Skip to content
Detecting outliers in a dataset using Spark
Scala
Branch: master
Clone or download

Latest commit

Fetching latest commit…
Cannot retrieve the latest commit at this time.

Files

Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
src
.gitignore
LICENSE
README.md
build.sbt

README.md

Using Spark for Anomaly (Fraud) Detection

Anomaly detection is a method used to detect outliers in a dataset and take some action. Example use cases can be detection of fraud in financial transactions, monitoring machines in a large server network, or finding faulty products in manufacturing.

This blog post explains the fundamentals of this Machine Learning algorithm and applies the logic on the Spark framework, in order to allow for large scale data processing:

http://micvog.com/2016/05/21/using-spark-for-anomaly-fraud-detection

Running on Spark

First compile:

sbt package

Run the tests:

sbt test

Download Spark (1.6.1) and put it in your Path from here: http://spark.apache.org/downloads.html

Run the project locally. From project root:

spark-submit --class "MainRun" --master local[8] target/scala-2.10/anomaly-detection_2.10-1.0.jar
You can’t perform that action at this time.