
Contents lists available at ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier.com/locate/yjbin

Mining fall-related information in clinical notes: Comparison of rule-based
and novel word embedding-based machine learning approaches
Maxim Topaza,b,⁎, Ludmila Murgac, Katherine M. Gaddisd, Margaret V. McDonaldb,
Ofrit Bar-Bacharc, Yoav Goldberge, Kathryn H. Bowlesb,d
a School of Nursing & Data Science Institute, Columbia University, New York, NY, USA
b The Visiting Nurse Service of New York, New York, NY, USA
c Cheryl Spencer Department of Nursing, University of Haifa, Haifa, Israel
d School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
e Department of Computer Science, Bar Ilan University, Tel Aviv, Israel

A R T I C L E I N F O

Keywords:
Natural language processing
Word embedding models
Nursing informatics
Text mining
Falls

A B S T R A C T

Background: Natural language processing (NLP) of health-related data is still an expertise demanding, and re-
source expensive process. We created a novel, open source rapid clinical text mining system called NimbleMiner.
NimbleMiner combines several machine learning techniques (word embedding models and positive only labels
learning) to facilitate the process in which a human rapidly performs text mining of clinical narratives, while
being aided by the machine learning components.
Objective: This manuscript describes the general system architecture and user Interface and presents results of a
case study aimed at classifying fall-related information (including fall history, fall prevention interventions, and
fall risk) in homecare visit notes.
Methods: We extracted a corpus of homecare visit notes (n= 1,149,586) for 89,459 patients from a large US-
based homecare agency. We used a gold standard testing dataset of 750 notes annotated by two human reviewers
to compare the NimbleMiner’s ability to classify documents regarding whether they contain fall-related in-
formation with a previously developed rule-based NLP system.
Results: NimbleMiner outperformed the rule-based system in almost all domains. The overall F- score was 85.8%
compared to 81% by the rule based-system with the best performance for identifying general fall history
(F= 89% vs. F= 85.1% rule-based), followed by fall risk (F=87% vs. F=78.7% rule-based), fall prevention
interventions (F= 88.1% vs. F=78.2% rule-based) and fall within 2 days of the note date (F= 83.1% vs.
F=80.6% rule-based). The rule-based system achieved slightly better performance for fall within 2 weeks of the
note date (F= 81.9% vs. F= 84% rule-based).
Discussion & conclusions: NimbleMiner outperformed other systems aimed at fall information classification, in-
cluding our previously developed rule-based approach. These promising results indicate that clinical text mining
can be implemented without the need for large labeled datasets necessary for other types of machine learning.
This is critical for domains with little NLP developments, like nursing or allied health professions.

1. Background and significance

There is an increasing adoption of health information technology,
such as electronic health records (EHRs), across clinical specialties and
settings. For example, in the United States, 96% of hospitals and a si-
milar percentage of outpatient settings have adopted EHRs for their
everyday clinical care [1]. The amount of health-related data in EHR
systems grows exponentially with the increasing adoption of health
information technology. However, about 80% of all health data is

captured as text (e.g., family history, progress summaries, radiology
reports, etc.), which makes them less usable for healthcare practice and
research needs [2].

The rapidly growing volumes of text data require new approaches
for data processing and analytics. Natural language processing (NLP) is
a field that combines computer science, computational linguistics and
health expertise to develop automated approaches to extract meaning
from clinical narrative data [3]. Traditionally, NLP was implemented by
using either rule-based or machine learning approaches. Rule-based
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NLP systems are often based on pre-defined vocabularies that include
complex clinical logic. For example, a NLP system called “Medical Text
Extraction, Reasoning and Mapping System” (MTERMS) was recently
used to identify wound information in clinical notes [4]. The wound
identification algorithm was based on a customized comprehensive
clinical vocabulary of more than 200 terms describing wounds, and a
set of rules that were used to accurately identify wound size and other
wound characteristics. Creating a comprehensive vocabulary of wound-
related terms was one of the most elaborate parts of the project [4]. The
project team used a combination of literature review, standard ter-
minologies and a diverse range of clinical notes to identify the candi-
date words that were then reviewed by the study experts.

