

Please note that in the examples .mrc is shown as file extension, in case EER is enabled the extension will

be .eer

When nothing else is specified, the intermediate images are saved in a file that is named with a timestamp

composed of the current date and time: YYYYMMDDhhmmss.

The client can specify a pattern to be used for the file and subdirectory name:

cs.SubPathPattern = "dir\\file";

7

The pattern is given in the form of a relative path in which the last element is interpreted as the file name.

Also, special tags can be used to be replaced with current values. The tags supported are:

• {ymd} – replaced with the current date in the format YYYYMMDD

• {hms} – replaced with the current time in the format hhmmss

Examples of valid formats:

• “first_acquisition” – a file will be created called first_acquisition.mrc

• “my_study\\first_acquisition” – a file will be created called first_acquisition.mrc inside the

subdirectory called my_study

• “my_study\\” – file names will be formatted YYYYMMDDhhmmss.mrc and will be saved in

subdirectory “my_study”

• “day_{ymd}\\acquisition_{hms}” – file names will be formatted as acquisition_hhmmss.mrc and

placed in the subdirectory day_YYYYMMDD

Continuous Acquisition Recording

There are two ways to do a Continuous Acquisition and both are Recording Acquisitions. If no

RecordingDuration is set in the CameraSettings, the recording will last till Stop() is called. If a

RecordingDuration is set, Wait() can be used to wait till the set duration of the acquisition has been

acquired.

The RecordingDuration set is the minimum amount of time the acquirement will take, as it will take as

much complete frames with the set exposure time as is needed to get to the set RecordingDuration. E.g. if

the exposure time is 0.5 and the RecordingDuration is 2.3, there will be an acquirement of 2.5 (5 frames).

Image and file formats

Dose Fractions

The Storage Server saves acquired images in the MRC file format with an associated XML file containing

metadata information. It uses one MRC-XML pair for all the dose fractions and one for the final image.

The same strategy has been implemented in the Advanced Scripting too. Images saved locally also use the

MRC-XML format.

The MRC format can only contain images of up to 16-bits per pixel, thus all images will internally be

adapted to fit inside this format. The (down-)scaling factor used for the pixel values is multiplied into the

PixelValueToCameraCounts metadata factor. For a client to get the actual pixel value as read by the camera

(called CameraCounts) it must multiply each pixel value in the image by the PixelValueToCameraCounts

factor in the metadata.

EER

The Storage Server saves acquired images in the EER file format, containing the metadata and every

captured electron counted camera frame.

Final image

Final Images returned in memory are not converted, so the client must be able to accept 16-bit and 32-bit

images. See the interface description for more details.

8

Metadata

Metadata information is returned together with the in-memory image. For the dose fractions, metadata is

saved in an XML file with the same name as the MRC file containing the images.

Every metadata parameter can be read as a string or a COM variant.

The following metadata is expected to be present:

TimeStamp

• DetectorName

• AcquisitionUnit

• ImageSize.Width

• ImageSize.Height

• Encoding

• BitsPerPixel

• Binning.Width

• Binning.Height

• ReadoutArea.Left

• ReadoutArea.Top

• ReadoutArea.Right

• ReadoutArea.Bottom

• ExposureTime

• DarkGainCorrectionType

• Shutters[0].Type

• Shutters[0].Position

• PixelValueToCameraCounts

• AlignIntegratedImage

• DriftCorrected (optional, only for drift corrected images)

• DriftCorrectionConfidence (optional, only for drift corrected images)

• DriftCorrectionClipping (optional, only for drift corrected images)

• DriftCorrectionVectorX (optional, only for drift corrected images)

• DriftCorrectionVectorY (optional, only for drift corrected images)

• ElectronCounted

• CountsToElectrons (optional, only for electron counted images)

Failures

No license

If the feature requested is not licenced, the command will be refused and an error will occur.

Inconsistency in parameters

In some cases it is possible that the set of parameters chosen by the client is inconsistent. In such a

situation the acquisition will fail and the exception text will indicate which parameters have been adjusted

to make the set consistent.

9

Camera in use

A camera can only be used in one acquisition at one time. If another client (script or other) is using the

camera Acquire() will fail. Acquire() can also fail when the camera isn’t used in another acquisition but

cannot be inserted due to a physical conflict (i.e. another camera is inserted) or a defect.

Camera offline

A camera may be present in the system configuration but may be unavailable due to e.g. a network cable

disconnect or hardware being powered off. In such cases Acquire() will fail and the text of the exception

will indicate the most likely cause. Other operations on the camera may also fail in such a situation.

Storage server unavailable

The Storage Server may become (temporarily) unavailable. The acquisition will fail in case images

should be downloaded to the storage server (e.g. Dose Fractions or EER being enabled).

Camera Support

The scripting adapter component mainly supports the Falcon cameras for single acquisition. It also

supports the Ceta and Ceta2 cameras but only for very limited single acquisition scenarios.

For continuous acquisition only Ceta2 Recording acquisitions are supported.

Supported Electron Sources

The scripting adapter component supports a limited set of operations on electron sources with the

following emitter types:

• FEG (including High Brightness FEG and Shottky FEG)

• Cold FEG

The adapter provides both basic operations, which are suitable for all emitter types, and emitter-specific

operations. Refer to the Interface Description section for details.

Interface Description

IInstrument interface

The entry into the AdvancedScripting interface.

