
A MatLab Tutorial for Diffusion-Convection-Reaction Equations
using dGFEM

Murat Uzunca
Department of Mathematics, Sinop University, 57000 Sinop, Turkey

muzunca@sinop.edu.tr

Bülent Karasözen
Institute of Applied Mathematics & Department of Mathematics

Middle East Technical University, 06800 Ankara, Turkey
bulent@metu.edu.tr

Abstract:
We discuss a collection of MatLab routines using discontinuous Galerkin (dG)

methods for solving and simulating steady-state diffusion-convection-reaction equa-
tions in 2D. The code employs the sparse matrix facilities of MatLab with the coding
style ”vectorization” which replaces for loops by matrix operations. Moreover, we uti-
lize multiple matrix multiplications ”MULTIPROD” [6] to decrease the number of for
loops in an efficient way.

1 dG discretization of the linear model problem
Many engineering problems such as chemical reaction processes, heat conduction, nu-
clear reactors, population dynamics etc. are governed by convection-diffusion-reaction
partial differential equations (PDEs). The general (linear) model problem used in the
code is

αu− ε∆u+b ·∇u = f in Ω, (1a)

u = gD on Γ
D, (1b)

ε∇u ·n = gN on Γ
N . (1c)

The domain Ω is bounded, open, convex in R2 with boundary ∂Ω = ΓD ∪ΓN , ΓD ∩
ΓN = /0, 0 < ε � 1 is the diffusivity constant, f ∈ L2(Ω) is the source function,
b ∈

(
W 1,∞(Ω)

)2 is the velocity field, gD ∈ H3/2(ΓD) is the Dirichlet boundary condi-
tion, gN ∈H1/2(ΓN) is the Neumann boundary condition and n denote the unit outward
normal vector to the boundary.

The weak formulation of (1) reads as: find u ∈U such that∫
Ω

(ε∇u ·∇v+b ·∇uv+αuv)dx =
∫

Ω

f vdx+
∫

ΓN
gNvds , ∀v ∈V (2)

where the solution space U and the test function space V are given by

1

U = {u ∈ H1(Ω) : u = gD on Γ
D}, V = {v ∈ H1(Ω) : v = 0 on Γ

D}.

The next step of the classical (continuous) FEM is to find an approximation to the
problem (2) using a conforming, finite-dimensional subspace Vh ⊂ V , which requires
that the space Vh contains functions of particular smoothness (e.g. when V = H1

0 (Ω),
then we choose Vh ⊂ {v ∈C(Ω) : v = 0 on ∂Ω}). On the other hands, discontinuous
Galerkin methods make it easy to use the non-conforming spaces, in which case the
functions in Vh 6⊂V are allowed to be discontinuous on the inter-element boundaries.

In our code, the discretization of the problem (1) is based on the discontinuous Galerkin
methods for the diffusion part [1, 7] and the upwinding for the convection part [2, 5].
Let {ξh} be a family of shape regular meshes with the elements (triangles) Ki ∈ ξh
satisfying Ω = ∪K and Ki∩K j = /0 for Ki, K j ∈ ξh. Let us denote by Γ0, ΓD and ΓN the
set of interior, Dirichlet boundary and Neumann boundary edges, respectively, so that
Γ0 ∪ΓD ∪ΓN forms the skeleton of the mesh. For any K ∈ ξh, let Pk(K) be the set of
all polynomials of degree at most k on K. Then, set the finite dimensional solution and
test function space by

Vh =
{

v ∈ L2(Ω) : v|K ∈ Pk(K), ∀K ∈ ξh
}
6⊂V.

Note that the trial and test function spaces are the same because the boundary con-
ditions in discontinuous Galerkin methods are imposed in a weak manner. Since the
functions in Vh may have discontinuities along the inter-element boundaries, along an
interior edge, there would be two different traces from the adjacent elements sharing
that edge. In the light of this fact, let us first introduce some notations before giving the
dG formulation. Let Ki, K j ∈ ξh (i < j) be two adjacent elements sharing an interior
edge e = Ki∩K j ⊂ Γ0 (see Fig.1). Denote the trace of a scalar function v from inside
Ki by vi and from inside K j by v j. Then, set the jump and average values of v on the
edge e

[v] = vine− v jne, {v}= 1
2
(vi + v j),

where ne is the unit normal to the edge e oriented from Ki to K j. Similarly, we set the
jump and average values of a vector valued function q on e

[q] = qi ·ne−q j ·ne, {q}= 1
2
(qi +q j),

Observe that [v] is a vector for a scalar function v, while, [q] is scalar for a vector valued
function q. On the other hands, along any boundary edge e = Ki∩∂Ω, we set

[v] = vin, {v}= vi, [q] = qi ·n, {q}= qi

where n is the unit outward normal to the boundary at e.
We also introduce the inflow parts of the domain boundary and the boundary of a mesh
element K, respectively

Γ
− = {x ∈ ∂Ω : b(x) ·n(x)< 0} , ∂K− = {x ∈ ∂K : b(x) ·nK(x)< 0}.

