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Abstract

The accuracy and complexity of solving multi-
component gaseous diffusion using the detailed multi-
component equations, the Stefan-Maxwell equations,
and two commonly used approximate equations have
been examined in a two part study. Part I examined the
equations in a basic study with specified inputs in
which the results are applicable for many applications.
Part IT addressed the application of the equations in the
Langley Aerothermodynamic Upwind Relaxation
Algorithm (LAURA) computational code for high-
speed entries in Earth’s atmosphere. The results
showed that the presented iterative scheme for solving
the Stefan-Maxwell equations is an accurate and
effective method as compared with solutions of the
detailed equations. In general, good accuracy with the
approximate equations cannot be guaranteed for a
species or all species in a multi-component mixture.
“Corrected” forms of the approximate equations that
ensured the diffusion mass fluxes sum to zero, as
required, were more accurate than the uncorrected
forms. Good accuracy, as compared with the Stefan-
Maxwell results, were obtained with the “corrected”
approximate equations in defining the heating rates for
the three Earth entries considered in Part II.

Nomenclature
¢ mass fraction of species i
D; multi-component diffusion coefficient, m?/s
D;; binary diffusion coefficient, m%/s
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D;, effective diffusion coefficient, m2/s

Fl-j elements of matrix F defined by Eq. 7

ij index on species

J; diffusion mass flux of species i, kg/ m2—s
molecular weight of mixture, kg/mole

M, molecular weight of species i, kg/mole

n total number of species present

q convective heating rate, W/cm?

r local body radius, m

T temperature, K

x; mole fraction of species

p density, kg/m3

z distance through shock layer, m

Qij collision cross section for mass diffusion, m?

Introduction

Accurate knowledge of the diffusion of species in
multi-component gas mixtures is important in many
engineering applications. Of primary interest in the
present study is the impact of multi-component
diffusion on the high-velocity flowfield surrounding
planetary and Earth entry vehicles. These flowfields
contain a highly reactive gas mixture in which the
multi-component diffusion of species can significantly
alter the local chemical state; and, the accurate
prediction of the surface heat transfer is dependent on
the species diffusion mass flux at the surface.
Computational Fluid Dynamics (CFD) methods are
used to solve the complex flowfield over entry vehicles.
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Even with today’s computers, the multi-component
diffusion is often solved with approximate methods due
to the large time and storage requirements associated
with the detailed multi-component equations. The
solution of the detailed equations involve solving
determinants that can be quite large in number and size
as the number of species increase.

The present paper will report on a study that
examines the accuracy and complexity of solving multi-
component diffusion including the detailed multi-
component equationsl?, the Stefan-Maxwell
equations’3, and two commonly used approximate
relations? cast in the formulation of Fick’s law for
binary diffusion. The study is composed of two parts.
In Part I a basic study was conducted that examined the
equations in a general manner with specified inputs.
The results from this part can be useful and applied to
any application for gaseous diffusion. Part II addresses
the application of the Stefan-Maxwell equations and the
approximate equations in the LAURA (Langley
Aerothermodynamic Upwind Relaxation Algorithm)
code for entries in Earth’s atmosphere.. LAURA is a
powerful CFD code’ that solves the Navier-Stokes
equations for high-temperature, finite-rate chemistry,
supersonic and hypersonic flows over three-
dimensional entry vehicles, and has been used in
numerous planetary and Earth entry studies.

Equations

A brief description and comments on the equations
of the diffusion mass fluxes and diffusion coefficients
used in the present study are given in this section. The
equations are for the detailed multi-component
equations, the Stefan-Maxwell equations, and the
approximate multi-component equations with the
binary diffusion equations given for comparison. Some
of the equations are written differently than normally
presented in the literature. This is done to present a
consistent form between the various equations and to
highlight certain terms. Also, the gradients of mole
fraction and mass fraction are both used as the driving
potential and may be referred to as mole gradient and
mass gradient, respectively.

Binary Diffusion Coefficient

The binary diffusion coefficientsZ:3 are used in all
the formulations and are given by

pD; =7.1613x1072 D
2
where
D;; =Dy @
and
D;; #0 3)

which is the self-diffusion coefficient.
Effective Diffusion Coefficient

The effective, or average, diffusion coefficients are
used extensively and defined ~ as

0-x) 5%

D, @

j#i Dy

These coefficients are defined values in the detailed and
Stefan-Maxwell equations, but are used in the
approximate equations as the diffusion of species “i” in
the mixture as an average for the other species.
Additional comments on the average diffusion
coefficients are given in the discussion on the

approximate diffusion equations.

