Correlation and Causality

Dr. Paul Larsen

April 14, 2022

Why causality matters

Because correlation is a proxy.

Why causality matters

Because A / B testing is not always possible.

[ERSS⁺13]

Simpson's paradox: cautionary tales

Simpson's paradox: a phenomenon in probability and statistics in which a trend appears disappears or reverses depending on grouping of data. [Wik], [PGJ16]

Example: University of California, Berkeley 1973 admission figures

	Men		Women	
	Applicants	Admitted	Applicants	Admitted
Total	8442	44%	4321	35%

[FPP98]

Donostmont	Men		Women	
Department	Applicants	Admitted	Applicants	Admitted
Α	825	62%	108	82%
В	560	63%	25	68%
С	325	37%	593	34%
D	417	33%	375	35%
E	191	28%	393	24%
F	373	6%	341	7%

A brief, biased history of causality

- Aristotle, 384 322 BC
- Isaac Newton, 1643 1727 AD
- David Hume, 1711 1776 AD
- Francis Galton, 1822 1900 AD, Karl Pearson, 1857 1936 AD
- Judea Pearl, b. 1936 AD

Counterfactuals and causality

Ideal: Intervention + Multiverse \rightarrow Causality

Examples:

- Medical treatment (e.g. kidney stone treatment)
- Social outomes (e.g. university admissions)
- Business outcomes (e.g. click-through rate, hit rate)

In-practice:

- ullet Correlation: approximate multiverse by comparing intervention at t to result at t-1
- Random population: approximate multiverse by splitting sample well
- A / B testing: random populations A / B + intervention in one

Counterfactual example: hit rate for insurance

Variables:

- producttype: Client line of business
- days: Number of days to generate quote
- rating: Binary indication of client risk
- hit: Binary, 1 for success (binding the quote), 0 for failure

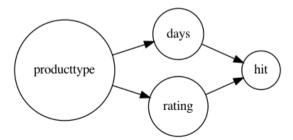
Fake data:

product_type	days	rating	hit
property	3	1	0
liability	1	0	0
financial	0	1	0
liability	3	0	0
liability	0	0	1

Counterfactual example: hit rate for insurance

Variables:

- producttype: Client line of business
- days: Number of days to generate quote
- rating: Binary indication of client risk
- hit: Binary, 1 for success (binding the quote), 0 for failure



Non-counterfactual approach: condition and query

Goal: estimate effect of days on hit.

Calculate

- P(hit = 1|days = 0) P(hit = 1|days = 1),
- P(hit = 1|days = 1) P(hit = 1|days = 2),
- . . .

From exercise Jupyter notebook:

	hit
days	
0	0.550918
1	0.440580
2	0.288714
3	0.206360

The Structural Causal Model

The definitions in following slides are from [Pea07], [PGJ16].

Definition

A structural causal model M consists of two sets of variables U, V and a set of functions F, where

- U are considered exogenous, or background variables,
- V are the causal variables, i.e. that can be manipulated, and
- F are the functions that represent the process of assigning values to elements of V based on other values in U, V, e.g. $v_i = f(u, v)$.

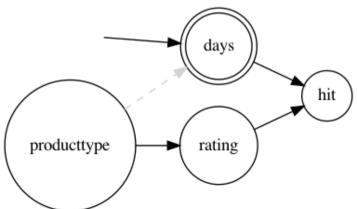
We denote by G the graph induced on U, V by the functions F, and call it the *causal graph* of (U, V, F).

Hit rate example: $U = \{\text{producttype}, \text{rating}\}, V = \{\text{days}, \text{hit}\}, F \leftrightarrow \text{sample from conditional probabilty tables in directed graphical model.}$

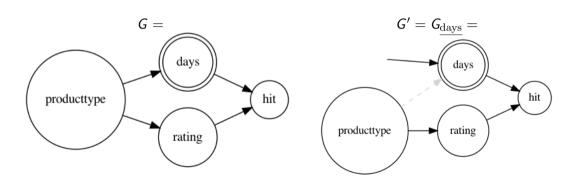
For business application, quantity of interest is not P(hit = 1|days = d), but intervention

$$P(\text{hit} = 1|\text{do}(\text{days} = d))$$

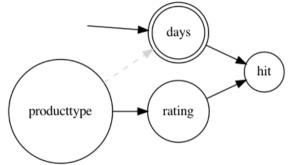
.



For business application, quantity of interest is effect of intervention / counterfactual Not P(hit = 1|days = d) but P(hit = 1|do(days = d))



First, find quantities unchanged between G and $\mathit{G}' = \mathit{G}_{\underline{\mathrm{days}}}$



$$P_{G'}(\text{producttype} = p, \text{rating} = r)$$

$$= P_{G}(\text{producttype} = p, \text{rating} = r)$$

$$P_{G'}(\text{hit} = 1|\text{producttype} = p, \text{rating} = r)$$

$$= P_{G}(\text{hit} = 1|\text{producttype} = p, \text{rating} = r)$$
(2)

$$P(\text{hit} = 1|\text{do}(\text{days}) = d)$$

 $= P_{G'}(hit = 1|days = d)$, by definition

$$=\sum_{p,r} P_{G'}(\text{hit}=1|\text{days}=d,\text{producttype}=p,\text{rating}=r)$$

 $P_{G'}(\text{producttype} = p, \text{rating} = r|\text{days} = d)$, by total probability

$$=\sum_{p,r} P_{G'}(\text{hit} = 1|\text{days} = d, \text{producttype} = p, \text{rating} = r)$$

