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1. Introduction

The strategic behavior of firms is central to the study of industrial organization. Going back to

at least Bresnahan (1982), economists have tried to determine which models of firm conduct are

consistent with observed market outcomes. These models of conduct often have very different

implications for consumer welfare, market efficiency, antitrust policy, and regulation, and therefore

being able to distinguish between them is vital to the science of economics.

One particular model of conduct, the “common ownership” hypothesis, says that as firms are

increasingly owned by overlapping shareholders, the best way to maximize the value of sharehold-

ers’ entire portfolios might be for firms to unilaterally relax competition in product markets. If

manifested in firm conduct as the theory predicts – an open question – the implications of this

observation would be vast, affecting prices in almost every sector of the US economy. By 2017, the

three largest institutional asset managers (Vanguard, Blackrock, and State Street) held a combined

21% of the average S&P 500 firm (Backus et al., 2021). However, most attempts at measuring

price effects of common ownership have relied on regressions of prices on (augmented) concen-

tration indices using market level data, reminiscent of the Structure-Conduct-Performance (SCP)

literature in industrial organization (Schmalensee, 1989). The challenges of these regressions are

well-documented, and have led them to fall out of favor with most economists studying strategic

interactions among firms (Berry et al., 2019).

In this paper, we develop a testing procedure for comparing non-nested models of conduct

that predict different markups in equilibrium, such as own-profit maximization or the common

ownership hypothesis. We follow the identification argument of Berry and Haile (2014) and build

our test on exclusion restrictions, exploiting variables that affect markups but not marginal costs.

We use a moment-based version of the Rivers and Vuong (2002) test statistic to detect violation

of these restrictions: under the true conduct assumption, recovered marginal cost shocks should

not be correlated with those variables but under an incorrect conduct assumption they will be.

The challenge is that the relationship between the excluded variables and the difference between

the markups under the two models is likely to be nonlinear. We propose a simple scalar moment

condition that uses the model to capture that nonlinearity.

Our testing procedure has several advantages. By estimating the nonlinear relationship between

the excluded variables and the difference in markups, we are able to generate a more powerful test.

This idea is motivated by the Chamberlain (1987) optimal instruments for nonlinear GMM, an

analogy that guides us at several points in the analysis. Moreover, since our formulation of the

exclusion restrictions reduces to a scalar moment condition, we avoid many of the problems associ-

ated with weighting matrices in moment-based non-nested model comparisons (Hall and Pelletier,

2011).

We apply this test to alternative models of conduct in the ready-to-eat (RTE) cereal market.

The chosen industry is an ideal one for examining the “common ownership” hypothesis as it exhibits

1



variation in ownership concentration across firms, as well as over time, in addition to a high level of

product market concentration to begin with (C4 is approximately 85%). For example, The Kellogg

Foundation is a major (undiversified) shareholder of Kellogg’s, Inc, although its share has fallen

over time from over 30% in 2000 to just under 20% in 2017. We also observe that the products

sold under the Post brand changed hands several times, from being a part of Kraft foods, to being

a part of Ralcorp, and finally to being an independent firm, all of which affect the extent to which

its shares are commonly owned. This variation generates meaningful differences both in the cross-

section and in the time series between pricing and markups under common ownership and pricing

under own-firm profit maximization.

We first estimate demand in a standard random coefficients logit model using detailed scanner

data from 2007–2017. We supplement this with demographic data of shoppers collected from pan-

elist data on individual consumers and micro-moments of covariances between purchased product

characteristics and consumer demographics. We find that category demand is inelastic while the

median product faces an own-price elasticity of −2.67. We simulate price increases under a set of

hypothetical mergers to understand the magnitudes implied by the substitution patterns identified

in the demand data.

With demand in hand, we compute markups under a variety of conduct models including

perfect competition, own-profit maximization, common ownership pricing, and monopoly pricing.

We apply our testing procedure using a variety of alternative exclusion restrictions. The results

strongly favor own-firm profit maximization. However, we show that capturing the nonlinearity of

the model using our formulation of the exclusion restriction is critical. Alternative specifications

that are predicated on functional form restrictions – linearity of the marginal cost function and

linearity of the relationship between the exclusion restrictions and the difference in markups – offer

inconsistent results across different sets of excluded instruments. Alternatively, when specified as

we propose, the different sets of exclusion restrictions agree, satisfying the specification test critique

of Hausman (1978).

Finally, we consider an “internalization parameter” approach that posits that some fraction τ

of the common ownership incentives are transmitted to managers. We compute our test statistic

comparing own-profit maximization to variations of the common ownership incentives at different

levels of τ . We show that our test is able to reject that 30% or more of the common ownership

incentives are reflected in firm pricing decisions. At lower levels of internalization, markups between

the two models become indistinguishable.

Our contribution is both methodological and empirical. In terms of methodology, we describe a

method for testing conduct with a number of advantages over previous approaches. Our approach

uses the (known) nonlinearity of the model of equilibrium markups to improve power. Moreover,

it frees the researcher from specifying a weighting matrix and allows for fully flexible functional

forms in the testing procedure. Empirically, we provide evidence in the ongoing debate around the
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common ownership hypothesis. Our analysis is one of few in a differentiated product setting and

the first to our knowledge to undertake a pairwise model comparison test of the common ownership

conduct model. We show how to evaluate the common ownership hypothesis in a conduct testing

approach, but our framework is quite general and it can be used to test other models or hypotheses

that predict equilibrium markups. We hope that others will find this a fruitful approach in new

empirical contexts going forward.

1.1. Related Literature

Empirical testing of firm conduct is an endeavor with a storied history in industrial organization

(IO) going back to at least Bresnahan (1982). Examples of conduct testing and estimation include

Bresnahan (1987), Nevo (2001), Miller and Weinberg (2017), and Duarte et al. (2020).1 Berry and

Haile (2014) show nonparametric identification of conduct and suggest that models of conduct are

testable in the presence of appropriate exclusion restrictions. With respect to this literature, we

pose the common ownership hypothesis as an alternative model of conduct, and employ some of

the same identification results that have been used to test for collusion and portfolio pricing.

The theoretical foundations of the common ownership hypothesis are not new. Rotemberg

(1984) offered the earliest model in which diversification of shareholders affects the character of im-

perfect competition in product markets. Bresnahan and Salop (1986) and O’Brien and Salop (2000)

treat the same question, characterizing “partial mergers,” where diversified ownership by sharehold-

ers and cross-ownership among firms can have anticompetitive effects. In particular, Bresnahan and

Salop (1986) introduced the modified Herfindahl-Hirschman index (MHHI) concentration measure

to capture such partial control.

The recent revival of interest in the common ownership hypothesis follows from a handful of

empirical studies that appear to show large effects on pricing in product markets. The most notable

are Azar et al. (2016), which studied the effects of common ownership on bank fees, and Azar et al.

(2018a), which uses the BlackRock acquisition of Barclays as an instrument to study the effect of

common ownership on airfares. Neither of the above papers addresses the question of finding a

mechanism – precisely how do large common investors affect prices? Antón et al. (2020) propose

that it is through executive compensation schemes with respect to firm performance. They exploit

index-entry events that change common ownership and show that they are correlated with attributes

of corporate compensation in a way that is consistent with reduced competition in product markets.

This literature has not been without criticism, in particular for its descriptive approach. The

explanatory variables of interest are concentration indices such as MHHI. Besides the obvious con-

cerns for identification (since this puts quantity sold on the right-hand side), these concentration

1Nevo (2001) also studies ready-to-eat cereal to test models of conduct and is the most proximate point of departure
for our endeavor. We iterate on that seminal work by using an updated sample (1990–1996 vs 2007–2017), more
stores (6 versus thousands), more detailed characteristics data, store-specific measurement of market size and, most
importantly, an alternative conduct hypothesis.
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measures have no monotonic relationship to the main outcome of interest, product market prices

(O’Brien, 2017). Notwithstanding these concerns about the empirical results, this burgeoning liter-

ature has attracted the interest of the legal community (Elhauge, 2016) and antitrust authorities,2

and there is already interest in regulatory remedies (Posner et al., 2017). The literature is further

reviewed in Backus et al. (2019). It is a pressing concern then to develop a structural approach

that can guide antitrust and regulatory authorities in evaluating both the problem and potential

remedies. To our knowledge, the only other papers that endeavor a structural analysis of the

common ownership hypothesis are Kennedy et al. (2017) and Park and Seo (2019), which take a

different, nested approach using an internalization parameter (discussed later) and study the airline

industry.3

2. A Test of Conduct

Throughout this article, we use j ∈ JT to denote products, t ∈ T to denote markets, and n to

denote all products and markets suitably stacked. We also use bold typeface to denote all of the

products within a particular market (e.g.: pt denotes the prices of all products in market t). We

index by −j to indicate exclusion of product j; for example, p−j,t denotes the prices of all products

in market t except for product j.

2.1. Setup and Testing Environment

Conduct testing is a classic problem in empirical industrial organization and antitrust economics.

The idea, stemming from Bresnahan (1982), was to exploit “rotations of demand” to distin-

guish among different models of price-setting behavior (perfect competition, monopoly, Cournot,

Bertrand). Later work followed Bresnahan (1987) in developing statistical tests for additional

price-setting behavior such as double marginalization and two-part tariffs (Bonnet and Dubois,

2010; Villas-Boas, 2007). Much of this work relies on instruments excluded from a known para-

metric specification for marginal costs and compares the fit of the marginal cost specification in a

likelihood ratio testing framework.

More recent work by Berry and Haile (2014) shows how a combination of conditions on ex-

cluded instruments (much broader than “rotations of demand”) and a set of reasonable technical

restrictions can be used to non-parametrically identify marginal costs, and thus discriminate among

2The Federal Trade Commission (FTC) held a hearing on the topic in December 2018 and a joint FTC and
Department of Justice (DOJ) request for comments on proposed amendments to regulations around disclosure of
minority stakes in firms was released in September of 2020.“FTC and DOJ Seek Comments on Proposed Amend-
ments to HSR Rules and Advanced Notice of Proposed HSR Rulemaking.” https://www.ftc.gov/news-events/press-
releases/2020/09/ftc-doj-seek-comments-proposed-amendments-hsr-rules-advanced

3The papers are quite different in approach and, given the gravity of the question, we view this heterogeneity in
method as complementary. In particular, they study airlines, mirroring Azar et al. (2018b), while we have deliberately
chosen an industry with simpler pricing practices; they estimate a nested logit model of demand while ours is a random
coefficient logit; and finally they estimate a conduct parameter where we follow the “menu” approach of Nevo (2000)
and study discrete, fully specified, conduct models.
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alternative models of price setting behavior. Under some additional simplifying assumptions, we

show how to take these ideas to data in a way that is computationally tractable while making as

few parametric assumptions as possible.

In their analysis of marginal costs and firm conduct, Berry and Haile (2014) start with an as-

sumption (Assumption 7a) which equates marginal costs to (generalized residual) marginal revenue

ψj(·), the idea being that given prices pt, market shares st, and a (known) demand system D(zt),

where zt is the full set of exogenous product characteristics, marginal cost can be recovered from

the (known) first-order conditions of firms’ price-setting behavior:4

mcjt = ψj(st,pt, D(zt)) (1)

= pjt − ηmj (st,pt, D(zt)).

We modify this slightly and equate, in the second line, the generalized marginal revenue ψj(·) with

the difference between observed prices pjt and an additive markup ηmjt ≡ ηmj (st,pt, D(zt)) which are

subscripted by m to denote a particular model of conduct (such as Cournot, Bertrand, monopoly,

perfect competition, fixed markups, or others). We use the notation ηmjt without an argument,

because given a conduct assumption and the fact that demand is assumed known, ηmjt is also known

and may be treated as data.5

We also need to characterize the marginal cost specification. At this point it is helpful to

partition the set of exogenous product characteristics zt into xt, variables that affect both demand

and marginal costs; vt, variables that affect demand but are excluded from marginal costs, and wt,

variables that affect marginal costs but are excluded from demand. Now,

mcjt = cj(xjt,wjt,Qt, ωjt) = hs(xjt,wjt) + ωjt, where E[ωjt|zt] = 0. (2)

Here we have made two additional assumptions: the first is that there are no returns to scale or

scope so that the vector of sales (in levels) Qt does not impact the marginal cost; the second is that

the unobservable cost term ωjt is additively separable. Though it is unlikely to be important in

our empirical study of RTE cereal, we can extend our approach to account for economies of scale,

although it would require additional instruments to address the endogeneity of Qt.
6

What we have not done is restricted the functional form regarding how observable cost compo-

nents (xjt,wjt) affect the marginal cost through hs(·). This is in contrast with nearly all of the prior

4There are many examples of this in the literature including Nevo (2000) who shows that for multi-product
oligopoly price-setting pt −mct = Ωt(st,pt)

−1st ≡ ηt(st,pt) where Ωt is the matrix of demand derivatives Ω(j,k) =
∂qj
∂pk

for products with the same owner.
5In practice, demand must be estimated from data. Our empirical example follows the standard approach in Berry

et al. (1995) or Nevo (2001). Bresnahan (1987) is somewhat of an exception and estimates demand and marginal
costs simultaneously when testing conduct models, while more recent work mostly follows the “menu” approach of
Nevo (1998) and estimates demand prior to marginal costs.

6The substance of both restrictions are explained in Sections 4 and 6 of Berry and Haile (2014).
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literature which generally treats hs(·) as linear in covariates, or exponential (so that log(mcjt) is

linear in the covariates).7 Maintaining this flexibility is an important contribution of our approach.

If one combines (1) and (2) with a particular conduct assumption m, we get:

pjt − ηmjt = hs(xjt,wjt) + ωmjt . (3)

As in (2), the model is defined by the conditional moment restriction (CMR) E[ωjt|zt] = 0. The

boldfaced zt indicates that the unobservable cost term ωjt is conditionally mean independent not

only of j’s own characteristics (xjt,wjt) in hs(·) but of the characteristics of other products in

the same market.8 In practice, most researchers don’t work with the conditional moment restric-

tion directly, but rather with (weaker) unconditional moment restrictions implied by the CMR:

E[ωjt|zt] = 0 ⇒ E[ω′jtA(zt)] = 0 where A(·) denotes some matrix-valued function of zt. A sub-

stantial literature in econometrics is concerned with choosing A(·) in order to preserve the largest

amount of information from the CMR (Newey, 1990; Ai and Chen, 2003; Imbens et al., 2003)

including the seminal work by Chamberlain (1987) on “optimal instruments” in a nonlinear IV

setting, which guides us at several points.9 In that literature, the choice of A(zt) is largely about

efficiency, while in our setting the choice of A(zt) is largely about the power of a test statistic to

distinguish among alternative models of markups.

Consistent with much of the prior literature, we consider a non-nested testing framework where

the null hypothesis is that both markup assumptions satisfy the moment restrictions equally well

against the two-sided alternative where either model 1 (η1) satisfies the restrictions better or model

2 (η2) satisfies the restrictions better. The model is non-nested in the sense that both markups

are not included in (3) at the same time. In the event of a rejection in favor of η1 or η2 we say

that the model that satisfies restrictions E[ωm′jt A(zt)] = 0 better is “preferred” rather than “true”

because it is likely that both markups are mis-specified. The non-nested testing framework under

mis-specification is formalized in Vuong (1989) for likelihood ratio tests, and extended to a broad

class of objective functions (including GMM) in Rivers and Vuong (2002).

Formally, the null hypothesis of a Vuong-type test is that both models are equally far from

the truth, taking as a distance metric a criterion function, Q(·) such as the GMM objective. The

Rivers-Vuong test statistic is given by:

T =

√
n(Q1(η1)−Q2(η2))

σ
, (4)

where σ/
√
n is the asymptotic (in n) standard error of the difference (Q1(η1) − Q2(η2)). Rivers

and Vuong (2002) show that, for a broad class of specifications of the criterion function including

7See for example Michel and Weiergraeber (2018); Bonnet and Dubois (2010); Villas-Boas (2007).
8This is the foundation of the well-known “BLP instruments” for demand E[ξjt|zt] = 0.
9The only case in which E[ω′jtzt] = 0 contains the relevant information from the CMR is if the relationship between

markups and zt is exactly linear.
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moment-based objective functions, T has a standard normal distribution. For α = 0.05, this means

that we can reject the null hypothesis in favor of model 1 if T is smaller than −1.96, and we can

reject the null hypothesis in favor of model 2 if T is larger than 1.96.

This test has some advantages. First, it does not require that either model is the truth (as is

necessary in the alternative Cox framework).10 This is particularly appealing for model-dependent

exercises like ours, as all models are, at best, an approximation. Second, recent work by Duarte

et al. (2020) explored the performance of the Rivers-Vuong test statistic in Monte Carlo simulations

of a conduct testing procedure. Their results suggest that it performs better than alternative testing

procedures, particularly when the underlying demand model is misspecified.11

2.2. Choosing Moment Restrictions

Given a pair of candidate models that predict different markups, how can we choose a function

A(zt) that will allow us to discriminate between them? Defining ∆η1,2
jt ≡ η1

jt − η2
jt, we propose the

form A(zt) = E[∆η1,2
jt |zt]. There are several reasons we believe that this is a sensible choice. The

simplest justification is that if we difference (3) for models 1 and 2 we obtain:

η1
jt − η2

jt︸ ︷︷ ︸
=∆η1,2jt

= (ω2
jt − ω1

jt) + (h2
s(xjt,wjt)− h1

s(xjt,wjt)).

The intuition is that any discrepancy between two models of conduct should arise from the dif-

ferences in the implied markups (ignoring differences in the estimates for the observed portion

of marginal costs hs(·)). The challenge is that the markup difference is endogenous and directly

depends on both the observed characteristics of all products zt and the unobservable costs ωt.

Therefore we suggest replacing it with its expectation conditional on the exogenous variables:

E[∆ηjt|zt]. We provide a corresponding formal result in Proposition 1.

10The analogous Cox test would consider H0 : λ = [1, 0] vs Ha : λ = [0, 1] using:

pjt = hs(xjt,wjt) + [λ1, λ2] · [η1jt, η2jt]T + ωjt.

This is useful because it highlights the problems caused by the endogeneity of the markup ηjt and how moving it to
the left hand side in (3) avoids the endogeneity problem via the Anderson-Rubin approach (imposing λm = 1 rather
than estimating the parameter). See Duarte et al. (2020) for a more thorough discussion.

11The Vuong and Rivers-Vuong testing approach has been applied in prior work including Gasmi et al. (1992),
Bonnet and Dubois (2010), and Duarte et al. (2020). The alternative, Cox-based tests, are employed in Bresnahan
(1987) in an MLE context, and are extended to moment-based objective functions by Smith (1992), and employed by
Villas-Boas (2007). Both test statistics were developed in a MLE framework (Cox, 1962; Vuong, 1989), and in both
cases took the form of a likelihood ratio statistic. The main difference is the formulation of the null hypothesis. For
a Cox test, one model is taken to be the null, and the other the alternative. This can lead to difficulties in testing
using multiple moment restrictions because the weighting matrix now depends on which model is taken to be the
null, generating an asymmetry in the test. Both in principle and in practice, this can lead to the scenario in which
the researcher rejects model 1 (null) against model 2 (alternative), and model 2 (null) against model 1 (alternative).
This problem does not arise for Rivers-Vuong tests, which are always symmetric, although Hall and Pelletier (2011)
raise other issues with weighting matrices in that setting when the researcher uses multiple moment restrictions.

7



Proposition 1. Under the following assumptions:

(i) A fixed k × k positive semi-definite weighting matrix W ;

(ii) A (n× k) matrix of instruments Z of full column rank k;

(iii) A vector of n unobservable cost components ωm = p−h(z)−ηm and moment restrictions such

that E[ωm′Z] = 0 ∈ Rk is satisfied at the true η0 and not at ηm 6= η0, and

(iv) The function h(z) is known (rather than estimated).

(a) As n→∞ and under standard regularity conditions, the difference in GMM objective functions

(QW (η) ∈ R+) under weighting matrix W , for any two markup models (η1, η2), can be expressed

as:

QW (η1)−QW (η2)
p→ −E[Z ′ ω1]′W E[Z ′∆η1,2]− E[Z ′ ω2]′W E[Z ′∆η1,2] where ∆η1,2 = η1 − η2.