Detailed Multi-Component Diffusion

The detailed equation!? for the diffusion mass
fluxes in a multi-component gaseous mixture is given
by

M
5 =851y M;D,Vx; G
J#i

where the multi-component diffusion coefficients are

given by
( i ii
D, < () ©

M; |F]

where |F| is the determinant of the elements of F;;
given by

for j#i
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and

E. =0

i forj=i

@)
and F7 are the transposed, co-factors of the matrix F .
Unlike binary diffusion coefficients,

Dj;; # D ®)

and

D; =0 ©)
The diffusion mass fluxes given by Eq. 5 are sufficient
for a solution, and no other closure equation is required
to ensure the mass fluxes sum to zero as required by
mass conservation.

In the present study, the equations are solved in a
straightforward manner. The main determinant and the
co-factor determinants are solved in a standard
determinant routine. There are (n2+ 1) determinants to
be solved, where “n” is the number of species in the gas
mixture. There is one main determinant of size (n X n)
and n2 co-factor determinants of size (n— 1) X (n — 1)
each. Thus as the number of species is increased, the
number and the size of the determinants increases
rapidly.

For a ternary mixture, analytical equations? have

been derived from the determinant solutions. The
diffusion coefficients are given by
M
Xk [Vk ik ~ fDij]
j
D; =21+ 10)

x,-Djk + ijik + xki)ij

where the six coefficients are calculated by rolling the i,
J, k indices from 1 to 3, and the three diagonal
coefficients, D;;, are zero as given by Eq. 9.

Stefan-Maxwell Equations

The Stefan-Maxwell equationl:3, originally
developed to solve for the mole fraction gradient, can
be used to solve for multi-component diffusion. It is
given by

(11)

One can solve any combination of (n-1) equations for V

x; in Eq. 11 to recover the remaining equations.

Consequently, Eq. 11 is a set of (n — 1) independent

3

equations, and a closure equation, such as summation of
the fluxes equal zero, is required to solve for the “n”
derivatives.

In the present study, the Stefan-Maxwell equations
are re-arranged and solved for “J;” for equation sets in
terms of mole fraction gradient and mass fraction
gradient. In terms of mole gradient the equations are
given by

M; D,

Ji=—p—Lt—_Vx + 12
or also by
M ({1-¢
Ji=—p—Ml‘(1_x2)Dimin
(13)
M J;
zmz p_lv ]
1~ ];&z[ M] D

In terms of mass fraction gradient the equations are

=-pD,, Vc;
EARD
lmz( . @]

(1 x, j#i j

Equations 12 and 14 are actually used to calculate the
mass fluxes, whereas Eq. 13 is given for illustrative
purposes.

Again, Eqs. 12-14 are each a set of (n —1)
equations, and a closure equation is required. In the
present study, an iterative scheme is used for each set of
equations in conjunction with a closure equation. The
closure equation used in the iterative scheme is given
by

F A A

“ (3]

(15)

The “J}” for each species in the species set is solved
for by Eq. 12 or 14 at iteration “N”, and then the entire
set is corrected for iteration “N+1” by the closure
equation, Eq. 15. The process is repeated for a
specified number of 10 iterations to reach convergence.
The leading term of Eq. 12 or 14 is used as the first
guess to start the iteration process. In this scheme the
problem is over specified, solving for “n” species rather
than (n — 1) species with Eq. 12 or 14; however, it is a
very effective method as discussed in the results. Also,
by solving for all “n” species rather than “n-—-1”
species, this iterative scheme has the advantage of not
requiring a decision of which “n — 1" species to solve
for by Eq. 12 or 14 and which remaining species to
solve with a closure equation.
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Binary Diffusion

Before giving the approximate, multi-component
equations, the equations for diffusion in a binary
mixture? are presented for comparison and discussion
purposes with the approximate methods.