One the other hand, machine learning NLP systems are often based
on the probabilistic statistical approaches. For example, a recent ma-
chine learning NLP project developed several probabilistic algorithms
(including Support Vector Machines and Decision trees) to evaluate the
adequacy of information in radiology orders [5]. Generating training
data for machine learning was one of the most time consuming steps of
this project. To train the algorithms the project used ∼2000 human-
labeled radiology orders that were manually reviewed by two experts in
medicine and informatics.

1.1. Positive-only labels learning

Recently, several new machine learning NLP approaches showed
promising results in extending the current NLP methods. One research
direction is to use positive-only labels learning to decrease time spent
on text labeling [6]. In essence, positive-only labels learning is con-
ducted with positively-labeled and unknown-labeled training set, as
opposed to positively- and negatively-labeled training set in the tradi-
tional supervised machine learning approaches. This assumption is
appealing, since once some positively-labeled examples are identified;
there is no need to label large datasets of negative examples, unlike
many other machine learning approaches. Several studies have shown
so far that a positive-only label learning approach can potentially out-
perform other machine learning approaches [6].

There are some promising examples of using positive-only labels
learning for medical text mining. For instance, Halpern et al. have used
this approach to design a system for active machine learning with a
human expert in the loop [7]. The system helped users create fast
learning NLP classifiers in order to predict different patient phenotypes
based on structured (e.g., patients’ diagnoses and medications) and
unstructured (e.g., discharge notes) clinical data. Halpern's approach
requires clinical experts to specify “anchor variables” defined as key
observations indicating that the patient should have a phenotype of
interest. For example, presence of Atazanavir (Reyataz- an anti-
retroviral medication) on a patient's medication list would indicate that
this patient has high likelihood of having HIV/AIDS [7]. However,
active learning systems, such as one suggested by Halpern et al. [7] still
require significant clinical expertise and labeling efforts from the user,
especially when it comes to identifying “anchor variables” in narrative
clinical notes.

1.2. Word embedding

There are several promising emerging approaches that can poten-
tially streamline labels identification for the user. For example, word
embedding models help create multi-dimensional vector spaces for text
representations, that were shown to boost NLP performance [8]. Word
embedding models associate each word in a given vocabulary with a
multi-dimensional vector, such that “similar” words receive similar
vectors. The similarity of words is determined based on the words that
they co-occur with within a specific context. The word embedding
vectors are “trained” on large quantities of (unlabeled) text, and cap-
ture the word relations within the given text collection. Various algo-
rithms exist for deriving word embeddings from text, among them the

skip-gram with negative sampling model is considered to consistently
produce good results [11]. The quality of the word embeddings im-
proves with the size of the underlying text corpora they are trained on.
Word embedding models are often used as a basis for further NLP tasks,
such as named entity recognition.

Once the word embeddings are computed from text, one can use the
resulting vectors to compute a list of the most similar words to a given
word, where similarity is based on the contexts the words appearing in
the training corpus. Similarity is computed based on the cosine-simi-
larity between vectors [9]. Cosine similarity is commonly used to assess
high-dimensional positive spaces. Cosine similarity ranges between 0
and 1, and words or phrases that appear in similar contexts have a
higher cosine similarity measure. In an emerging body of literature
cosine similarity between word vectors is started to be used to identify
similar words or phrases in the biomedical domain [10].

1.3. Objective

We aimed to combine the latest NLP approaches to overcome some
of the current challenges, and to create a novel rapid clinical text
mining system called NimbleMiner. NimbleMiner combines several
machine learning techniques that facilitate the process in which a
human rapidly labels clinical notes for text classification, while being
aided by the machine-learning components. This paper describes
NimbleMiner's architecture and presents a case study comparing
NimbleMiner's performance with a traditional NLP rule-based system.
NimbleMiner includes a user interface (UI) component implemented in
R, and we offer it as an open access system here: https://github.com/
mtopaz/NimbleMiner.

2. Methods

First, we describe the general architecture of our system
NimbleMiner. Then, we present a case study where we applied
NimbleMiner to mine homecare clinical notes for presence of fall-re-
lated information. Finally, we compare performance between
NimbleMiner and a traditional NLP rule-based system.

