Discrete Geometry for Risk and AI

Dr. Paul Larsen

April 14, 2022

K ロ K K d K K B K K B K X A K K K D K K K

Why discrete geometry?

- Recent history: Dissatisfaction with deep learning, only "curve fitting", alternatives via causal graphical models [\[Pea19\]](#page-24-0)
- Less recent history: graphical models among first non-rules based AI approaches [\[Dar09\]](#page-24-1)

KORKARYKERKER POLO

• Geometrical formulations of statistical objects, e.g. graphical models and probability polytopes

For today . . .

- Graphical models
- Probability polytopes
- Geometry of Simpson's Paradox

Directed graphical model: university admission gender bias Simpson paradox preview

Directed graphical model: university admission gender bias Simpson paradox preview

Sources: [\[Wik\]](#page-25-0) [\[BHO75\]](#page-24-3)

Directed graphical model: hit rate for insurance quotes

- product type: financial, liability, property
- days: number of days to generate quote
- rating: measure of premium paid expected claims
- hit: 0 if quote refused, 1 if accepted

Undirected graphical model: credit default risk [\[FGMS12\]](#page-24-4)

- Nodes take values 0 (healthy) or 1 (default)
- Industry nodes connect to other industry nodes
- Individual firm nodes connect only to corresponding industry node

Graph definitions

Definition

A graph is a pair of sets (V, E) , where V is called the set of vertices (or nodes) and E is called the set of edges, such that the set of edges corresponds injectively to pairs of vertices.

Notes

• Typically 'pairs of vertices' does not include self-pairs, but this can be relaxed, leading to graphs with with loops.

KORKA SERKER ORA

• The injectivity requirement can also be relaxed, leading to *multigraphs*.

Graphical models

Definition

(Informal) A graphical model is a graph whose nodes represent variables and whose edges represent direct statistical dependencies between the variables.

Why graphical models?

- For probability distributions admitting a graphical model representation, then graph properties (d-separation) imply conditional independence relations.
- Conditional independence relations reduce the number of parameters required to specify a probability distribution.
- Graphical models come in two flavors depending on their edges: directed (aka Bayesian Networks) and undirected (aka random Markov fields).

Directed acyclic graphs

Definition

A graph $G = (V, E)$ is a directed acyclic graph (denoted also DAG) if all edges have an associated direction, and no edge path consistent with the directions forms a cycle.

If there is a directed path from X_i to X_j , then X_i is called a *parent* of X_j , and $\textit{Pa}(X_j) \subseteq V$ is the set of all parents of $X_j.$

Definition

If $X = (X_1, \ldots, X_m)$ admits a DAG G, then X_G is a DAG model if the distribution of X decomposes according to G , i.e.

$$
P(X) = \prod_{i \in \{1,\dots,m\}} P(X_i | Pa(X_i))
$$

KORKARYKERKER POLO

Example: Karma and weight-lifting

Take K to be your Karma. H to be the hours you spend in the gym lifting weight each day, and then W be the weight you can bench press on a given day. For simplicity, all random variables are binary.

Decomposition example: Karma and weight-lifting

Suppose $X = (K, H, W)$ admits the graph

KORKA SERKER ORA

Then $P(K, H, W) = P(K) P(H|K) P(W|H)$.

Definition

A DAG of the form above is called a chain.

Decomposition example: Karma and weight-lifting

Suppose $X = (K, H, W)$ admits the graph

Then $P(K, H, W) = P(K) P(H) P(W|K, H)$.

Definition

A DAG of the form above is called a collider at W .

Conditional independence

Recall that two random variables X, Y are *independent* if, for all x, y , $P(X = x, Y = y) = P(X = x)P(Y = y)$.