By the use of Fick’s law, binary diffusion in terms
of mass fraction gradient is given by

Ji =_p!DijVCi (16)
and in terms of mole fraction gradient, by
M. M
Ji= —p—MA—Mi D,;Vx; 17)

Equation 17 is the commonly presented form, but it can
also be written as

M;(1-¢

The mass gradient and mole gradient forms are
equivalent and only differ by the application of a
transformation of mass fraction gradient to mole
fraction gradient for a binary gas mixture.

Approximate, Multi-Component Diffusion

Two commonly used approximate equations4 for
multi-component diffusion are examined in the present
study, one in terms of mass fraction gradient and one
for mole fraction gradient. In terms of mass fraction
gradient, the approximate equation is given by

Ji = —pDimVCi (19)
and in terms of mole fraction gradient, by
M, (1-c
Ji= _pﬁ(l-xl,- )Dimvxi (20)

G699
i

The solution for each species can be solved for
independently by application of the equations.

In the current work, the approximate equations
(Egs. 19 and 20) are taken from Ref. 4, which cites
references for their source. These two equations and
the equation for effective diffusion coefficient (Eq. 4)
are listed in numerous publications. The short
discussion herein will concentrate on those sources
which appear to be close to being the original source
and/or those sources which offer good insight into the
equations. The expression for the effective, or average,
diffusion coefficient (Eq. 4) appeared in the classical
paper on mixture viscosity by Buddenberg and Wilke®

4

with a derivation given by Wilke’ for the problem of
the diffusion of species “i” with the other species being
stagnate (low velocities). Also, the framework for the
derivation of the effective diffusion coefficient is given
in Ref. 3. The derivation is based on an analogy with
binary diffusion and the use of the Stefan-Maxwell
equation. The effective diffusion coefficient for species
“?’ is then derived for the case where all the other
species move with the same velocity or are stationary.
The implication is that the effective diffusion
coefficient can then be substituted for the binary
diffusion coefficient in Fick’s law as given by Egs. 16
or 18. Reference 1 states that Eq. 20 can be derived
from the detailed multi-component diffusion equations
for any species that is present as a trace species. The
magnitude of the mole or mass fraction for
classification as a trace species is not given.
Furthermore, the article goes on to say that the equation
indicates roughly that the reciprocal of the average
diffusion coefficient for a multi-component mixture
should be taken as the molar average of the reciprocals
of the binary diffusion coefficients. In other words,
Eq. 4 should be a good representation for an average
diffusion coefficient. Reference 8 provides additional
information along the lines presented here.

Thus, the literature suggests that the approximate
equations should be adequate approximations for trace
species, small mole or mass fractions, and for species
with large velocities compared to the other species.
The bounds on these conditions are not really defined.
In many studies when one uses the approximate
equations, the equations are used for all the species in
the mixture and for all cases considered.

The use of the approximate equations, Egs. 4, 19,
and 20, basically states that the diffusion of a species
“7’ is treated such that the species “i” is one component
and the other component is an average of the remaining
species in a binary type of analysis. Thus, the
approximate equations for diffusion are the same as the
binary diffusion equations with the binary diffusion
coefficient replaced with the effective diffusion
coefficient. If one examines the detailed equations, see
Eq. 7, or the Stefan-Maxwell equations, Eqs. 12-14,
one sees that the effective diffusion coefficient is a
prominent term. Also, approximate Eqs. 19 and 20 are
the same as the leading terms in the Stefan-Maxwell
Eqgs. 14 and 13, respectively. Thus it would appear that
the accuracy of the approximate equations would
depend on the degree in which the last terms in Egs. 13
and 14 approach zero. Furthermore, in the Stefan-
Maxwell equations, Eqs. 12-14, if binary diffusion,
Egs. 16 and 18, is assumed for the “J;” term in the
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summation, then the equations will collapse to the
approximate equations. This implies that the last terms
are a measure of how well the multi-component
mixture deviates from a pseudo-binary mixture. Thus
there is some reasonable arguments that the
approximate equations have a reasonably correct form.
The approximate equations will collapse to the
respective binary forms for a binary gas mixture.
Actually, all the equations presented will collapse to the
respective binary form for a binary gas mixture.