Acquisitions

• Sort: property, read-only

• Type: Acquisitions

• Description: returns the list of all implemented use cases and detectors

Phaseplate

• Sort: property, read-only

• Type: Phaseplate

• Description: returns the phaseplate interface

Source

10

• Sort: property, read-only

• Type: IDispatch

• Description: returns the electron source interface, if supported for the current microscope

configuration; otherwise, a non-initialized object is returned. See Supported Electron Sources for

the list of supported configurations.

EnergyFilter

• Sort: property, read-only

• Type: IDispatch (EnergyFilter)

• Description: returns the energy filter interface, if supported for the current microscope

configuration; otherwise, a non-initialized object is returned.

Acquisitions interface

Represents the list of all implemented use cases and the list of all implemented detectors available in the

system. Only camera detectors are implemented at the moment.

Cameras

• Sort: property, read-only

• Type: CameraList

• Description: returns a list of all cameras supported by the AdvancedScripting component

CameraSingleAcquisition

• Sort: property, read-only

• Type: CameraSingleAcquisition

• Description: returns a CameraSingleAcquisition object that will be used to perform single

acquisitions using cameras

CameraContinuousAcquisition

• Sort: property, read-only

• Type: CameraContinuousAcquisition

• Description: returns a CameraContinuousAcquisition object that will be used to perform

continuous acquisitions using cameras

CameraSingleAcquisition interface

Represents the single acquisition (one image) use case performed with a camera. The Falcon camera’s

allow the acquisition of intermediate images.

SupportedCameras

• Sort: property, read-only

• Type: CameraList

• Description: returns a list of cameras that support the single acquisition use-case (which currently

are all cameras

Camera

• Sort: property, write-only

11

• Type: Camera

• Description: associates one camera with this use-case; this camera will perform the use-case; if no

camera has been associated with the use-case prior to starting the acquisition, the acquisition will

fail

CameraSettings

• Sort: property, read-only

• Type: CameraSettings

• Description: this is a view on the camera where settings can be applied; when no camera is set in

the use-case – through the Camera property – attempting to read this property will fail; also,

settings will be remembered for each given camera, even after it has been taken out of the use-

case

Acquire

• Sort: method/function

• Return type: AcquiredImage

• Description: triggers the start of the acquisition; fails if settings not coherent; returns when the

final (integrated) image has been acquired

IsActive

• Sort: property, read-only

• Type: boolean (VARIANT_BOOL)

• Description: used to poll for the end of the complete acquisition; used as a non-blocking wait for

the downloading or offloading of intermediate images; no Acquire can be done while IsActive is

true

Wait

• Sort: method/function

• Return type: none

• Description: blocking wait for the end of the complete acquisition

CameraContinuousAcquisition interface

Represents the continuous acquisition (multiple images) use case performed with a camera. Currently

only supports Ceta2 recording acquisitions.

SupportedCameras

• Sort: property, read-only

• Type: CameraList

• Description: returns a list of cameras that support the single acquisition use-case (which currently

is only Ceta2)

Camera

• Sort: property, write-only

• Type: Camera

12

• Description: associates one camera with this use-case; this camera will perform the use-case; if no

camera has been associated with the use-case prior to starting the acquisition, the acquisition will

fail

CameraSettings

• Sort: property, read-only

• Type: CameraSettings

• Description: this is a view on the camera where settings can be applied; when no camera is set in

the use-case – through the Camera property – attempting to read this property will fail; also,

settings will be remembered for each given camera, even after it has been taken out of the

use-case

Store

• Sort: method/function

• Return type: none

• Description: triggers the start of the acquisition; fails if settings not coherent; returns when the

acquisition has started.

IsActive

• Sort: property, read-only

• Type: boolean (VARIANT_BOOL)

• Description: used to poll for the end of the complete acquisition; used as a non-blocking wait for

the downloading or offloading of intermediate images; no Acquire can be done while IsActive is

true

Wait

• Sort: method/function

• Return type: none

• Description: blocking wait for the end of the complete acquisition and offloading job completion,

will throw when RecordingDuration has not been set, as there is nothing to wait for.

Stop

• Sort: method/function

• Return type: none

• Description: blocking wait which stops the acquisition and waits for offloading to be complete.

AcquiredImage interface

Represent the final image acquired by the CameraSingleAcquisition.

Width

• Sort: property, read-only

• Type: long

• Description: the width of the image

Height

• Sort: property, read-only

• Type: long

• Description: the height of the image

13

PixelType

• Sort: property, read-only

• Type: ImagePixelType

• Description: the PixelType of the image, can be ImagePixelType_UnsignedInt,

ImagePixelType_SignedInt or ImagePixelType_Float

BitDepth

• Sort: property, read-only

• Type: long

• Description: the bit depth of the pixels in the image

Metadata

• Sort: property, read-only

• Type: KeyValuePairList

• Description: the metadata belonging to the image

AsSafeArray

• Sort: property, read-only

• Type: SAFEARRAY(long)

• Description: The image is returned as SAFEARRAY(long). The final image has been converted

to long without any scaling. One can use the methods BitDepth and PixelType to retrieve the

original format.

AsVariant

• Sort: property, read-only

• Type: VARIANT

• Description: The image is returned as VARIANT and is not converted, so the client must be able

to accept 16-bit and 32-bit images. One can use the vt member of the VARIANT to get the

datatype of the underlaying data.

SaveToFile

• Sort: method/function

• Input arguments: BSTR filePath, VARIANT_BOOL bNormalize

• Return type: none

• Description: save the image as raw image on disk. Filepath indicates the location where the image

should be stored and bNormalize indicated if the image should be normalized. bNormalize has the

default value VARIANT_FALSE

Camera interface

Represents a camera device and its use case independent properties.

