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Abstract. An implementation of a lattice-based approach for computing the

topological skyrmion charge is provided for the open source micromagnetics code

mumax3. Its accuracy with respect to an existing method based on finite difference

derivatives is compared for three different test cases. The lattice-based approach

is found to be more robust for finite-temperature dynamics and for nucleation and

annihilation processes in extended systems.
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Figure 1. (a) Configuration of a magnetic skyrmion at zero temperature, where the

colour code indicates the value of mz. (b) Projection of m(r) in (a) onto the unit

sphere. The view is from the −z axis toward +z. (c) Example of disordered m

occurring at finite temperatures. (d) Projection of m(r) in (c) onto the unit sphere.

1. Introduction

The topological charge or skyrmion number associated with an O(3) field, ‖m(r)‖ = 1,

is given by

Q =
1

4π

∫
d2x m ·

(
∂m

∂x
× ∂m

∂y

)
. (1)

This quantity is used to characterize the topology of spin textures such as vortices

and skyrmions in two-dimensional systems (see, e.g., Ref. [1]), where m represents the

orientation of the magnetic moments. When m(r) is projected onto the unit sphere,

Q measures the number of times the moments wrap around the surface of this sphere.

For vortices and merons, Q = ±1/2, while for skyrmions, Q = ±1. Higher-order half-

and full-integer charges are also possible. In numerical micromagnetism, a common

approach involves discretising m(r, t) using the method of finite differences [2–4]. The

underlying assumption is that cell-to-cell variations in m are sufficiently small such that

the exchange energy, approximated to lowest order as (∇m)2, remains meaningful.

Issues can arise under certain conditions, such as in the nucleation and annihilation

of vortices and skyrmions, or in the stochastic dynamics with random fields, where

large spatial variations in m can occur which reduce the accuracy of the finite-difference

approximations of Eq. 1 and result in nonphysical values of Q. Consider an isolated

skyrmion. Fig. 1(a) shows the equilibrium profile computed with the mumax3 code [4]

and the parameters in Ref. [5]. The corresponding map of m onto the unit sphere is
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given in Fig. 1(b), where dots represent the orientations of m and the lines indicate

bonds between nearest-neighbour finite difference cells [6,7]. The entirety of the sphere

is covered by this mesh, which remains intact everywhere and reflects the fact that the

spin texture in Fig. 1(a) possesses a nontrivial topology. Eq. (1) gives Q = −0.99978290

for this configuration, which is acceptably close to the theoretical value of Q = −1.

Consider now the effect of disorder, e.g., due to thermal fluctuations, where each

moment is deviated away randomly from its equilibrium orientation in Fig. 1(a), as

shown in Fig. 1(c). The corresponding map onto the unit sphere for this disordered

case is presented in Fig. 1(d). While the mesh appears distorted, it retains the same

topology as the case in Fig. 1(d) and therefore possess an identical charge. However

Eq. (1) gives Q = −0.97115153 in this case, which reflects a loss in accuracy of the finite

difference derivatives.

In this note, we discuss a lattice-based approach for computing Q that does not

require rely on spatial derivatives. We discuss two different implementations of this

scheme for finite difference micromagnetics and provide three examples against which

these implementations are tested.

2. Lattice-based implementation for finite difference schemes

We follow the approach of Berg and Lüscher [8], which has been employed in atomistic

spin dynamics and Monte Carlo simulations [9, 10]. Consider the four moments in

Fig. 2(a), each of which represent the average magnetization orientation in a finite

difference cell. We treat these moments as lattice spins and set aside all aspects related

to the interactions between them. Fig. 2(a) represents one unit cell of this lattice. The

topological charge is given by the sum over the ensemble of elementary signed triangles

qijk on the unit sphere,

Q =
1

4π

∑
〈ijk〉

qijk, (2)

where

tan
(qijk

2

)
=

mi · (mj ×mk)

1 + mi ·mj + mi ·mk + mj ·mk

, (3)

which is invariant under a cyclic permutation of the indices ijk. Fig. 2(a) shows two of

such signed triangles that make up the unit cell, q124 (grey) and q234 (white). Fig. 2(b)

represents another definition that is equally valid. 〈ijk〉 in Eq. (2) indicates that the

summation is restricted to unique triangles as shown in Figs. 2(a) or 2(b).