There are some obvious problems with the
approximate equations. The two forms of the equation
in terms of mass fraction gradient, Eq. 19, and mole
fraction gradient, Eq. 20, do not have the correct
transformation between mass and mole fraction
gradient for a multi-component mixture. The
transformation is only correct for a binary mixture. It is
possible in a multi-component mixture, except binary,
for a species to have a change of sign between mass and
mole fraction gradient. If this happens, then the mass
and mole gradient forms of the approximate diffusion
equations would give a different sign for the mass flux.
Finally, the requirement of the diffusion mass fluxes
summing to zero is not guaranteed.

A “corrected” form for the two approximate
equations is also examined in the present study to solve
the problem of the diffusion mass fluxes not summing
to zero. The closure equation, Eq. 15, from the Stefan-
Maxwell iterative scheme is applied to the diffusion
mass fluxes to ensure the mass fluxes sum to zero by
distributing the residual according to the species mass
fraction. The diffusion mass fluxes are calculated
independently by Eq. 19 or 20, and then corrected by

Ji,corrected = Ji - ciz Jj

Thus, there are 4 basic approximate relations used in
the study: Eq. 19 and 20, and the corrected form of
each according to Eq. 21.

@21

Part I Methodology

In Part I of the present study, an examination of the
equations is performed in a fundamental way. The
necessary input parameters of number of species,
selection of species and their properties, mole fractions,
and mole fraction gradients are specified for a case, and
then calculations made of the species diffusion mass
fluxes. The diffusion mass fluxes for each case are
calculated for detailed multi-component diffusion
(including the analytical form for ternary mixtures),
both the mass and mole fraction forms of the

5

Stefan-Maxwell equations, both the mole and mass
fraction forms of the approximate equations, and both
the mole and mass fraction forms of the corrected
approximate equations for a total of 7 sets (8 for ternary
mixtures) of equations. The detailed multi-component
formulation is taken as the exact solution, and is used as
the standard in defining errors in the diffusion mass
fluxes.

Fourteen species (He, Ne, Ar, Kr, Xe, N,, CO, O,,
CO,, CH,, CF,, SFg, C,Hg, and C3Hg) were used in
this part. Collision cross sections were taken from the
data presented in Ref. 9. The number of species (n =3
to 14), the species, the mole fractions, and the mole
fraction gradients for a particular case may be either
directly specified or selected by use of a random
number generator. All cases are for a temperature of
300 K and a pressure of one atmosphere.

Part I Results

Thousands of cases were run in this part of the study.
Due to the large number of cases and the complexity of
the results, only a few examples and a synopsis of
results can be presented herein.

Detailed Multi-Component Diffusion

The diffusion mass fluxes summed to zero for all
cases without the addition of any constraints, as they
should. For all cases of ternary mixtures, the multi-
component diffusion coefficients and mass fluxes
agreed exactly between the detailed determinant form
and the analytical form, providing confidence in the
accuracy of the equations and the programming and
solution procedures.

Stefan-Maxwell Equations

For all cases, the diffusion mass fluxes calculated
from both the mole and mass gradient forms of the
equations agreed exactly with the results from the
detailed multi-component equations. The iteration
scheme was fixed at 10 iterations. Shown in Fig. 1 is
typical convergence histories of the errors in diffusion
mass fluxes, as compared to the final detailed results,
for both the mole and mass gradient forms of the
equations. As seen, the scheme converges easily in 10
iterations, where only 6 to 7 iterations were needed to
converge to 5 significant figures. These results show
that the presented scheme is an effective solution
procedure for solving the diffusion mass fluxes with the
Stefan-Maxwell equations.
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Approximate. Multi-Component Diffusion

The approximate equations were derived for the flux
of a species under the assumption of it being a trace
species or the other species are diffusing at a much
lower velocity. In practice, the approximate equations
are often used to solve for all the species mass fluxes in
a given mixture. It is this practice that is primarily
examined in the present study. Due to the wide
difference in results for the numerous cases, it is
difficult to display the results and to provide definitive
conclusions for the four approximate equations as one
might expect. A few examples will be presented and
then some general observation of all the results given.