Name

• Sort: property, read-only

• Type: string (BSTR)

14

• Description: the conventional name of the camera used to identify it throughout the TEM server

Width, Height

• Sort: property, read-only

• Type: long

• Description: the count of pixels along each axis

PixelSize

• Sort: property, read-only

• Type: PixelSize

• Description: the physical size of a pixel (in m) along each axis

Insert, Retract

• Sort: method/function

• Return type: none

• Description: inserts/retracts the camera; returns only when the camera is fully inserted of

retracted; fails with an exception if problems encountered

IsInserted

• Sort: property, read-only

• Type: Boolean (VARIANT_BOOL)

• Description: checks the insertion status of the camera; may fail with exception in case of

(communication) problems

CameraSettings interface

Represents the set of use case dependent settings that are to be used in the acquisition for the camera.

Capabilities

• Sort: property, read-only

• Type: Capabilities

• Description: returns the set of use case dependent capabilities for the camera

PathToImageStorage

• Sort: property, read-only

• Type: string (BSTR)

• Description: returns the base directory where the intermediate images will be saved;

SubPathPattern

• Sort: property, read-write

• Type: string

• Description: sets and retrieves the subpath pattern for the storage of intermediate images; this

subpath is to be appended to PathToImageStorage to get the full path to the images; it can be set

before each acquisition to place intermediate images grouped by acquisition

15

ExposureTime

• Sort: property, read-write

• Type: double

• Description: sets and retrieves the exposure time for the acquisition (in s); the actual exposure

time can be slightly higher or slightly lower that the one set

ReadoutArea

• Sort: property, read-write

• Type: enumeration: Full, Half, Quarter

• Description: sets and retrieves the area to be read from the camera sensor; the area is defined

around the center of the sensor, horizontally as well as vertically

Binning

• Sort: property, read-write

• Type: Binning

• Description: sets and retrieves the binning factor to be used with the acquisitions; it has a

horizontal and a vertical component; it must be one of the values retrieved by the

SupportedBinnings property in CameraCapabilities

DoseFractionsDefinition

• Sort: property, read-only

• Type: FrameRangeList; a list of pairs of long values (Begin, End) where Begin is the first frame,

End is the last frame plus 1

• Description: retrieves the list of frame ranges that define the intermediate images; the list can be

cleared and filled with the ranges; for Ceta 1 & 2 it throws and exception

AlignImage

• Sort: property, read-write

Type: boolean (BSTR)

• Description: sets and retrieves whether frame alignment (i.e. drift correction) is to be applied to

the final image as well as the intermediate images

ElectronCounting

• Sort: property, read-write

• Type: Boolean (BSTR)

• Description: sets and retrieves whether electron counting mode is to be used in the acquisition; In

case electron counting is not supported it will throw.

EER

• Sort: property, read-write

• Type: Boolean (BSTR)

• Description: sets and retrieves whether EER mode is enabled; In case EER is not supported it will

throw. ElectronCounting should always be enabled when selecting EER.

16

CalculateNumberOfFrames

• Sort: method/function

• Return type: long

• Description: retrieves the number of frames that the acquisition produces; it is dependent on other

settings so it is better called last; it is used to determine the ranges for the

DoseFractionsDefinitions

 RecordingDuration

• Sort: property, read-write

• Type: double

• Description: sets and retrieves the recording duration for the acquisition (in s); the actual

recording duration can be slightly higher, the value set is the minimum. In case recording

duration is not supported it will throw.

CameraAcquisitionCapabilities interface

Represents the use case dependent capabilities of the camera. Defines acceptable features and ranges of

acceptable values for the settings.

SupportedBinnings

• Sort: property, read-only

• Type: BinningList

• Description: returns a list of binnings supported by the camera; one of the binnings in this list can

be used to set the Binnning setting

ExposureTimeRange

• Sort: property, read-only

• Type: ITimeRange

• Description: returns the range of exposure times supported by the camera

SupportsDoseFractions

• Sort: property, read-only

• Type: Boolean (VARIANT_BOOL)

Description: returns whether the camera supports the acquisition of dose fractions; for cameras

that don’t support it, attempting to specify dose fractions will fail with an exception

MaximumNumberOfDoseFractions

• Sort: property, read-only

• Type: long

• Description: returns the maximum number of dose fractions that the camera supports;

SupportsDriftCorrection

• Sort: property, read-only

• Type: Boolean (VARIANT_BOOL)

17

• Description: returns whether the camera supports drift correction; attempting to use drift

correction (AlignImage) for cameras that don’t support it will lead to an exception

SupportsElectronCounting

• Sort: property, read-only

• Type: Boolean (VARIANT_BOOL)

• Description: returns whether the camera supports the electron counting mode; attempting to use

the electron counting mode for cameras that don’t support it will lead to an exception

SupportsEER

• Sort: property, read-only

• Type: Boolean (VARIANT_BOOL)

• Description: returns whether the camera supports the EER; attempting to use EER for cameras

that don’t support it will lead to an exception

SupportsRecordingDuration

• Sort: property, read-only

• Type: Boolean (VARIANT_BOOL)

• Description: returns whether the camera supports Recording; attempting to use Recording for

cameras that don’t support it will lead to an exception. Setting the value to 0 or less will disable

RecordingDuration.