Fig. 2(c) illustrates a variation of this scheme that allows a local charge density

analogous to Eq. 1 to be defined at a site (i, j), which is commensurate with the

coordinates of the finite difference cells in which mi,j is defined. The method involves

averaging over the two unit cells comprising the four triangles spanned by (i, j) with

its nearest-neighbour spins, (i+ 1, j), (i, j + 1), (i− 1, j), and (i, j − 1). This approach

uses both of the conventions in Figs. 2(a) and 2(b), and takes the average of the two,
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Figure 2. Lattice scheme for computing the topological charge. (a) Two signed

triangles, q124 and q234, make up the unit cell. (b) Alternative definition of the signed

triangles. (c) Scheme for the local charge density at site (i, j) by averaging over the

two unit cells spanned by the signed triangles constructed with the nearest neighbours.

(d) Scheme for an arbitrary finite-size geometry.

which works best in systems with periodic boundary conditions in which all unit cells are

accounted for exactly once. We provide an implementation of this method for mumax3

through the extension ext topologicalchargelattice [11].

For finite-sized systems, the method in Fig. 2(c) does not account for the local

charge density correctly at boundary edges. The double-counting in the averaging

used in Fig. 2(c), which ensures that all signed triangles are accounted for once, is

not operative for boundary cells as illustrated in Fig. 2(d). At curved edges only one

of the definitions, Fig. 2(a) or Fig. 2(b), produces the necessary orientation to cover

the three spins that comprise the boundary, e.g., the blue triangles in the top left and

bottom right of Fig. 2(d). It is not possible here to provide a useful definition of the

local charge density that is commensurate with the finite difference cell coordinates

(i, j). Nevertheless, the total Q can be computed accurately by summing over the

signed triangles in Fig. 2(d) with Eq. (2). We provide this for mumax3 through the

extension ext topologicalchargefinitelattice [11].

3. Simulation examples with the lattice-based approach

3.1. Isolated skyrmion at finite temperatures with periodic boundary conditions

Consider an isolated ferromagnetic skyrmion in a 200 × 200 × 0.6 nm film, discretised

with 256× 256× 1 finite difference cells, with periodic boundary conditions in the film

plane. We use an exchange constant of A = 16 pJ/m, a saturation magnetisation of

Ms = 1.1 MA/m, a perpendicular magnetic anisotropy constant of Ku = 0.54 J/m3,
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Figure 3. Comparison of Q(t) computed with Eq. (1) (‘derivative’) and with Eqs. (2)

and (3) (‘lattice’) at different temperatures: (a) 100 K, (b) 200 K, (c) 300 K, and (d)

400 K. The right inset shows the histogram of the 2× 104 points for Q obtained with

Eq. (1).

an interfacial Dzyaloshinskii-Moriya interaction (DMI) constant of D = 2.7 mJ/m2,

and a Gilbert damping of α = 0.3. Dipolar interactions are neglected for simplicity.

The evolution of Q(t) over 100 ns is presented in Fig. 3 for four different temperatures,

where an adaptive time-step integration method is used to solve the stochastic Landau-

Lifshitz equation [12]. Q is computed at 5 ps intervals using finite difference derivatives

[Eq. (1)] as implemented by the existing ext topologicalcharge extension in mumax3,

and with the lattice-based implementation in ext topologicalchargelattice. Large

fluctuations are seen in the Q(t) computed with finite difference derivatives, whose

distribution spreads as the temperature increases as shown by the histograms in

Fig. 3. Moreover the time-averaged Q obtained, which coincides with the peaks in the

distribution function P (Q), does not coincide with the expected value of −1. On the

other hand the lattice-based approach gives a near-constant value of Q over the range of

temperatures and times simulated, where fluctuations (not visible) are mainly related to

the limits in numerical precision (e.g., the first five points computed for T = 400 K are

Q = −1.0000001,−0.9999998,−1.0000002,−0.9999998, and −0.99999994). Deviations
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from Q = −1 can be detected at 400 K with the lattice-based approach, where transient

−1/2 and −1 states are also seen in Fig. 3. These represent thermally-driven nucleation

and annihilation of meron and skyrmion states, respectively.

3.2. Soliton pair generation in a ferromagnetic track

We turn our attention to nucleation of skyrmion-antiskyrmion pairs due to spin-transfer

torques [13, 14]. The geometry comprises a 1000 × 125 × 0.6 nm film with the same

magnetic parameters as in Sec. 3.1, except for D = 0.1 mJ/m2 and α = 0.05. A

nucleation zone is defined by a 25-nm diameter circular region of the track, in which the

uniaxial anisotropy is oriented along y instead with Ku = 0.5 MJ/m3. A conventional

current flows along −x with a density of 25 TA/m2 and a spin polarisation of P = 1,

with nonadiabatic terms being neglected. The spin-transfer torques, combined with the

nonuniform effective fields seen at the nucleation zone, result in skyrmion-antiskyrmion

pairs being shed from this site, which then undergo Kelvin motion and propagate along

the x direction before separating and annihilating.