With an additional assumption, a stronger result obtains.

(v) Model 1 is the correctly specified model, i.e. E[Z ′ ω1]
a.s→ 0.

(b) Under the additional condition (v), then:

QW (η1)−QW (η2)
p→ −E[Z ′∆η1,2]W E[Z ′∆η1,2].

Proof in Appendix A.1

The numerator of the Rivers-Vuong test statistic in (4) depends on the difference between GMM

objective functions under the assumed markups (η1, η2). Proposition 1(a) highlights two features of

this difference. First, it makes precise the relevance of instruments A(zt). If we choose instruments

for each market Zt = A(zt) that are uncorrelated with ∆η1,2
jt , then E[A(zt)

′∆η1,2
jt ] ≈ 0 and the

difference QW (η1)−QW (η2)
p→ 0 under both (a) and (b). For two competing models of markups to

be testable, we require that they generate different objective functions, and therefore require that

E[A(zt)
′∆η1,2

jt ] 6= 0.12

Second, given a set of markups (η1, η2), a more powerful test will generate larger differences in

QW (η1)−QW (η2). Since both expressions in (a) are post-multiplied by E[Z ′∆η1,2], this suggests

choosing A(Z) in such a way that E[A(zt)
′∆η1,2

jt ] is large. This alone isn’t sufficient, because we

would still need to know how the k moment restrictions in E[Z ′ ωm] covary with those in E[Z ′∆η1,2]

(under some weighting matrix W ). This motivates Proposition 1(b) which says that, under the

true model, E[A(zt)
′ ω1]

a.s→ 0, and the difference in the objective functions reduces to a quadratic

form in E[Z ′∆η1,2]. This suggests, in order to maximize the power of the test, we choose At(zt) to

be as close to ∆η1,2
t as possible.13

12Likewise, if the markups themselves are indistinguishable η1jt ≈ η2jt it will become impossible to tell the models
apart.

13Although ∆η1,2jt itself would be powered, it is not typically a valid exclusion restriction because markups are
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A second argument for A(zt) = E[∆η1,2
jt |zt] is that, for local comparisons, it appears organically

as the (feasible approximation to the) optimal instrument for estimation of so-called “internalization

parameters.” Internalization parameters are a way to nest a family of objective functions of the

firm. In this framework, markups can be written η̃jt(τ), which we assume to be a continuous,

but potentially nonlinear function of τ . Model selection amounts to estimating τ̂ and testing the

hypotheses: H0 : τ = τ1 against Ha : τ = τ2.14 Consider estimating τ in:

pjt = hs(xjt,wjt) + η̃jt(τ) + ωjt where E[ωjt|zt] = 0. (5)

The Chamberlain (1987) optimal instrument for the corresponding nonlinear GMM exercise is

E
[
∂ωjt
∂τ |zt

]
= E

[
∂η̃jt(τ)
∂τ |zt

]
. Holding that in mind for a moment, next consider the non-nested

model comparison of two models, at τ and τ + ε. Our proposed instrument A(zt) = E[∆η1,2
jt |zt] is

proportional to
E[∆η1,2jt |zt]

ε =
E[η̃jt(τ+ε)−η̃jt(τ)|zt]

ε . This expression converges, as ε→ 0, to E
[
∂η̃jt(τ)
∂τ |zt

]
,

which is the (feasible approximation to the) optimal instrument for nonlinear GMM exercise de-

scribed above.15 In this sense we think of our instrument as a discrete analogue, in a non-nested

model comparison exercise, of the Chamberlain (1987) optimal instrument for the corresponding

estimation exercise. Moreover, this equivalence can be extended to non-local comparisons if η̃jt(τ)

is linear in τ .16

The third and final argument is that, since k = 1 for A(zt) = E[∆η1,2|zt], i.e. we test using a

single moment, so the need for a weighting matrix is obviated and we can write Q̃(η) in place of

QW (η). Hall and Pelletier (2011) have shown how choice of a weighting matrix can be determinative

in moment-based implementations of the Rivers and Vuong (2002) testing environment like our own.

Moreover, the use of a scalar moment allows us to focus our computational efforts on the flexibility

of our fit of the supply function hs(·) from (3) as well as flexibility in the estimation of E[∆η1,2|zt],
which we detail next. Flexibility in the former is important because conduct tests based on (3)

always jointly test both the exclusion restriction E[ω′jtA(zt)]=0 with the functional form of the cost

function hs(xjt,wjt). Flexibility in the latter is important because the relationship between zt and

usually modeled as endogenous functions of everything in the model, in particular ωjt, and would violate the original
moment restriction E[∆η1,2jt ωjt] 6= 0.

14A number of recent papers have adopted this approach. In Miller and Weinberg (2017), that parameter captures
the internalization of strategic externalities in pricing across Miller-Coors and ABI. Alternatively, in Crawford et al.
(2018), the parameter characterizes the extent to which firms internalize the strategic consequences of their choices
across divisions. Closer to our own question, Kennedy et al. (2017) and Park and Seo (2019) have estimate internaliza-
tion parameters that convexify the space between own-profit maximization and common ownership incentives. Nevo
(1998) offers a discussion of the contrast between conduct parameter estimation and our approach here, pairwise,
non-nested model comparisons.

15The optimal but infeasible instrument for τ would require knowledge of the true parameter values including τ0
itself.

16Consider a parameterized model of markups η̃jt(τ) such that η̃jt(τ1) = η1jt and η̃jt(τ2) = η2jt. The simplest
parameterization would be η̃jt(τ) = τ · η1jt + (1− τ) · η2jt. The approximation to the nonlinear optimal IV would be

E
[
∂ωjt

∂τ
|zt
]

= E
[
∂η̃jt(τ)

∂τ
|zt
]

= E
[
η1jt − η2jt|zt

]
, which corresponds exactly to our choice of A(zt).
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Algorithm 1 Testing Procedure

(a) Estimate the marginal cost function from (3), under models 1 and 2 to obtain residuals ω̂1
jt and ω̂2

jt:

pjt − ηmjt = hs(xjt,wjt) + ωmjt .

(b) Estimate the “first stage” regression, and compute the fitted values ∆̂η
1,2

jt = ĝ(zt) of:

∆η1,2jt = g(zt) + ζjt.

(c) For each candidate model, compute the value of the scalar moment:17

Q̃(ηm) =

(
n−1

∑
j,t

ω̂mjt · ĝ(zt)

)2

. (6)

(d) Repeat steps (a)-(c) on bootstrapped samples and estimate σ̂/
√
n the standard error of the difference Q̃(η1)−

Q̃(η2).

(e) Compute the test statistic

T =

√
n(Q̃(η1)− Q̃(η2))

σ̂
∼ N (0, 1). (7)

Note: Steps (a) and (b) can be done in any order via non-parametric regression. Our preferred method is
random forest regression (Breiman, 2001) which scales well as n becomes large and is well-suited to capturing
nonlinear relationships.

∆η1,2 will often be nonlinear.

All three of these arguments hinge on the unifying observation that the power of conduct

tests based on Berry and Haile (2014) depends on capturing the nonlinear relationship between zt

and ∆η1,2
jt . So far, it’s a theoretical observation. In our application to competition and common

ownership in the ready-to-eat cereal market below, we will show that it has significant practical

importance. Results from using forms of A(zt) which do not exploit the difference in markups

suffer a loss of power relative to our proposed single moment. Examining this loss across different

choices of zt, some of which better capture the nonlinearity of the model than others, the results

confirm our observation. For now, however, we turn to the implementation of the test.

2.3. Our Testing Procedure

Our testing procedure is described in Algorithm 1. We adapt the non-nested test of Rivers and

Vuong (2002) from (4) and use the expected difference in markups A(zt) = E[∆η1,2
jt |zt] to formulate

the sole moment restriction: E[ω′jtA(zt)] = 0.

An advantage of our procedure, which we discussed in Section 2.1 above, is that it allows

17At this step the researcher has some freedom; for instance, here we implement the criterion function directly
as computation of the desired moment, but we might also have implemented it as the empirical likelihood that the
moment holds. Our choice is informed mostly practical concerns for applied work which are likely to involve both
weighting and clustering (as ours does below).
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substantial flexibility in the estimation of hs(·) and g(·). One note, however: since (xjt,wjt) are

elements of zt and appear in both equations, it is important to be as flexible in the way they enter

g(·) as in the way they enter hs(·). Not doing so may introduce implicit exclusion restrictions

based on functional form. For instance, if xjt enters hs(·) linearly but with both a linear and a

quadratic term in g(·), then the quadratic part of xjt effectively behaves as an additional exclusion

restriction.18

In our application, we use a random forest to fit both (Breiman, 2001). The main advantage

of random forests over other flexible semi-parametric estimators is that they scale well when n is

large, and they are good at capturing nonlinear relationships.

At this point we can highlight a second point of comparison with the recent proposal of Duarte

et al. (2020). In place of A(zt) = E[∆η1,2
jt |zt], they propose to take A(zt) to be a flexible sieve.

Asymptotically, as the sieve becomes flexible, they show that their test statistic is equivalent to ours.

This insight is analogous to Proposition 2 of Chamberlain (1987), which showed that for nonlinear

GMM problems, taking A(·) to be a sufficiently flexible sieve allows the researcher to approximate

the optimal instrument. Nonetheless, in applied exercises, when taking a sieve expansion of many

instruments may prove infeasible,19 we posit that it may be useful to exploit the known structure

of the model and compute the conditional expectation of ∆η1,2
j, given zt.

Continuing that analogy, observe that the problem of estimating E[∆η1,2
jt |zt] mirrors the problem

of estimating the infeasible Chamberlain (1987) optimal instruments. Relative to that literature,

our approach follows most closely the suggestion of Newey (1990), who shows that the optimal

instruments can be approximated by a first-stage nonparametric regression. An alternative ap-

proach, suggested in the appendix to Berry et al. (1999), would be to compute the expectation by

simulating the entire model and integrating out over the unobserved cost and demand shocks. This

is prohibitive for us because estimating and simulating from the marginal cost function requires us

to take a stand, ex ante, on the correct conduct model, which begs the question we are trying to

answer.20

As a final note, we have not said anything about how to choose the broader set of potential

instruments zt other than that they must include (xjt,wjt). This will depend both on the models

of conduct being considered and the specification of the demand system. In Section 6 we offer some

comments on the full set of potential instruments when the researcher has estimated a demand

system like the one we write down in Section 5.

18See Hartford et al. (2017) for further discussion on this point.
19For example, if there are many instruments in zt (as when we use the BLP instruments in our exercise in Section

6, of which there are 143).
20A third approach, would be to extend the idea of Reynaert and Verboven (2014) where the authors assume perfect

competition and predict E[pjt|xjt,wjt] using a linear regression on the variables in the marginal cost relationship (3)
and plug this into the model st(p̂t) to derive markups. As they suggest, we can also predict E[pjt|zt] nonparametrically
using the full set of potential instruments in zt to more flexibly account for oligopoly behavior. The interested reader
will find we use this method to estimate the optimal instruments for the demand estimation exercise below in Section 5,
and we discuss the alternative approaches to approximating them for testing further in Appendix A.3.
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3. Theory of Common Ownership

The theoretical literature on common ownership has its early origins in Rotemberg (1984) and

Bresnahan and Salop (1986). It offers a model of the objective function of the firm in terms

of shareholder interests. Our derivation follows O’Brien and Salop (2000), beginning with the

assumptions from Backus et al. (2020a):

Assumption 1. Shareholder portfolio values are given by: vs ≡
∑

s βfsπf .

Assumption 2. (Rotemberg, 1984) Managers maximize a γfs-weighted average of shareholder

portfolio values: Qf ≡
∑

s γfsvs.

Each shareholder s receives some share βfs of firm f ’s profits πf . Assumption 1 says that

investors hold portfolios made up of investments of many firms. In strategic games, firms may

exert externalities upon each other’s payoffs. Because different investors hold different portfolios,

they have different objectives for the firm. In order to aggregate across investors with different

interests, Assumption 2 states that the manager of f places some Pareto weight γfs on the profits

of each shareholder and maximizes a weighted sum of their payoffs.

Now if we consider a strategic action xf taken by firm f which affects their profits and the

profits of rival firms πf (xf , x−f ), we can write the objective function of the firm Qf (xf , x−f ), with

some rearrangement, as:

Qf (xf , x−f ) ∝ πf (xf , x−f ) +
∑
g 6=f

∑
s γfsβgs∑
s γfsβfs︸ ︷︷ ︸

≡κcofg(γf ,β)

πg(xf , x−f ). (8)

Therefore each firm f will act as if it places a non-negative weight κcofg on the profits of rival firms.

By construction, κcoff = 1, so that all κcofg are defined relative to the weight that firm f places on

its own profits.21

This model is quite flexible. For example, the objective can include the manager’s private

investment portfolio and have them place a high γ weight on their private returns. Alternatively,

the manager can place a weight of γfs = 0 on particular shareholders (including passive or index

investors, investors below some minimal blockholder threshold, etc.). The problem for empirical

work is that even if we observed κcofg for every pair of firms within an industry, it is unlikely we would

be able to recover γfs without additional (parametric) assumptions, because while there might be

ten firms within an industry (one-hundred pairwise interactions), there are often thousands of

investors in each firm.

The researcher must make an assumption on γfs, since they do not have a directly observable

empirical counterpart. This is akin to specifying a particular model of corporate governance or

21To avoid dividing by zero, we need that γf · βf > 0, which is guaranteed, for instance, if γ(β) is a strictly
increasing monotone function and γ(0) = 0.
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corporate control. The most common choice for empirical work is the so-called “proportional

control” assumption that sets γfs = βfs. This is intuitively appealing as “one-share, one-vote”

though is not necessarily consistent with a particular model of social choice. Backus et al. (2021)

demonstrate that the proportional control assumption yields average values for κcofg around 0.7 for

large publicly-traded firms given the current distribution of ownership, implying a large degree of

potential “cooperation.”

Another way to interpret the proportional control assumption is as a specific frictionless bench-

mark. Absent agency conflicts, managers are perfect agents for shareholders and investment man-

agers are perfect agents for investors. One way to interpret critiques of the common ownership

hypothesis is that the “true” model of corporate governance specifies some alternative form for γfs.

Another interpretation of a “lack of cooperation” in the data is that agency conflicts distort the

manager’s objective away from (8).

Application to Cournot: Much attention in the common ownership literature has been paid to

the Modified Herfindahl-Hirschman Index (MHHI) concentration measure, which is derived from

a Cournot oligopoly model of competition. MHHI extends the traditional Herfindahl-Hirschman

index (HHI) to incorporate common ownership, and is defined from the following firm objective

function:

max
qf

πf (qf , q−f ) +
∑
g

κfgπg(qf , q−f ).

We let πf (qf , q−f ) = qf · (p(Q) − cf ) where cf , qf denote the marginal cost and output for firm f

respectively and p(Q) denotes the inverse demand (at total output Q =
∑

f qf ). After taking the

FOC (where εd represents the elasticity of demand and the market share is given by sf =
qf
Q ) and

aggregating across firms in the market, we get the share-weighted average markup in the market:22

∑
f

sf
pf − cf
pf

=
1

εd

∑
f

∑
g

κfgsgsf︸ ︷︷ ︸
MHHI

(9)

– where MHHI =
∑
f

s2
f︸ ︷︷ ︸

HHI

+
∑
f

∑
g 6=f

κfgsfsg︸ ︷︷ ︸
MHHID

.

Following this decomposition of MHHI, MHHID is sometimes interpreted as the additional pressure

of common ownership, over and above market concentration measured by HHI.

This equation, which relates share-weighted average markups to MHHID, was used as moti-

vation for regressions of market-level prices on MHHID to evaluate whether common ownership

22This follows Bresnahan and Salop (1986) which in turn generalizes the well-known result by Cowling and Waterson
(1976).

13



incentives could be detected in prices. However, such regressions faced a number of criticisms:

first, since share-weighted average markups are not observed, prices were used in their place, al-

though that would require that markups and costs be uniform across firms to maintain the above

relationship. Second, outside of Cournot, one might expect to find spurious relationships between

an object such as MHHID, since it interacts a measure of common ownership with (endogenous)

market shares. Third, price and MHHID are both simultaneously determined equilibrium out-

comes and so a causal interpretation of an “effect” of one on the other is problematic. Section 4.5

replicates the MHHI regressions in our empirical setting and finds negative and statistically sig-

nificant effects of common ownership on prices; Appendix E discusses the issue further and shows

simulation evidence of the spurious correlations that can result from such regressions.

Application to differentiated Bertrand: A similar, if less parsimonious, result follows in the

differentiated multi-product Bertrand setting. We define pf as a vector of prices {pj}j∈Jf for the

products produced by firm f , Jf , and p as the vector of prices for all products and all firms. Firms

solve:

max
pf

πf (pf , p−f ) +
∑
g

κfgπg(pf , p−f ).

Product-level profits for product j are given by πj(p) = Dj(p) · (pj − cj). This yields a set of |Jf |
first-order conditions for firm f :

Dj(p) + (pj − cj)
∂Dj

∂pj
(p)︸ ︷︷ ︸

single product FOC

+
∑
g

κfg ·

∑
k′∈Jg

(pk′ − ck′)
∂Dk′

∂pj
(p)


︸ ︷︷ ︸

portfolio effects

= 0. (10)

The second term generalizes the multi-product portfolio effects to allow for common ownership.

Absent common ownership effects, when g = f , κff = 1 and the single product first-order condition

is augmented by recaptured substitution to other products in f ’s portfolio. In the presence of

common ownership κfg > 0 for g 6= f , and for products k ∈ Jg that f does not control. This

highlights the connection between multi-product pricing and common ownership. For the firm

selling multiple substitute products, in addition to the marginal cost of each sale, they consider

the opportunity cost of foregone sales of their other products. Common ownership introduces yet

another opportunity cost: that of foregone sales at competing firms, which are weighted by κfg,

the profit weight firm f places on firm g. This leads to different predicted markups under common

ownership compared to own-profit maximization.

4. Ready-to-Eat Cereal

We focus our empirical exercise on the Ready-To-Eat (RTE) cereal industry for the period 2007–

2016. We chose this industry for a number of reasons. The first reason is that the industry is
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highly concentrated with four major players: Kellogg’s, General Mills, Quaker Oats, and Post are

responsible for approximately 85% of the overall market share. The second reason is that there are

substantial differences in ownership patterns across firms. For historic reasons, Kellogg’s has large

undiversified shareholders while the other firms generally do not. In addition there are a substantial

number of transactions both in the ownership space and the product space, particularly involving

Post Brands which at various times is a component of the S&P 500 Index, the S&P 400 Midcap

Index, and no index at all. The final reason is that there is substantial prior work on the RTE

cereal industry which indicates that static Bertrand-Nash in differentiated products appears to be

a reasonable empirical framework at least during the 1990’s (Nevo, 2000, 2001).

4.1. The Big Four

Kellogg’s: Over our sample period the holdings of Kellogg’s are relatively stable, however there

is one feature that differentiates them from the other three: approximately 20-30% of Kellogg’s

shares are held by the (entirely undiversified) W.K. Kellogg Foundation Trust. The second largest

shareholder is the Gund family which acquired its stake in Kellogg’s after selling the decaffeinated

coffee brand Sanka to Kellogg’s in 1927.

Kellogg’s was a member of the S&P 500 over our entire sample and has around 30% market

share. Well-known products include Kellogg’s Corn Flakes, Fruit Loops, Rice Krispies, Raisin

Bran, and Special K. In addition to RTE cereals, Kellogg’s also sells other morning foods (e.g.,

Eggo Waffles, Pop Tarts) and snack foods (e.g., Pringles, Cheez–Its).

General Mills: Holdings of General Mills are stable over our sample period, but they did acquire

Annie’s, a health-conscious brand, in October of 2014. They were included in the S&P 500 for the

duration of our sample and have around 30% market share. Well-known products include Cheerios,

Chex, Lucky Charms, Total, and Wheaties. Outside of morning foods, they also own Betty Crocker

brands, Pillsbury, Nature Valley, Hamburger Helper, Yoplait, and a variety of other food products.