Three measures selected to judge the accuracy of the
diffusion mass flux results from the approximate
equations are the root mean square error (RMS) for all
the species in a mixture, the maximum absolute error of
any species in a mixture, and the absolute errors of all
the species in a mixture. For these cases the inputs are
randomly generated. The cumulative numbers of these
errors for 1000 mixtures comprised of 10 species
randomly selected are presented in Figs. 2—4. In these
figures the x-axis is the error in percent and the y-axis
is the cumulative number of mixtures or species with
errors in the diffusion mass fluxes less than the x-axis
value. Note that the cumulative number in Figs. 2 and
3 do not reach the 1000 mixtures specified because only
errors up to 100% are plotted. The difference from
1000 at 100% are mixtures which had errors larger
than 100%, errors in the hundreds and thousands. The
same basic reason applies to the fact that the cumulative
number for all the species does not reach 10000 (1000
mixtures times 10 species) in Fig. 4. The results are
plotted for the approximate equations in terms of mole
and mass fraction gradient and the corrected forms of
these two equations. It was noted that the results for the
mole and mass fraction gradient forms of the
approximate equations generally bracket the detailed
results. Thus, the errors for the average of the results
from the mole and mass equations and the corrected
form of the average are also shown.

As shown in Fig. 3, only about 60 mixtures (6%) had
errors of less than 20% for all the species in a mixture
for either the mole or mass fraction form, whereas the
corrected forms of mole fraction gradient or average
provided results of less than 20% maximum error for
approximately 57% of the mixtures. Generally the
error for one or two species was large; thus, one can see
from the RMS error plot, Fig. 2, the cumulative
numbers with RMS errors of less than 20% are much
larger than for the maximum error of any one species.

6

Also note in Fig. 4 that 6000 out of the possible 10000
species (60%) had errors less than 20% for the
uncorrected mole or mass gradient equations, and the
cumulative number went to almost 9000 for the
corrected mole or average form. In general, the results
show that the approximate equations are not necessarily
accurate for determining the mass flux for all species in
a mixture. The equations do provide better accuracy if
one can accept a RMS average type of error. The
corrected mole fraction gradient form or the corrected
average provide the more accurate results.

The results given in Figs. 2—4 are reproducible, even
though the inputs were randomly selected, and typical
of the volume of solutions obtained. When another
1000 mixtures of 10 species are randomly selected, the
results are the same. Also, a set of 500 mixtures
provides similar results. Furthermore, if one selects
1000 mixtures of randomly selected “n” species
mixtures, the camulative numbers are slightly different,
but the basic results are the same.

The above results represent those for many
solutions. Some results from particular solutions, not
necessarily typical, are presented in Figs. 5-12. The
results are for mixtures with perturbations from base
mixtures composed of N,, CO, O,, and C,H in which
the molecular weights are 28 to 32 gm/mole. In these
figures the x-axis gives the mole fraction of the listed
species. The mole fractions of the other species are
equal amounts of the remaining mole fraction. The
results are from the mole fraction form of the
approximate equations, except for Fig. 12. The value
listed in parenthesis on the figures by the species name
is the specified mole fraction gradient. In Figs. 5-9, the
species listed on the x-axis has the largest value, with
the other species having an opposite sign and equal
values to ensure the mole fraction gradients sum to zero
as required. This series of mixtures is an attempt to
assess the assumption that the approximate equations
are accurate for a species in a mixture in which the
other species move with the same velocity or are
stationary. The velocities cannot be specified, so the
mole fraction gradients were specified in an attempt to
accomplish basically the same effect.

In Fig. 5 the results are presented for the base
mixtures in which N, was the species selected to vary
the mole fraction. As shown, the error in the diffusion
mass flux for N, is less than 2.5% for all values of the
mole fraction. (For this mixture the error was
reasonably small for all species.) Next the species He
was added to the base mixtures and specified as the
dominant species in terms of mole fraction gradient. As
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shown by the results in Fig. 6, the error was less than
1% for He. However, the other species had large
errors. For these mixtures N, was then selected as the
dominant species. The results are presented in Fig. 7
and show that the error for N, is less then 7% for all
mole fractions. Interestingly, the He error remained
very small. Next, the He was replaced with the high
molecular weight gas Xe in the base mixtures. Again,
as shown in Fig. 8, the error was small for the dominant
species Xe across the mole fraction range. For these
mixtures Xe was then replaced by N, as the dominant
species and the results are presented in Fig. 9. As
shown, the error for N, was less than 8%. The results
in Figs. 5-9 suggest that the approximate equation does
provide accurate results for a species that is dominant in
terms of mole fraction gradient for a wide range of
mole fraction, including large mole fractions.
Unfortunately, the results also seem to suggest that
accurate results are possible for all the species in a
mixture with small mole fractions. However, this is
misleading as discussed next.