Definition

Let $X = (X_1, \ldots, X_m)$ be a probability distribution, and let A, B, C be pair-wise disjoint subsets of 1, ..., m, and define $X_A = (X_i)_{i \in A}$. Then X_A, X_B are conditionally depenedent given X_C if and only if

$$
P(X_A = x_A, X_B = x_B | X_C = x_c)
$$

=
$$
P(X_A = x_a | X_C = x_c) P(X_B = x_B | X_C = x_c)
$$

for all x_A, x_B, x_C .

For X_A, X_B conditionally independent given X_C , we write $(X_A \perp\!\!\!\perp X_B | X_C)$. See e.g. [\[DSS08\]](#page-24-5) for a precise formulation.

KORKA SERKER ORA

First example of discrete geometry helping statistics: conditional independence in a DAG model (X, G) can be detected in properties of G^1 . More precisely,

Theorem

If (X, G) is a DAG model, then d-separation implies conditional independence. See e.g. [\[PGJ16\]](#page-25-1), chapter 2.

¹The required graph properties are combinatorial, but can also be understood geometrically, see e.g. [\[DSS08\]](#page-24-5).K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 YO Q @

More definitions before d-separation

Figure: Collider at W , Fork at K

メロトメ 倒 トメ 差 トメ 差 トー \equiv 990

d-separation in DAGs

Definition

An undirected path p in a DAG G is blocked by a set of nodes S if and only if

- 1. p contains a chain of nodes $X \to Y \to Z$, or a fork $X \leftarrow Y \to Z$ such that $Y \in S$, or
- 2. p contains a collider $X \to Y \leftarrow Z$ such that $Y \notin S$ and no descendant of Y is in S.

Definition

.

If a set of nodes S blocks every path between two nodes X and Y , then X and Y are called d-separated conditional on S, and we write

 $(X \perp \!\!\!\perp Y | S)$ _G

By the d-separation teaser theorem, $(X \perp \perp Y | S)$ _G implies conditional independence.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

d-separation example: hit rate for insurance

K ロ ▶ K 個 ▶ K ミ ▶ K ミ ▶ │ 큰 │ ◆ 9 Q ⊙

All paths from $product_type$ to hit are blocked by $\{days, rating\}$, hence $(\text{product_type} \perp \text{hit} | \text{days}, \text{rating})_{\mathcal{G}}$.

Probability polytopes

Goal: Use geometric interpretation of multivariate discrete random variables to generate interesting fake data with few(er) parameters.

Example: The family of all $X \sim$ Bernoulli can be represented as

$$
\Delta_1=\{(\rho_0,\rho_1): \rho_i\geq 0, \sum \rho_i=1\}\subseteq R^2
$$

Example: Consider the collider graph for Karma-influenced weight-lifting (K, H, W) . Then all possible conditional probability tables for $(W/K, H)$ can be parametrized as

$$
\{(\rho_{w|k,h}): \rho_{w|k,h}\geq 0, \sum_{w} \rho_{w|k,h}=1 \text{ for } (k,h)\in\{0,1\}^2\}\subseteq R^8
$$

In general, the space of multivariate discrete random variable distributions is a polytope, see e.g. [\[DSS08\]](#page-24-5), Ch. 1.

H- and V-representations of polytopes

Definition

An *H-polyhedron* is an intersection of closed halfspaces, i.e. a set $P \subseteq R^d$ presented in the form

$$
P = P(A, z) = \{x \in R^d : Ax \le z\} \text{ for some } A \in R^{md}, z \in R^m.
$$

If P is bounded (i.e. compact), then it is called a *polytope*.

Definition

(Informal) A V-polytope is the convex hull of a finite set of vertices $conv(V) \in R^d$. See [\[Zie12\]](#page-25-2) for a precise definition.

Example: The V-representation for all Bernoulli distributions is

The main theorem of polytopes

Theorem

A subset $P \subset R^d$ is the convex hull of a finite point set (a V-polytope)

 $P = conv(V)$ for some $V \in R^{dn}$

if and only if it is a bounded intersection of halfspaces (an H-polytope)

$$
P = P(A, z) \text{ for some } A \in R^{md}, z \in R^m
$$

KORKA SERKER ORA

See [\[Zie12\]](#page-25-2) for a proof.