Post: Post underwent three major ownership changes during our sample. First, on March 31,

2007, Kraft (which held Post) was spun off from Altria. Next, announced in November 2007, Kraft

spun off Post Cereals and the resulting company was sold to Ralcorp Holdings on August 4 of

2008. This transition meant that Post left an S&P 500 company and was now owned by a non-S&P

500 company. Ralcorp Holdings is also a major producer of private label cereals as well as other

food products. Finally, announced in July 2011, Ralcorp holdings announced an IPO for the Post

Foods Unit, which was successfully spun off on February 7, 2012. The resulting company was not

a member of the S&P 500.

Well-known products include Grape–Nuts, Honey Bunches of Oats, and Raisin Bran. In Febru-

ary 2015, Post purchased Malt–O–Meal (MOM), a major producer of private label cereals which

comprised about 8–9% of the overall market.
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Quaker Oats: Quaker Oats is the result of a four–way merger of Midwestern oat mills in 1901.

The brand has no affiliation with the Religious Society of Friends (actual Quakers).

In August of 2001 Quaker Oats was purchased by PepsiCo, an S&P 500 company, and it

remained in their portfolio for the duration of our sample. From March of 2010 until a settlement

in July of 2014, Quaker Oats was subject to a long and public legal battle over the veracity of

their health claims. They did not claim that their products cured appendicitis or moral impurity;

nevertheless, the legal battle may have contributed to a decline in sales.

Well-known brands include Cap’n Crunch, and Life and Quaker Oats has around 8–9% of the

cereal market. The company also produces other morning foods (Oatmeals, and Aunt Jemima

branded foods) as well as other food products, but should be considered in the larger PepsiCo

setting, where it makes up a relatively small fraction of sales (2-3%).

4.2. Data Sources: Ownership Data

We are interested in the following firms, which at some point in 2004-2017 offered products in

the ready-to-eat cereal market: General Mills (GIS), Kellogg’s (K), Kraft (KRFT: Q1 2013 - Q2

2015), Mondelez (MDLZ), Altria Group (MO), PepsiCo (PEP), Philip Morris (PM: Q4 2008 -

Q2 2017), Post Holdings (Q1 2012 - Q2 2017), and Ralcorp (RAH: Q1 2008 - Q4 2011). We use

the novel dataset of institutional holdings developed in Backus et al. (2021), and make a small

number of corrections to address potential double counting of large private holdings, as described

in Appendix B.

Table 1 provides summary statistics on the common ownership data. There are some important

patterns to point out. The first is that Vanguard appears to be increasing its holdings across all

firms over time. In part this is driven by the growing share of Vanguard within the index fund

market. The second is that between 2004 and 2010 there is a reallocation from Barclays Global

Investors (BGI) and BlackRock which acquired the BGI exchange-traded-fund (ETF) business in

December of 2009. This made BlackRock the largest player in the ETF market.23 State Street is

another large player in the ETF market and also sees their ownership stakes increasing over time.

Another large player is FMR LLC, which is the financial entity behind Fidelity, a major player in

both actively managed and index funds. Capital Research, the parent company of the American

Funds family (primarily actively managed) is another major player particularly in the early periods.

We provide a more detailed accounting of ownership stakes over time by major investors in the

Appendix.

We continue by computing the common ownership profit weights as described in (8). These

are depicted in Figure 1 for each of the four major firms in our sample.24 For example, the top

23Azar et al. (2018a) use this event as an instrument for changes in ownership as it substantially increases the
holdings of BlackRock.

24Here and throughout the analysis we make the proportional control assumption γfs = βfs. Our framework can
accommodate fully-specified alternative assumptions on γ, some of which we consider in our companion piece Backus
et al. (2021).
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Table 1: Top 5 Owners of Major Firms, 2004-2016
General Mills (GIS)

2004 2010 2016

Capital Research and Management 7.28% BlackRock, Inc 8.70% BlackRock, Inc 7.36%
Barclays Global Investors 3.24% State Street Global Advisors 5.92% The Vanguard Group 6.92%
Wellington Management Group 3.06% The Vanguard Group 3.56% State Street Global Advisors 6.14%
State Street Global Advisors 2.48% MFS 2.65% MFS 3.37%
The Vanguard Group 1.95% Capital Research and Management 2.43% Capital Research and Management 2.12%

Kellogg’s (K)
2004 2010 2016

W.K. Kellogg Foundation 29.87% W.K. Kellogg Foundation 22.94% W.K. Kellogg Foundation 19.75%
Gund Family 7.26% Gund Family 8.65% Gund Family 7.68%
Capital Research and Management 2.83% Capital Research and Management 3.54% The Vanguard Group 4.97%
Barclays Global Investors 2.81% BlackRock, Inc 2.97% BlackRock, Inc 4.64%
W.P. Stewart & Co. 2.63% The Vanguard Group 2.42% MFS 3.51%

Quaker Oats, a Unit of PepsiCo (PEP)
2004 2010 2016

Barclays Global Investors 4.40% BlackRock, Inc 4.64% The Vanguard Group 6.72%
State Street Global Advisors 2.81% Capital Research and Management 4.37% BlackRock, Inc 5.63%
FMR LLC 2.74% The Vanguard Group 3.64% State Street Global Advisors 3.98%
The Vanguard Group 2.08% State Street Global Advisors 3.19% Wellington Management Group 1.48%
Capital Research and Management 1.82% Bank of America 1.63% Northern Trust 1.37%

Post Brands, a Unit of Altria (2004, MO), Ralcorp (2010, RAH), and Post Holdings (2016, POST)
2004 2010 2016

Capital Research and Management 7.37% FMR LLC 10.18% Wellington Management Group 9.63%
State Street Global Advisors 3.61% BlackRock, Inc 8.35% BlackRock, Inc 8.42%
Barclays Global Investors 3.51% The Vanguard Group 3.57% FMR LLC 7.24%
FMR LLC 2.60% Baron Capital Group 3.39% The Vanguard Group 6.93%
AllianceBernstein L.P. 2.25% Steinberg Asset Management 2.68% Tourbillon Capital Partners 6.89%

Notes: This table documents the five largest institutional investors with holdings in each of the four largest RTE
cereal companies for 2004, 2010, and 2016. Source: Backus et al. (2020b)

right pane shows the implied weight that Kellogg’s puts on the profits of their competitors. Notice

that the weight Kellogg’s puts on its own profit is normalized to one and constant over time. The

weights are similar across competitors and slowly growing over time from around 8% to 20%. These

relatively small weights are due to the large undiversified Kellogg’s shareholders (Kellogg Family

Foundation and Gund Family). Contrast this with General Mills in the top left. General Mills

places between 60-80% weight on the profits of Quaker Oats and Post as it does on its own profits,

with substantial variation across time. It places slightly less weight on the profits of Kellogg’s

because of less overlapping ownership, though still more weight (40-60%) than Kellogg’s places on

the profits of General Mills. Quaker Oats (a division of PepsiCo) occasionally places more weight

κ > 1 on competitor’s (General Mills and Post) profits than it does on its own profits.25 Quaker

Oats puts somewhat less weight (though still κ > 0.6 on the profits of Kellogg’s which has less

overlap in ownership. Post generally puts less weight on each of its competitor’s profits over time

as Post transitions from an S&P 100/500 component, to an S&P 400 Midcap Index Component,

and briefly after its 2012 IPO is not included in any index, before rejoining the S&P 400 Midcap

Index.

One advantage of RTE cereal is that there is a large amount of useful variation in κ. In Backus

25This is consistent with the observation of Backus et al. (2021) that common ownership weights are higher in
firms with a greater retail share (ownership by non-institutional investors). Both General Mills and PepsiCo, but
particularly the latter, have high retail shares.
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Figure 1: κ Profit Weights for Ready-To-Eat Cereal (Proportional Control)

Notes: This figure depicts the common ownership profit weights for each of the four largest RTE cereal companies
between 2007 and 2017. Horizontal lines at 1 represent the normalization of κff , i.e. the weight on a firm’s own
profits, to one. Arrows indicate major financial events that affect the ownership of the firms as described in the
text. Source: Backus et al. (2020b) augmented by insider holdings data as detailed in Appendix B.1

et al. (2021) we showed that κfg 6= κgf when firms f and g differ in their investor concentration, as

measured by IHHI ≡
∑

s β
2
fs. This asymmetry is on display in Figure 1. For instance, Kellogg’s

puts much lower weight on General Mills than vice versa, and this is in large part due to the fact

that General mills has more unconcentrated ownership, driven in part by a relatively high retail

share, while Kellogg’s has concentrated ownership, driven by a modest retail share and the presence

of the Kellogg’s Foundation. One disadvantage of MHHI is that, by providing a single aggregate

measure for all firms in the market, it obscures these asymmetric relationships.

4.3. Data Sources: Sales, Product, and Input Price Data

Our primary data source for unit sales and prices of ready-to-eat (RTE) cereal comes from the Kilts

Nielsen Scanner Dataset. The data are organized by store, week, and UPC code. For each store–

week–upc we observe unit sales as well as a measure of “average price” which is revenue divided by
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sales.26 Because there is little price variation across stores within the same chain (see DellaVigna

and Gentzkow (2019)), we aggregate unit sales and revenues to the DMA-chain level. We focus

on the years 2007-2016.27 We further restrict our attention to a set of six DMAs (cities): Boston,

Chicago, Charlotte, Denver, Phoenix, and Richmond. We choose these six cities to provide some

geographic diversity, and also because Nielsen reports high coverage of “all-commodities-volume”

for supermarket sales in these DMAs. Within these cities, we focus exclusively on the set of

conventional supermarket sales (which Nielsen labels as “F” stores) and exclude convenience stores

and pharmacies which sometimes sell RTE cereal (“C” or “D” stores) and mass- merchandise (“M”

stores). We further restrict our attention to a set of DMA-chains where we observe a sufficiently

high volume of individuals from the Nielsen Panelist Dataset as customers.28 This allows us to

construct chain-specific demographic profiles of customers at the DMA-chain-year level rather than

just by geography. We focus on two key demographics (income and presence of children) that were

previously shown to be important in demand for RTE cereal (Nevo, 2000).29

The data are recorded at the level of a universal product code (UPC) with around 3500 unique

UPCs, we consolidate multiple package sizes at the “brand level”, where our definition of brand also

includes flavor (Honey Nut Cheerios or Blueberry Frosted Mini-Wheats).30 Consistent with Nevo

(2000), we convert boxes of cereal into serving equivalents, and report prices and quantities on a

per-serving basis.31 Given this definition, we find that in a DMA-Chain-Week a typical consumer

chooses among 100-250 unique “products”.

We report some basic summary statistics for our main dataset in Table 2. We observe 1590

stores which we consolidate into 26 DMA-chains, over 522 weeks between 2007-2016. The average

price per serving to be around 20 cents across our sample, though it varies substantially across

26Prices may vary within a UPC–store–week for a number of reasons: the first is that price changes may occur
within the middle of the reporting week, the second is that some consumers may use coupons; according to the Kilts-
Nielsen documentation, retailer coupons or loyalty card discounts are included in the “average price” calculation
while manufacturer coupons are not.

27We exclude the year 2006 because the set of stores observed in that year does not sufficiently overlap with stores
observed in subsequent years.

28This causes us to lose less than 4.3% of overall sales (as measured in servings).
29We’ve examined other characteristics such as race and age, but this often required slicing the Panelist data too

thinly to observe differential patterns in cereal preferences.
30This is especially important because a large number of individual UPCs are associated with a single “brand”

and new UPCs might represent new packaging for a movie-tie-in or small changes in product size. If a manufacturer
changes the package size from 14oz to 12.5oz and keeps the price fixed, we don’t want to misinterpret this as “new
product” but rather we want to interpret this as a serving price change for an existing product. This causes us to
“miss” some nonlinear pricing where “Family Packs” are often less expensive on a per serving basis than smaller
boxes. Focusing exclusively on conventional supermarkets mitigates this somewhat, but not completely.

31Nutrient dense cereals generally display smaller serving sizes (by weight) which lead to much smaller serv-
ing sizes by volume. There is some evidence that serving sizes are chosen so that caloric content falls in
the (100-150) range rather than measuring typical serving sizes by consumers. Consumer reports conducted a
survey (https://www.consumerreports.org/cro/news/2014/12/cereal-portion-control-matters/index.htm) and found
that 92% of consumers exceed the posted serving size when pouring bowls of cereal. The average overpour on Chee-
rios was 30%-130% while it was even greater for denser cereals like Muesli or Granola where the average overpour
was 282%.
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products, chain-DMAs, and time. We find that at the DMA/city level, aggregate sales are between

1.5 and 8.5 million servings per week, with a typical box containing around 12-20 servings. We

find that between 80%-90% of sales (as measured in servings) are to branded cereals, with the

remainder being private label or store-brands.32 We assign each product to its ultimate owner in

each period, taking to account mergers and acquisitions.33

Boston Charlotte Richmond Chicago Denver Phoenix

# Chains 4 4 2 7 3 6
# Stores 257 296 98 366 221 352
Nielsen ACV Coverage 83% 86% 81% 65% 86% 84%
# Products (chain-week) 216 161.6 179.2 179.7 205.6 166.9
Servings/ Week (millions) 7.61 3.26 1.52 8.47 5.5 6.92
Price Per Serving (cents) 20.89 20.7 19.4 20.14 20.13 18.59
Servings Per Box 13.81 14.13 14.28 14.09 14.92 16.41
% Branded 0.82 0.85 0.81 0.92 0.81 0.81
PCA0 -0.26 0.13 0.18 0.19 -0.21 0.14
PCA1 -0.07 0.04 0.1 0.03 -0.01 0.05
PCA2 0.15 -0.06 -0.07 -0.02 -0.04 -0.09
% of HH with kids 0.19 0.18 0.22 0.23 0.19 0.16
Mar 2009 Unemployment 7.02 11.65 7.09 9.58 6.97 8.52
Mar 2016 Unemployment 3.77 4.85 4.1 6.12 3.29 4.84
Median Income (07-09) 56,650 49,905 67,206 62,681 57,730 49,885
Median Income (10-16) 58,080 51,373 61,595 63,796 58,774 50,669

Table 2: Summary Statistics of Sales and Demographic Data by City

Notes: This table depicts summary statistics for our dataset of RTE cereal consumption in six DMAs (by column)
between 2007 and 2017. Source: Nielsen Retailer Scanner Data: Stores and Sales, Nielsen Consumer Panelist Data:
Income and Presence of Children, Nutritionix: Product Characteristics, Serving Size, FRED: Unemployment.

Figure 2 plots a simple firm-level price index over time across all markets. This price index is

based on the price per serving of cereal. We highlight a few financial transactions from Figure 1 in

the figure.

We augment the Nielsen dataset with nutritional information from the Nutritionix Database.

This database is organized by UPC code and was designed to provide API access for various fitness

tracking mobile apps. It encodes the nutritional label on the product packaging (serving size,

calories, sugar, fat, vitamin content, ingredient lists). We merged the Nielsen UPC information

with the nutritional label information from Nutritionix. A large number of products in our dataset

(and 9-10% by volume) are private-label brands. For these products, we do not have UPC codes

which we can match to the Nutritionix database.34 Instead, we must match these products to

the most similar branded product (for example, HNY TSTD O’S to Honey-Nut Cheerios) and use

the nutritional information from the branded product. For some private label products we cannot

32We provide additional detail on how the private label share varies across chains, DMAs, and with the business
cycle in Appendix C.3, see Figure C-4.

33For example, prior to September 2014 we assign Annie’s Homegrown products as belonging to Annie’s Homegrown
(an independent firm), and after September 2014, we assign them to General Mills.

34UPCs are obfuscated by Nielsen to prevent researchers from de-identifying stores. The true UPC code could
identify the product as Chain X Brand Honey Toasted O’s.
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identify the most similar brand (e.g. CTL BR C-M-C RTE ), rather than dropping these products

we impute product characteristics using averages.

Because there are a large number of product characteristics (23), and we aren’t interested in

nutritional aspects of products per se, we consolidate the nutritional information into a number

of principal components. The idea is to reduce the dimension of the characteristic space while

preserving the variation across products. This lets us measure which products are more (or less)

similar based on nutritional content. We elaborate on this process in Appendix C.1. Each com-

ponent is designed to have a mean of zero, and a variance of one. An additional advantage is

that these principal components form an orthogonal basis which aids in estimation of our random

coefficients model. We provide a map of the product space as defined by the first two principal

components in Figure C-1. Using only nutritional information (and nothing about substitution),

it appears to do a good job of separating the “kids” cereals from “adult” cereals and “healthy”

cereals from “less healthy” cereals. As Table 2 indicates, there appears to be more variation in

product assortment across DMAs in the “kids vs. adults” dimension than the others. If our goal

in estimating counterfactuals were to alter these product characteristics, we would not be able to

with a demand system based on these principal components, but that is clearly not the goal of this

analysis.

We construct the distribution of consumer demographics to be representative of the consumers

shopping at a particular DMA-chain-year which is somewhat different than in the previous liter-

ature.35 We use the Nielsen HMS (household) dataset and construct a sample of all households

who visited a particular DMA-chain in that year. For each panelist we measure their income and

whether or not they have children. We weight each panelist by their annual number of trips to

each DMA-chain, with the idea being that more frequent shoppers at a store receive more weight.36

To smooth the income distribution, we estimate two lognormal distributions of income for each

DMA-chain-year, one for households with children and one for households without.37 We report

these overall averages in Table 2 where 18-25% of households report children at home, and the

median income varies from around $50,000 in Phoenix to around $67,000 in Chicago. In addition

to consumer demographics, we also record the unemployment rate for each MSA (which we match

to the corresponding DMA).38 We report these demographic variables in Table 2.

Finally, we also gather data on input prices of different commodities. In particular, we gather

prices for rice, wheat, corn, and oat from quandl.com, while we gather sugar prices from Global

Financial Data. Changes in these input prices represent cost shocks for the production of a given

product, depending on the main ingredient of that product. That is, if a product’s main ingredient

35For example, Nevo (2000) samples demographics from the Current Population Survey (CPS) for the corresponding
city.

36We impose a one visit per week maximum in the weighting.
37For more details please consult Appendix C.6.
38We use data provided by the St. Louis Federal Reserve (FRED) database, which is reported at the monthly level.

We impute to the weekly level using linear interpolation.
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Figure 2: Average Serving Price by Firm

Notes: This figure depicts the average serving price, given by the ratio of quarterly firm revenue to total servings,
for the period 2007-2017. The Great Recession is indicated by the shaded area. The decline in Post’s average
price after buying M-O-M, is largely compositional due to M-O-M’s low prices. Source: Nielsen.

is rice (e.g. Rice Krispies), it is more exposed to a price increase in rice than a price increase in

corn, when compared to a corn-based cereal (e.g. Corn Pops). We identify the main ingredient

for each product from the Nutritionix database discussed above. We plot the commodity prices in

Figure C-3. There is significant variation both over time and across ingredients in prices during

our sample period.

4.4. Prices and Market Concentration

We can also use market shares to construct quarterly concentration measures (such as the HHI

and MHHI∆). We present plots of these measures over time in Figure 3 and across markets

in Appendix Figure E-10. Because we do not necessarily know which manufacturers produce the

private label products (around 50% of the private label volume is produced by Malt-O-Meal but we

do not observe which products), we instead assume that each privately label product is produced

by a different manufacturer.

We break out concentration by DMA in Appendix Figure E-10. There is substantial cross market

variation in HHI with Denver and Phoenix being the least concentrated (HHI typically below 2200)

while Chicago is the most concentrated (HHI in excess of 2500 for most of the period). The

concentration approximately mirrors the inverse of the private label share (Chicago and Charlotte

are more concentrated and have a lower private label share). When we look at HHI averaged across

all markets we see relatively little response to the BlackRock/BGI event (as we would expect), we see

a substantial increase in HHI after the Post/Malt-O-Meal and General Mills/Annie’s Homegrown
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acquisitions towards the end of the sample. We also see a substantial decline in HHI around the

same time as Kraft sold Post to Ralcorp. Across time we rarely see more than a 150 point change

in the national aggregate HHI.