Figure 4 presents Q(t) and snapshots of the micromagnetic state. Four different

cell sizes are considered to test the relative accuracy of Eq. (1) with respect to Eqs. (2)

and (3). For the smallest [Fig. 4(a)], there is good agreement between the two methods

where only a handful of points with noninteger Q are obtained with Eq. (1), which occur

at the transitions involving the nucleation and annihilation of (anti)skyrmions. As the

cell size is increased [Figs. 4(b)-(d)], a greater number of noninteger Q is obtained with

Eq. (1), with smooth variations observed in Figs. 4(c) and 4(d). Meanwhile, the lattice-

based approach provides clear plateaus in Q close to integer values for all cases, which

suggests that the smooth variations in noninteger Q are related to the loss in accuracy

of the finite difference derivatives. The nucleation events differ between the four cases

because the circular nucleation zone is discretised differently. Fig. 4(e) shows snapshots

of the micromagnetic state at different instances where nucleation, Kelvin motion of

skyrmion-antiskyrmion pairs, and (anti)skyrmion annihilation can be seen.

3.3. Isolated skyrmion in confined structures at finite temperatures

In systems with DMI, boundary edges result in a tilt in the background magnetization

away from the z-axis, even in a nominally uniformly-magnetized state, as a result

of chiral boundary conditions [15, 16]. The tilt orientation is determined by the

sign of D and the resulting Q can take on noninteger values. We consider a

disc, 200 nm in diameter and 0.6 nm in thickness, which is discretised with

256 × 256 × 1 finite difference cells (all other magnetic parameters are identical

to those in Sec. 3.1). A disc with an isolated skyrmion at T = 0 K is found

to give Q of −0.9304853 using ext topologicalcharge and −0.9468352 using

ext topologicalchargefinitelattice. Deviations from Q = −1 represent the

contribution from the edge magnetization tilts.

Q(t) for this disc is shown in Fig. 5 for four different temperatures. In contrast
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Figure 4. Generation of skyrmion-antiskyrmion pairs due to spin-transfer torques.

Q(t) in a 1000 × 125 × 0.6 nm track, with different finite difference discretisation in

the film plane: (a) 1024× 128, (b) 768× 96, (c) 512× 64, and (d) 384× 48 cells. All

systems are 1 cell thick. (e) Snapshots of the micromagnetic state at four instances for

the discretisation in (a). The vertical dashed lines in (a) correspond to the snapshots

in (e). J indicates the conventional current, v the direction of Kelvin motion of the

nucleated pairs, and the circle indicates the nucleation zone.

to Fig. 3, both the derivative- and lattice-based methods give fluctuations in Q, albeit

to a lesser extent for the latter. Based on the results above, the variations in Q seen

with the lattice-based method in Fig. 5 can be attributed to the thermal fluctuations

of the edge magnetization states. Boundary edges also facilitate annihilation of the

isolated skyrmion, which can be seen at T = 300 and 400 K [Figs. 5(e,f) and 5(g,h),

respectively], as evidenced by a sharp transition in the time-averaged curves toward

Q = 0. Minor oscillations in these time-averaged curves also appear, which result

from partially-reversed states at the boundaries that occur during the annihilation

process. This example shows that deviations from noninteger (and non half-integer)

values of Q can be expected in confined structures when nucleation and annihilation
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Figure 5. Comparison of Q(t) computed with Eq. (1) (‘derivative’) and with Eqs. (2)

and (3) (‘lattice’) at different temperatures: (a,b) 100 K, (c,d) 200 K, (e,f) 300 K, and

(g,h) 400 K. The solid black line represents a moving time average computed with a

1-ns window.

of topological charges take place, in the presence of thermal fluctuations with chiral

boundary conditions, or both.

4. Conclusion

Spurious variations in the topological charge due to inaccuracies in finite-difference

derivatives can be mitigated by using a lattice-based approach, for which we provide

implementations for the mumax3 micromagnetics code as extensions. While the

results do not necessarily call into question the validity of published work (since the

topological charge is often used as a proxy for characterizing magnetization gradients),

they do highlight the care with which noninteger values of Q(t) should be interpreted,

particularly when processes such as nucleation, annihilation, and thermal fluctuations

are at play.
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[16] Garćıa-Sánchez F, Borys P, Vansteenkiste A, Kim J V and Stamps R L 2014 Physical Review B

89 224408


	Introduction
	Lattice-based implementation for finite difference schemes
	Simulation examples with the lattice-based approach
	Isolated skyrmion at finite temperatures with periodic boundary conditions
	Soliton pair generation in a ferromagnetic track
	Isolated skyrmion in confined structures at finite temperatures

	Conclusion