2.1. NimbleMiner's architecture

We combined several machine learning techniques to develop
NimbleMiner. In general, NimbleMiner 's workflow is as follows:

• Stage 1- Word embedding model creation: The user selects a large
corpus of clinical notes and chooses word embedding model para-
meters (i.e. word window width and how many similar terms are
presented for every term entered by the user).

• Stage 2- Interactive rapid vocabulary explorer: The user provides a
query term of interest, and the system returns a list of similar terms
it identified as relevant. The user selects and saves the relevant
terms.

• Stage 3- Labels assignment and review: The system uses previously
discovered similar terms to assign labels to clinical notes (while
excluding notes with negations and other irrelevant terms). The user
reviews and updates, when needed, lists of negated similar terms
and other irrelevant similar terms. The user reviews the clinical
notes with assigned labels for accuracy.

• Stage 4- Machine learning: The user chooses a machine learning al-
gorithm to be applied to create a predictive model. The model is
then applied to predict which clinical notes might have the concept
of interest. The user reviews the predicted notes and can go through
stages 2–4 again to add new labels.

In the following paragraphs we provide a rationale and describe the
system's architecture, also presented in Fig. 1. Throughout the system
description, we provide examples of words and phrases indicating
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patient's fall history, in accordance with our case-study. NimbleMiner's
user interface is presented in a series of appendices referred to
throughout the methods section.

Stage 1: Word embedding model creation

To prepare clinical notes for the word embedding model training,
we pre-process the notes to remove punctuation and lower-case all
letters. Additionally, we convert frequently co-occurring words in the
clinical notes into phrases with lengths of up to four words (4-grams)
[11]. This is a common process in NLP where sets of co-occurring words
are combined into phrases. For example, “pt fell yesterday” might be a
common 3-gram. We use a phrase2vec algorithm with default settings
to implement this in NimbleMiner [11]. Next, NimbleMiner's workflow
continues with generating a word embedding vector for all the clinical
notes in the corpus. We use a skip-gram model (specifically the
word2vec implementation) [9,12] to provide NimbleMiner users with
an interactive way to rapidly identify words similar to the concepts they
want to find in the text.

Stage 2- Interactive rapid vocabulary explorer

Fig. 2 describes the interactive rapid vocabulary explorer process
consisting of four steps.

Step 1: The user starts with inputting one or more keywords to the
system, for example “fell” and “fall”(Appendix 2). The system suggests
the most similar terms that appear in the same context (Appendix 3), for
example “tripped”, “fell down”, “had fallen”, etc. In our approach,
potential similar terms are identified automatically based on the cosine
similarity [9]. Terms are sorted based on the largest cosine similarity
and a list of 50 similar terms for each target word is generated (50

words are the default setting and it can be changed).
In our approach, we refer to the similar terms as “simclins” (SIMilar

CLINical terms). Similarly to the definition of a concept called “anchor”
suggested by Halpern et al. [7] we define simclins as “words or phrases
that have high positive predictive value in identifying the concept of
interest”. In other words, if a simclin is present, then the patient should
almost always have the condition or a problem we are aiming to find.
For example, phrases like “pt collapsed” or “she fell down” are con-
sidered simclins indicating the presence of fall history (Appendix 3).

Steps 2–3: NimbleMiner suggests potentially similar terms and the
user selects simclins. We ask the user to choose only definite synonyms
(simclins) from the list of similar terms. For each simclin chosen by the
user, the system presents the user with random sentences including this
specific simclin. This is done in order to exclude similar but not definite
synonyms that would generate false positive matches. For example, one
of the frequent similar words to falls is “hit” referring to hitting a head
or a wall as a result of fall. However, “hit” is not a simclin since looking
for sentences including this word would identify many non-fall-related
cases, such as “… the door hits the tiles and prevents pt [patient] to
enter the kitchen…”. For each chosen simclin, NimbleMiner presents
users with another list of 50 terms (while removing duplicates identi-
fied in the previous steps) and asks to iteratively choose new simclins
until the system cannot suggest any more relevant similar terms.

Step 4: Steps 2–3 are repeated until (1) the user cannot identify any
additional simclins based on expertise or literature, and (2) the user
finished reviewing all system suggested potential new similar terms.
The process of simclin discovery stops at this point.