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

1600

1800

2000

2200

2400

BlackRock/Barclays

Post buys MOM

Post IPORalcorp buys Post

MMHI
HHI

Figure 3: HHI and MHHI∆ over time (Six Markets)

Notes: This figure depicts the time series of the HHI and MHHI∆ concentration measures over the time period
2007-2017. For the purposes of the computation, private Label products are treated as single unified firm and
“Other” independent sellers are treated as atomistic. MHHI∆ assumes proportional control. Source: Authors’
computations.

The main point of Figure E-10 and Figure 3 is to demonstrate that other than the spike in

private label sales during 2009, there isn’t much variation within a DMA over time, but there

is much larger variation across DMAs in market concentration. This cross market variation in

HHI is likely to drown any time series variation in κ when we construct ∆MHHI. Indeed when

we construct the ∆MHHI and plot it across DMAs in Figure E-10, the most salient feature is

common, cross-market shocks in the time series. We find that the ∆MHHI is approximately the

same magnitude as the HHI: around 1500 for Phoenix and around 2250 for Chicago.

4.5. MHHI Regressions

To place our work in the context of the existing work on the effect of common ownership on pricing,

we next perform some regressions of the style used in many early papers in this literature. These

regressions are motivated by Section 3, although they do not correspond to a true reduced form

if any of the assumptions of Section 3 are violated. Table 3 shows regressions of log(price) on

HHI and MHHI∆. An observation is at the manufacturer-DMA-retailer-quarter level. Prices

and shares are computed at the level of a serving in this analysis. The different specifications

across columns add additional fixed effects or controls. The regressions show that – if anything –
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(1) (2) (3) (4) (5) (6)

HHI 0.106∗∗∗ 0.164∗∗∗ 0.0681∗∗∗ 0.0647∗∗∗ 0.0707∗∗∗ 0.525
(13.04) (16.58) (5.73) (5.43) (6.64) (0.58)

MHHI-∆ -0.0366∗∗∗ 0.00585 -0.0427∗∗∗ -0.0429∗∗∗ -0.0370∗∗∗ -0.0367∗∗∗

(-8.50) (1.32) (-5.86) (-5.90) (-5.69) (-5.59)
Share -1.135∗∗∗ -1.135∗∗∗

(-40.53) (-40.53)

DMA FE No Yes No Yes Yes Yes
Retailer FE No No Yes Yes Yes Yes
Quadratic Time Trend Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Cubic HHI No No No No No Yes

Observations 6538 6538 6538 6538 6538 6538
R2 0.753 0.786 0.826 0.828 0.862 0.862

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 3: MHHI Regressions

Notes: This table reports results for a regression of log(average serving price) on concentration measures such as
HHI and MHHI∆. An observation is a manufacturer-chain-DMA-quarter. Prices and shares are computed based
on servings. Source: Authors’ computations.

an increase in MHHI∆ is associated with lower prices in this context. However, in a differentiated

products setting, there is no interpretation of these regressions and so they are only included for

completeness. Appendix E.4 contains additional specifications for this type of regression.
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5. Demand Specification and Results

One main advantage of studying the RTE cereal market is that Nevo (2001, 2000) estimate a BLP-

style demand model with random coefficients, product fixed effects, and demographic interactions

which provides a roadmap for developing our model of consumer demand. Readers familiar with

Berry et al. (1995) or Nevo (2000) should find the setup familiar and therefore we leave the micro-

foundation of the discrete choice multinomial logit demand system to Appendix A.2.

In short, one can derive estimating equations where σ−1
j (·) represents the inverse share equation

(“generalized Berry inverse”):

σ−1
j (St,pt, yt; θ2) = hd(xjt, vjt; θ1) + ξjt with E[ξjt|zt] = 0. (11)

We follow the notation of Conlon and Gortmaker (2020) and partition the parameter space into

[θ1, θ2] where the first set of parameters govern exogenous variables which enter (11) linearly,

while the second set enter (11) nonlinearly and also affect the markups ηjt(θ2, κ). The inverse

share equation depends on the observed shares St, the observed prices pt and the distribution of

demographics yt.

We augment our aggregate scanner data on price and quantity with demographics yt and micro-

moments (see Petrin (2002) or Berry et al. (2004)) formed from the Nielsen Panelist dataset. We

use two demographic variables (inspired by Nevo (2000)): household income (in $100,000s), and

an indicator for the presence of children.39 We draw yit from the (DMA-chain specific) joint

distribution of income for households with and without children. This is meant to better reflect the

demographics (particularly income) of shoppers at a particular chain beyond just the demographics

of the area.40

Each micro-moment is meant to target a different demographic interaction parameter. We

use two types of micro-moments: the first are expectations of demographic variables conditional

on purchasing the outside good. For example, conditional on purchasing the outside good, the

expectation of the variable “kids,” which is an indicator for the presence of children in a household,

is 17.85% and the expected income is around $66,000.41 The second type are covariances between

purchaser demographics and product characteristics including price conditional on purchase.

We can use (11) to construct aggregate moments gD(θ) = 1
N

∑
j,t ξ
′
jt · b(zt), where b(zt) is

some (matrix-valued) function of the exogenous variables. We combine the aggregate data demand

39Nevo (2000) also includes the age of the head of the household although it appears to be insignificant. While
Nielsen reports the age of the head of household for panelists, we face a bias-variance trade off when slicing the
demographic bins too finely, and we don’t find much impact of including age.

40This allows us to address the fact that shoppers at a premium, natural, and organic supermarkets in Chicago are
wealthier or have different preferences than shoppers at discount supermarkets in Chicago.

41This is substantially lower than the unconditional share of households with children, suggesting childless house-
holds are less likely to consume cereal overall and leads to a positive interaction coefficient πconst,kids > 0.
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moments and micro-moments gM (θ1, θ2) to form a GMM estimator for [θ1, θ2]:42

arg min
θ1,θ2

q(θ1, θ2) ≡ g(θ1, θ2)′Wg(θ1, θ2), g(θ1, θ2) =

[
gD(θ1, θ2)

gM (θ1, θ2)

]
. (12)

We estimate (12) via two-step GMM. For the second step we replace b(zt) with the feasible ap-

proximation to the optimal instruments following the recipe in Conlon and Gortmaker (2020), and

update the weighting matrix W .43

We use three kinds of instruments in the initial b(zt). The first set are the wjt instruments,

or own-cost-shifters, which we plot in Figure C-3. We measure commodity prices of the main

ingredient over time. This has advantages and disadvantages. Fortunately, these series do not

covary as much as one might expect. The advantage is that commodity prices of corn are different

from commodity prices of wheat and we can compare retail prices of corn-based cereals to those of

wheat-based cereals. The disadvantage is that this instrument provides no geographic variation to

explain prices in different stores for the same product at the same time.

The second type of instruments are observable variation in demographics yt. We use the share

of households with children, as well as the 10%, 50%, and 90% quantiles of the income distribution

calculated separately for households with and without children.

The third type of instruments are a variant of the BLP instruments. Here we follow Gandhi and

Houde (2019). This measures the distance between each pair of products in characteristic space

for each characteristic l: d
(l)
j,k = |x(l)

kt − x
(l)
jt |. We use the quadratic version of their differentiation

measure which contains all quadratic interactions of dlj,k summed over k.44 We then obtain an

estimate of expected price: E[pjt|xjt,wjt, yt, z
GH
jt , promojt] = p̂jt via random forest regression.45

We include this expected price measure in our set of characteristics and repeat the procedure above

(to construct “differentiation instruments” for expected price). Following the recommendation in

Gandhi and Houde (2019), we further interact these instruments with moments of the distribu-

tion of demographics (income and children) for each market yt. This leads to a large number of

42The covariance between aggregate data moments and micro moments is assumed to be zero in W . One cannot
estimate this covariance because the expectations are taken over different measures. We do estimate the covariance
between micro-moments in W .

43For optimal instruments using only the demand side, we need an estimate of expected price E[pjt|zt] which we

describe below, and evaluate shares at this expected price and an initial guess of [θ̂1, θ̂2]. This is similar to the
procedure described in (Amemiya, 1977; Chamberlain, 1987; Berry et al., 1995, 1999; Reynaert and Verboven, 2014)
and additional details are provided in C.4.

44We found this led to a stronger first stage than the local version of the Gandhi and Houde (2019) variant of the
BLP instruments.

45We also estimated this regression with linear fixed effects: chain (26), product (987), and week (522). The R2 of
the linear model is 0.87 and the within R2 = 0.22. The random forest regression does not include the fixed effects
and does not interact the (44) instruments and exogenous regressors xjt or with the demographic moments. The
random forest has an R2 = 0.97 and reduces MSE by 75% compared to the linear regression. Correlation in predicted
prices across both specifications is high: ρ = 0.957. Both specifications include a dummy for promotional activity as
recorded in the scanner dataset though this flag is often missing. This flag is also included in other studies of RTE
cereal (Michel and Weiergraeber, 2018).

26



such instruments, many of which are highly correlated with one another. We perform dimension

reduction following Carrasco (2012) or Conlon (2017) by projecting these instruments down onto

principal components which explain 99% of the variance in the original set and are left with 143

instruments.

Parameter Variable Prices Only Correlated Normal

β Prices -13.369 -9.531
(0.096) (0.113)

Unempt × Brandedj -0.024 -0.028
(0.002) (0.002)

Recall 1 -0.243 -0.209
(0.068) (0.069)

Recall 2 -0.033 -0.034
(0.039) (0.042)

Recall 3 -0.063 -0.053
(0.045) (0.047)

Σ2 Cons Prices Cons Prices

Cons 2.214 -1.000
(0.040)

Prices 1.945 5.013
(0.049) (0.043)

Π Kids Inc Kids Inc

Cons 3.822 -2.554 2.876 -0.518
(0.012) (0.008) (0.028) (0.007)

Prices -17.665 7.815 -15.429 3.102
(0.072) (0.031) (0.184) (0.030)

PCA0 0.064 0.066 0.052 -0.027
(0.000) (0.000) (0.000) (0.000)

PCA1 0.182 -0.011 0.206 -0.033
(0.000) (0.000) (0.001) (0.000)

PCA2 -0.244 0.089 -0.287 0.068
(0.000) (0.000) (0.001) (0.000)

Observations 361,105 361,105
Product Fixed Effects 946 946
Market Fixed Effects 1,970 1,970
Median Own-Elasticity -2.420 -2.665
Median Aggregate Elasticity -0.395 -0.344
Mean Outside Good Diversion 0.621 0.482

Table 4: Demand Parameter Estimates

Notes: This table reports demand estimates for RTE cereal between 2007 and 2017 in our six DMAs on a sample
of 2 weeks per quarter. We estimate parameters using the Cholesky root of the correlated normal LL′ = Σ2.
The transformed parameter estimates we report are computed using the Delta method in pyBLP. The correlated
normal estimates the components relating to prices and the constant as nearly perfectly negatively correlated, and
the component on prices independent of the constant to be nearly zero. This implies that the marginal consumer
(controlling for demographics) tends to prefer the least expensive products. Source: Authors’ computations.

We estimate our demand model using pyblp (Conlon and Gortmaker, 2020). We estimate de-

mand on a random subset of 2 weeks from each quarter (16% sample) in our data. We do this

to alleviate concerns around potential storage (Hendel and Nevo, 2006), as well as to mitigate the

computational burden, and provide some out-of-sample diagnostics. We report the second-stage

GMM estimates of [θ1, θ2] in Table 4 after updating both the weighting matrix and the (feasible
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approximation to the) optimal instruments. Both sets of estimates include product (brand) and

market (DMA-chain-week) fixed effects in hd(xt, wt) as well as indicators for the weeks following

three product recall events (interacted with the relevant products), and the DMA-week unemploy-

ment rate interacted with a dummy for branded products. Parameters have the expected sign: the

recall events have a small but negative effect on demand, and when areas or periods experience

high unemployment, consumers substitute away from branded products.46

Both sets of estimates include demographic interactions Π between the presence of children and

income with: prices, the first three principal components of product characteristics, and a constant.

These parameters are largely related to the corresponding micro-moments. As is expected, high

income households are substantially less price-sensitive, but have a lower overall preference for

cereal.47 Households with children are more price sensitive but have a higher overall preference

for cereal. Tastes for the principal components are small but precisely estimated from the micro-

moments.

Finally, we estimate two distributions of unobserved (normally distributed) heterogeneity Σ.

The first estimates a normally distributed taste for price, while the second estimates a bivariate

normal distribution for price and the constant. We find a strong negative correlation which suggests

that as households become more price sensitive, they also have a higher mean utility for all inside

goods.48 In general our estimates of own price elasticities are around εjj = −2.6 which are in line

with Nevo (2000) and other studies of RTE cereal Michel and Weiergraeber (2018) using data from

the 1990’s.

In Table 5, we report the values of the micro-moments used to estimate our parameters and

the violations at [θ̂1, θ̂2]. For the most part, we fit these moments well. We report both the fit on

the random sample of 2 weeks from each quarter (Estimation Sample) and the overall dataset (Full

Sample). The latter is an out-of-sample evaluation of model fit, and in general performs similarly

to the in-sample fit.49

In Table 6, we report the firm level (sales-weighted) diversion ratios, as well as the overall

purchase probabilities for different subsets of markets. We report the diversion ratios for the

markets in the top 25% of household income and the bottom 25% of household income, and the top

46See Figure C-2 for cross-sectional and time series variation in unemployment.
47With a large outside good share, we worry that the richest (and least price sensitive) households purchasing all

of the cereal if we fail to include interactions with the constant.
48These estimates are derived from the estimates of the Cholesky root of the bi-variate normal (l11, l21, l22), and

the lower triangular term l22 ≈ 0, while the other two terms have opposite signs.
49The GMM weighting matrix determines how much priority is given to satisfying the micro-moments versus the

aggregate data E[ξ′jtZjt] = 0 moments. As noted by Berry et al. (2004) and Petrin2002, there is no covariance
between micro-moments and aggregate data moments as they are expectations computed over different measures. If
one fails to account for the fact that the micro-moments have sampling uncertainty from the panelist data, the naive
update to the optimal weighting matrix places a very high weight on the micro-moments relative to the aggregate
data moments (and can fit them to 6-7 decimals). This would effectively ignore the aggregate data moments, and
makes it difficult to estimate the parameters other than Π. For this reason we scale the weight on the micro-moment
block so that it fits to roughly the third decimal place.
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Data Estimation Sample Full Sample
Income Kids Income Kids Income Kids

E[yit|Outside Good] 0.1785 0.6593 0.1820 0.6372 0.1823 0.6367
Cov(yit, pjt) -0.0052 0.0027 -0.0086 0.0011 -0.0086 0.0011
Cov(yit,PCA0jt) 0.1626 -0.0152 0.1364 -0.0207 0.1365 -0.0206
Cov(yit,PCA1jt) 0.0790 0.0066 0.0726 -0.0016 0.0724 -0.0015
Cov(yit,PCA2jt) -0.0500 -0.0003 -0.0432 0.0042 -0.0435 0.0042

Table 5: Micro Moment Values

Notes: This table reports values for the micro moments for the fitted model, the estimation sample, and the full
sample. Estimation Sample is T = 1,973 markets and N = 307,675 observations. Full Sample is T = 12,733
markets and N = 1,981,930 observations. Source: Authors’ computations.

25% of children at home and the bottom 25% of children at home. We find substantial heterogeneity

in the substitution patterns across markets. For example, Post products (such as Honey Bunches

of Oats) are much more popular in markets with fewer children, while General Mills products (such

as Cheerios) are more popular in markets with more children. Likewise, private label products are

more popular in markets (defined as DMA-chain) with low incomes. Average prices (sales-weighted)

in low-income markets tend to be 5-10% lower than prices in high-income markets. We also report

the average share across markets by firm
∑

j∈Jf sjt (inclusive of the outside good share). This

represents the weekly probability that a consumer, having walked into the supermarket, purchases

a product. The plain IIA logit model would predict diversion ratios proportional to share (around

7% for Kellogg’s or General Mills products) while our estimate model predicts much higher diversion

ratios (closer to 20%). Likewise, though the outside good share is nearly 74% in the data (roughly

26% of consumers purchase cereal each week), our estimated diversion ratios are closer to 35%

suggesting that most cereal customers choose another brand as their preferred product becomes

more expensive.50

6. Non-Nested Model Comparisons

6.1. Predicted Markups

We begin by recovering markups and marginal costs under different conduct assumptions.51 For

our application to ready-to-eat cereal sold in food outlets, this exercise requires an additional as-

50This should be unsurprising given the relatively large variance estimated on the random coefficient for the constant
in Table 4, as well as the large π value estimated for households with children for the constant.

51Recovering markups, which is a standard exercise in the literature, requires prices and market shares (pt, st); a
matrix of demand derivatives a observed prices pt, which we take as known from the demand estimation exercise
and write Ω(pt), and a product-level ownership matrix, H(κt), which is an extension of the typical firm-level matrix
of profit weights. This latter object embeds the model of conduct. Then, markups are computed as

ηt(pt, st, κt) = (H(κt)� Ω(pt))
−1st.

See Appendix A.3 for a complete derivation from the first order conditions of Nash pricing.
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High Income
Firm Gen Mills Kellogg Quaker Post Private Label Outside Price Share

General Mills 19.8 19.2 5.5 11.9 8.7 34.2 20.2 7.5
Kellogg 20.3 18.4 5.1 11.7 8.4 35.2 21.5 7.1
Quaker Oats 21.4 18.8 6.5 12.7 9.2 30.6 17.0 1.8
Post 20.5 19.1 5.6 13.0 9.9 31.1 17.3 4.2
Private Label 21.1 19.5 5.8 14.1 11.2 27.2 13.4 2.7
Other 17.7 16.5 4.4 10.9 8.7 40.8 26.4 0.4

Low Income
Firm Gen Mills Kellogg Quaker Post Private Label Outside Price Share

General Mills 20.2 19.7 5.1 10.6 10.7 33.6 18.2 7.3
Kellogg 20.7 18.0 5.0 10.4 10.3 35.4 20.5 7.1
Quaker Oats 22.3 20.8 5.1 11.5 11.6 28.4 15.3 1.6
Post 21.2 19.9 5.3 10.7 11.4 31.3 16.6 3.5
Private Label 21.9 20.1 5.4 11.6 12.1 28.7 14.0 3.3
Other 16.5 15.3 4.1 8.9 9.9 44.9 27.8 0.1

High Children Share
Firm Gen Mills Kellogg Quaker Post Private Label Outside Price Share

General Mills 22.0 17.1 5.3 9.1 9.3 36.0 20.4 7.3
Kellogg 19.9 17.5 5.0 9.1 8.9 38.5 23.3 6.4
Quaker Oats 22.6 18.2 6.3 9.6 9.4 32.8 18.0 1.7
Post 21.8 18.9 5.4 10.0 9.2 33.7 18.9 3.0
Private Label 22.7 19.0 5.4 9.5 13.3 28.8 13.6 2.7
Other 20.5 16.3 4.5 7.6 9.2 40.8 25.3 0.4

Low Children Share
Firm Gen Mills Kellogg Quaker Post Private Label Outside Price Share

General Mills 18.2 17.9 6.9 14.1 6.8 36.0 19.8 4.9
Kellogg 13.9 27.2 7.1 14.0 7.2 30.3 17.3 6.7
Quaker Oats 16.1 21.1 11.8 14.8 7.0 29.0 15.3 2.1
Post 14.4 18.5 6.6 17.6 9.9 32.8 16.4 4.7
Private Label 13.7 18.4 6.2 19.6 12.6 29.3 12.1 2.2
Other 14.7 10.2 5.6 11.9 6.3 51.2 29.3 0.1

Table 6: Diversion Ratio Estimates by Income and Presence of Children (2016 Q4)

Notes: This table reports quantity-weighted average diversion ratios by firm pair (row and column) for different
demographic groups (by panel). High and low represent the top quartile and bottom quartile of all markets
in 2016 Q4 (after Post’s acquisition of Malt-O-Meal) by median household income (below $70k or above $88k),
and fraction of households with children (< 14% or > 21%). Diversion ratios are reported as percentages (sum
to 100%). Prices are reported in cents. Share is reported inclusive of the outside good. Source: Authors’
computations.
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Figure 4: Distribution of Implied Price-Cost Margins by Conduct Assumption and Firm

Notes: This figure depicts the distributions of price-cost margins for the four largest RTE cereal firms in the fourth
quarter of 2016 under three different conduct hypotheses: own-profit maximization, a hypothetical monopolist,
and common ownership. The unit of observation is a product-chain-DMA-week. Source: Authors’ computations.

sumption that manufacturers directly set retail prices.52 The set of conduct hypotheses we consider

includes own-profit maximization, perfect competition, a hypothetical monopolist composed of the

four largest firms, and common ownership (and variants). Note that everything that follows uses

the full sample.

