Skip to content
Empirically Informed Random Trajectory Generator in 3-D
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Type Name Latest commit message Commit time
Failed to load latest commit information.


CRAN version CRAN downloads Travis build status codecov License: GPL v3

The empirically informed Random Trajectory Generator in three dimensions (eRTG3D) is an algorithm to generate realistic random trajectories in a 3-D space between two given fix points, so-called Conditional Empirical Random Walks. The trajectory generation is based on empirical distribution functions extracted from observed trajectories (training data) and thus reflects the geometrical movement characteristics of the mover. A digital elevation model (DEM), representing the Earth's surface, and a background layer of probabilities (e.g. food sources, uplift potential, waterbodies, etc.) can be used to influence the trajectories.

The eRTG3D algorithm was developed and implemented as an R package within the scope of a Master's thesis (Unterfinger, 2018) at the Department of Geography, University of Zurich. The development started from a 2-D version of the eRTG algorithm by Technitis et al. (2016).

Get started

# Install release version from CRAN

# Install development version from GitHub


The eRTG3D package contains functions to:

  • calculate movement parameters of 3-D GPS tracking data, turning angle, lift angle and step length
  • extract distributions from movement parameters;
    1. P probability - The mover's behavior from its perspective
    2. Q probability - The pull towards the target
  • simulate Unconditional Empirical Random Walks (UERW)
  • simulate Conditional Empirical Random Walks (CERW)
  • simulate conditional gliding and soaring behavior of birds between two given points
  • statistically test the simulated tracks against the original input
  • visualize tracks, simulations and distributions in 3-D and 2-D
  • conduct a basic point cloud analysis; extract 3-D Utilization Distributions (UDs) from observed or simulated tracking data by means of voxel counting
  • project 3-D tracking data into different Coordinate Reference Systems (CRSs)
  • export data to sf package objects; 'sf, data.frames'
  • manipulate extent of raster layers


Unterfinger M (2018). 3-D Trajectory Simulation in Movement Ecology: Conditional Empirical Random Walk. Master's thesis, University of Zurich.

Technitis G, Weibel R, Kranstauber B, Safi K (2016). “An algorithm for empirically informed random trajectory generation between two endpoints.” GIScience 2016: Ninth International Conference on Geographic Information Science, 9, online. doi: 10.5167/uzh-130652.

You can’t perform that action at this time.