In sum, interactive rapid vocabulary explorer allows users to create
large vocabularies of simclins in a very short time. The output of this
step includes a list of simclins reviewed by the user.

Fig. 1. NimbleMiner system architecture.
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Stage 3- Labels assignment and review

Next, NimbleMiner follows the positive-only labels learning frame-
work [6] to prepare the data for the machine learning stage. In practice,
NimbleMiner uses simclins to identify and label all the clinical notes
where the phenomenon of interest is described. Regular expressions are
applied to identify vocabulary terms in the notes, labeling notes as
“positive” when the term is present, and “unknown” when the term is
absent. For example, notes that include terms like “fallen down”, or “pt
collapsed” will be marked as positively labeled notes. Notes that con-
tain only negated simclins are also labeled as “unknown” using a vo-
cabulary of negations extracted from Negex (e.g., notes with expres-
sions like “no falls”). Users are presented with frequencies of each
specific negation in the clinical notes. Negated simclins identified in the
notes can be edited, added or removed by the user (Appendix 4).

In addition, sometimes simclins are included in other irrelevant si-
milar terms that should be removed from the positively-labeled notes.
For example, simclins related to fall history like “fall” or “fell” are
sometimes included in a larger irrelevant term, like “fall risk”, “fall
prevention intervention”, or “fell off”. These irrelevant similar terms
are identified by the user during the vocabulary discovery phase (these
terms were not selected as simclins and discarded by the user in the
“Simclin explorer” tab) and are presented by the NimbleMiner for re-
view (Appendix 5). Finally, the user can review information and ex-
amples of all the clinical notes with simclins, negations and irrelevant
terms. NimbleMiner also offers a summary statistics, including fre-
quencies and percentages of each type of notes (Appendix 6). The
output of this stage is a list of clinical notes labeled as either positive or
unknown.

Stage 4- Machine learning

To create a full training set for machine learning, NimbleMiner
extracts all positively-labeled clinical notes and an additional randomly
selected corpus of clinical notes without the positive labels (labeled as
“unknown”). The default size of the unknown-labeled cases is set to be
equal to the size of the positively-labeled cases. Both positive- and
unknown-labeled corpora are then combined to create a training set
that is processed by a machine learning classification algorithm of the
user's choice (Appendix 7). Our preliminary experiments showed that
the Random Forest algorithm outperforms other approaches (e.g., J48
Decision trees, Support Vector Machines) and we use this algorithm by
default. The output of this stage is a trained machine learning model
that can be used to predict wether a clinical note has a phenomenon of
interest, for example information about patient's fall history.

Stage 5- Results review and further system refinement

This step is inspired by machine learning approaches where users
interact with machines to implement rapid machine learning [13,14].
Based on the resulting machine learning model, the system generates
predictions for the remaining (“unknown”) notes and the user can re-
view the notes predicted as “positive” to identify additional simclins
and then specify them using the interactive rapid vocabulary explorer
(stage 2). New positively-labeled notes (if any) are added to the pre-
vious positively-labeled notes and the system goes through another
machine learning step with an updated positively-labeled corpus. Users
can decide to go through vocabulary explorer and machine learning
phases until saturation is achieved (i.e., no additional training is
needed, as perceived by the user). When learning is completed, the user
can export the positively predicted/labeled cases for further research or
clinical purposes.

2.2. Case study

To test our proposed methods, we used a specific case-study aimed
at classifying clinical notes regarding whether they contain fall-related
information, namely fall history, fall prevention interventions, and fall
risk, from narrative homecare notes. We defined “fall” as “An event
which results in an individual coming to rest inadvertently on the
ground or lower object” [15]; “fall prevention interventions” were de-
fined as “instituting special precautions with the patient at risk for in-
jury from falling” [16]. “Fall risk” in this project was defined as “pre-
sence of any balance issues, or presence of a nursing diagnosis of fall
risk”. We chose to divide fall history into three time-frames: (1) general
fall history; (2) falls within two weeks; and (3) falls within two days of
the note’s date, in an attempt to estimate long-term and short-term fall
incidence, ideally to determine whether falls happened within the
current homecare episode or before that (an average homecare episode
lasts about 30 days).