We depict the price-cost margins for all of these conduct hypotheses in Figure 4. We focus

on the fourth quarter of 2016, the last period in the data; we also exclude perfect competition,

for which price-cost margins would be trivially zero. Under own-profit maximization (κfg = 0),

larger firms (here, Kellogg’s and General Mills) have larger implied markups as they recapture more

diverted sales with their own products. We also see that the difference between markups under own-

profit maximization and common ownership maps neatly to the profit weights depicted in Figure 1.

Kellogg’s large undiversified owner depresses their profit weights, and so the difference between

own-profit maximization and common ownership is slight. In contrast, Quaker Oats’ (PepsiCo’s)

large retail share inflates their profit weights, and so the difference is much larger.

To frame the economic magnitude of these differences, we compare the effect of common own-

ership on prices to the effect of hypothetical pairwise mergers. To be precise, we derive marginal

52There is some evidence that this is true for consumer products in supermarkets (Villas-Boas, 2007; Bonnet and
Dubois, 2010). Recent work suggests that retailers extract surplus via slotting fees Hristakeva (2019) rather than
markups above wholesale prices. Under double marginalization, the retailer internalizes substitution across brands
from competing manufacturers. This softening of competition can be implemented using an ownership matrix which
also sets κfg > 0. Therefore, if one has a strong prior that double marginalization is salient, we should expect the
results to be biased against own-profit maximization.
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costs under the assumption of own-profit maximization, and then compute counterfactual equilib-

rium prices using those marginal costs under all of the alternative scenarios. Results are presented

in Table 7. Each column represents a counterfactual scenario: the first six are pairwise merger

counterfactuals, while the seventh represents “turning on” common ownership incentives, and the

eight represents pricing of a hypothetical monopolist composed of the four largest firms. Price

effects, weighted by quantity of servings sold, are represented in the table. The first four rows

represent prices for the four largest firms in the market, while the fifth row represents an aggregate

servings-weighted price index.

We see, predictably, that the most anticompetitive merger in the marketplace would be that

between General Mills and Kellogg’s, resulting in both firms raising prices around 5% and the price

index rising by 3.3%. Mergers of the two smaller firms (Quaker Oats and Post) and one of the two

larger firms, lead to smaller increases in the overall price index but often large changes (5-6%) for

the smaller firm.

The effects of any pairwise predicted merger, however, are dwarfed by the 5.42% increase in the

price index predicted under common ownership. This highlights the anticompetitive potential of

the hypothesis: it yields substantially larger price increases than a hypothetical merger between the

two dominant firms in the market, which we would expect antitrust authorities to block. By way of

comparison, a hypothetical monopolist composed of the four largest firms yields a price increase of

10.25%, and so common ownership would get us 5.42/10.25 ≈ 53% of the way to monopoly pricing.

In Appendix B and Table B-1, we show how common ownership can lead to smaller or larger price

effects of a merger, and those effects can depend on the financial structure of the merger (an all

cash deal or a share-swap).

The question remains, however, whether patterns of common ownership are reflected in pricing.

For this we implement the conduct testing procedure developed in Section 2.

Firm GM-KEL GM-QKR GM-POST KEL-QKR KEL-POST QKR-POST Monopoly κCO

General Mills 4.69 1.10 3.00 -0.10 -0.16 -0.11 9.42 3.97
Kellogg’s 5.13 -0.13 -0.19 1.04 2.90 -0.11 9.30 5.34
Quaker Oats -0.37 6.39 -0.36 5.60 -0.37 3.93 14.87 7.75
Post -0.15 -0.11 6.16 -0.10 5.19 1.45 12.76 7.06

Price Index 3.32 0.91 2.22 0.78 1.96 0.58 10.25 5.42

Table 7: Price Increases under Counterfactual Scenarios

Notes: This table reports counterfactual percent price increases from the observed baseline in the fourth quarter
of 2016. We compute the serving-weighted percentage change in price at the market and firm level (with the last
row containing all firms) and report the median price change across markets. The market-level mean price per
serving observed in the data is $0.2255. Columns indicate the counterfactual scenario: the first six are pairwise
mergers, the seventh is a hypothetical monopolist composed of the four largest firms, and the last is under common
ownership. In some cases, prices of non-merging firms decline in response to the merger. This is because with
random coefficients and demographics (or any mixture of logits), prices need not be strategic complements as is
often assumed. Source: Authors’ computations.
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6.2. Testing: Inclusions and Exclusions

Our test employs a criterion function that is based on detecting a correlation between the difference

in markups between two models and the recovered cost shocks. This means that useful instruments

are those which are able to explain the difference in markups ∆η1,2
jt and are excluded from the

marginal cost equation in (3).

Since markups are fully determined by the model of marginal costs, demand, and conduct,

we can also fully characterize the set of relevant variables. The contents of zt are five sets of

instruments. The first set of instruments are the exogenous own-product characteristics (xjt,wjt)

included in equation (3). In our tests, product characteristics xjt (which also appear in the demand

system) are captured by a full set of product, retailer-DMA, and quarter fixed effects. This set also

includes the fraction of servings that are on sale, as well as dummies for periods in which a product

was on recall (see Appendix C.7 for further discussion of recalls). Variables in wjt (which do not

appear in the demand system) include the input costs for designated “main” ingredients. The four

remaining instruments in zt are all excluded from (3).

The second set of instruments are the demand shifters vt which affect demand but not marginal

costs and form the basis of the identification argument in Berry and Haile (2014).53 In theory there

are many such variables (more so than cost-shifters wjt) and one could exploit seasonal or regional

variation in demand or promotional activity.54 In our cereal example, we have variation in the local

unemployment rate (interacted with branded products). Demand shifters for other goods v−j,t are

also valid instruments.

A special kind of demand shifter which enters demand non-linearly rather than linearly are

changes in the distribution of demographics across markets. That is, demand (and markups) for

certain products (sugary cereals) may be higher in areas with lots of children, but the marginal

cost of serving consumers in these areas is unlikely to be affected by demographics.

A third set of exclusion restrictions are w−j,t, the cost shifters of other products. In our cereal

application, this might be the price of rice for Corn Flakes, or the price of corn for Rice Krispies.

The most obvious explanation would be that a lower rival cost wkt increases the price-cost margin

(and/or reduces the price) of the substitute. At the same time, the estimated marginal cost of

Corn Flakes should not respond to the input prices for rice.55

The fourth set are the characteristics of other goods x−j,t or the “BLP instruments.” The nested

logit version of these instruments from Berry (1994) involve counting the number of competitors

53We use the bold notation to denote the matrix of characteristics for all Jt products in the market to highlight
the fact that we also utilize characteristics of other products vt = [vj,t,v−j,t].

54Berry et al. (1995) exploited functional form differences so that miles-per-gallon shifted marginal cost wjt, while
miles-per-dollar shifted demand vjt. Michel and Weiergraeber (2018) exploit the non-price demand shift effects of
in-store promotions.

55This mimics the well-known reduced form test of collusion. Conditional on a competitor’s prices, own prices
should not respond to changes in rival marginal costs which makes it a valid exclusion restriction (Genesove and
Mullin, 1998).
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in each nest. Gandhi and Houde (2019) extend this idea to measure “closeness of competition”

more generally. All things being equal, as the product space around j becomes more crowded

(more cereals with similar characteristics) we expect the markup for product j to fall, while the

characteristics of rival products should not directly impact the marginal costs cjt.

The final set of potential instruments come from exogenous changes in conduct κfgt itself. As

an example, Miller and Weinberg (2017) use a binary instrument for treated firms in the post-

joint venture period as an instrument for conduct κ. Another (somewhat obvious) example is that

mergers may change κCOfgt such as Post’s acquisition of Malt-O-Meal in 2015.

Exogenous changes in financial ownership may also serve as an instrument for common owner-

ship profit weights κCOfgt . This is the instrumental variables strategy in several reduced-form studies

of common ownership. Inclusion in a stock market index is likely to increase overlap among in-

vestors; and serves as the basis for the identification strategy in Boller and Scott Morton (2020).

Azar et al. (2018a) look before and after the BlackRock-Barclays acquisition with the implied as-

sumption that it shifts κCOfgt . The challenge with using κCOfgt restrictions is that they are often event

studies. We could use less discrete changes in κCOfgt since it continuously varies period by period,

however there is a question whether the variation is substantial enough and whether managers are

fully aware of small changes in common ownership. To be conservative, we don’t include these

events in our set of instruments zt.

We should also mention what are not valid exclusion restrictions. The variables (xjt,wjt) are

not excluded, but included and help to reduce the residual variance in ωjt. The so-called “Hausman

instruments” which are prices of the same product in other markets pj,−t are not valid instruments

for markup differences. The motivation for these instruments is that they capture unobserved

variation in marginal costs that is common across markets such as unobserved shocks to input

prices. However, unobservable changes in marginal cost are potentially correlated with ωjt.
56

In light of these observations, we run our tests with four different specifications of the excluded

variables in g(·). Comparing results across them will both shed light on the role of the nonlinear

relationship between zt and ∆ηjt, and also offer us an informal overidentification test insofar as the

results are similar or different. We report the number of variables in parentheses.

1. Other firms’ input costs (5): w−jt in the above, we use the price of ingredients (corn, rice, oat,

wheat, and sugar) that are not designated as “main” ingredients in the Nutritionix dataset.

2. Demographic moments (5): these correspond to those we use in predicting the distribution of

the nonlinear coefficients in Section 5. In particular, we use the fraction of households with

children, and the mean and standard deviation of income for households with and without

children.

56What looks to authorities like collusive behavior (changes in κ) is explained by defendants as a “correlated shock
to marginal costs”. In this case, the “Hausman instruments” can be perfectly valid as instruments for demand
E[ξjt|zt, pj,−t] = 0 but are invalid as instruments for marginal costs E[ωjt|zt, pj,−t] 6= 0.
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3. BLP instruments (143): these are explained in detail above in Section 5 where we follow

Gandhi and Houde (2019). These summarize variation in x−jt and vt.

4. Demand-optimal instruments (18): these too are explained in detail above in Section 5. Note

that these are constructed using the model, summarize all of the variation in the four sets of

excluded instruments in zt.

6.3. Implementation

The specification of g(·) in Step (b) of our algorithm is important because markups are a nonlinear

function of everything in the model. The power of the test, therefore, depends on the fit of

this regression. However, if we allow arguments of g(·) to enter flexibly while using a restrictive

functional form for hs(·), then any misspecification of the hs will functionally enter as additional

exclusion restrictions in our test (this is a known problem when using flexible forms to estimate

the first-stage regression of a linear IV problem; see Chen et al. (2020) for a recent discussion).

Therefore, as in nonparametric instrumental variables regression (Ai and Chen, 2003; Newey and

Powell, 2003), we fit both functions flexibly. We use a random forest (Breiman, 2001) to estimate

both hs(·) in Step (a) and g(·) in Step (b).57 By way of comparison, we will also consider a version of

our test that uses a linear fit for hs(·) and g(·). The reason we do this is to highlight the importance

of fitting the nonlinearity in the relationship between ∆ηjt and zt in the Step (b) regression. We

discuss results for both sets of regressions further and document the mean-squared error of the Step

(b) regression in Appendix Section D.3.

In order to compute σ̂, the standard deviation of Q̃(η1) − Q̃(η2) which appears in the denom-

inator of our test statistic, we bootstrap the entire procedure. Bootstrap samples, and standard

errors in all of the regressions reported, are clustered at the retailer-DMA-year level of aggregation.

Finally, note that at every step—Step (a) and (b) regressions, as well as the computation of

Q̃(ηm)—we weight observations (which are product-chain-DMA-weeks) by the total quantity of

servings for that product across all markets. We do this to guarantee that our results are not

driven by the large number of niche products in our sample.

6.4. Results: Testing Common Ownership

Our main results are presented in Table 8. Here we test variations on the common ownership hy-

pothesis, perfect competition, and monopoly pricing (by row) against own-firm profit maximization

using different sets of exclusions (by column), for different specifications (by panel). To interpret

an entry in the table, recall that the Rivers-Vuong test statistic is distributed N (0, 1). The null

hypothesis is that the two models perform equally well. A negative value can reject that null in

favor of the alternative that model 1 better fits the data (here, own-profit maximization), while a

57Alternative approaches might include LASSO regression (Belloni et al., 2012) and deep neural nets (Hartford
et al., 2017).
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Table 8: Testing Results: Own-Profit Maximization vs Alternatives

Others’ Costs Demographics BLP Inst. Dmd.
Opt. Inst.

Own Profit Max vs. Panel 1: A(zt) = zt, linear hs(·)

Common Ownership -2.4732 -0.0079 -1.2333 -4.9099
Common Ownership (MA) -2.5918 0.0070 -1.2105 -4.9215
Common Ownership (Lag) -2.5208 0.0075 -1.2125 -4.9351
Perfect Competition 0.8611 -2.3033 -3.1652 -10.9229
Monopolist -2.4166 -0.8783 -3.5162 -6.0048

Own Profit Max vs. Panel 2: A(zt) = E[∆η12|zt], linear hs(·) and g(·)

Common Ownership -1.2859 -0.2126 -0.8317 -5.2361
Common Ownership (MA) -1.3993 -0.2071 -0.8340 -5.3019
Common Ownership (Lag) -1.3506 -0.2093 -0.8367 -5.3271
Perfect Competition 1.1732 -0.8843 -1.4708 -10.7559
Monopolist -1.4038 -0.3243 -1.0613 -5.3183

Own Profit Max vs. Panel 3: A(zt) = E[∆η12|zt], random forest hs(·) and g(·)

Common Ownership -4.8893 -5.4460 -5.4412 -5.9585
Common Ownership (MA) -5.4345 -6.1348 -5.8757 -6.4357
Common Ownership (Lag) -5.1770 -5.9221 -5.7041 -6.2255
Perfect Competition -7.7749 -8.7051 -8.9758 -10.0654
Monopolist -5.2711 -6.7789 -5.9158 -6.5933

Notes: This table reports testing results for pairwise comparisons of own-firm profit maximization against various alternatives.
Variations on common ownership include a one-quarter lagged κ (Lag), and a four-quarter backwards looking moving average
(MA). The column label indices the set of exclusions used in the Step 2 regression. A negative value constitutes evidence for
own-profit maximization and a positive value constitutes evidence for the model of that row. The null hypothesis is that they
satisfy the criterion function equally well, and the critical values for rejection at α = 0.5 are –1.96 and 1.96. The bootstrap is
clustered at the retailer by DMA by year level and observations are weighted by servings volume.
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positive value can do so for model 2 (specified by the row).

The three panels are contrasted to underscore the importance of, first, using the model to inform

the design of moment restrictions (recall A(zt) from Section 2.3) and, second, loosening parametric

restrictions in order to capture the nonlinear relationships between the excluded instruments and

markups. Panel 1 depicts the conduct test that the literature has focused on, in which instruments

are translated directly into unconditional moments of the form E[ωmjtzjt] = 0. Since there are

potentially many such moments, we weight them by (Z ′Z)−1 to form a scalar criterion function,

where Z is the full n × k matrix of instruments stacked across markets.58 We also follow them in

adopting a linear form for hs(·). Panel 2 uses Algorithm 1 but retains a linear functional form for

hs(·) and g(·) in Step (a) and Step (b), respectively.

In both Panels 1 and 2 we find substantial variation in results across different sets of instruments.

The similarity of the test statistics in these two panels reflects the fact that when everything is

linear, the Step (a) regression in our method accomplishes little more than to change the weighting

matrix over the moments interacting the instruments with ω̂mjt . Using others’ costs rejects com-

mon ownership against profit maximization, but fails to reject (and even weakly prefers) perfect

competition. In contrast, demographic moments and BLP instruments are inconclusive. How-

ever, the demand optimal instruments decisively favor own-profit maximization against all other

alternatives. This is particularly notable because the demand optimal instruments are a nonlinear

aggregation of the variation captured by the prior three (see Appendix C.4). This suggests that

the different results have more to do with functional form than the informational content of the

exclusion restrictions.

Therefore, Panel 3, our preferred specification, uses a random forest to fit both hs(·) and g(·).
Here, all sets of instruments reject all alternative hypotheses in favor of own-profit maximization.

The demand optimal instrument generally rejects most strongly, which reflects the fact that it

aggregates variation from all of the other three. Demographic variables do particularly well, which

is consistent with their prominence in explaining variation in demand, as we saw in Section 5.

Finally, we also observe that the test statistics for the demand optimal instruments are not much

stronger, and occasionally weaker, than those from Panel 2. This too is intuitive: since they

already capture the nonlinearity of the model, using an approximately correct linear functional

form restriction can offer greater power, like using the true functional form offers efficiency gains

in estimation problems.59

In order to bridge the gap between our testing procedure and recent conduct parameter esti-

58We follow Duarte et al. (2020) in selecting the 2SLS weighting matrix (Z′Z)−1 for the test with multiple moment
restrictions, but caveat that the test in Panel 1 does not correspond to theirs. They propose using a sieve expansion
of zt which will, in the limit, fit the nonlinearity of the model.

59A reasonable question might be to ask why the demand optimal IV work so well independent of functional form.
One possible explanation is in (10), the difference in markups between all of the alternative models can be written
as proportional to

∑
g ∆κ1,2

fg ·
∑
k∈Jg

ηk ·Djk where ∆κ1,2
fg represents the difference in profit weights between the two

models. The demand optimal IV are good at explaining the diversion ratios Djk.
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mation exercises, we also use our procedure to evaluate own-profit maximization against “partial”

common ownership, the latter of which we specify as τ ∈ {0.1, . . . , 0.9}, where τ is a multiplicative

scalar on all of the off-diagonal terms of the common ownership profit weight matrix κCOt . So,

τ = 0 implies own-profit maximization, and τ = 1 implies common ownership pricing.60 Results

are depicted in Table 9. As before, a negative value less than 1.96 represents a rejection in favor of

own-profit maximization at α = 0.05. In brackets, under each test statistic, we write the numerator

and the denominator, i.e. our estimates of Q̃(η1)− Q̃(η2) and σ/
√
n.

Two features are salient. First, the test statistic is monotonically decreasing in τ , so that models

closer to own-profit maximization are preferred. Second, however, for no set of excluded variables

do we statistically reject the model for τ < 0.3. There is a third, more subtle feature of the results

evident in the brackets beneath the test statistics. While the difference in the criterion function

(the numerator, Q̃(η1)− Q̃(η2)) is converging to zero as the models become more similar (τ → 0),

the standard error of the difference (the denominator, σ/
√
n) is too. This reflects a degeneracy

problem with the Rivers and Vuong (2002) statistic when testing sufficiently similar models. As

τ → 0, that standard error shrinks to zero because the models become identical (they imply nearly

identical markups), and the test statistic is degenerate. While it is not our primary interest, for

applications in which the researcher is interested in local comparisons, this could be resolved by

sample splitting (Yatchew, 1992; Whang and Andrews, 1993), partial sample splitting (Shennach

and Wilhelm, 2017), or debiasing methods (Shi, 2015).

To summarize, our results consistently reject the common ownership hypothesis in favor of own-

firm profit maximization. We emphasize that our results are not driven by comparisons of average

markups. All of our regressions in the testing procedure include product dummies. Moreover,

we would also stress that our result does not answer the ill-posed question of whether common

ownership, broadly construed as the presence of common owners, has any price effects. Rather, we

have shown that the pricing model implied by the common ownership hypothesis, as outlined in

Section 3 above, is inconsistent with the pricing behavior we observe.61

7. Conclusion

In this paper we study how to test among competing assumptions for conduct in a differentiated

products market by exploiting implied differences in additive markups. We show that exclusion

restrictions can be used to differentiate between alternative models of firm conduct. Our testing

procedure has advantages over previous approaches: it is easy to implement and performs well

across different sets of instruments. We take this testing procedure to data from the RTE cereal

market where we first estimate demand in a rich framework using detailed scanner data as well

as demographic data of shoppers. We then apply our test against several alternative models of

60This internalization parameter design mirrors that in Kennedy et al. (2017).
61In Appendix Section D.1 we offer further pairwise comparisons. Our findings consistently favor own-firm profit

maximization against alternative conduct models.
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Table 9: Profit Maximization vs. τ

Others’ Costs Demographics BLP Inst. Dmd. Opt. Inst.