Results for the base mixtures are presented in
Figs. 10-12. For these solutions N, and CO have
specified small values of mole fraction gradient of
equal value but of opposite sign. The species O, and
C,Hg have opposite signs and equal large mole fraction
gradients. The mole fraction of N, is varied from an
extremely small value to approximately 1. The other
three species have equal values of mole fraction.
Figure 10 shows the error in the diffusion flux as a
function of the mole fraction of N,, where the actual
fluxes are presented in Figs. 11 and 12 for the
approximate equation, Eq. 20, and the detailed
equations, Eqgs. 57, respectively. As shown in Fig. 10
the errors for N, are in thousands of a percent around a
mole fraction of 0.1, which is a small value. The reason
for the large values and rapid change in sign of the error
can be found by examination of the mass fluxes
presented in Figs. 11 and 12. For the approximate
equation, the mass flux calculated will always be of
opposite sign to the mole fraction gradient; whereas, as
shown by the detail solution, the mass flux can be of
either sign as compared with the sign of the mole
fraction gradient. This change in sign occurred at a
mole fraction of approximately 0.1. From the
Stefan-Maxwell equations, Eqgs. 12 and 13, it is seen
that the summation terms (the influence of the actual
diffusion fluxes), which are left out of the approximate
equations, control the change in sign.

It cannot be easily seen in Fig. 10, but the errors for
N, approach zero at mole fractions less than 0.01 and
are about 110% at mole fractions greater than 0.25. As
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given in the Equations Section, Ref. 1 presented the
approximate equation, Eq. 20, as being accurate for the
mass flux of a trace species in a mixture. The
magnitude of the mole or mass fraction was not given
to define trace species. The present results have shown
the approximate equation can be accurate for many
cases with rather large mole fractions. However, to
guarantee the approximate equation to be accurate, the
mole fraction must be extremely small, 103 or smaller.

Based on the results obtained in the present study,
some general observations of the accuracy of the
approximate equations are as follows:

1. The assumption of the equations being
accurate for a trace species in a mixture
appears correct provided the mole fraction is
less than 0.001 to guarantee accuracy.

2. The assumption of the equations being
accurate for a species in a mixture with the
other species being stationary or with much
lower velocities appears correct.

3. In general, good accuracy cannot be
guaranteed for a species or all species in a
mixture. The errors for a case and an
approximate equation can vary widely
between the species.

4. Small values of the mole fraction (order of
0.1) do not necessarily lead to small errors.
Conversely, values of the mole fraction as
large as 0.2 to 0.5 routinely had errors less
than 10%.

5. The average root mean square error for a case
for the four approximate equations was 20% or
less for most cases.

6. The mole fraction and mass fraction gradient
of a species can be of opposite sign depending
on the molecular weights and fractions
comprising the mixture. This sign change was
routinely observed for the random selected
cases. Errors in the hundreds to thousands of
percent can occur when this happens.

7. The mole fraction and mass fraction gradient
forms of the approximate equations cannot be
consistent when the sign change occurs
between the mole fraction and mass fraction
gradients for a species. The equations will
give answers of opposite sign. (See Egs. 19
and 20.)

8. The results for the mole fraction and the mass
fraction gradient forms of the approximate
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equations generally bracket the detailed
results.

9. Based on the average root mean square errors,
the errors are less for the “corrected” than the
uncorrected approximate equations. The
“corrected” mole fraction gradient form would
be the preferred choice of the four basic
approximate equations.

Binary Diffusion

Cases were run for binary diffusion with all the
equations—detailed, Stefan-Maxwell, and all the
approximate. For all the binary cases, the diffusion
coefficients and diffusion mass fluxes agreed exactly
among all the equations as they should. Like the
detailed ternary calculations, this result provides
confidence in the accuracy of the programming and
solution procedures.

Part IT Methodology

In this part of the study the effects of multi-
component diffusion, as calculated by the various
equations, are examined within flowfield solutions
obtained with the LAURAS code for Earth entries.
Originally, the approximate equation for mole fraction
gradient, Eq. 20, was the default option in the LAURA
code. The iterative scheme for the Stefan-Maxwell
equation, Eq. 12, and all the approximate forms of the
equations have been added to the LAURA code. The
detailed multi-component equations were not added
since the results of Part I showed that the Stefan-
Maxwell scheme is a highly efficient method and the
results agreed exactly with the detailed equations
without the overhead of solving large determinants.