In our prior work, we built a traditional rule-based system to
identify fall-related information. For the purposes of this case study, we
compared the two systems (rule-based system and NimbleMiner) in
terms of performance and time spent in implementing each system. Of
note, both systems were co-developed and implemented by one re-
search team.

2.2.1. Study data
This study used a large corpus of homecare visit notes

(n= 1,149,586) for 89,459 patients treated by clinicians of the largest
homecare agency in the United States (located in New York, NY) during

Fig. 2. Interactive rapid vocabulary explorer process.
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2015. Notes were completed by visiting homecare clinicians (e.g.,
nurses, physical/occupational therapists, social workers, etc.) using the
agency's EHR after a patient visit. This study examined the narrative
part of the homecare visit description. Visit notes ranged from lengthy
admission notes (often written by a registered nurse) to shorter progress
notes (e.g., physical therapy progress notes). The average note length
was about 150 words.

2.2.2. Rule-based system development
To develop the rule-based system for this study, we followed a

traditional information extraction methodology as follows [17]:

• Literature review: First, we conducted a thorough literature search in
research databases (e.g., PubMed, Google Scholar, the Cumulative
Index to Nursing and Allied Health Literature [CINAHL], etc.) to
identify studies of fall incidence, fall prevention, and studies of text
processing focused on falls. This helped us to compile a vocabulary
of fall-related terms and expressions. We also explored standardized
health terminologies (e.g., the Systematized Nomenclature of
Medicine - Clinical Terms [SNOMED-CT], the International
Statistical Classification of Diseases and Related Health Problems
[ICD], the International Classification for Nursing Practice [ ICNP®],
etc.) to identify fall-related semantically similar expressions. For
example, the class “fall” in SNOMED-CT has 61 mappings to similar
classes in other terminologies, including “Unspecified fall”,
“Multiple falls”, “Falling down”, etc. Finally, we used our team's
expertise in nursing and homecare to identify additional words and
expressions related to falls.

• Notes review: We extracted a random sample of clinical notes for 100
random patients from the study corpus. Overall, there were 1704
notes. Each note was reviewed by the study team (MT and KMG) and
annotated for presence of relevant fall-related information, as de-
scribed above. This step helped us understand the vocabulary used
by the clinicians to document fall-related information. We dis-
covered 29 mentions of falls (at different time periods, 16 unique
patients), 52 instances of fall prevention interventions (30 unique
patients) and 22 mentions of fall risk (18 unique patients). Overall,
we found fall-related information in 75 clinical notes, which con-
stituted less than 5% of the notes sample (75 out of 1704 notes).

• Compiling a vocabulary and building regular expressions for fall in-
formation extraction: Based on the previous steps, we then compiled
a comprehensive vocabulary of fall-related terms and expressions
and their possible lexical variations, including potential common
misspellings (e.g., “fel” or “has fellen”), abbreviations (e.g., “falls
prev prog” or “hx [history] of falls”). We iteratively used the vo-
cabulary to create a list of regular expressions to capture fall-related
information in the notes. For example, a regular expression “h/
?-?o?x?\\s?o?f?\\s?fall[s]?” would capture all instances indicating
either “ho”,“hx”,“h/x” of “fall(s)”. We also used a negations voca-
bulary from an open source negation module (Negex) to remove
negated fall instances [18], for example “denies h/x of falls” or
“declines fall prevention training”. To maximize system accuracy,
we implemented several iterations of regular expression refinement
and testing on randomly chosen batches of notes (5 batches of 100
patients) until system performance was deemed acceptable with low
false positive/negative rates.

2.2.3. NimbleMiner's specifications
We use a skip-gram model implementation called word2vec and

phrase2vec in R statistical package [11,12]. The model was trained on
the full corpus of clinical notes. Parameters of the word embedding
model were held constant based on parameters suggested in other
studies of word embedding [19]. Specifically, we used a model with
window width size= 10, vector dimension= 100, minimum word
count= 5, negative sample size= 5 and sub-sampling= 1e−3. For
each simclin, the user was presented with 50 potentially similar terms