τ = .1 -0.4328 -0.321 -0.6851 -0.7026
[-0.0176/0.0407] [-0.0145/0.0452] [-0.0372/0.0543] [-0.0437/0.0622]

τ = .2 -1.0734 -0.9217 -1.5237 -1.6487
[-0.224/0.2087] [-0.201/0.2181] [-0.418/0.2743] [-0.509/0.3087]

τ = .3 -2.6522 -2.6837 -3.1898 -3.5225
[-1.590/0.5995] [-1.640/0.6111] [-2.570/0.8057] [-3.140/0.8914]

τ = .4 -3.8962 -4.1062 -4.5616 -4.9736
[-5.140/1.3192] [-5.210/1.2688] [-7.950/1.7428] [-9.620/1.9342]

τ = .5 -3.2687 -3.4082 -3.7689 -4.1914
[-10.6435/3.2562] [-10.5109/3.0840] [-16.512/4.3811] [-20.022/4.7769]

τ = .6 -3.3722 -3.6771 -4.0833 -4.547
[-17.6249/5.2266] [-17.5416/4.7706] [-28.7501/7.0409] [-34.935/7.6831]

τ = .7 -4.1593 -4.4611 -4.6689 -5.2397
[-36.6078/8.8014] [-35.6581/7.9931] [-56.8988/12.1867] [-69.4023/13.2456]

τ = .8 -4.7044 -5.1992 -5.3273 -5.8925
[-64.5747/13.7264] [-61.8094/11.8882] [-99.7635/18.7269] [-119.7003/20.3141]

τ = .9 -4.4131 -4.7389 -4.8305 -5.3131
[-120.783/27.3691] [-114.8521/24.2358] [-179.9577/37.2543] [-214.9648/40.4595]

Notes: This table reports testing results for pairwise comparisons of own-firm profit maximization against τ -adjusted common
ownership (as indicated by row). The column label indicates the set of excluded variables used in the Step 2 regression. A
negative value constitutes evidence for profit maximization and a positive value constitutes evidence for the τ -adjusted model
of common ownership. The null hypothesis is that they satisfy the criterion function equally well, and the critical values for
rejection at α = 0.5 are –1.96 and 1.96. The bootstrap is clustered at the retailer by DMA by year level and observations are
weighted by servings volume.

conduct. We find support for the classical model of own-profit maximization; however, simulated

effects of common ownership incentives imply large potential effects. While the common owner-

ship hypothesis is of interest in this paper, the testing procedure we develop is more general and

applicable elsewhere. We hope our method makes it possible for other researchers to examine firm

price-setting behavior in a variety of other settings.
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Appendices
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A. Theory Appendix

A.1. Proofs of Propositions

Lemma 1: A Property of Quadratic Forms For a symmetric, positive semi-definite matrix
A ∈ Rk×k and two vectors (x, y) ∈ Rk, the difference in quadratic forms is given by:

xTAx− yTAy = (x+ y)TA(x− y).

Proof of Lemma:

(x+ y)TA(x− y) = xTA(x− y) + yTA(x− y)

= xTAx− xTAy + yTAx− yTAy

= xTAx−
((
xTAy

)T)T
+ yTAx− yTAy

= xTAx−
(
yTATx

)T
+ yTAx− yTAy

= xTAx−
(
yTAx

)T
+ yTAx− yTAy

= xTAx− yTAx+ yTAx− yTAy
= xTAx− yTAy.

Statement of Proposition 1a:
Under the following assumptions:
(i) A fixed k × k positive semi-definite weighting matrix W ;
(ii) A (n× k) matrix of instruments Z of full column rank k;
(iii) A vector of n unobservable cost components ωm = p−h(z)−ηm and moment restrictions such
that E[ωm′Z] = 0 ∈ Rk is satisfied at the true η0 and not at ηm 6= η0, and
(iv) The function h(z) is known (rather than estimated).

(a) As n→∞ and under standard regularity conditions, the difference in GMM objective functions
(QW (η) ∈ R+) under weighting matrix W , for any two markup models (η1, η2), can be expressed
as:

QW (η1)−QW (η2)
p→ −E[Z ′ ω1]′W E[Z ′∆η1,2]− E[Z ′ ω2]′W E[Z ′∆η1,2] where ∆η1,2 = η1 − η2.

Proof of Proposition 1a:
Under (iii) and (iv) note we can write: ω1 − ω2 = −∆η1,2 and ω2 = ω1 + ∆η1,2.
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The difference in GMM objective functions is given by:

QW (η1)−QW (η2) = ω1TZW ZTω1 − ω2TZW ZTω2

= (ω1 + ω2)TZW ZT (ω1 − ω2) by Lemma 1

= −(ω1 + ω2)TZW ZT∆η1,2

= −ω1TZW ZT∆η1,2 − ω2TZW ZT∆η1,2

p→ −E[Z ′ ω1]T W E[Z ′∆η1,2]− E[Z ′ ω2]T W E[Z ′∆η1,2].

As n→∞ and under standard regularity conditions (first two sets of first moments are finite), the
SLLN applies so (ZTωm)

a.s.→ E[ZTωm] and (ZT∆η1,2)
a.s.→ E[ZT∆η1,2], which delivers the final line.

Statement of Proposition 1b:
(v) Model 1 is the correctly specified model, i.e. E[Z ′ ω1]

a.s→ 0.

(b) Under the additional condition (v), then:

QW (η1)−QW (η2)
p→ −E[Z ′∆η1,2]W E[Z ′∆η1,2].

Proof of Proposition 1b:
Using the fact that ω2 = ω1 + ∆η1,2 and the second to last line of the proof of Proposition 1(a)

QW (η1)−QW (η2) = ω1TZW ZT∆η1,2 + ω2TZW ZT∆η1,2

= ω1TZW ZT∆η1,2 + (ω1 + ∆η1,2)TZW ZT∆η1,2

= 2 · ω1TZW ZT∆η1,2 + ∆η1,2TZW ZT∆η1,2

p→ E[ZT∆η1,2]TW E[ZT∆η1,2] since E[ZTω1]
a.s.→ 0 by (v).

A.2. Microfoundation of Demand Model

We define the utility of consumer i for product j and market (chain-dma-week) t as:

Uijt = δjt − αpjt + µijt + εijt. (1)

Following the usual convention we decompose the utility into three parts: a mean preference which
all consumers agree on δjt, a consumer-specific taste shock µijt, and an idiosyncratic error εijt.
Consumers select the option among the set of Jt = {0, 1, . . . , Jt} alternatives which provides the
most utility. Following convention we include a no purchase alternative, denoted j = 0, which
provides ui0t ≡ εi0t. Aggregate market shares are given by integrating over heterogeneous consumer
choices:

sjt(δt) =

∫
I[Uijt(δt,µit) > Uikt(δt,µit)] dµit dεit.

A frequent assumption is that εijt is distributed IID type I extreme value (Gumbel) so that market
shares are given by:

sjt(δt, θ2) =

∫
exp[δjt − αpjt + µijt]∑

k∈Jt exp[δkt − αpkt + µikt]
f(µit | θ̃2) dµit. (2)
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We follow standard practice and put an additive structure on the mean utilities:

δjt(St, θ2) = hd(xjt, vjt; θ1) + ξjt. (3)

We specify the linear component of utility hd(xjt, vjt; θ1) as follows. We include four vjt variables
which affect demand, but are excluded from supply. Three of those variables are dummies for the
twelve weeks following a product recall for the affected products. For further discussion of the
product recall events (including plots demonstrating the effect on demand) consult Appendix C.7.
We also include an interaction between the DMA-week level unemployment rate and a dummy
for branded products. This is meant to capture the fact that during the Great Recession there is
an increase in the relative demand for private label as opposed to branded products. We provide
additional support for this in Figure C-2 and Figure C-4. We also include a large number of two-way
fixed effects: 946 product fixed effects and 1970 chain-week fixed effects.62

We specify the distribution of unobservable heterogeneity from (1) similar to Nevo (2000):

µijct(θ̃2) = (L · νict + Π · yict) ·
[
1, pjct

]T
.

We define the nonlinear parameters as θ̃2 = [L,Π] where the Π represent the parameters on inter-
actions between demographic draws yict = [kidsict, incomeict] and observable characteristics xjct,
and L represents the Cholesky root of covariance matrix (LL′ = Σ2) for the (multivariate normally
distributed) unobserved heterogeneity. We allow consumers to have heterogeneous preferences over
prices and a constant (which captures inside vs. outside good substitution).63 Demographics are
drawn from the DMA-chain-year specific distribution calculated using the Nielsen Panelist data.
Our demographics capture the joint distribution of income and presence of children in the house-
hold.64

A.3. Markups and their Derivatives

We can augment the usual static multi-product Bertrand Nash pricing game to allow for common
ownership (or “internalization” effects). In this case a firm chooses the price for product j but now
treats $1 of rival g’s profit as κfg of their own. We further augment this setup with an “internaliza-
tion parameter” τ . Here τ = 1 denotes acting in accordance with the common ownership hypothesis
while τ = 0 represents own-profit maximization. The downside is that τ ∈ (0, 1) is not necessarily
interpretable although intermediate values possibly represent some partial internalization.

The first-order condition of firm f which controls several products Jf with respect to pj is given
by the following:

arg max
pj : j∈Jf

∑
j∈Jf

(pj −mcj) · sj(p) + τ ·

∑
g

κfg
∑
j∈Jg

(pk −mck) · sk(p)

 ,

sj(p) +
∂sj
∂pj

(p) · (pj −mcj) +
∑
k∈Jf

∂sk
∂pj

(p) · (pk −mck) + τ ·

∑
g

κfg
∑
k∈Jg

∂sk
∂pj

(p) · (pk −mck)

 = 0.

(4)

62Nevo (2000) and Nevo (2001) include one fixed effect for each of the 26 products in the dataset.
63See Section 4.3 or Appendix C.1 for a discussion on how prices and product characteristics are constructed.
64See Section 4.3 and Appendix C.6.
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With a bit more notation we can write the system of first–order conditions in matrix form,
which is helpful for what follows. First, let Ω(p) denote the J × J matrix of demand derivatives so

that each (j, k) entry is given by
∂sj
∂pk

. Second, we introduce the product level “cooperation matrix”.
We can augment the setup in Nevo (2001) with κfg for potential common ownership effects, and τ
as the “internalization parameter”:

Hjk(κ, τ) =


1 if (j, k) ∈ Jf for any f ,

τ · κfg if j ∈ Jf and k ∈ Jg for any (f, g),

0 otherwise.

Then, for a single market t, where � denotes the element-wise (Hadamard) product of the two
Jt × Jt matrices:

st(pt) = (Ht(κ, τ)� Ω(pt)) · (pt −mct). (5)

The augmented markup in matrix form can be written as:

ηt(pt, st, κt, τ) = (H(κt, τ)� Ω(pt))
−1st.

This gives us a multi-product, multi-firm markup which incorporates potential conduct effects:
η(p, s, κ, τ). Note that this depends on the conduct among all firms κ as well as all of the endogenous
variables.

We are also interested in the Jacobian matrix ∂ηt
∂κ and ∂ηt

∂τ . We will consider a single market
and omit the t subscript.

The markup has a derivative given by:

∂ηt
∂τ

=
∂

∂τ

[
(H(κ, τ)� Ω(p))−1s(p)

]
= (H(κ, τ)� Ω(p))−1

[
∂

∂τ
(H(κ, τ)� Ω(p))

]
(H(κ, τ)� Ω(p))−1s(p)

= (H(κ, τ)� Ω(p))−1 [If 6=g � Ω(p)]ηt(κ, τ ; θ2).

where If 6=g represents a Jt × Jt matrix of zeros and ones, with ones if κfg > 0 and f 6= g.
We also consider the derivative with respect to a scalar element of κ, κfg:

∂ηt
∂κfg

=
∂

∂κfg

[
(H(κ, τ)� Ω(p))−1s(p)

]
= (H(κ, τ)� Ω(p))−1

[
∂

∂κfg
(H(κ, τ)� Ω(p)

]
(H(κ, τ)� Ω(p))−1s(p)

= (H(κ, τ)� Ω(p))−1 [τ · If=g � Ω(p)]ηt(κ; θ2).

Where If=g is a Jt×Jt matrix of zeros and ones, where the ones occur if and only if the row product
is owned by f and the column by g. The result are two J × J matrices multiplying a J × 1 vector
which results in a J × 1 vector.

The Jacobians of the markup with respect to the internalization parameters (τ, κfg) are impor-
tant because they represent the (infeasible) optimal instruments (in the sense of Amemiya (1977);
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Chamberlain (1987)) for the conduct parameters themselves. They are also the continuous analogue
of the discrete markup difference that forms the basis for our test E[∆ηjt|zt].

In order to compute the feasible approximations E
[
∂ηjt
∂κfg
|zt

]
or E

[
∂ηjt
∂τ |zt

]
, we have two choices

which parallel the discussion of optimal instruments in Berry et al. (1995, 1999); Conlon and
Gortmaker (2020). The Newey (1990) approach is to compute the expectations by calculating the
Jacobian at the true values of (pt, st) (and the conjectured τ and θ2) and then projecting those
values onto exogenous variables zt via (nonlinear) regression. The Chamberlain (1987) approach as
discussed in Berry et al. (1999); Reynaert and Verboven (2014) instead would allow us to calculate
E [pjt|zt] with a “first-stage” estimate p̂t from a (potentially nonlinear) regression, draw ξ∗t and

calculate st(p̂t, ξ
∗
t ; θ̂2) = ŝt. Given (̂st, p̂t) we can calculate Ω(̂st, p̂t; θ̂2) and ηt(̂st, p̂t; θ̂2) now

purged of the endogeneity problem of pt and ξt, and use these to calculate the Jacobian. The
conventional approach (Berry et al., 1999) replaces ξt

∗ = 0, and Conlon and Gortmaker (2020)
show that it works well in Monte Carlo analysis.

B. Financial Market Data Appendix

B.1. Ownership Data

While the main data source on holdings used in this literature is the Thomson Reuters S34 database,
we instead use our hand-collected dataset described in Backus et al. (2021) due to the problems
with the Thomson dataset discussed in Backus et al. (2019).

Additionally, we gather data on insider holdings from the Thompson Reuters Insider Holdings
database accessible via WRDS. This compiles SEC forms 3,4,5, and 144 to get a picture of insider
holdings that we may be missing from the 13f filings — in particular, holdings of executives and
board members. We find that these holdings are always less than five percent of shares outstanding
(and typically substantially so) and so, for the RTE cereal industry, have a minor effect on the
computed common ownership profit weights.

B.2. Share Swap Mergers

One important aspect of common ownership is that post-merger incentives may be affected by the
financial structure of the transaction. For example, in an all-cash deal, the equity of the target is
purchased by the acquirer and the merged firm retains the ownership structure of the acquirer βfs.
We report the ownership matrix for Q4 2016 below. In practice, many transactions are realized as
share-swaps where the acquirer issues additional shares and uses those to acquire the shares of the
target.

Absent any acquisition, we have that the ownership stake of s in f is given by:

βfs =
sharesfs

outstandingf
.

After a share swap, we need to adjust both the numerator and denominator. First we calculate
what is known as the exchange ratio

ERtarget,acquirer =
pricetarget

priceacquirer
.
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Then we update the shares held in the acquirer:

sharess,merged = sharess,acquirer + sharess,target · ERtarget,acquirer
outstandings,merged = outstandings,acquirer + outstandings,target · ERtarget,acquirer.

Because κfg depends on relative investor concentration, the effects of a share-swap merger on
κ can be difficult to predict and need not be a convex combination of pre-merger κ and the merged
ownership under an all-cash deal. We provide several examples below. The most striking feature
is that acquisitions involving Quaker Oats (a division of PepsiCo) can lead to huge changes in
profit weights for the merged entity. The extremely large market capitalization of PepsiCo tends
to swamp the other cereal manufacturer’s ownership structure, and the relative generosity κ > 1
can be even more pronounced under a share-swap acquisition.


GM KEL POST QKR

GM 1.00 0.67 0.70 0.80
KEL 0.23 1.00 0.17 0.19
POST 0.41 0.30 1.00 0.44
QKR 1.07 0.74 1.00 1.00




GM KEL/QKR POST

GM 1.00 0.78 0.78
KEL/QKR 1.08 1.00 0.99
POST 0.37 0.34 1.00

 
GM/KEL POST QKR

GM/KEL 1.00 0.85 0.85
POST 0.33 1.00 0.39
QKR 0.93 1.12 1.00




GM/QKR KEL POST

GM/QKR 1.00 0.75 1.0
KEL 0.19 1.00 0.2
POST 0.36 0.27 1.0

 
GM KEL QKR/POST

GM 1.00 0.67 0.80
KEL 0.23 1.00 0.19

QKR/POST 1.06 0.73 1.00




GM/POST KEL QKR

GM/POST 1.00 0.69 0.83
KEL 0.22 1.00 0.19
QKR 1.06 0.74 1.00

 
GM KEL/POST QKR

GM 1.00 0.69 0.80
KEL/POST 0.31 1.00 0.26

QKR 1.07 0.78 1.00



C. Product Market Data Appendix

C.1. Product Characteristics

Because we are not interested in the relationship between demand and the 19 nutritional character-
istics per se, and because the characteristics are often correlated with one another we consolidate
our product characteristics into a smaller number of principal components. This is particularly
helpful because nutritional information often creates collinearity problems. For example total calo-
ries are a linear function of fat, carbohydrates, and protein; or sugar and dietary fiber are a source
of carbohydrates. We report average nutritional information on a per-serving basis in Table C-2
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Share-Swap Mergers under Common Ownership
Firm GM-KEL GM-QKR GM-POST KEL-QKR KEL-POST QKR-POST Monopoly

General Mills 0.68 -3.43 -0.58 1.59 -2.73 -0.29 3.12
Kellogg 6.75 4.88 5.69 5.55 7.03 5.76 8.80
Quaker Oats -4.36 -7.30 -6.73 -4.41 -9.46 -5.79 0.40
Post 8.24 5.65 5.89 8.11 6.97 3.89 9.51
Price Index 3.74 0.92 2.33 3.66 1.89 2.10 6.09

Cash Mergers under Common Ownership
Firm GM-KEL GM-QKR GM-POST KEL-QKR KEL-POST QKR-POST Monopoly

General Mills 1.31 -3.00 -0.55 -4.86 -3.52 -0.22 3.12
Kellogg 7.29 4.25 5.49 4.88 6.82 5.79 8.80
Quaker Oats -5.03 -6.81 -7.17 -5.46 -10.38 -5.79 0.40
Post 5.96 2.39 5.93 1.03 6.74 3.89 9.51

Price Index 3.60 0.21 2.26 -0.28 1.37 2.14 6.09

Base Case: Mergers under Own Profit Maximization
Firm GM-KEL GM-QKR GM-POST KEL-QKR KEL-POST QKR-POST Monopoly

General Mills 4.69 1.10 3.00 -0.10 -0.16 -0.11 9.42
Kellogg 5.13 -0.13 -0.19 1.04 2.90 -0.11 9.30
Quaker Oats -0.37 6.39 -0.36 5.60 -0.37 3.93 14.87
Post -0.15 -0.11 6.16 -0.10 5.19 1.45 12.76

Price Index 3.32 0.91 2.22 0.78 1.96 0.58 10.25

Table B-1: Price Increases under Counterfactual Scenarios

Notes: This table reports counterfactual percent price increases from the observed baseline in the fourth quarter
of 2016. We compute the serving-weighted percentage change in price at the market and firm level (with the last
row containing all firms) and report the median price change across markets. The market-level mean price per
serving observed in the data is $0.2255. Columns indicate the counterfactual scenario: the first six are pairwise
mergers, the seventh is a hypothetical monopolist composed of the four largest firms, and the last is under common
ownership. Source: Authors’ computations.
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mean standard deviation

calories 133.636 43.111
calories from fat 12.785 11.659
vitamin a dv 7.715 6.637
vitamin c dv 9.910 15.105
iron dv 30.718 24.454
calcium dv 4.844 10.456
serving weight (g) 36.111 11.604

As a Percentage of Weight

cholesterol 0.080 0.515
dietary fiber 0.075 0.053
monounsaturated fat 0.007 0.015
polyunsaturated fat 0.006 0.012
protein 0.077 0.042
saturated fat 0.006 0.015
sodium ×1000 4.403 2.186
sugars 0.264 0.125
total carbohydrate 0.811 0.076
total fat 0.041 0.035
other carbs 0.472 0.114

Table C-2: Summary Statistics of Product Characteristics (3478 Products)

We use a principal components approach to reduce the dimension of the product space and provide
a lower dimensional basis of orthogonal components. We describe our procedure in detail below.