2

�
�
�
�

@
@
@
@

@
@

@
@

�
�

�
�

Ki

K j

e

-
ne

�
�
�
�

@
@
@
@

Ki

∂Ω

e

-
n

Figure 1: Two adjacent elements sharing an edge (left); an element near to domain
boundary (right)

Then, the dG discretized system to the problem (1) combining with the upwind dis-
cretization for the convection part reads as: find uh ∈Vh such that

ah(uh,vh) = lh(vh) ∀vh ∈Vh, (3)

ah(uh,vh) = ∑
K∈ξh

∫
K

ε∇uh ·∇vhdx+ ∑
K∈ξh

∫
K
(b ·∇uh +αuh)vhdx

− ∑
e∈Γ0∪ΓD

∫
e
{ε∇uh} · [vh]ds+κ ∑

e∈Γ0∪ΓD

∫
e
{ε∇vh} · [uh]ds

+ ∑
K∈ξh

∫
∂K−\∂Ω

b ·n(uout
h −uin

h)vhds− ∑
K∈ξh

∫
∂K−∩Γ−

b ·nuin
h vhds

+ ∑
e∈Γ0∪ΓD

σε

he

∫
e
[uh] · [vh]ds,

lh(vh) = ∑
K∈ξh

∫
K

f vhdx+ ∑
e∈ΓD

∫
e
gD
(

σε

he
vh− ε∇vh ·n

)
ds

− ∑
K∈ξh

∫
∂K−∩Γ−

b ·ngDvhds+ ∑
e∈ΓN

∫
e
gNvhds,

where uout
h and uin

h denotes the values on an edge from outside and inside of an element
K, respectively. The parameter κ determines the type of dG method, which takes
the values {−1,1,0}: κ = −1 gives ”symmetric interior penalty Galerkin” (SIPG)
method, κ = 1 gives ”non-symmetric interior penalty Galerkin” (NIPG) method and
κ = 0 gives ”inconsistent interior penalty Galerkin” (IIPG) method. The parameter
σ ∈R+

0 is called the penalty parameter which should be sufficiently large; independent
of the mesh size h and the diffusion coefficient ε [7] [Sec. 2.7.1]. In our code, we
choose the penalty parameter σ on interior edges depending on the polynomial degree
k as σ = 3k(k+ 1) for the SIPG and IIPG methods, whereas, we take σ = 1 for the
NIPG method. On boundary edges, we take the penalty parameter as twice of the
penalty parameter on interior edges.

3

2 Descriptions of the MatLab code
The given codes are mostly self-explanatory with comments to explain what each sec-
tion of the code does. In this section, we give the line-by-line descriptions of our main
code. The use of the code consists of three main parts

1. Mesh generation,

2. Entry of user defined quantities (boundary conditions, order of basis etc.),

3. Forming and solving the linear systems,

4. Plotting the solutions.

Except the last one, all the parts above, in the case of our code, take place in the m-
file Main Linear.m which is the main code to be used by the users for linear problems
without need to entry to any other m-file. The last part, plotting the solutions, takes
place in the m-file dg error.m

2.1 Mesh generation
In this section, we define the data structure of a triangular mesh on a polygonal domain
in R2. The data structure presented here is based on simple arrays [4] which are stored
in a MatLab ”struct” that collects two or more data fields in one object that can then
be passed to routines. To obtain an initial mesh, firstly, we define the nodes, elements,
Dirichlet and Neumann conditions in the m-file Main Linear.m through the lines 15–
21, and we call the getmesh function to form the initial mesh structure mesh, line 23.

