Skip to content

Latest commit



197 lines (136 loc) · 4.48 KB


File metadata and controls

197 lines (136 loc) · 4.48 KB



signature  :: [type]
              a list of types

Dispatcher :: {signature: function}
              A mapping of type signatures to function implementations

namespace  :: {str: Dispatcher}
              A mapping from function names, like 'add', to Dispatchers


A Dispatcher object stores and selects between different implementations of the same abstract operation. It selects the appropriate implementation based on a signature, or list of types. We build one dispatcher per abstract operation.

f = Dispatcher('f')

At the lowest level we build normal Python functions and then add them to the Dispatcher.

>>> def inc(x):
...     return x + 1

>>> def dec(x):
...     return x - 1

>>> f.add((int,), inc)    # f increments integers
>>> f.add((float,), dec)  # f decrements floats

>>> f(1)

>>> f(1.0)

Internally Dispatcher.dispatch selects the function implementation.

>>> f.dispatch(int)

>>> f.dispatch(float)
<function __main__.dec>

For notational convenience dispatchers leverage Python's decorator syntax to register functions as we define them.

f = Dispatcher('f')

def inc(x):
    return x + 1

def dec(x):
    return x - 1

This is equivalent to the form above. It adheres to the standard implemented by functools.singledispatch in Python 3.4 (although the "functional form" of register is not supported).

As in singledispatch, the register decorator returns the undecorated function, which enables decorator stacking.

def rev(x):
    return x[::-1]

The Dispatcher creates a detailed docstring automatically. To add a description of the multimethod itself, provide it when creating the Dispatcher.

>>> f = Dispatcher('f', doc="Do something to the argument")

>>> @f.register(int)
... def inc(x):
...     "Integers are incremented"
...     return x + 1

>>> @f.register(float)
... def dec(x):
...     "Floats are decremented"
...     return x - 1

>>> @f.register(str)
... @f.register(tuple)
... def rev(x):
...     # no docstring
...     return x[::-1]

>>> print(f.__doc__)
Multiply dispatched method: f

Do something to the argument

Inputs: <float>
Floats are decremented

Inputs: <int>
Integers are incremented

Other signatures:

Namespaces and dispatch

The dispatch decorator hides the creation and manipulation of Dispatcher objects from the user.

# f = Dispatcher('f')  # no need to create Dispatcher ahead of time

def f(x):
    return x + 1

def f(x):
    return x - 1

The dispatch decorator uses the name of the function to select the appropriate Dispatcher object to which it adds the new signature/function. When it encounters a new function name it creates a new Dispatcher object and stores name/Dispatcher pair in a namespace for future reference.

# This creates and stores a new Dispatcher('g')
# namespace['g'] = Dispatcher('g')
# namespace['g'].add((int,), g)
def g(x):
    return x ** 2

We store this new Dispatcher in a namespace. A namespace is simply a dictionary that maps function names like 'g' to dispatcher objects like Dispatcher('g').

By default dispatch uses the global namespace in multipledispatch.core.global_namespace. If several projects use this global namespace unwisely then conflicts may arise, causing difficult to track down bugs. Users who desire additional security may establish their own namespaces simply by creating a dictionary.

my_namespace = dict()

@dispatch(int, namespace=my_namespace)
def f(x):
    return x + 1

To establish a namespace for an entire project we suggest the use of functools.partial to bind the new namespace to the dispatch decorator.

from multipledispatch import dispatch
from functools import partial

my_namespace = dict()
dispatch = partial(dispatch, namespace=my_namespace)

@dispatch(int)  # Uses my_namespace rather than the global namespace
def f(x):
    return x + 1