Consider a (J ×K) matrix X with rows denoting products and columns denoting nutritional
characteristics. Principal components constructs an eigen-decomposition of the covariance matrix
(X ′X) = WΛW ′ where W is the matrix of eigenvectors and Λ is a diagonal matrix of eigenvalues.
We can approximate the covariance matrix by considering the largest k < K eigenvalues and their
corresponding eigenvectors and construct a basis in dimension k rather than K. This yields the
approximation (X ′X) ≈WΛkW

′ where Λk is the same diagonal matrix as Λ but with zeros for all
eigenvalues except the k largest. This lets us write X̃ = XW ′k where Wk is the J × k matrix of
eigenvectors which correspond to the k largest eigenvalues in Λ. X̃ is an orthonormal approximation
in dimension k to the basis spanned by the covariance matrix (X ′X) in dimension K.

This has some advantages: for one we have reduced the number of dimensions of nutritional
information that we need to keep track of. This is especially helpful when we want consumers
to have heterogeneous preferences (random coefficients) across these characteristics. The second
advantage is that the columns of X̃ are now orthogonal. In general this makes estimating parameters
much easier because we no longer have to worry about columns of X being highly correlated with
one another (such as sugar and carbohydrate content). The disadvantage is that the transformed
components of X̃ can be difficult to interpret.

When we apply this to our dataset, instead of working with the covariance matrix (X ′X) we
work with the weighted covariance matrix (X ′ΩX) where Ω is an J × J diagonal matrix of weights
where the weights correspond to the brand-level market shares for each row of X. This prevents
less popular brands with strange product characteristics from becoming outliers and distorting
our transformed product space. It is also helpful to pre-standardize and scale the nutritional
information so that each column of X (and X̃) has mean zero and variance one. The first five
components comprise around 75% of the overall variation of the 19 nutritional characteristics. The
first four principal components are plotted in pairs in Figure C-1
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Figure C-1: Principal Components of Nutritional Data: Top 50 Brands

Notes: This figure depicts the PCA location of the top 50 brands of cereal. Circle size is proportional to the
inverse of national sales rank. Colors indicate different manufacturers. Source: Authors’ computations.
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C.2. Macro Variables

Here we document some additional macroeconomic variables that we use in our demand estimates.
One important variable is the unemployment rate. This is obtained from the St. Louis Federal
Reserve (FRED) database. For each DMA, we find the corresponding (monthly) unemployment
series for the corresponding Metropolitan Statistical Area (MSA). We plot MSA level unemployment
in Figure C-2.

For most MSAs, the unemployment rate peaks in early 2010, but the magnitude of the swing
is much larger in Charlotte than in Boston. The rate of recovery also varies across MSA, and is
slower in Chicago, for example, than in other cities. We do simple linear interpolation to construct
a weekly estimate of the unemployment rate.

We also acquire data on commodities prices from Global Financial Data on a weekly basis. We
track the prices of: corn, oats, rice, wheat, and sugar and compute an index value relative to the
middle of our sample (2011). We report those input prices in Figure C-3.
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Figure C-2: Unemployment Rate by MSA/DMA

C.3. Private Label

Below, in Figure C-4 we show the share captured by private label sales over time in our sample.
The private label share grows during the Great Recession. It begins to decline immediately after
the BlackRock acquisition of iShares from Barclays. During this period the four major brands all
cut prices substantially, and then begin to increase prices in 2012. From 2013 onwards, the private
label share continues to decline, press accounts often attribute this to rising incomes during the
recovery rather than pricing changes by the four major manufacturers.

We also plot the private label share for each DMA/city. There is a lot of heterogeneity across
cities, for example Chicago (and to a lesser extent Charlotte) have a much lower private label
share than other cities. This may be due to a number of factors, the most likely of which are the
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Figure C-3: Input Prices

Notes: This figure depicts the time series of major RTE cereal ingredient input prices for the period 2007–2017.
Source: Global Financial Data.

particular stores and chains that operate in each DMA/city and their own focus on private label
brands. It may also be due to persistent geographic preferences, or heterogeneity in incomes across
cities. For example, the private label share in Phoenix follows the business cycle more closely than
in other cities. The cross-sectional variation in private label share is an important driver in the
cross-sectional variation in the concentration measures (HHI and MHHI∆).

C.4. Instruments

The so-called BLP instruments are functions of characteristics of other goods within the same
market f(x̃t). We follow the “best practices” of Conlon and Gortmaker (2020) and begin with the
recipe in Gandhi and Houde (2019). First we construct a product-characteristic specific differen-
tiation measure. We suppress the market subscript t to economize on notation, and consider the

distance between products (j, k) in the dimension of characteristic l, and we let x
(l)
j represent the

suitably standardized lth principal component for product j in matrix X̃:

djk,(l) = x̃
(l)
k − x̃

(l)
j

We form a second-order basis using djk,(l) including interactions with other characteristics djk,(m):

zquad
jt =

{∑
k

d2
jk,(l),

∑
k

djk,(l) × djk,(m)

}
∀(l,m).
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Figure C-4: Private Label Market share
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We then use that second-order basis, along with the observable cost shifters wjk to form a measure
of expected price (via a linear or polynomial regression). As in the demand model we allow xjt to
contain product specific intercepts:

E[pjt|xjt,wjt, zjt] = p̂jt.

We compute the differentiation measure in terms of expected price:

djk,(p) = p̂k − p̂j .

This allows us to extend zquad
jt as:

zquad
jt =

{∑
k

d2
jk,(l),

∑
k

d2
jk,(p),

∑
k

djk,(l) × djk,(m),
∑
k

djk,(l) × djk,(p)

}
∀(l,m).

Gandhi and Houde (2019) show these instruments are most useful in the estimation of the standard
deviations and covariances of the random coefficients Σ. Since we are also interested in estimating
demographic interactions Π, we follow their suggestion and interact these instruments with moments
of the distribution of demographics. In our case the moments of the demographic distribution we
use are: with quantiles of the income distribution (conditional on children), and the fraction of
households with children.

zDjt = zquad
jt ⊗

{
1,%kidst, inc

10%,k
it , inc50%,k

it , inc90%,k
it , inc10%,nk

it , inc50%,nk
it , inc90%,nk

it

}
.

After obtaining consistent initial estimates of [θ̂1, θ̂2] we construct the feasible approximation to
the optimal instruments (Amemiya, 1977; Chamberlain, 1987; Berry et al., 1999; Reynaert and
Verboven, 2014). Because we estimate the demand side separate from any supply side, we are
unable to exploit the additional cross-equation restrictions (see Conlon and Gortmaker (2020)).
The simplified version of the expression in Conlon and Gortmaker (2020) becomes:

∂ξj
∂θ1

=
[
xj , vj

]
,

∂ξj
∂θ2

=
[
E
[
∂ξj
∂α |xt, vt, wt, z

D
t

]
, E

[
∂ξj

∂θ̃2
|xt, vt, wt, zDt

]]
.

The first expectation is simply the expected price from above E[pjt|xjt,wjt, zjt] = p̂jt, while the

second expectation is the Jacobian
∂ξj

∂θ̃2
evaluated at p̂jt and ξt = 0. For each set of instruments we

construct, we standardize each column to mean zero and variance one, and then perform the prin-
cipal components dimension reduction outlined above.65 This has the advantage that it produces
a well-scaled and orthogonal set of instruments, and has the added benefit that the identity matrix
is often close the optimal weighting matrix.

C.5. Market Size

Recall that our market is defined as a DMA-chain-week and we have 21,833 markets. In other
words we combine weekly sales for stores within the same chain, so long as those chains belong to
the same Nielsen DMA. Our market definition is: the number of people who walk into the store

65We make sure our principal components always span at least 99% of the variance of the initial set of instruments.

Appendix-13



during a particular week (summed over stores within the same chain and DMA).
Since we don’t directly observe the number of consumers to walk into a store, we estimate this

number using two other commonly purchased categories: milk and eggs. We run the following fixed
effects regression:

log qRTEServingsc,t = β1 log qmilkc,t + β2 log qeggsc,t + γc + εct.

We predict the weekly number of RTE Cereal servings purchased as a function of milk sales (in
gallons) and egg sales (in dozens) along with fixed effects at the DMA-Chain level. We don’t
include any time varying fixed effects because those might be correlated with the overall price level
for RTE cereal. Instead we rely on the milk and eggs purchases to capture the time varying traffic
of individual chains. We report the results of those regressions in Table C-3. We find that on its
own 1% increase in milk sales increases the sales of RTE Cereal (measured in servings) by 0.88%
while a 1% increase in egg purchases increases cereal purchases by 0.81%. While not displayed in
the table, chain fixed effects alone explain around 94% of the variation in the cereal sales, while
the addition of milk and egg sales increase the R2 to almost 99% and the within R2 = 0.7742.

log(Servings)

log(milk) 0.886*** 0.535***
(0.0666) (0.0572)

log(eggs) 0.809*** 0.407***
(0.0587) (0.0648)

Observations 21,836 21,833 21,833
R-squared 0.983 0.982 0.987
Chain FE Yes Yes Yes

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table C-3: Predicted Market Size Using Milk and Eggs Sales

We then define our market size as follows, where λ is a constant chosen to match the (average)
outside good share of s0 = 1− 0.276 = 0.723:

M̂c,t = λ ·
(
β̂1 log qmilkc,t + β̂2 log qeggsc,t + γ̂c

)
.

In this process we find a very small number of outliers and drop 249 out of 21,833 observations (1.1%
of the sample by observations, 0.8% by revenue) by trimming the largest and smallest values by the

outside good share. We report the resulting distribution of the inside good share 1− s0ct =
∑
j sjct
Mct

in Figure C-5, which we have standardized around the 27.6% purchase probability. This is a bit
different from the usual approach. Most papers, including Nevo (2001), construct market size using
population demographics for the surrounding area (the population of the DMA, the population of
the zipcode, etc.). That approach generally does not capture the fact that some stores face more
competition than other stores (ie: we often don’t know if there is a major competitor nearby or
not). One disadvantage of our approach is that it can become potentially contaminated if sales
of milk or eggs respond to the price for cereal or if consumers go to the supermarket just to buy
cereal. Even if cereal and milk are complements (or Leontief in breakfast production) as long as
the price of cereal doesn’t causally impact the sales of milk and eggs we should be fine.
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C.6. Demographics and Micro Moments

We construct the distribution of demographics for each DMA-chain-year as follows. We are inter-
ested in estimating the joint distribution of:

f(incit, kidsit|i ∈ DMA-Chainit) = f(incit|kidsit, i ∈ DMA-Chainit) · P(kidsit|i ∈ DMA-Chainit).

First we estimate P(kidsit|i ∈ DMA-Chainit) from a weighted sample of households in the Nielsen
Panelist (HMS) data. We weight each panelist by their annual number of trips to each DMA-chain,
with the idea being that more frequent shoppers at a store receive more weight.66 We then split the
sample into households with children at home (roughly 15-25%) and those without and separately
estimate a parametric lognormal distribution by method of moments. The moments we estimate
are of the form:

P(as ≤ incomeht ≤ as+1).

The first form of micro-moment are covariances between the observed demographics and the
observed characteristics conditional on the purchase of some product. We then take the average of
this market-level covariance across markets:

1

It · T

T∑
t=1

It∑
i=1

wi(dit − dt)(xit − xt)− b.

We construct our estimate of the true covariance b using the Nielsen Panelist data. That is we
compute the covariance between the panelists income and the price per serving (or principal compo-
nent) for the product they purchase. We construct this covariance moment conditional on purchase
(for the set of households purchasing cereal). We construct similar micro moments for the covari-
ance between the indicator for presence of children in the household and the product characteristics
(including price per serving).

We use the panelist data to construct two additional moments, conditional on not purchasing
cereal, we compute the expected value of income and the expected probability of children in the
home.

C.7. Product Recalls

We use a number of product recalls as demand shifting instruments vjt in the notation of the model.
We report a list of recalls in Table C-4. We only use the three Kellogg’s recalls in our data. For
the Malt-O-Meal Puffed Wheat and Puffed Rice Recall and the Post Great Grains Protein Blend
recall we don’t observe any sales after the recall period so it is as if those products are removed
from the choice set. Variation in the choice set enters through x−j,t rather than vjt.

C.8. Demand Estimation

Below is the problem definition in pyBLP.

66We impose a one visit per week maximum in the weighting.
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Date Affected Brands Reason

6/25/10 Frosted Mini-Wheats Metal Shards
10/10/12 Honey Smacks, Froot Loops, Corn Pops, and Apple Jacks GI Issues
2/20/13 Special K Red Berries Glass Fragments

04/04/08 M-O-M Puffed Wheat and Rice* Salmonella
06/10/16 Post Great Grains Protein* Listeria

Table C-4: List of Product Recalls

* denotes products which were permanently withdrawn from the market after recall.

Figure C-6: Demand Estimation Code

>>> problem = pyblp.Problem(

... product_formulations=(

# Linear demand

... pyblp.Formulation('0 + prices+ unemp_branded +v_0+v_1+v_2',

... absorb='C(product_ids)+C(market_ids)'),

... pyblp.Formulation('1+ prices + pca_0 + pca_1+pca_2') # Nonlinear demand

... ),

... agent_formulation=pyblp.Formulation('0+kids+inc'), # Demographics

... product_data=df,

... agent_data=agent_df

... )

>>> print(problem)

Dimensions:

======================================================

T N F I K1 K2 D MD ED

---- ------ --- ------ ---- ---- --- ---- ----

1970 361105 7 563420 5 5 2 18 2

======================================================

Formulations:

=============================================================================

Column Indices: 0 1 2 3 4

----------------------------- ---------- ------------- ----- ----- -----

X1: Linear Characteristics prices unemp_branded v_0 v_1 v_2

X2: Nonlinear Characteristics 1 prices pca_0 pca_1 pca_2

d: Demographics demog_kids demog_inc

=============================================================================

This is the definition of our demand model in pyBLP.
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Table D-5: Full Pairwise Comparisons

Others’ Costs
Profit Max Common

Ownership
Perfect Monopolist

Profit Max - -4.8318 -7.7749 -5.2711
Common Ownership - -8.0656 -5.237
Perfect Competition - -4.0458
Monopolist -

Demographics

Profit Max - -5.5819 -8.7051 -6.7789
Common Ownership - -9.223 -6.6265
Perfect Competition - -4.6365
Monopolist -

BLP Inst.

Profit Max - -5.4286 -8.9758 -5.9158
Common Ownership - -9.1621 -5.8744
Perfect Competition - -4.6767
Monopolist -

Dmd. Opt. Inst.

Profit Max - -5.9627 -10.0654 -6.5933
Common Ownership - -10.4858 -6.5205
Perfect Competition - -5.1268
Monopolist -

Notes: This table reports testing results for pairwise comparisons of different conduct models, as indicated by the row and
column. The panel labels indicate the set of exclusions used in the Step (b) regression. A negative value constitutes evidence
for row model and a positive value constitutes evidence for the column model. The null hypothesis is that they satisfy the
criterion function equally well, and the critical values for rejection at α = 0.5 are –1.96 and 1.96.

D. Testing Appendix

D.1. Additional Pairwise Tests

Here we consider additional pairwise hypothesis tests using our framework. We begin by including
perfect competition and a hypothetical monopolist as two extremal cases, and consider all pairwise
combinations of conduct tests including these, profit maximization, and common ownership.

Results for our four sets of exclusions are presented in Table D-5. To read this table, negative
numbers favor the row-wise conduct model, while positive numbers favor the column-wise conduct
model. The diagonal is undefined, and the lower triangle is symmetric to the upper triangle (by
construction; the test is symmetric). We see that profit maximization is preferred to not only
common ownership, but perfect competition and monopoly pricing as well.

We can break these same results out by firm, as we do in Table D-6. We see that the evidence
against common ownership is somewhat weaker for Kellogg’s, but this is unsurprising because, as
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we saw in Figure 1, they have the smallest common ownership weights (κCO), and so it is relatively
more difficult to distinguish own-profit maximization from common ownership.

D.2. Pakes-Wollmann Regressions

A separate innovation in the conduct testing literature is what we refer to as the “Pakes-Wollmann
regression,” introduced in Pakes (2017).67 The author is interested in whether or not own-profit
maximization is an appropriate model of firm behavior given an estimated demand system. The
idea is to run the following regression:

pjt = hs(xjt,wjt) + λ · ηmjt + ωjt, (6)

and, since markups (ηmjt ) are endogenous, to use BLP instruments to estimate λ. This last point is
the novel insight that we borrow for our testing procedure. Pakes (2017) predicts that, if own-profit
maximization is what firms engage in, we should obtain λ̂ = 1 for markups c, and indeed he does
using data and the demand system from Wollmann (2018). However, this approach is less suited to
comparisons between alternative models. In general, distance of λ̂ from 1 does not correspond to
an economically interpretable measure of the similarity of firm behavior to the candidate model.68

Here we use our four sets of exclusion restrictions to estimate the Pakes-Wollmann regressions.
Recall that for this test, we say that the model is confirmed if λ̂ = 1.

Results are presented in Table D-7. The four sets of exclusion differ substantively in their
implications. Others’ costs are inconclusive; demographic exclusions and BLP instruments are
most consistent with common ownership, and finally the demand optimal instruments cast a vote
for profit maximization.

D.3. Step (a) and Step (b) Regressions

Here we document the intermediate marginal cost and markup difference regressions that make
up Step (a) and Step (b) of our proposed test. While our main results use a random forest
to estimate the supply regression, for expositional purposes we report results here for a simple
linear regression. Estimates are presented, for each conduct hypothesis, in Table D-8. Results are
remarkably consistent across different conduct models, although we observe substantial variation
in the R2 and within-R2, which are lowest for the monopolist conduct model. Reassuringly, almost
all of the input cost variables enter positively (rice enters negatively, but insignificantly). The sales
variable enters negatively, as we would expect, and the recall dummies enter positively.

We report mean-squared error for the fit of the Step (b) regressions in Figure D-7. Here we
compare the random forest approach, our preferred specification, to a linear fit with a third-order
orthogonal polynomial expansion of own and others’ input costs. The random forest performs

67This test is closely related to the “informal” test of Villas-Boas (2007).
68If firms behave heterogeneously, then the estimate λ̂ will represent a weighted average effect, with weights that

depend on the variation induced by the instruments. In this way it is possible to construct examples that will yield
λ̂ close to 1 for a candidate model that may be far from any particular firm’s behavior. Even when firm behavior
is homogenous, however, it is possible to construct examples in which λ̂ = 1 for a false model, and λ̂ is arbitrarily
far from 1 for a true model. For a particularly perverse example, consider the constant fractional markup case. If
we compute markups, at fraction x of marginal costs, to be p · x/(1 + x) and the instruments for p are relevant,
then we will mechanically obtain λ̂ = (1 + x)/x. For example, if x = 0.5, the correct estimate is λ = 3. Sending
the hypothesized x → ∞, we can get arbitrarily close to 1. However, if the model of constant fractional markups is
correct, then BLP instruments should be weak in the first stage. Therefore, we require that the constant fractional
markups model is incorrect to obtain the result that the λ̂→ 1 as the hypothesis x→∞.
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Table D-6: Pairwise Comparisons by Firm

General Mills Kellogg’s

Others’ Costs Profit Max Common
Ownership

Perfect Monopolist Profit Max Common
Ownership

Perfect Monopolist

Profit Max - -2.2732 -1.611 -2.5548 - -1.45 -1.9016 -2.6387
Common Ownership - -0.8248 -2.6282 - -1.8277 -2.7001
Perfect Competition - -1.2465 - -0.9356
Monopolist - -

Demographics

Profit Max - -2.1394 -1.7664 -2.4701 - -1.3899 -2.1431 -2.5216
Common Ownership - -0.9534 -2.5632 - -2.0555 -2.5802
Perfect Competition - -1.1029 - -0.7526
Monopolist - -

BLP Inst.