% Generate the mesh

% Nodes
Nodes = [0,0;0.5,0;1,0;0,0.5;0.5,0.5;1,0.5;0,1;0.5,1;1,1];
% Elements
Elements = [4,1,5;1,2,5;5,2,6; 2,3,6;7,4,8;4,5,8;8,5,9;5,6,9];
% Dirichlet bdry edges
Dirichlet = [1,2;2,3;1,4;3,6;4,7;6,9;7,8;8,9];
% Neumann bdry edges
Neumann = [];
% Initial mesh struct
mesh = getmesh(Nodes,Elements,Dirichlet,Neumann);

As it can be understood, each row in the Nodes array corresponds to a mesh node
with the first column keeps the x-coordinate of the node and the second is for the y-
coordinate, and the i− th row of the Nodes array is called the node having index i. In
the Elements array, each row with 3 columns corresponds to a triangular element in
the mesh containing the indices of the nodes forming the 3 vertices of the triangles in
the counter-clockwise orientation. Finally, in the Dirichlet and Neumann arrays, each
row with 2 columns corresponds to a Dirichlet and Neumann boundary edge containing
the indices of the starting and ending nodes, respectively (see Fig.2).
The mesh ”struct” in the code has the following fields:

4

-

6

�

?

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

s

s

s

s

s

s

s

s

s

n1 n2 n3

n4 n5 n6

n7 n8 n9

E1

E2

E3

E4

E5

E6

E7

E8

e1 e2

e3 e4

e5 e6

e7 e8

Figure 2: Initial mesh on the unit square Ω = [0,1]2 with nodes ni, triangles E j and
edges ek

5

• Nodes, Elements, Edges, intEdges, DbdEdges, NbdEdges, intEdges

• vertices1, vertices2, vertices3,

• Dirichlet, Neumann, EdgeEls, ElementsE.

which can be reached by mesh.Nodes, mesh.Elements and so on, and they are used
by the other functions to form the dG construction. In line 25–27, the initial mesh is
uniformly refined several times in a ”for loop” by calling the function uniformrefine.

for jj=1:2
mesh=uniformrefine(mesh); %Refine mesh

end

2.2 User defined quantities
There are certain input values that have to be supplied by the user. Here, we will de-
scribe that how one can define these quantities in the main code Main Linear.m.

In lines 29–33, one determines the type of the dG method (SIPG, NIPG or IIPG) and
the order of the polynomial basis to be used by the variables method and degree, re-
spectively. According to these choices, the values of the penalty parameter and the
parameter κ ∈ {−1,1,0} defining dG method in (3) are set by calling the sub-function
set parameter in line 36.

% method : NIPG=1, SIPG=2, IIPG=3
method=2;

% Degree of polynomials
degree=1;

% Set up the problem
[penalty,kappa]=set parameter(method,degree);

The next step is to supply the problem parameters. In line 59–75, the diffusion con-
stant ε , the advection vector b and the linear reaction term α are defined via the sub-
functions fdiff, fadv and freact, respectively.

%% Define diffusion, advection, and reaction as subfunctions

% Diffusion
function diff = fdiff(x,y)

diff = (10ˆ(-6)).*ones(size(x));
end

% Advection
function [adv1,adv2] = fadv(x,y)

adv1 =(1/sqrt(5))*ones(size(x));
adv2 =(2/sqrt(5))*ones(size(x));

6

end

% Linear reaction
function react = freact(x,y)

react = ones(size(x));
end

The exact solution (if exists) and the source function f are defined in lines 77–101
via the sub-functions fexact and fsource, respectively. Finally, in lines 104–118, the
boundary conditions are supplied via the sub-functions DBCexact and NBCexact.

%% Boundary Conditions

% Drichlet Boundary Condition
function DBC=DBCexact(fdiff,x,y)

% Evaluate the diffusion function
diff = feval(fdiff,x,y);
%Drichlet Boundary Condition
DBC=0.5*(1-tanh((2*x-y-0.25)./(sqrt(5*diff))));

end

% Neumann Boundary Condition
function NC = NBCexact(mesh,fdiff,x,y)

%Neumann Boundary Condition
NC=zeros(size(x));

end

2.3 Forming and solving linear systems
To form the linear systems, firstly, let us rewrite the discrete dG scheme (3) as

ah(uh,vh) := Dh(uh,vh)+Ch(uh,vh)+Rh(uh,vh) = lh(vh) ∀vh ∈Vh, (5)

7

where the forms Dh(uh,vh), Ch(uh,vh) and Rh(uh,vh) corresponding to the diffusion,
convection and linear reaction parts of the problem, respectively