Applying the main theorem to conditional probability tables

For the Karma weight-lifting example, all conditional probability tables for $(W | K, H)$ that satisfy $E(W|K=0) = 0$ (bad Karma, no weight) and $E(W|H=0) = 0.2$ can be written as an $H - polytope$ as above with additional constraints

$$
\sum_{w,h} w p_{w|0,h} = 0
$$

$$
\sum_{w,k} w p_{w|k,0} = 0.2
$$

By converting this H-representation to a V-representation, we can generate random conditional probability tables subject to expectation constrains.

For an example, see the implementation of [ProbabilityPolytope](https://munichpavel.github.io/fake-data-docs/html/_modules/fake_data_for_learning/utils.html#ProbabilityPolytope) of [https://munichpavel.github.io/fake-data-for-learning/.](https://munichpavel.github.io/fake-data-for-learning/)

Geometry of Simpson's Paradox

Motivating example and notation

From [Primer on Causality by Pearl, Glymour, Jewell,](http://bayes.cs.ucla.edu/PRIMER/primer-ch1.pdf) table 1.1. is

we consider the counts above as being derived from a space of counts along dimensions (RECOVERED, GENDER, TREATED) of $\mathbb{N}^2 \times \mathbb{N}^2 \times \mathbb{N}^2$:

$$
U=(u_{ijk})
$$

where

$$
u_{ijk}
$$
 = counts of RECOVERED = *i*, GENDER = *j*, TREATED = *k*

KORK STRAIN A STRAIN A DIA KOR

Geometry of Simpson's Parardox

Notation for counts, II

 u_{000} = Count of non-recovered females who received no treatment u_{100} = Count of recovered females who received no treatment u_{010} = Count of non-recovered males who received no treatment u_{110} = Count of recovered males who received no treatment u_{001} = Count of non-recovered females who received treatment u_{101} = Count of recovered females who received treatment u_{011} = Count of non-recovered males who received treatment u_{111} = Count of recovered males who received treatment

Converting counts u_{ijk} to probabilities p_{ijk} (exercise), have quadratic inequalities for this Simpson's paradox example:

> $p_{101}p_{+00} - p_{100}p_{+01} > 0$ $p_{111}p_{+10} - p_{110}p_{+11} > 0$ $p_{1+1}p_{++0} - p_{1+0}p_{++1} < 0$

> > K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

References I

- [BHO75] P. J. Bickel, E. A. Hammel, and J. W. O'Connell, Sex Bias in Graduate Admissions: Data from Berkeley, Science 187 (1975), no. 4175, 398-404.
- [Dar09] Adnan Darwiche, Modeling and reasoning with bayesian networks, Cambridge university press, 2009.
- [DSS08] Mathias Drton, Bernd Sturmfels, and Seth Sullivant, Lectures on algebraic statistics, vol. 39, Springer Science & Business Media, 2008.
- [FGMS12] Ismail Onur Filiz, Xin Guo, Jason Morton, and Bernd Sturmfels, Graphical models for correlated defaults, Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 22 (2012), no. 4, 621–644.
- [FPP98] D. Freedman, R. Pisani, and R. Purves, Statistics, W.W. Norton, 1998.
- [Pea19] Judea Pearl, The limitations of opaque learning machines, Possible Minds: Twenty-Five Ways of Looking at ai (2019), 13–19.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

References II

- [PGJ16] Judea Pearl, Madelyn Glymour, and Nicholas P Jewell, Causal inference in statistics: A primer, John Wiley & Sons, 2016.
- [Wik] Wikipedia, Simpson's paradox, [https://en.wikipedia.org/wiki/Simpson's_paradox](https://en.wikipedia.org/wiki/Simpson).
- [Zie12] Günter M Ziegler, Lectures on polytopes, vol. 152, Springer Science & Business Media, 2012.

KORK ERKER LER KRENK