Profit Max - -2.4684 -1.8368 -2.9054 - -1.641 -2.3678 -3.0363
Common Ownership - -0.8616 -2.9978 - -2.2599 -3.0911
Perfect Competition - -1.4759 - -1.1429
Monopolist - -

Dmd. Opt. Inst.

Profit Max - -2.6369 -2.1915 -3.0621 - -1.8304 -2.6658 -3.2037
Common Ownership - -1.1207 -3.1487 - -2.54 -3.2578
Perfect Competition - -1.5415 - -1.2211
Monopolist - -

Quaker Oats Post

Others’ Costs

Profit Max - -1.749 -2.2883 -2.1783 - -2.1508 -1.9202 -2.4236
Common Ownership - -1.3747 -2.3534 - -1.6392 -2.3983
Perfect - -0.721 - -0.8617
Monopolist - -

Demographics

Profit Max - -1.6486 -2.6564 -2.1565 - -2.0544 -2.1703 -2.3658
Common Ownership - -1.4841 -2.4233 - -1.8503 -2.3596
Perfect - -0.6289 - -0.7302
Monopolist - -

BLP Inst.

Profit Max - -1.9596 -2.6735 -2.5427 - -2.2828 -2.1713 -2.7349
Common Ownership - -1.3429 -2.8117 - -1.7999 -2.7258
Perfect - -1.0085 - -1.0921
Monopolist - -

Dmd. Opt. Inst.

Profit Max - -2.1256 -3.041 -2.7207 - -2.4638 -2.5659 -2.8826
Common Ownership - -1.5703 -2.9736 - -2.1574 -2.8657
Perfect - -1.0371 - -1.0983
Monopolist - -

Notes: This table reports testing results for pairwise comparisons of different conduct models, as indicated by the row and
column. The panel labels indicate the set of exclusions used in the Step (b) regression. A negative value constitutes evidence
for row model and a positive value constitutes evidence for the column model. The null hypothesis is that they satisfy the
criterion function equally well, and the critical values for rejection at α = 0.5 are –1.96 and 1.96.
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Table D-7: Pakes-Wollmann Regression Results

Others’ Costs Demographics BLP Inst. Dmd. Opt. Inst.

Profit Max -0.4233 1.5141 1.3701 1.0028
SE 0.1435 0.4794 0.1766 0.0456
First Stage Fstat 8.7038 9.9748 60.187 482.7362
R-squared 0.2594 0.6647 0.6651 0.644

Common Ownership -0.3104 1.013 0.9633 0.6704
SE 0.0855 0.3864 0.1856 0.0397
First Stage Fstat 13.1769 6.8737 26.9474 285.2434
R-squared 0.3094 0.5968 0.5955 0.5726

Monopolist -0.1223 0.201 0.191 0.1242
SE 0.0268 0.168 0.1295 0.0172
First Stage Fstat 20.9002 1.4312 2.1762 52.1729
R-squared 0.39 0.4462 0.4461 0.4425

Notes: This table reports results for the Pakes-Wollmann regression setup using different exclusion restrictions (indicated by
the column), for different conduct models (indicated by the row). We report the coefficient on the markup, the standard error
below that, and then the first-stage F-statistic and the R2.

substantively better for all but the BLP instruments, and we believe this has to do with the fact
that there are 143 of them.
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Table D-8: Linear Supply Regressions

Profit Max Common Ownership Perfect Monopolist
(1) (2) (3) (4)

Pct. Sales -0.0594∗ -0.0594∗ -0.0740∗ -0.0657∗

(0.0009) (0.0009) (0.0012) (0.0010)
Corn 0.0048∗ 0.0050∗ 0.0050∗ 0.0051∗

(0.0011) (0.0011) (0.0013) (0.0013)
Oat 0.0040∗ 0.0058∗ 0.0049∗ 0.0040∗

(0.0017) (0.0019) (0.0021) (0.0019)
Rice -0.0009 -0.0016 -0.0019 -0.00005

(0.0023) (0.0024) (0.0029) (0.0028)
Sugar 0.0129∗ 0.0127∗ 0.0163∗ 0.0140∗

(0.0023) (0.0024) (0.0032) (0.0026)
Wheat 0.0011 0.0015 0.0026 0.0015

(0.0015) (0.0015) (0.0018) (0.0017)
Recall 1 0.0101∗ 0.0117∗ 0.0123∗ 0.0081∗

(0.0033) (0.0039) (0.0045) (0.0037)
Recall 2 0.0059∗ 0.0043∗ 0.0065∗ 0.0049∗

(0.0021) (0.0021) (0.0030) (0.0023)
Recall 3 0.0041∗ 0.0033 0.0068∗ 0.0029

(0.0020) (0.0019) (0.0025) (0.0023)

Product X X X X
Quarter X X X X
Retailer × DMA X X X X

Observations 1,404,106 1,404,106 1,404,106 1,404,106
R2 0.80179 0.80299 0.82532 0.74929
Within R2 0.34721 0.32784 0.34384 0.23974

Notes: This table reports regressions of marginal costs, given by the column-wise conduct model, on included variables (xjt
and wjt). Standard errors are clustered at the retailer by DMA by year level and observations are weighted by servings volume.
* denotes statistical significance at α = 0.05.
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Figure D-7: Step (b) Mean-Squared Error

(a) Profit Max. vs. CO (b) Profit Max. vs. Monopoly

(c) Profit Max. vs. Perfect Comp. (d) CO vs. Perfect Comp.

(e) CO vs. Monopoly (f) Perfect Comp. vs. Monopoly

Notes: This figure depicts mean-squared error for the Step (b) regressions. The panel name indicates the candidate model pair.
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Supplementary Materials

[Not Intended for Publication]

E. Problems with the MHHI Regression Approach

E.1. Discussion of MHHI-based Approaches to Testing

As summarized above, the literature on common ownership so far has largely relied on MHHI
measures of market concentration; these papers regress market-level prices on HHI and MHHID,
where the coefficient on the latter, if positive and statistically significant, is taken as evidence for
common ownership effects on pricing.

The problem is that symmetric Cournot is a restrictive framework.69 If the world is actu-
ally characterized by product differentiation, as workhorse empirical models in IO typically as-
sume, MHHI-based measures fare particularly poorly. This is because they are functions of market
shares, or quantity. So, any misspecification in demand means that the misspecification bias will be
correlated with quantities, and quantities are, as we know, endogenous to prices. In short, misspec-
ification pursuant to the assumption of symmetric Cournot pricing will introduce a non-classical
measurement error problem.

This problem is generic to HHI and MHHI measures, and has led to the wholesale abandonment
of their use in modern empirical IO. In the next section we discuss these problems in detail,
and offer a numerical example to show how the misspecification bias could yield both positive
and negative correlations between MHHID and price, even when MHHID is “instrumented” with
upstream financial shocks in an attempt to isolate good variation in common ownership incentives.
We also replicate this approach for our own setting, RTE cereal, and estimate a negative coefficient
— a stark and theoretically uninterpretable result which we contend is most easily reconciled not
as a causal relationship, but an expression of the misspecification of the regression.

There are several other reasons we eschew MHHI concentration measures. Many of these are
related to measurement and market definition, and we discuss these in Backus et al. (2021) and
Backus et al. (2019). More importantly for testing, however, MHHI reduces the entire market-level
cooperation matrix to a single index. In doing so, it throws away what we view as the most useful
source of variation: the within-market asymmetries in κCO. For this reason we adopt a structural
approach based on the Bertrand first-order conditions and a series of exclusion restrictions.

E.2. Analytic Example

We begin with two single-product firms playing a static (Betrand) pricing game. Suppose that the
ownership structure of the two firms is as follows, based on Example 1 from Backus et al. (2021):
60 percent of each firm is held by small, undiversified retail investors. 20 percent of each is held,
respectively, by two large, undiversified investors. The final 20 percent of each is held by a single,
diversified investor. This ownership pattern is summarized in Table E-9. From these numbers we
would compute κCO12 = κCO21 = 0.5, and MHHID = 2 · 0.5 · s1(a1) s2(a1).

Despite the ownership structure assumed above, we will maintain the null hypothesis that firms
are profit maximizers, and ignore rival profits. Our question is, under this null hypothesis, can we
still find (spurious) evidence for common ownership using the MHHI approach?

69Symmetry is a necessary condition for interpretation. O’Brien (2017) shows that the mapping from MHHI to
prices is no longer one-to-one when that assumption alone is relaxed; therefore under asymmetric Cournot, a regression
of prices on MHHI is not a “reduced form” of anything.
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Table E-9: Example Ownership Structure

Firm 1 Firm 2
Investor 1 20% -
Investor 2 - 20%
Investor 3 20% 20%

Retail Share 60% 60%

Notes: This table presents investor holdings in two firms for the example of Section E.2.

Demand for both products is linear and given by:

q1 = a1 − α1 · p1 + β1 · p2, and

q2 = a2 − α2 · p2 + β2 · p1.

To further simplify we assume symmetric marginal costs of zero so that mc1 = mc2 = 0. Then,
under the assumption of own-firm profit maximization, best replies are given by:

p1(p2) =
a1 + β1 · p2

2α1
, and

p2(p1) =
a2 + β2 · p1

2α2
.

Which solves to:

pi =
2aiαj + βiaj
4αiαj − βiβj

,

The panel regression: Suppose that across markets there is variation in a1. We set (a2, α1, α2, β1, β2) =
(100, 1, 1, 0.5, 0.5) and parametrize each “market” by a different demand intercept a1 which we vary
over [80, 100] and so that:

q1 = a1 − p1 +
1

2
· p2 for a1 ∈ [80, 100], and

q2 = 100− p2 +
1

2
· p1.

We can calculate p∗1(a1), p∗2(a1) as well as HHI(a1). These are depicted in Figure E-8, where we
plot both prices and ∆MHHI as a function of the demand intercept a1 holding all other quantities
fixed.

For a1 < 100 we find that there is a positive correlation between prices (p1 in blue and p2 in
red) and ∆MHHI, while for a1 > 100 we find that there is a negative correlation between prices
and ∆MHHI. Therefore if the researcher observes sample 1, they will conclude that common
ownership raises prices, and if they observe sample 2, they will find that common ownership lowers
prices. Both results are spurious.70

70The astute observer will note that the expression for MHHID here is log-linear, and so running the regression in
logs would solve the problem. This is not generically true for n > 2 firms.
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Figure E-8: Analytic/Numerical Example: Varying Demand Intercept

Figure E-9: Analytic/Numerical Example: Varying Demand Intercept

The Barclays acquisition instrument: One response to this concern has been to use the
BlackRock-Barclays merger in 2010, and show that results are robust. To this end Azar et al.
(2018a) instrument using the within-market variation alone, i.e. the change in MHHID due to
the merger. This may help address the endogeneity of κCO, but does this differencing exercise
also “clean out” the endogenous variation driven by demand shocks? We continue with the same
parameterization of demand and variation in a1.

An obvious objection would be that variation in a1 may be correlated with exposure to the
BlackRock-Barclays merger. The following argument does not rely on such a claim.

Continuing with our example, suppose that in the ownership structure of Table E-9, the holdings
of Investor 3 are the result of a merger of two symmetric investors, call them “Blackpebble” and
“Pubclays.” Therefore prior to the merger both investors held a 10% stake in both Firm 1 and
Firm 2. This means that prior to the merger, we would compute κCO12 = κCO21 = 1/3. And
so the differenced MHHID (pre-merger minus post-merger) would be equal to: ∆MHHID =
2 · (1/3− 1/2) · s1(a1) s2(a1).

We plot this difference in Figure E-9. What is immediately apparent is that the differencing
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exercise has not removed the endogenity of market shares. If the researcher observes sample 1, then
in markets where there was a small increase in a1, there would be a rise in prices and a decrease
in MHHID. Therefore they would conclude that MHHID and prices are negatively correlated.
Alternatively, if the researcher observes sample 2, then in markets where there was an increase in
a1, there would be a rise in prices and a rise in MHHID, and they would conclude the opposite.
The key insight is that the merger may have affected κCO, but since the MHHID measure interacts
with market shares, the endogeneity problem remains. As a result, both results would again be
spurious.

E.3. Concentration and Modified Concentration Measures in RTE Cereal

Below we plot the Herfindahl-Hirschman Index (HHI) and common-ownership modified HHI Bres-
nahan and Salop (1986) for each of our six DMAs over time. When constructing the concentration
measures, we compute marketshares for each of the four major manufacturers (General Mills, Kel-
logg’s, Quaker (PepsiCo), and Post) making sure to incorporate any brands they acquire during
the sample. For example in September 2014, General Mills acquires Annie’s Homegrown and inde-
pendent organic focused brand. The largest remaining manufacturers include Malt-O-Meal which
produces both its own products and also produces approximately 50% of the store-brand and pri-
vate label products in the United States. We treat the Malt-O-Meal branded products as a distinct
firm. We also treat private label products as a single monolithic firm. This makes sense because
our unit of observation is a DMA-chain, so we assume that prices are being set by the retail chain.

E.4. MHHI Regressions in RTE Cereal

We now perform the same set of price-concentration regressions as the previous literature: Azar
et al. (2018a), Azar et al. (2016), Kennedy et al. (2017), Gramlich and Grundl (2017). We run the
following regression:

log pjmt = γmj + β1HHImt + β2∆MHHImt + β3sjmt + c1t+ c2t
2 + . . .+ εjt.

We report our regression results in Tables E-10 - E-13. We perform these regressions at two
levels of aggregation. The first is at the manufacturer-chain-DMA-quarter level, and the second is
at the manufacturer-DMA-quarter level. While we might want to use higher frequency time series
data, because we only observe 13-F filings once per quarter such variation would be dubious to
use to identify common ownership effects. We use both prices and log prices as our left hand side
variable. When we construct prices we use the PV (t) version of the price index (just total revenue
divided by total servings). We include fixed effects at the dma-level, chain-dma-level, manufacturer
level, and a quadratic time trend. In some specifications we also include a cubic polynomial in HHI,
in case ∆MHHI is picking up nonlinearities in the price-concentration relationship. In all of our
specifications there is a negative and significant relationship between the ∆MHHI and price. This
suggests that additional overlapping ownership is correlated with lower prices rather than higher
prices. We don’t interpret this as causal mechanism. That is, it is inappropriate to conclude that
common ownership leads to lower prices. Instead we offer our numerical example from Section E.2
as an explanation: cross sectional variation in demand provides variation in market shares. When
we interact these market shares with κCOfg we can produce spurious positive or negative correlations
between ∆MHHI and price.

As a final exercise we run a “true reduced form” regression as suggested by O’Brien (2017). Here
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Figure E-10: HHI and MHHI∆ over time by City/DMA
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Table E-10: DMA Level MHHI Regressions p

(1) (2) (3) (4) (5)
Price Price Price Price Price
b/se b/se b/se b/se b/se

hhi servings 0.0123*** 0.0221*** -0.0062*** 0.0021 0.0028*
(0.0029) (0.0031) (0.0019) (0.0015) (0.0016)

mhhid servings -0.0261*** -0.0254*** -0.0351*** -0.0232*** -0.0243***
(0.0034) (0.0034) (0.0020) (0.0016) (0.0016)

DMA FEs No Yes No Yes Yes
Manufacturer FEs No No Yes Yes Yes
Quadratic Time Trend Yes Yes Yes Yes Yes
Cubic HHI No No No No Yes
R2 0.110 0.204 0.831 0.903 0.904
N 1294 1294 1294 1294 1294

* p¡0.10, ** p¡0.05, *** p¡0.01

Table E-11: DMA Level MHHI Regressions log p

(1) (2) (3) (4) (5)
Log(Price) Log(Price) Log(Price) Log(Price) Log(Price)

b/se b/se b/se b/se b/se
hhi servings 0.0396*** 0.0730*** -0.0141* 0.0121* 0.0028*

(0.0115) (0.0123) (0.0074) (0.0062) (0.0016)
mhhid servings -0.1092*** -0.1059*** -0.1388*** -0.0959*** -0.0243***

(0.0134) (0.0136) (0.0075) (0.0064) (0.0016)
DMA FEs No Yes No Yes Yes
Manufacturer FEs No No Yes Yes Yes
Quadratic Time Trend Yes Yes Yes Yes Yes
Cubic HHI No No No No Yes
R2 0.124 0.193 0.846 0.899 0.904
N 1294 1294 1294 1294 1294

* p¡0.10, ** p¡0.05, *** p¡0.01

Table E-12: DMA-Chain Level MHHI Regressions p

(1) (2) (3) (4) (5) (6)
Price Price Price Price Price Price
b/se b/se b/se b/se b/se b/se

hhi servings 0.0130*** 0.0234*** -0.0067*** 0.0021 0.0110*** 0.0105***
(0.0017) (0.0018) (0.0016) (0.0015) (0.0013) (0.0014)

mhhid servings -0.0269*** -0.0265*** -0.0358*** -0.0240*** -0.0181*** -0.0192***
(0.0019) (0.0019) (0.0016) (0.0015) (0.0013) (0.0014)

share servings -0.0026*** -0.0026***
(0.0001) (0.0001)

DMA FEs No Yes No Yes Yes Yes
Retailer FEs No No Yes Yes Yes Yes
Quadratic Time Trend Yes Yes Yes Yes Yes Yes
Parent FEs Yes Yes Yes Yes Yes Yes
Cubic HHI No No No No No Yes
r2 a 0.229 0.295 0.720 0.767 0.820 0.820
N 5173 5173 5173 5173 5173 5173

* p¡0.10, ** p¡0.05, *** p¡0.01
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Table E-13: DMA-Chain Level MHHI Regressions log p

(1) (2) (3) (4) (5) (6)
Log(Price) Log(Price) Log(Price) Log(Price) Log(Price) Log(Price)

b/se b/se b/se b/se b/se b/se
hhi servings 0.0495*** 0.0857*** -0.0105 0.0181*** 0.0578*** 0.0559***

(0.0068) (0.0074) (0.0066) (0.0064) (0.0057) (0.0060)
mhhid servings -0.1216*** -0.1204*** -0.1523*** -0.1097*** -0.0833*** -0.0892***

(0.0079) (0.0081) (0.0065) (0.0064) (0.0056) (0.0059)
share servings -0.0116*** -0.0117***

(0.0003) (0.0003)
DMA FEs No Yes No Yes Yes Yes
Retailer FEs No No Yes Yes Yes Yes
Quadratic Time Trend Yes Yes Yes Yes Yes Yes
Parent FEs Yes Yes Yes Yes Yes Yes
Cubic HHI No No No No No Yes
r2 a 0.267 0.312 0.722 0.754 0.814 0.814
N 5173 5173 5173 5173 5173 5173

* p¡0.10, ** p¡0.05, *** p¡0.01

an observation is a manufacturer-chain-dma-quarter. The variable of interest is κ. Theoretically
it should be the entire matrix K which we summarize by using the arithmetic or geometric mean
of the off-diagonal κCO entries. We report the results of the regression of average prices on these
functions of K in Table E-14. Once again we observe a negative (and significant) relationship
between the common ownership profit weights κ and the prices pjmt. For some specifications the
results are barely (in)significant.

Table E-14: log p on κ regression

Mean Geometric Mean

(1) (2)
Market Share -0.0026∗ -0.0026∗

(0.0001) (0.0001)

κ -0.0771∗

(0.0115)

κ -0.0951∗

(0.0120)
Retailer, Parent, DMA FE X X
Quadratic Time Trend X X
N 5173 5173
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