Phaseplate interface

Represents the phaseplate aperture which resides on the Objective ApertureMechanism. The phaseplate is

an aperture with a thin layer of material, which when hit with an electron beam only allows electrons with

a high enough energy level pass. This material gets saturated at the point where the beam is located, and

therefore it is required to periodically change over to a new location within the aperture. A select number

of predefined locations is available, which can be looped over by calling a ‘next’ function.

Preconditions: In order to be able to successfully call these methods, the following must be true:

• The microscope contains a motorized objective aperturemechanism

• The server is running

• The objective aperturemechanism is enabled, and a phaseplate aperture is selected The

appropriate license must be available

SelectNextPresetPosition

• Sort: method

Return type: none

• Description: Goes to the next preset location on the aperture

GetCurrentPresetPosition

• Sort: property, read-only

• Type: long

18

• Description: returns the zero-based index of the current preset position.

Source interface

Feg

Represents either FEG or Cold FEG electron source. The following basic set of operations is supported

for both types of FEG electron source.

State

• Sort: property, read-only

• Type: FegState : enumeration {FegState_NotEmitting, FegState_Emitting}

• Description: returns current state of FEG electron source (not emitting or emitting electrons).

ExtractorVoltage

• Sort: property, read-only

• Type: double

• Description: returns current extractor voltage setpoint [V].

FocusIndex

• Sort: property, read-only

• Type: FegFocusIndex : struct { Coarse : long, Fine : long }

• Description: returns current FEG focus index (a.k.a. “Gunlens index”), which consists of two

parts – the Coarse setting and the Fine setting.

• Note: retrieving this property will fail if the current microscope configuration includes the

Monochromator (as the Focus index concept is not supported for Monochromator).

The following subset of operations is supported for a Cold FEG electron source only.

BeamCurrent

• Sort: property, read-only

• Type: double

• Description: returns current actual beam current [A].

Flashing

• Sort: property, read-only

• Type: IDispatch

• Description: returns FegFlashing interface if the current electron source type is Cold FEG;

otherwise, a non-initialized object is returned.

FegFlashing

The following are the members of FegFlashing interface.

IsFlashingAdvised

• Sort: method/function

19

• Input arguments: flashingType : FegFlashingType

• Return type: Boolean (VARIANT_BOOL)

• Description: returns the Flashing Advised status for the flashing type defined by ‘flashingType’

parameter.

PerformFlashing

• Sort: method/function

• Input arguments: flashingType : FegFlashingType

• Return type: none

• Description: executes Flashing of the type defined by ‘flashingType’ parameter. For High

Temperature Flashing this succeeds only if this type of flashing is advised.

EnergyFilter interface

The EnergyFilter object gives access to the properties below.

In case the EnergyFilter does not support a property, a non-initialized object (null) is returned.

In case the EnergyFilter is not licensed, accessing these properties is refused and an error will occur.

Slit

• Sort: property, read-only

• Type: IDispatch

• Description: Gives access to the Slit interface.

.

HighTensionEnergyShift

• Sort: property, read-only

• Type: IDispatch

• Description: Gives access to the HighTensionEnergyShift interface.

ZeroLossPeakAdjustment

• Sort: property, read-only

• Type: IDispatch

• Description: Gives access to the ZeroLossPeakAdjustment interface.

Slit

The following are the members of the Slit interface.

IsInserted

• Sort: property, read-only

• Type: boolean (VARIANT_BOOL)

• Description: returns the whether the Slit is currently inserted (VARIANT_TRUE) or retracted

(VARIANT_FALSE).

Insert

• Sort: method/function

20

• Input arguments: none

• Return type: none

• Description: Inserts the Slit into the filter. The Slit will move to the current setting of Width

property

In case the Insertion of the Slit failed an error is returned.

Retract

• Sort: method/function

• Input arguments: none

• Return type: none

• Description: Retracts the Slit from the filter

In case the Retraction of the Slit failed an error is returned.

WidthRange

• Sort: property, read-only

• Type: EnergyRange

• Description: Returns allowed value range for Slit Width property

Width

• Sort: property, read-write

• Type: double

• Description: get or set the slit width in [eV].

On read, Slit inserted: current Width position

On read, Slit retracted: Width position the Slit will move to when Insert is called

On write, Slit inserted: Slit moves immediately to the requested width

On write, Slit retracted: updates Width, slit will not move, only activated after Insert is called

Set values shall be within the range as specified by the WidthRange property.

In case an invalid (out of range) Width value is set an error is returned.

HighTensionEnergyShift

The following are the members of the Slit interface.

EnergyShiftRange

• Sort: property, read-only

• Type: EnergyRange

• Description: Returns allowed value range for EnergyShift property

EnergyShift

• Sort: property, read-write

• Type: double

• Description: get or set the High Tension EnergyShift in [eV].

Set values shall be within the range as specified by the EnergyShiftRange property.

In case an invalid (out of range) EnergyShift value is set an error is returned.

ZeroLossPeakAdjustment

Allows adjusting the Zero Loss Peak Adjustment.

21

EnergyShiftRange

• Sort: property, read-only

• Type: EnergyRange

• Description: Returns allowed value range for EnergyShift property

EnergyShift

• Sort: property, read-write

• Type: double

• Description: get or set the Zero Loss Peak EnergyShift in [eV].

Set values shall be within the range as specified by the EnergyShiftRange property.

In case an invalid (out of range) EnergyShift value is set an error is returned.

EnergyRange

Properties of this type contain a range of Energy values in electron volt.