The LAURA code is an upwind-biased, point-
implicit relaxation algorithm for obtaining the
numerical solution to the Navier-Stokes equations for
three-dimensional, hypersonic flows in thermochemical
nonequilibrium. Detailed information on the
formulation of the LAURA code is given in Refs. 5 and
10 with a current overview given in Ref. 11. The
effects of the various equations are examined by a
typical flowfield solution for the Earth entry of the
Stardust sample return capsule which is a Discovery
class mission to rendezvous with a comet and return
samples of comet particles to Earth. The Stardust
capsule is a spherically-blunted, 60 degree half-angle
conical forebody shape with a 0.23 meter nose radius
and maximum radius of 0.41 meters. Information on
the configuration and aerothermodynamics is given in
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Refs. 12-14. The present solutions are obtained for
thermochemical nonequilibrium flow of air for an
11 species set composed of N, O, N,, O,, NO, N*, O%,
N,*, O,%, NO*, and e™. A fully catalytic wall condition
is assumed. The computations are made at an actual
Stardust trajectory point near peak heating with a
freestream velocity of 10.9 km/s and a freestream
density of 2.7 x 10~4 kg/m3, and then at the same
density for progressively lower velocities of 7.0 and
6.0 km/s.

Part IT Results

The effects of the multi-component diffusion model
on the surface heating distribution over the forebody of
the Stardust capsule are shown in Fig. 13 for the
freestream velocity of 10.9 km/s. The heating rates
from the solutions with the Stefan-Maxwell equation
and the “corrected” approximate equations, both mole
and mass gradient forms, are in excellent agreement,
whereas the heating rates via the standard approximate
equations are significantly different with the mass
gradient form being 80% higher and the mole gradient
form being 28% lower. This bracketing of the correct
results by the mole and mass gradient forms of the
approximate equations was noted in Part I. The
solution using the Stefan-Maxwell equation is the most
accurate. As a point of interest, the wide difference in
the heating rates between the mole and mass gradient
forms of the approximate equations noted in some early
calculations at this condition is what led to the present
study. Presented in Fig. 14 are the mole fraction
distributions of N,, N, O,, and O through the shock
layer at the stagnation point. These results are shown
only for the mole gradient equations. As shown, the
mole fractions are in good agreement through the shock
layer for the Stefan-Maxwell equation and the
“corrected” approximate equation. Again, the standard
approximate equation is in least agreement. These
features are most easily seen in Figs. 14(b) and (d) for
the atomic species.

For a highly reactive flowfield which forms at this
entry condition, the surface heat transfer is highly
dependent on the recombination of species releasing the
heats of formation at the wall due to species diffusion
carrying energy from the high-temperature, dissociated
and/or ionized outer region of the shock layer to the
cooler surface. The recombination of atomic species in
the 10.9 km/s case was due to recombination of N and
O to N, and O,, respectively, with the energy transport
being approximately 400 w/cm?2 for O and 200 W/cm?
for N, for a total of approximately 600 W/cm? of the
total stagnation-point heating rate of 1100 W/cm?2.
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Heating distributions from the 7.0 and 6.0 km/s
solutions are presented in Figs. 15 and 16, respectively.
(Note, solutions for the approximate equations with
mass gradients were not done for the 6.0 km/s case.)
The effects from the choice of diffusion model were the
same as discussed for the 10.9 km/s case. That is, the
results for the Stefan-Maxwell and the “corrected”
approximate equations are in good agreement, and the
standard approximate equations disagree. However, the
extent of disagreement of the approximate equations
was less as the freestream velocity is decreased, and the
production and diffusion of dissociated and/or ionized
species is less, thereby reducing the significance of
recombination energy release at the wall. The
disagreement in stagnation-point heating rate of the
mole gradient, approximate equation with the Stefan-
Maxwell equation is 28%, 15%, and 11% as the
freestream velocity goes from 10.9, 7.0, to 6.0 km/s,
respectively. For the 6.0 km/s case, the recombination
of O is the dominate source, being approximately 70
W/cm?2 while the N recombination is only 5 W/cm? at
the stagnation point.