based on the cosine distance. At the machine learning stage, we first
pre-processed all clinical notes using the following routine: we low-
ercased all the letters, removed punctuation, removed common English
stop words, and removed numbers. We then created a document-term
matrix representing each clinical note in the sample. Further, we con-
structed the training set using all positively labeled clinical notes and an
equal size corpus of randomly selected unknown notes. The training set
excluded the gold standard testing set described in the next section. We
calculated 95% confidence intervals for system’s performance metrics
using bootstrapping approach [20]. To accomplish that, we drawn with
replacement 100 random samples, each including a random 80% of the
training set data, and trained a Random Forest model based on each
sample. We then calculated performance metrics (precision, recall and
f-measure) for each sample on the test set. The Random Forest algo-
rithm was iteratively trained on the 100 training sets with default set-
tings (number of iterations= 100, minimum number of instances= 1,
minimum variance for split= 1e−3, depth=unlimited).

2.2.4. Systems evaluation
To compare the two approaches implemented in this study (rule-

based system vs. NimbleMiner), we created a gold standard human
annotated testing set of 750 clinical notes. Since fall mentions are rare,
we created a maximum fall information likelihood sample of notes with
fall information based on the fall history indicator in the structured data
(this indicator was not available for all the patients) and fall problem
documented by the clinicians on the patients’ problem lists. Each note
was annotated by two reviewers who are experts in nursing and health
informatics, for a presence of fall information, including fall history, fall
prevention interventions, and fall risk. Both reviewers achieved high
interrater reliability on the reviewed notes (Kappa statistics= .84 in-
dicating substantial agreement) [21]. Inter-rater agreement was cal-
culated on the note level. Full agreement was achieved on all assigned
categories in the gold standard testing set. Both of the systems were
applied on the testing set and we calculated precision (defined as the
number of true positives out of the total number of predicted positives),
recall (defined as the number of true positives out of actual number of
positives) and f-score (weighted harmonic mean of the precision and
recall) for both approaches. We also calculated the overlap between the
regular expressions and simclins lists for each fall-related domain. The
degree of overlap was calculated by applying regular expressions on the
simclins list and then counting how many simclins were identified as
positive matches.

3. Results

3.1. Word embedding-based interactive vocabulary explorer results

Overall, our approach resulted in discovering an extensive lexicon
of terms (simclins) related to patient falls (Table 1). For example, we
found 83 different simclins referring to fall history. These fall history
simclins included misspellings (e.g. “felll”) and lexical variants of fall-
related terms (e.g., “tipped over” or “fallen backwards”). Larger lex-
icons of simclins were discovered for fall prevention interventions
(n= 234) and fall risk (n= 233). Since only few simclins were dis-
covered for fall history within 2 days/2 weeks, we identified a subset of
temporal simclins referring to the two time periods. Specifically, we
found 89 simclins referring to 2 days’ time-period (e.g., “1h ago”,
“earlier this morning”, “this pm”, “yesterday”, etc.) and 188 simclins
referring to 2 weeks’ time-period (e.g., “last week”, “last Fri”, “5d ago”,
“1 wk ago”, etc.). We combined fall history simclins with temporal
simclins to produce an extensive list of expressions referring to a fall
within a certain time period (e.g., “fall this pm”, “collapsed earlier this
morning”, “fallen backwards 1 wk ago”, etc.). We manually reviewed
the resulting lists of simclins and excluded unlikely terms, which re-
sulted in 612 simclins for falls within 2 days and 783 simclins for falls
within 2weeks.
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We also calculated the degree of overlap between simclins and
regular expressions. Regular expressions matched between 29% and
52.5% of simclins (Table 1). It took about 6 h (1.5–2 h for each fall-
related category) to specify fall-related vocabularies using Nim-
bleMiner.

3.2. Systems performance evaluation

Overall, the gold standard testing set (n=750 clinical notes) con-
tained 71 notes with fall history (including 41 notes with falls within
two weeks and 20 notes with falls within two days of the note’s date),
186 notes with fall prevention interventions, and 63 notes with fall risk
indications. Table 2 presents the results of the system performances on
the testing set. Overall, the rule-based system outperformed Nim-
bleMiner in all domains in terms of precision. On the other hand,
NimbleMiner outperformed the rule-based system in terms of recall and
almost all F-measures (except for falls within 2 weeks). The overall
micro averaged F-measure for NimbleMiner was 85.8% compared to
81% by the rule-based system.