Begin

• Sort: property, read-only

• Type: double

• Description: Returns lowest value of the energy range [eV]

End

• Sort: property, read-only

• Type: double

• Description: Returns highest value of the energy range [eV]

AutoLoader interface

The AutoLoader object gives access to the members below.

In case the AutoLoader is not licensed, accessing these members is refused and an error will occur.

NumberOfCassetteSlots

• Sort: property, read-only

• Type: long

• Description: returns total number of slots in the cassette

SlotStatus

• Sort: property, read-only

• Type: CassetteSlotStatus

• Description: returns the CassetteSlotStatus of the provided slot number.

The slot status can be CassetteSlotStatus_Unknown, CassetteSlotStatus_Occupied,

CassetteSlotStatus_Empty or CassetteSlotStatus_Error

Initialize

• Sort: method/function

22

• Input arguments: None

• Return type: None

• Description: Initializes / Recovers the Autoloader for further use.

DockCassette

• Sort: method/function

• Input arguments: None

• Return type: None

• Description: Moves the cassette from the capsule to the docker.

UndockCassette

• Sort: method/function

• Input arguments: None

• Return type: None

• Description: Moves the cassette from the docker to the capsule.

PerformCassetteInventory

• Sort: method/function

• Input arguments: None

• Return type: None

• Description: Perform an inventory of all cassette the slots for the presence of a cartridge.

LoadCartridge

• Sort: method/function

• Input arguments: slot number to load. Should be 0 < slot_number <= NumberOfCassetteSlots

• Return type: None

• Description: Loads the cartridge from a specified slot in the cassette to the stage.

UnLoadCartridge

• Sort: method/function

• Input arguments: None

• Return type: None

• Description: Unload cartridge from stage to a free slot in the cassette.

BufferCycle

• Sort: method/function

• Input arguments: None

• Return type: None

• Description: Synchronously runs the Autoloader buffer cycle.

23

TemperatureControl interface

The TemperatureControl object gives access to the members below.

In case the TemperatureControl is not licensed, accessing these members is refused and an error will

occur.

AutoloaderCompartment

• Sort: property, read-only

• Type: IDispatch (AutoloaderCompartment)

• Description: Gives access to the AutoloaderCompartment interface.

ColumnCompartment

• Sort: property, read-only

• Type: IDispatch (ColumnCompartment)

• Description: Gives access to the ColumnCompartment interface.

IsAnyDewarFilling

• Sort: property, read-only

• Type: boolean (VARIANT_BOOL)

• Description: Returns whether any of the Dewars (Autoloader or Column) is busy filling.

RefillAllDewars

• Sort: method/function

• Input arguments: None

• Return type: None

• Description: Force the refrigerant refill of autoloader and column dewars.

AutoloaderCompartment

The following are the members of the AutoloaderCompartment interface.

CartridgeTemperature

• Sort: property, read-only

• Type: double

• Description: Returns Cartridge gripper temperature in Kelvins.

CassetteTemperature

• Sort: property, read-only

• Type: double

• Description: Returns Cassette gripper temperature in Kelvins.

DockerTemperature

• Sort: property, read-only

• Type: double

• Description: Returns Docker temperature in Kelvins.

Dewar

24

• Sort: property, read-only

• Type: IDispatch (Dewar)

• Description: Gives access to the Dewar interface. Provides access to the AutoLoader Dewar.

ColumnCompartment

The following are the members of the ColumnCompartment interface.

HolderTemperature

• Sort: property, read-only

• Type: double

• Description: Returns Holder temperature in Kelvins.

Dewar

• Sort: property, read-only

• Type: IDispatch (Dewar)

• Description: Gives access to the Dewar interface. Provides access to the Column Dewar.

Dewar

The following are the members of the Dewar interface.

RefrigerantLevel

• Sort: property, read-only

• Type: double

• Description: Returns the current refrigerant level of the dewar. Refrigerant level is specified in

percentage (%). 0 means empty, 100 means full.

DewarRemainingTime

• Sort: property, read-only

• Type: double

• Description: Returns the dewar remaining time before it needs to be refilled. The remaining time

is specified in seconds.

25

Client script examples

Image Acquisition and Phase Plate

Sample python script to show usage of Advanced Scripting

import comtypes

import comtypes.client as cc

instrument = cc.CreateObject("TEMAdvancedScripting.AdvancedInstrument")

def TakeSingleAcquisition():

 csa = instrument.Acquisitions.CameraSingleAcquisition

 cams = csa.SupportedCameras

 csa.Camera = cams[[c.name for c in cams].index("BM-Falcon")]

 cs = csa.CameraSettings

 cs.DoseFractionsDefinition.Clear

 cs.DoseFractionsDefinition.AddRange(0, 1)

 cs.DoseFractionsDefinition.AddRange(1, 2)

 cs.DoseFractionsDefinition.AddRange(2, 3)

 cs.SubPathPattern = "Jupyter_{ymd}\\{hms}"

 ai = csa.Acquire()

 ai.SaveToFile("c:\\users\\factory\\desktop\\myimage.raw")

 array = ai.AsSafeArray

def PhaseplateSelectNext():

 print("PhaseplateSelectNext")

 pp = instrument.Phaseplate

 pp.SelectNextPresetPosition()

 print("PhaseplateSelectNext done")

def PhaseplateGetCurrent():

 print("PhaseplateGetCurrent")

 pp = instrument.Phaseplate

 print(pp.GetCurrentPresetPosition)

 print("PhaseplateGetCurrent done")

def PhaseplateGetCurrentAndSelectNext():

 print("PhaseplateGetCurrentAndSelectNext")

 pp = instrument.Phaseplate

 pp.SelectNextPresetPosition()

 print pp.GetCurrentPresetPosition

 print("PhaseplateGetCurrentAndSelectNext done")

def PhaseplateGetCurrentAndSelectNextAndGetCurrent():