 $P_{G'}(\text{producttype} = p, \text{rating} = r)$, by substitution

$$=\sum_{p,r} P_G(\text{hit} = 1|\text{days} = d, \text{producttype} = p, \text{rating} = r)$$

 $P_G(\text{producttype} = p, \text{rating} = r), \text{ our } adjustment \text{ formula}$

References: [PGJ16], [Pro]

days

rating

producttype

hit

Causal hit rate

Typical quantity of interest: average treatment effect or ATE

$$P(\text{hit} = 1|\text{days} = d)$$

	hit
days	
0	0.550918
1	0.440580
2	0.288714
3	0.206360

$${\sf Example} \,\, {\sf ATE} :$$

$$P(\text{hit} = 1|\text{days} = 2)$$

 $-P(\text{hit} = 1|\text{days} = 3) \approx 16\%$

$$P(\text{hit} = 1|\text{do}(\text{days} = d))$$

prob
0.558050
0.420425
0.283090
0.204705

Example causal ATE:

$$P(\text{hit} = 1|\text{do(days}) = 2)$$

 $-P(\text{hit} = 1|\text{do(days}) = 3) \approx 8\%$

Judea Pearl's Rules of Causality

Let X, Y, Z and W be arbitrary disjoint sets of nodes in a DAG G. Let G_X be the graph obtained by removing all arrows pointing into (nodes of) X. Denote by $G_{\overline{Y}}$ the graph obtained by removing all arrows pointing out of X. If, e.g. we remove arrows pointing out of X and into Z, we the resulting graph is denoted by G_{XZ} Rule 1: Insertion / deletion of observations

$$P(y|\text{do}(x),z,w) = P(y|\text{do}(x),w) \text{ if } (Y \perp \!\!\! \perp Z|X,W)_{G_{\overline{X}}}$$

Rule 2: Action / observation exchange

$$P(y|\mathrm{do}(x),\mathrm{do}(z),w) = P(y|\mathrm{do}(x),z,w) \text{ if } (Y \perp\!\!\!\perp Z|X,W)_{G_{\overline{X}Z}}$$

Rule 3: Insertion / deletion of actions

$$P(y|\mathrm{do}(x),\mathrm{do}(z),w)=P(y|\mathrm{do}(x),w) \text{ if } (Y\perp\!\!\!\perp Z|X,W)_{G_{\overline{XZ/W}}},$$

where Z(W) is the set of Z-nodes that are not ancestors of any W-node in G_X .

Special cases of the causal rules

By judicious setting of sets of nodes to be empty, we obtain some useful corollaries of the causal rules.

Rule 1': Insertion / deletion of observations, with $W = \emptyset$

$$P(y|do(x),z) = P(y|do(x)) \text{ if } (Y \perp \!\!\!\perp Z|X)_{G_{\overline{X}}}$$

Rule 2': Action / observation exchange, with $X = \emptyset$

$$P(y|do(z), w) = P(y|z, w) \text{ if } (Y \perp \!\!\!\perp Z|W)_{G_{\underline{Z}}}$$

Rule 3': Insertion / deletion of actions, with $X, W = \emptyset$

$$P(y|do(z)) = P(y)$$
 if $(Y \perp \!\!\! \perp Z)_{G_{\overline{z}}}$

Special cases of the causal rules

By judicious setting of sets of nodes to be empty, we obtain some useful corollaries of the causal rules.

Rule 1': Insertion / deletion of observations, with $W=\emptyset$

$$P(y|do(x),z) = P(y|do(x)) \text{ if } (Y \perp \!\!\!\perp Z|X)_{G_{\overline{X}}}$$

Rule 2': Action / observation exchange, with $X = \emptyset$

$$P(y|do(z), w) = P(y|z, w) \text{ if } (Y \perp \!\!\!\perp Z|W)_{G_{\underline{Z}}}$$

Rule 3': Insertion / deletion of actions, with $X, W = \emptyset$

$$P(y|do(z)) = P(y) \text{ if } (Y \perp \!\!\!\perp Z)_{G_{\overline{Z}}}$$

 \implies d-separation + causal rules = adjustment formulas: do queries as normal queries.

References I

- [BHO75] P. J. Bickel, E. A. Hammel, and J. W. O'Connell, Sex Bias in Graduate Admissions: Data from Berkeley, Science 187 (1975), no. 4175, 398–404.
- [ERSS+13] Ramón Estruch, Emilio Ros, Jordi Salas-Salvadó, Maria-Isabel Covas, Dolores Corella, Fernando Arós, Enrique Gómez-Gracia, Valentina Ruiz-Gutiérrez, Miquel Fiol, José Lapetra, et al., Primary prevention of cardiovascular disease with a mediterranean diet, New England Journal of Medicine 368 (2013), no. 14, 1279–1290.
- [FPP98] D. Freedman, R. Pisani, and R. Purves, *Statistics*, W.W. Norton, 1998.
- [Pea07] Judea Pearl, *The mathematics of causal inference in statistics*, To appear in 2007 JSM Proceedings **337** (2007).
- [PGJ16] Judea Pearl, Madelyn Glymour, and Nicholas P Jewell, *Causal inference in statistics: A primer*, John Wiley & Sons, 2016.

References II

```
[Pro] Christopher Prohm, Causality and function approximation,
    https://cprohm.de/article/
    causality-and-function-approximations.html.

[Vig] Typer Vigen, Spurious Correlations, Spiders and Spelling-Bees,
    http://tylervigen.com/view_correlation?id=2941.

[Wik] Wikipedia, Simpson's paradox,
    https://en.wikipedia.org/wiki/Simpson's_paradox.
```