4. Discussion

This study compared two approaches aimed at identifying fall-re-
lated information in narrative homecare notes. The first approach was
creating a traditional rule-based system for fall information identifica-
tion. The rule-based system showed similar or better performance
compared to other studies developing NLP tools for fall information
extraction [22,23]. For example, a study that examined fall history in
inpatient notes developed a rule-based NLP algorithm with similar
precision (97%) but lower recall (44%) [24]. Our rule-based system
proves that it is possible to use homecare clinical notes to extract not
just the fall history as was done previously, but also fall prevention
intervention and fall risk information.

Our second NLP approach introduces a novel word embedding-
based rapid vocabulary discovery. In other studies word embedding
models have been used to automatically generate features for deep
learning methods [25], or to perform information extraction from
biomedical literature, such as PubMed abstracts [10]. In another recent
study word embedding models have been applied to identify similar
terms in PubMed abstracts and articles [26]. In the context of health
NLP, our study introduces a framework where the human expert is
interacting with word embedding models (skip-gram models) to rapidly
evaluate and create lexicons of similar terms. Our results suggest that
this approach is feasible and promising when applied to real clinical
notes.

In NimbleMiner, we refer to similar terms as simclins. Our approach
enabled rapid discovery of lexically diverse simclins, including ab-
breviations, misspellings, and other multi-phrase expressions. Rapid
lexicon discovery is very promising, especially for health domains
where large vocabularies of similar terms rarely exist (like nursing or
allied health professions). In addition, discovered abbreviations and
lexical variants that belong to a specific clinical domain or setting, can
be used to augment existing vocabularies of similar terms (like stan-
dardized health terminologies). Our example of discovering temporal
terms (indicators of two time periods) also suggests the possibility of
combining different simclins to enrich vocabularies. For example, we
were able to rapidly generate large lists of terms indicating falls within
two days and two weeks using a combination of fall related and tem-
poral simclins.

Another product of our approach is that during the process of vo-
cabulary discovery, large lists of similar but irrelevant terms are dis-
covered. These terms might look like simclins but they will produce
false positive matches when identified in the text. For example, simclins
related to fall history like “fall” or “fell” are sometimes part of a larger
irrelevant term like “fall risk”, “fall prevention intervention”, “fell off”,
etc. These irrelevant similar terms are identified by the user during the

Table 1
Word embedding-based interactive vocabulary explorer results.

Domain N unique
simclins*

Simclin* examples Percent overlap between simclins and regular expressions
(n of simclins matched by regular expressions)**

General fall history 83 “fell”, “felll”, “collapsed”, “slipped”, “tipped over”, “fallen
backwards”

39.7% (n=33)

Fall history within 2 weeks (of
note's date)

783*** “collapsed this week”, “tipped over last Monday ”, “slipped
a 2d ago”

30.1% (n=236)

Fall history within 2 days (of note's
date)

612*** “collapsed this am”, “tipped over 1h ago”, “slipped earlier
today”

29% (n=178)

Fall prevention interventions 234 “fall precautions”, “falls prevention mgt [management]”,
“gait training”, “balance trg [training]”

52.5% (n=123)

Fall risk 233 “high fall risk”, “balance deficits”, “difficulty walking”
“generalized muscle weakness”, “feeling unsteady”

45% (n=105)

* Simclins (SIMilar CLINical terms) are defined as words or phrases that have high positive predictive value in identifying concepts in the domain of interest.
** Overlap was calculated as a percentage of simclins that were matched with relevant regular expressions.
*** First, we identified a subset of temporal simclins referring to the two time periods of 2 days/2weeks (e.g., “1h ago”, “earlier this morning”, “this pm”, etc.).

Fall history simclins were combined with temporal simclins to produce an extensive list of expressions referring to a fall within a certain time period (e.g., “fall this
pm”, “ collapsed earlier this morning”).

Table 2
Systems' performance on the testing set.