26

 print("PhaseplateGetCurrentAndSelectNextAndGetCurrent")

 pp = instrument.Phaseplate

 for x in range(1,100):

 pp.SelectNextPresetPosition()

 print(pp.GetCurrentPresetPosition)

 print("PhaseplateGetCurrentAndSelectNextAndGetCurrent done")

print("----")

PhaseplateSelectNext() print("----")

PhaseplateGetCurrent()

print("----")

PhaseplateGetCurrentAndSelectNext()

print("----")

PhaseplateGetCurrentAndSelectNextAndGetCurrent()

print("----")

print("All Done")

27

FEG Source
Sample python script to show usage of FEG Source interface

Tested with Python v3.6.8

import sys

import comtypes

import comtypes.client as cc

from enum import IntEnum, unique

@unique

class FegState(IntEnum):

 NOT_EMITTING = 0

 EMITTING = 1

ADV_TEM_SCRIPTING_PROG_ID = "TEMAdvancedScripting.AdvancedInstrument"

#Get the interface to the Source interface

def getSourceInterface():

 try:

 instrument = cc.CreateObject(ADV_TEM_SCRIPTING_PROG_ID)

 except(OSError):

 print("Cannot retrieve interface of {}".format(ADV_TEM_SCRIPTING_PROG_ID))

 sys.exit(1);

 if instrument is None:

 print("Invalid Instrument")

 sys.exit(1);

 return instrument.Source

if __name__ == '__main__':

 source = getSourceInterface()

 if source is None:

 print("Invalid Source")

 sys.exit(1);

 fegState = FegState(source.State)

 print("FEG State is {}".format(fegState.name))

 print("Extractor Voltage is {:.0f} V".format(source.ExtractorVoltage))

 try:

 focusindex = source.focusindex

 print("focus index is {}.{}".format(focusindex.Coarse, focusindex.Fine))

 except(comtypes.COMError):

 print("Cannot retrieve focus index")

 sys.exit(1);

28

Cold FEG Source
Sample python script to show usage of Cold FEG Source interface

Tested with Python v3.6.8

import sys

import comtypes

import comtypes.client as cc

from enum import IntEnum, unique

@unique

class FegState(IntEnum):

 NOT_EMITTING = 0

 EMITTING = 1

@unique

class FegFlashing(IntEnum):

 LOW_T = 0

 HIGH_T = 1

advisedStr = {True: 'Advised', False: 'NOT Advised'}

ADV_TEM_SCRIPTING_PROG_ID = "TEMAdvancedScripting.AdvancedInstrument"

#Get the interface to the Source interface

def getSourceInterface():

 try:

 instrument = cc.CreateObject(ADV_TEM_SCRIPTING_PROG_ID)

 except(OSError):

 print("Cannot retrieve interface of {}".format(ADV_TEM_SCRIPTING_PROG_ID))

 sys.exit(1);

 if instrument is None:

 print("Invalid Instrument")

 sys.exit(1);

 return instrument.Source

if __name__ == '__main__':

 source = getSourceInterface()

 if source is None:

 print("Invalid Source")

 sys.exit(1);

 fegFlashing = source.Flashing

 if fegFlashing is None:

 print("Invalid FegFlashing")

 sys.exit(1);

 isLowTFlashAdvised = fegFlashing.IsFlashingAdvised(FegFlashing.LOW_T)

29

 print("Low T Flashing is {}".format(advisedStr[isLowTFlashAdvised]))

 isHighTFlashAdvised = fegFlashing.IsFlashingAdvised(FegFlashing.HIGH_T)

 print("High T Flashing is {}".format(advisedStr[isHighTFlashAdvised]))

 fegState = FegState(source.State)

 print("FEG State is {}".format(fegState.name))

 if fegState == FegState.EMITTING:

 print("Perform Low T Flashing")

 fegFlashing.PerformFlashing(FegFlashing.LOW_T)

 print("Beam Current is {:.2f} nA".format(source.BeamCurrent * 1E+9))

 print("Extractor Voltage is {:.0f} V".format(source.ExtractorVoltage))

 focusIndex = source.FocusIndex

 print("Focus Index is {}.{}".format(focusIndex.Coarse, focusIndex.Fine))

Energy Filter

C# example EnergyFilter navigation
using TEMAdvancedScripting;

// Create the instrument
instrument = new TEMAdvancedScripting.Instrument();
// Access the EnergyFilter
energyFilter = instrument.EnergyFilter as TEMAdvancedScripting.EnergyFilter;

// Access the Slit, HighTensionEnergyShift and ZeroLossPeakAdjustment interfaces
slit = m_energyFilter.Slit as Slit;
htShift = m_energyFilter.HighTensionEnergyShift as HighTensionEnergyShift;
zlpAdjust = m_energyFilter.ZeroLossPeakAdjustment as ZeroLossPeakAdjustment;

C# example Slit movements
if (slit != null)
{
 // Insert the slit into the filter
 slit.Insert()
 // Should print ‘Slit is inserted’

 Console.WriteLine("Slit is " + slit.IsInserted ? "inserted" : "retracted");

 slit.Retract()
 // Should print ‘Slit is retracted’
 Console.WriteLine("Slit is " + slit.IsInserted ? "inserted" : "retracted");
}

