
Node-Red CR5 Documentation
Contents

1. Introduction
2. Node-Red Interface setup
3. Python Editor Setup
4. MQTT Setup and Installation
5. Python Shell (Enable Disable Robot)
6. Get Pose and Joint Angles
7. Jog Interface
8. Teach Point Interface
9. CSV

Note: For a detailed step-by-step guide, please refer to the documentation video found in the
Github Repository Wiki.

Introduction

1. The Node-Red Interface was created as a similar interface to the DobotDCStudio.
2. The Node-Red interface is able to control the Dobot CR5 using the Dobot CR5

Python API through MQTT connection.
3. The Interface controls are visible on a Node-Red dashboard.

4. The Node-Red interface contains the following CR5 functions:

- Enable and disable functionalities
- Emergency Stop
- Jog functionalities
- Teach point functionalities

Node-Red Interface Setup

Node-Red installation
1. To set up the Interface, install node-red on your PC.

Prerequisite: You need to have installed Node.js of the recommended versions
below.

To install Node.js, use the following link:
https://github.com/jasongin/nvs/releases
And download the latest version of the MSI installer.

2. To install on Windows, open Command Prompt on your PC and enter the following:

npm install -g --unsafe-perm node-red

3. Once installation is complete, run Node-Red on your PC with the following:
Node-red
*Closing the Command Prompt window will end the Node-Red Session

4. Access the editor by entering the following into your browser:
http://<ip-address>:1880
OR
http://localhost:1880/

5. Next, navigate to Command Prompt again and install the required palette extensions:
npm install node-red-contrib-mqtt-broker

npm install node-red-contrib-pythonshell

npm install node-red-contrib-ui-led

npm install node-red-dashboard

npm install node-red-node-ui-table

npm i node-red-contrib-ui-clock

These palettes are used in the Node-Red Dobot Interface. Ensure they are installed
before opening the node-red flow file.

6. To open the Dobot Interface file on Node-Red, navigate to the three lines on the top
right corner of Node-Red and select “Import”.

7. Click “select a file to import” then choose the Node-Red Dobot Interface file and click
Import.
The flows will be imported onto the node-red window.

Python Editor setup
1. To open the Dobot Python API files, you will need a source-code editor that can

support Python.
Eg: Visual Studio Code, VScodium

2. To download Visual Studio Code, use the following link:
https://code.visualstudio.com/download

 Click the download button according to your supported device.
 Open Visual Studio Code and open the Python API file on the application.

3. Install the Python extension using the following link:
https://marketplace.visualstudio.com/items?itemName=ms-python.python

4. Activate the Python extension using the keys: CTRL+Shift+P

Then enter or select the following Python: Select Interpreter

5. A dropdown box will appear and display the interpreters available. Select an
available Python interpreter.

6. Next, install the following extensions which will be used in the Python API file.
Enter the following in the terminal window:
pip install numpy
pip install paho-mqtt

MQTT Setup and Installation
1. In this Node-Red interface, an MQTT connection is used to send and receive data

from the Python API script.

2. To set up the MQTT connection, you will need to install an MQTT broker. Use the
following link:
https://mosquitto.org/download/

 Download the 64-bit Windows version onto your PC.

3. Once the download is complete, install the broker and complete the installation setup
process.

4. To start up the Mosquitto MQTT service, run Command Prompt as Administrator

and enter the following:
net start mosquitto

You may stop the service using the following command:
net stop mosquitto

5. When the MQTT connection is setup the square under the MQTT nodes will turn
green and show “Connected”.

Eg:

Python Shell (Enable/Disable Robot)

1. Run Python App with Jog and Teach Point function

a. Clicking the Run App button on the UI dashboard, will:

i. Trigger the python shell node to run the Dobot API Python Script

ii. Send a msg.payload to turn on the ui LED.
iii. Send an enable msg.payload to a function that determines whether to

turn on or turn off the enable toggle UI.
iv. When the toggle is on, a message is sent through MQTT to the

Python script which will run the python enable robot function.