Recall (95% CI) Precision (95%
CI)

F-measure (95%
CI)

General fall history
Rule-based system 78.8 96.6 85.1
NimbleMiner* 90.1 (88.1–91.3) 88.4 (86.5–89) 89 (87.9–90)

Fall history within 2 weeks (of note's date)
Rule-based system 76.2 99.3 84
NimbleMiner* 88.9 (86.5–90.1) 76.7 (73.2–78.1) 81.9 (79.9–84.3)

Fall history within 2 days (of note's date)
Rule-based system 72.5 99.2 80.6
NimbleMiner* 82.7 (81.1–84.2) 83.2 (80.1–84.6) 83.1 (81.4–84.2)

Fall prevention interventions
Rule-based system 74.2 89.7 78.3
NimbleMiner* 86.1 (84–88.1) 89 (87.7–91.2) 88.1 (85.9–89.1)

Fall risk
Rule-based system 72 94.2 78.8
NimbleMiner* 93.1 (90.1–94) 82.9 (81.9–85.1) 87 (85.7–88.9)

Bold value represents highest metrics.
* For NimbleMiner, we report averaged performance metrics over 100

bootstrapping iterations with 80% of all training set data randomly sampled at
each iteration. 95% confidence intervals are reported in parentheses.
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vocabulary discovery phase and their discovery is critical for accurate
labeling of positive cases.

Regular expressions developed for the rule-based system matched
between 29 and 52.5% of simclins. On the one hand, this suggests that
simclin vocabulary was more elaborate and detailed, presenting new
expressions and lexical variations, such as misspellings. In terms of
positive-label only machine learning applied in this study, these lexical
variants provided a useful way to capture additional clinical notes used
for machine learning. However, many of the lexical variants discovered
by the NimbleMiner might have been words or expressions with low
frequency, for example uncommon misspellings. Further work is
needed to create a detailed comparison between simclins and standard
terminologies or other lists of similar terms or expressions.

Rule-based NLP systems are often crafted to fit a certain domain and
type of clinical language. This was also the case in our study: our rule-
based system achieved better precision than NimbleMiner in all do-
mains of fall-related information in this study. However, NimbleMiner
achieved higher recall in all domains with decent precision (> 73.2%),
which resulted in overall high F-measure. For some NLP tasks, high
recall is more important than high precision. NLP systems with low
recall may miss cases, and the only way to find them is to read all the
clinical notes in the corpus. On the other hand, while an NLP system
with low precision may identify noisy positive cases; human reviewers
only need to review a subsample of the cases the system flagged as
positive to filter out the irrelevant cases. In the case of NimbleMiner,
our goal was to achieve a higher recall to identify most of the poten-
tially relevant cases and this is the result we achieved.

4.1. Limitations

This study has several important limitations. First, NimbleMiner
was evaluated on one type of clinical notes and in one domain and it
needs to be tested further to understand the system’s generalizability.
The use of NimbleMiner might be restricted to classifying documents
based on phrases with high positive predictive value, such as fall-re-
lated phrases, and further work is needed to explore the generalizability
of our approach. We only used one machine learning algorithm
(Random Forest) and including other algorithms in further work can
produce different results. In addition, both the rule-based system and
NimbleMiner approaches were implemented by the same study team,
which limits the validity of our results. Further work is needed to un-
derstand the desired properties of word embedding models (e.g., op-
timal word window width) in order to identify simclins in the most
effective and efficient manner. Also, further research can explore the
use of simclins as regular expressions for text annotation directly
without machine learning, similarly to the rule-based system. We will
also explore how to best apply user reviewed notes (especially those
that were identified as negative notes) to improve our machine learning
performance.

5. Conclusions

This paper aims to combine recent NLP approaches to overcome
some of the current NLP challenges and create a novel rapid clinical text
mining system called NimbleMiner. In this study, using NimbleMiner
outperformed our previously developed rule-based system (in terms of
F-measure and significant time savings) in identifying fall-related in-
formation in clinical notes. We believe that our approach, and an open-
access system offered here, are of high interest to health researchers
and clinical practitioners, especially for domains with little NLP de-
velopments, like nursing or allied health professions. Importantly, our
promising results indicate that clinical text mining can be implemented
without the need of large labeled datasets typically necessary for

machine learning. Finally, our system can be potentially used by almost
any clinician without special training in health informatics, which is a
limitation of many existing NLP systems.
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