C# example Slit Width manipulation
// Start with a retracted slit
slit.Retract();

// Set the slit Width to the lowest value allowed
slit.Width = slit.WidthRange.Begin;
// Should print ‘Slit is retracted’ (slit has not moved yet!)
Console.WriteLine("Slit is " + slit.IsInserted ? "inserted" : "retracted");

30

// Now Insert the Slit, and it will move to the requested Width
slit.Insert();
// Should print ‘Slit is inserted’
Console.WriteLine("Slit is " + slit.IsInserted ? "inserted" : "retracted");

// Increase the slit Width by 2.0 [eV]

slit.Width = Math.Min(slit.Width + 2.0, slit.WidthRange.End);

C# example Slit Width error
// Setting out of range Width value will throw
try

{
 slit.Width = slit.WidthRange.Begin - 0.1;
}
catch (System.ArgumentException e)
{

 Console.WriteLine("Requested Width is not allowed");
}

C# example HighTensionEnergyShift manipulation
if (htShift != null)
{

 // Increase the HT EnergyShift by 1.0 [eV]
 htShift.EnergyShift = Math.Min(htShift.EnergyShift + 1.0, htShift.EnergyShiftRange.End);
}

C# example HighTensionEnergyShift error
// Setting out of range HT EnergyShift value will throw
try
{
 htShift.EnergyShift = htShift.EnergyShiftRange.Begin – 0.1;
}
catch (System.ArgumentException e)

{
 Console.WriteLine("Requested HT EnergyShift is not allowed");
}

C# example ZeroLossPeakAdjustment manipulation
if (zlpAdjust!= null)

{
 // Increase the HT EnergyShift by 2.0 [eV]
 zlpAdjust.EnergyShift =
 Math.Min(zlpAdjust.EnergyShift+2.0, zlpAdjust.EnergyShiftRange.End);
}

C# example ZeroLossPeakAdjustment error
// Setting illegal ZeroLossPeakAdjustment EnergyShift value will throw
try
{
 zlpAdjust.EnergyShift = zlpAdjust.EnergyShiftRange.Begin – 0.1;

}

31

catch (System.ArgumentException e)
{
 Console.WriteLine("Requested ZLP Adjustment EnergyShift is not allowed");
}

AutoLoader and TemperatureControl
Sample python script to show usage of AutoLoader and TemperatureControl interface

Tested with Python v3.6.8

Copyright (c) 2021 by Thermo Fisher Scientific

All rights reserved. This file includes confidential and proprietary information

of Thermo Fisher Scientific.

import comtypes

import comtypes.client as cc

import sys

import time

from enum import Enum

class SlotStatus(Enum):

 Unknown = 0

 Occupied = 1

 Empty = 2

 Error = 3

from enum import IntEnum

class ErrorCode(IntEnum):

 E_NOT_ALLOWED = -2147155969,

 # Pre-conditions:

 # - temserver is up and running

 # - there should be Autoloader installed

 # - there should be a valid license for this feature

class AutoLoaderAdvScript:

 Instrument = cc.CreateObject("TEMAdvancedScripting.AdvancedInstrument")

 Autoloader = Instrument.AutoLoader

 TemperatureControl = Instrument.TemperatureControl

 def is_autoloader_installed(self):

 installed = False

 if self.Autoloader is not None:

 installed = True

 else:

 print('\n AutoLoader is not supported')

 return installed

 def is_temp_control_installed(self):

 installed = False

 if self.TemperatureControl is not None:

 installed = True

32

 else:

 print('\n Temperature Control is not supported')

 return installed

 def handle_com_error(self, com_error, context):

 if(int(getattr(com_error, 'hresult')) == ErrorCode.E_NOT_ALLOWED):

 print('\n {0} already performed or is not allowed.'.format(context))

 else:

 print('\n Error in {0}.'.format(context))

 print('\n Exception : ', sys.exc_info()[1])

 def get_number_of_cassette_slots(self):

 slots = 0

 try:

 slots = self.Autoloader.NumberOfCassetteSlots

 print('\n Number Of CassetteSlots : {0}'.format(slots))

 except comtypes.COMError as com_error:

 self.handle_com_error(com_error, 'Getting Number Of CassetteSlots')

 return slots

 def is_slot_occupied(self, slot_number):

 slotStatus = SlotStatus.Unknown

 try:

 slotStatus = SlotStatus(self.Autoloader.SlotStatus[slot_number])

 print('\n Status of slot {0} : {1}'.format(slot_number, slotStatus))

 except comtypes.COMError as com_error:

 self.handle_com_error(com_error, 'Getting slot status')

 return (slotStatus == SlotStatus.Occupied)

 def initialize(self):

 print('\n Initializing Autoloader.')

 try:

 self.Autoloader.Initialize()

 except comtypes.COMError as com_error:

 self.handle_com_error(com_error, 'Initializing')

 else:

 print('\n Initializing Autoloader completed.')

 def dock_cassette(self):

 print('\n Docking cassette in Autoloader.')

 try:

 self.Autoloader.DockCassette()

 except comtypes.COMError as com_error:

 self.handle_com_error(com_error, 'Docking cassette')

 else:

 print('\n Docking cassette in Autoloader completed.')

 def perform_inventory(self):

 print('\n Inventorying the cassette.')

 try:

 self.Autoloader.PerformCassetteInventory()