The detailed multi-component equations, Eqs. 5-7,
were not added to the LAURA code because of the high
overhead associated with solving the large number and
sizes of determinants. Also, the presented iterative
scheme for solving the Stefan-Maxwell equations,
Egs. 12 and 14, was found to be an efficient and
accurate method in Part I. In Part II the accuracy of the
iterative scheme for the Stefan-Maxwell equations, as
implemented in the LAURA code, has been assessed as
follows. The required basic data from selected grid
points from all three velocity cases were extracted from
the converged solutions, and then calculations were
made with the detailed and Stefan-Maxwell equations
in the computer program used in Part I. For all
comparisons, the diffusion mass fluxes from the mole
and mass gradient forms of the Stefan-Maxwell
equations agreed exactly with the detailed equations,
and these results agreed exactly with the mass fluxes
from the LAURA code using the Stefan-Maxwell
scheme. Also, there were no cases in which the scheme
failed to converge. In LAURA, the diffusion mass
fluxes from the Stefan-Maxwell method are checked to
converge within 10 between successive iterations with
an upper limit of 40 iterations. Examination of the
convergence history showed that less than 10 to 11
iterations were required.

In any large CFD code there are trades between
storage and computational time of the fluid
thermodynamic and transport properties. Also, there is
the judgment of how often to update the fluid properties
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between iterations of the basic flow equations. The
approximate diffusion equations have the advantage
that only “n” effective diffusion coefficients need to be
saved between a specified number of flow iterations
before being re-calculated from the binary diffusion
coefficients and updated, whereas the Stefan-Maxwell
equations require the binary diffusion coefficients to be
calculated every iteration or “n(n— 1)/2” binary
diffusion coefficients stored between updates. Thus,
the approximate equations have an advantage in storage
requirements and computational time. The “corrected”
approximate equations retain this advantage. In the
LAURA code, the approximate equations, uncorrected
and corrected, are calculated from the effective
diffusion coefficients which are updated with
calculations of the binary diffusion coefficients every
10 to 20 iterations. When the Stefan-Maxwell scheme
is used, the solution is converged, or nearly so, using
the “corrected” approximate, mole gradient, method for
the diffusion fluxes and then switched over to the
Stefan-Maxwell equations in which the binary diffusion
coefficients are calculated every iteration until final
convergence. In general, the Stefan-Maxwell method
requires approximately 50% more time per iteration
than the approximate equations, with a total time
increase of approximately 10% for a converged solution
by the overall method given above.

Concluding Remarks

The accuracy and complexity of calculating multi-
component gaseous diffusion with the detailed
equations, the Stefan-Maxwell equations, and
approximate equations have been examined in a basic
study in which the inputs are specified, and in
applications with the Langley Aerothermodynamic
Upwind Relaxation Algorithm (LAURA) code for
Earth entry of a high-velocity spacecraft. The iterative
scheme presented for the Stefan-Maxwell equations is
determined to be an efficient method and as accurate as
the detailed equations. This method is highly
recommended for applications in computational fluid
dynamics codes.

In general, the approximate equations provided
inaccurate solutions, and are of questionable usage for
calculating the diffusion mass fluxes of all the species
or even a single species in a mixture. However, for the
assumed conditions for which the approximate
equations were derived, it appears the approximate
equations may be valid, that is, for a trace species in a
mixture, or for a species in which the other species in
the mixture are stationary (low velocity). The
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definition as a trace species may require the mole
fraction to be less than approximately 0.001 to
guarantee accurate results. The “corrected” forms of
the approximate equations that ensure the diffusion
mass fluxes sum to zero were significantly more
accurate than the uncorrected forms; however, good
accuracy was not obtained for all cases in the basic
study. For the three Earth entry cases used in the
applications with the LAURA code, the results with the
“corrected” approximate equations were in excellent
agreement with those with the Stefan-Maxwell method.
Thus, based on this limited number of cases, it appears
the “corrected” approximate equations may be adequate
for Earth entry applications. Furthermore, the
implementation of the Stefan-Maxwell scheme in the
L. AURA code makes use of the “corrected” equations to
approach convergence of a solution before switching to
the Stefan-Maxwell scheme and final convergence.
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mixtures with split, equal mole gradients.
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