Dh(uh,vh) = ∑
K∈ξh

∫
K

ε∇uh ·∇vhdx+ ∑
e∈Γ0∪ΓD

σε

he

∫
e
[uh] · [vh]ds

− ∑
e∈Γ0∪ΓD

∫
e
{ε∇uh} · [vh]ds+κ ∑

e∈Γ0∪ΓD

∫
e
{ε∇vh} · [uh]ds

Ch(uh,vh) = ∑
K∈ξh

∫
K

b ·∇uhvhdx

+ ∑
K∈ξh

∫
∂K−\∂Ω

b ·n(uout
h −uin

h)vhds− ∑
K∈ξh

∫
∂K−∩Γ−

b ·nuin
h vhds

Rh(uh,vh) = ∑
K∈ξh

∫
K

αuhvhdx

lh(vh) = ∑
K∈ξh

∫
K

f vhdx+ ∑
e∈ΓD

∫
e
gD
(

σε

he
vh− ε∇vh ·n

)
ds

− ∑
K∈ξh

∫
∂K−∩Γ−

b ·ngDvhds+ ∑
e∈ΓN

∫
e
gNvhds,

For a set of basis functions {φi}N
i=1 spanning the space Vh, the discrete solution uh ∈Vh

is of the form

uh =
N

∑
j=1

υ jφ j (7)

where υ = (υ1,υ2, . . . ,υN)
T is the unknown coefficient vector. After substituting (7)

into (5) and taking vh = φi, we get the linear system of equations

N

∑
j=1

υ jDh(φ j,φi)+
N

∑
j=1

υ jCh(φ j,φi)+
N

∑
j=1

υ jRh(φ j,φi) = lh(φi) , i = 1,2, . . . ,N (8)

Thus, for i = 1,2, . . . ,N, to form the linear system in matrix-vector form, we need the
matrices D,C,R ∈ RN×N related to the terms including the forms Dh, Ch and Rh in (8),
respectively, satisfying

Dυ +Cυ +Rυ = F

with the unknown coefficient vector υ and the vector F ∈ RN related to the linear rhs
functionals lh(φi) such that Fi = lh(φi), i = 1,2, . . . ,N. In the code Main Linear.m, all
the matrices D,C,R and the vector F are obtained by calling the function global system
in lines 38–40, in which the sub-functions introduced in the previous subsection are
used. In line 42, we set the stiffness matrix, Stiff, as the sum of the obtained matrices
and we solve the linear system in line 44 for the unknown coefficient vector coef:= υ .

%Compute global matrices and rhs global vector
[D,C,R,F]=global system(mesh,@fdiff,@fadv,@freact,...

@fsource,@DBCexact,@NBCexact,penalty,kappa,degree);

8

Stiff=D+C+R; % Stiffness matrix

coef=Stiff\F; % Solve the linear system

2.4 Plotting the solution
After solving the problem for the unknown coefficient vector, the solutions are plotted
via the the function dg error in line 47, and also the L2-error between the exact and
numerical solution is computed.

% Compute L2-error and plot the solution
[l2err,hmax]=dg error(coef,mesh,@fexact,@fdiff,degree);

3 Models with non-linear reaction mechanisms
Most of the problems include non-linear source or sink terms. The general model
problem in this case is

αu− ε∆u+b ·∇u+ r(u) = f in Ω, (9a)

u = gD on Γ
D, (9b)

ε∇u ·n = gN on Γ
N . (9c)

which arises from the time discretization of the time-dependent non-linear diffusion-
convection-reaction equations. Here, the coefficient of the linear reaction term, α > 0,
stand for the temporal discretization, corresponding to 1/∆t, where ∆t is the discrete
time-step. The model (9) differs from the model (1) by the additional non-linear term
r(u). To have a unique solution, in addition to the assumptions given in Section 1, we
assume that the non-linear reaction term, r(u), is bounded, locally Lipschitz continuous
and monotone, i.e. satisfies for any s,s1,s2 ≥ 0, s,s1,s2 ∈ R the following conditions
[3]

|ri(s)| ≤C, C > 0
‖ri(s1)− ri(s2)‖L2(Ω) ≤ L‖s1− s2‖L2(Ω), L > 0

ri ∈C1(R+
0), ri(0) = 0, r′i(s)≥ 0.

The non-linear reaction term r(u) occur in chemical engineering usually in the form of
products and rational functions of concentrations, or exponential functions of the tem-
perature, expressed by the Arrhenius law. Such models describe chemical processes
and they are strongly coupled as an inaccuracy in one unknown affects all the others.