33

 except comtypes.COMError as com_error:

 self.handle_com_error(com_error, 'Inventorying cassette')

 else:

 print('\n Inventorying the cassette completed.')

 def load_cartridge(self, slot_number):

 print('\n Loading cartridge from slot : {0}'.format(slot_number))

 try:

 self.Autoloader.LoadCartridge(slot_number)

 except comtypes.COMError as com_error:

 self.handle_com_error(com_error, 'Loading cartridge')

 else:

 print('\n Loading cartridge from slot : {0}

completed.'.format(slot_number))

 def unload_cartridge(self):

 print('\n Unloading cartridge from stage.')

 try:

 self.Autoloader.UnloadCartridge()

 except comtypes.COMError as com_error:

 self.handle_com_error(com_error, 'Unloading cartridge')

 else:

 print('\n Unloading cartridge from stage completed.')

 def get_docker_temperature(self):

 temp = 0.0

 try:

 temp = self.TemperatureControl.AutoloaderCompartment.DockerTemperature

 except comtypes.COMError as com_error:

 self.handle_com_error(com_error, 'Getting Docker temperature')

 else:

 print('\n Docker Temperature : {0} K'.format(temp))

 return temp

 def get_cassette_gripper_temperature(self):

 temp = 0.0

 try:

 temp = self.TemperatureControl.AutoloaderCompartment.CassetteTemperature

 except comtypes.COMError as com_error:

 self.handle_com_error(com_error, 'Getting Cassette Gripper temperature')

 else:

 print('\n Cassette Gripper Temperature : {0} K'.format(temp))

 return temp

 def get_cartridge_gripper_temperature(self):

 temp = 0.0

 try:

 temp =

self.TemperatureControl.AutoloaderCompartment.CartridgeTemperature

 except comtypes.COMError as com_error:

 self.handle_com_error(com_error, 'Getting Cartridge Gripper

temperature')

34

 else:

 print('\n Cartridge Gripper Temperature : {0} K'.format(temp))

 return temp

 def get_holder_temperature(self):

 temp = 0.0

 try:

 temp = self.TemperatureControl.ColumnCompartment.HolderTemperature

 except comtypes.COMError as com_error:

 self.handle_com_error(com_error, 'Getting Holder temperature')

 else:

 print('\n Holder Temperature : {0} K'.format(temp))

 return temp

def wait_for_docking_temperatures():

 # This time out value is purely indicative.

 # On the actual system it can take much longer to go to cryo temperatures.

 timeout = 10

 while((script_al.get_docker_temperature() > DOCKER_TEMP or

 script_al.get_cassette_gripper_temperature() > CASSETTE_TEMP) and

 timeout > 0):

 time.sleep(1)

 timeout -= 1

 handle_timeout(timeout, 'docking')

def wait_for_inventory_temperatures():

 # This time out value is purely indicative.

 # On the actual system it can take much longer to go to cryo temperatures.

 timeout = 10

 while(script_al.get_cartridge_gripper_temperature() > CARTRIDGE_TEMP and timeout

> 0):

 time.sleep(1)

 timeout -= 1

 handle_timeout(timeout, 'inventory')

def wait_for_loading_temperatures():

 # This time out value is purely indicative.

 # On the actual system it can take much longer to go to cryo temperatures.

 timeout = 10

 while((script_al.get_cartridge_gripper_temperature() > CARTRIDGE_TEMP or

script_al.get_holder_temperature() > HOLDER_TEMP) and timeout > 0):

 time.sleep(1)

 timeout -= 1

 handle_timeout(timeout, 'loading')

def handle_timeout(timeout, context):

 if(timeout == 0):

 print('\n Timeout occured while waiting for temperatures before

{0}.'.format(context))

 sys.exit()

 else:

 print('\n Temperatures for {0} reached.'.format(context))

35

if __name__ == '__main__':

 print('PreConditions for this script to run')

 print(' - temserver is up and running')

 print(' - there should be Autoloader installed')

 print(' - there should be a valid license (Scr. Sample Loading) for this

feature')

 print(' - there should be a capsule placed with a few cartridges')

 slot = int(input('\n Enter slot number to load : '))

 script_al = AutoLoaderAdvScript()

 DOCKER_TEMP = 100 # Kelvin

 CASSETTE_TEMP = 100 # Kelvin

 CARTRIDGE_TEMP = 100 # Kelvin

 HOLDER_TEMP = 100 # Kelvin

 if(script_al.is_autoloader_installed() and

script_al.is_temp_control_installed()):

 if(slot<=script_al.get_number_of_cassette_slots() and slot > 0):

 print('\n Valid slot number provided : {0}'.format(slot))

 # 1. Initialize the Autoloader

 script_al.initialize()

 # 2. Wait until the required temperatures are reached for docking.

 wait_for_docking_temperatures()

 # 2. Dock the cassette into the Autoloader.

 script_al.dock_cassette()

 # 3. Wait until the required temperatures are reached for inventory.

 wait_for_inventory_temperatures()

 # 4. Perform Inventory

 script_al.perform_inventory()

 # 5. Check the slot is occupied

 if(script_al.is_slot_occupied(slot)):

 #6. Wait until the required temperatures are reached for loading.

 wait_for_loading_temperatures()

 #6. Load the Sample on the stage

 script_al.load_cartridge(slot)

 #7. Unload the Sample from the stage

 script_al.unload_cartridge()

 else:

 print('\n Invalid slot specified as slot is not occupied.')

 else:

 print('\n Invalid slot specified')

 else:

 print('\n Autoloader or Temperature Control not supported.')