2. Stop App running

a. Clicking on the terminate button will:

i. Cause a function to send a terminate msg.payload to the Python script
through MQTT.
The message sent to the Python Script through MQTT will enter a
terminate function to disable the robot and terminate the program.

ii. Send an terminate msg.payload to a function that determines whether

to turn on or turn off the enable toggle UI.
When the toggle is off, no message is sent through MQTT to the
Python script.

Get Pose and Joint Angles

1. Joint angles and Pose coordinates are obtained from a Python function in the Python

script and sent to Node-Red through MQTT.
2. The data is sent to a function node to sort out the data as an object to be displayed in

a table UI.
3. The live joint angles are displayed in 2 table UIs. One in the jog tab and one in the

teach point tab.

Jog Interface

1. Jog Labels

a. The Jog mode toggle which is initially switched off will display the Jog panel
with Cartesian Coordinate labels. When the toggle is switched on, the
dashboard will display the Jog panel with Joint Angle labels.

2. Jog buttons

a. Clicking on the Jog button on the Jog panel will send an increment

angle/pose syntax (depending on the jog mode) to the Python Script through
MQTT.

b. If the joint mode is on then the syntax sent will have the joint increment
syntax.

c. If the cartesian coordinate mode is on then the syntax sent will have the
cartesian angle increment syntax.

d. The increment angle/pose syntax that is sent to the Python script will cause
the robot to jog in that direction until the jog button is released.

Teach Point Interface

The teach point tab contains 4 features:

1. Save Teach Points

a. Clicking the Save Points button triggers the current pose and joint angles to

be sent from the Python script through MQTT to a function node.

b. The function node converts the coordinates into an object format and stores
them in an array. The saved object element is displayed on the Saved Points
table.

2. Reset Teach Points

a. Clicking the Reset button will trigger a reset msg.payload to be sent to a

function node which will delete all elements in the stored array.
b. This causes the table to be displayed as empty in the dashboard.

3. Delete Teach Point

a. When a row in the Saved Points table is clicked, the clicked row number is
passed through a function node for row number calculation.

b. The calculated row number is displayed on the cover point and delete point
text field.

c. When the delete button is clicked, a delete msg.payload is sent to a function
node which will clear the object contents for the respective row but will not
remove the object.

d. The empty element row will be displayed on the saved points table.

4. Cover Teach Point

a. When a row in the Saved Points table is clicked, the clicked row number is
passed through 2 function nodes. One for row number and the other for array
element number calculation.

b. The calculated row number is displayed on the cover point and delete point
text field.

c. When the cover button is clicked, a cover msg.payload is sent to a function
node which will replace the object contents of the selected row with the
current live coordinates.

d. The new covered coordinates will be displayed in the covered row in the
saved points table.

5. Move to Teach Point

a. When a row in the Saved Points table is clicked, the clicked row number is

passed through a function nodes that calculates the array element number
and converts the selected object into an array of coordinates.

b. The array is passed to the Python script through MQTT as a string. The string
is converted back to Python syntax inside the python script.

c. When the Move to teach point button is held down, a start message is sent to
the Python Script through MQTT. This message will start jogging the robot to
the respective teach point.

d. When the Move to teach point button is released, a stop message is sent to
the Python Script instead. This message will stop the jog motion at any point
of motion and keep the robot stationary.

e. The robot will continue to move when the move to button is held down again
and will only stop when it has reached.

CSV

Coordinates & Labels tab has x features:

1. UI control

a. At default, it will have certain UI hidden from the user and others visible
b. When a filename is given under export or import form the UI will update accordingly.

c. Information of the filename to retrieve data from or create is sent to the python script
via MQTT

d. Close button will close certain UI and enable others as necessary.
e. A home page is made from this UI, it does not serve much functionality

2. Creating the dataset

a. When the get current position button is pressed, the current joint angles of the Dobot

is retrieved and sent to the form, users can modify the data or click submit to save
the data.

b. Users can manipulate the data by selecting the row in question as well as delete
rows of data as necessary, similar to the teach points tab.

c. All forms of updating the data are handled by the submit button or delete button.
3. Save the dataset

a. Save button will send the data to the python script to be turned into a new csv file or

update a pre-existing one.
4. Run code

a. Run button will take data from the table and send it to the python script one row at a

time, in which the robot will move according to the data sent