9

To solve the non-linear problems, we use the m-file Main Nonlinear which is similar
to the m-file Main Linear, but now we use Newton iteration to solve for i = 1,2, . . . ,N
the non-linear system of equations

N

∑
j=1

υ jDh(φ j,φi)+
N

∑
j=1

υ jCh(φ j,φi)+
N

∑
j=1

υ jRh(φ j,φi)+
∫

Ω

r(uh)φidx = lh(φi) (10)

Similar to the linear case, the above system leads to the matrix-vector form

Dυ +Cυ +Rυ +H(υ) = F

where, in addition to the matrices D,C,R ∈RN×N and the vector F ∈RN , we also need
the vector H ∈ RN related to the non-linear term such that

Hi(υ) =
∫

Ω

r

(
N

∑
j=1

υ jφ j

)
φidx , i = 1,2, . . . ,N.

We solve the nonlinear system by Newton method. For an initial guess υ0 =(υ0
1 ,υ

0
2 , . . . ,υ

0
N)

T ,
we solve the system

Jkwk = −Resk (11)
υ

k+1 = wk +υ
k , k = 0,1,2, . . .

until a user defined tolerance is satisfied. In (11), Resk and Jk denote the vector of
system residual and its Jacobian matrix at the current iterate υk, respectively, given by

Resk = Sυ
k +H(υk)−F

Jk = S+HJ(υk)

where HJ(υk) is the Jacobian matrix of the non-linear vector H at υk

HJ(υk) =


∂H1(υ

k)

∂υk
1

∂H1(υ
k)

∂υk
2

· · · ∂H1(υ
k)

∂υk
N

...
. . .

...
∂HN(υ

k)

∂υk
1

∂HN(υ
k)

∂υk
2

· · · ∂HN(υ
k)

∂υk
N


In the code Main Nonlinear, obtaining the matrices D,C,R and the rhs vector F is
similar to the linear case. In line 45, we initialize the initial guess for Newton iteration,
and we solve the nonlinear system in lines 47–74.

% Initial guess for Newton iteration
coef=zeros(size(Stiff,1),1);

% Newton iteration
noi=0;
for ii=1:50

10

noi=noi+1;

% Compute the nonlinear vector and its Jacobian matrix at
% the current iterate
[H,HJ]=nonlinear global(coef,mesh,@freact nonlinear,degree);

% Form the residual of the system
Res = Stiff*coef + H - F;

% Form the Jacobian matrix of the system
% (w.r.t. unknown coefficients coef)
J = Stiff + HJ ;

% Solve the linear system for the correction "w"
w = J \ (-Res);

% Update the iterate
coef = coef + w;

% Check the accuracy
if norm(J*w+Res) < 1e-20

break;
end

end

To obtain the non-linear vector H and its Jacobian HJ at the current iterate, we call the
function nonlinear global in line 54, and it uses the function handle freact nonlinear
which is a sub-function in the file Main Nonlinear, lines 106–114. The sub-function
freact nonlinear has to be supplied by user as the non-linear term r(u) and its derivative
r′(u).

% Nonlinear reaction
function [r,dr] = freact nonlinear(u)
% Value of the nonlinear reaction term at the current iterate
r = u.ˆ2;

% Value of the derivative of the nonlinear reaction
% term at the current iterate
dr = 2*u;

end

References
[1] D. Arnold, F. Brezzi, B. Cockborn, and L. Marini: Unified analysis of discontinu-

ous Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39, 1749-1779,
(2002).

[2] B. Ayuso, and L.D. Marini: Discontinuous Galerkin methods for advection-
diffusion-reaction problems. SIAM J. Numer. Anal., 47, 1391-1420, (2009).

11

[3] M. Bause, and K. Schwegler: Analysis of stabilized higher-order finite element
approximation of nonstationary and non-linear convection-diffusion-reaction equa-
tions. Comput. Methods Appl. Mech. Engrg., 209-212, 184-196, (2012).

[4] L. Chen: iFEM: an innovative finite element method package in MATLAB, an
innovative finite element methods package in MATLAB. Tech. rep.:Department of
Mathematics, University of California, Irvine, (2008).

[5] P. Houston, C. Schwab, and E. Süli: Discontinuous hp-finite element methods
for advection-diffusion-reaction problems. SIAM J. Numer. Anal., 39, 2133-2163,
(2002).

[6] P. d. Leva: MULTIPROD TOOLBOX, Multiple matrix multiplications, with array
expansion enabled, University of Rome Foro Italico, Rome.

[7] B. Rivière: Discontinuous Galerkin methods for solving elliptic and parabolic
equations. Theory and implementation, SIAM, (2008).

[8] R. Verfürth: it A posteriori Error Estimates Techniques for Finite Element Meth-
ods. Oxford University Press, (2013).

12

