
Chapter 9. Building an

Autonomous Mobile

Robot

An autonomous mobile robot

can move from its current

position to the goal position

autonomously with the help of

mapping and localizing

algorithms. ROS provides some

powerful packages to prototype

an autonomous mobile robot

from scratch. Some of the

packages used in an

autonomous robot are the ROS

navigation stack, gmapping,

and amcl. Combining these

packages, we can build our own

autonomous mobile robot. In

this chapter, we will see a DIY

autonomous mobile robot

platform that works using ROS.

This project is actually the

updated version of the work

mentioned in my first book,

Learning Robotics Using

Python, Packt

Publishing (http://learn-

robotics.com). In this chapter,

we will mainly go through

designing and building the

simulation of a robot, then the

hardware of robot, and finally

the software framework. The

chapter will be an abstract of

all these things, since

explaining everything in a

single chapter will be a tedious

task.

The following are the main

topics we will discuss on this

chapter:

Robot specification and

design overview

Designing and selecting

motors and wheels for

the robot

Building a 2D and 3D

model of the robot

body

Simulating the robot

model in Gazebo

Designing and building

actual robot hardware

Interfacing robot

hardware with ROS

Setting up the ROS

navigation stack and

gmapping packages

Final run

Robot specification and

design overview

Here are the main

specifications of the robot we

are going to design in this

chapter:

We are going to design a robot

that satisfies all these

specifications.

A maximum payload of

2 kg

Body weight of 3 kg

A maximum speed of

0.35 m/s

Ground clearance of 3

cm

Two hours of

continuous operation

Di"erential drive

configuration

Circular base footprint

Autonomous navigation

and obstacle avoidance

Low-cost platform

Designing and selecting

the motors and wheels

for the robot

The robot we are going to

design should have a

di"erential drive configuration,

and from the preceding

specification, we can first

determine the motor torque

values. From the payload value

and robot body weight, we can

easily compute the motor

torque.

Computing motor torque

Let's calculate the torque

required to move this robot.

The number of wheels is four,

including two caster wheels.

The number of wheels

undergoing actuation is only

two. We can assume the

coe#cient of friction is 0.6 and

of wheel radius is 4.5 cm. We

can use the following formula:

Total weight of robot = Weight

of robot + Payload

Weight of the robot: 3 x 9.8 ≈ 30

N (W = mg)

Payload: 2 x 9.8 ≈ 20 N

Total weight: 30 + 20 = 50 N

This total weight should be split

among the four wheels of the

robot, so we can write it as W =

2 x N1 + 2 x N2, where N1 is the

weight acting on each robot

wheel and N2 is the weight

acting on each caster wheels.

The configuration of wheels of

the robot is shown in Figure 1.

The C1C1C1C1 and C2C2C2C2 shows the

caster wheels of the robot and

M1M1M1M1 and M2M2M2M2 shows the motor

position in which wheels can

attach on the slots just near to

the motor shaft.

If the robot is stationary, the

motors attached to the wheels

have to exert maximum torque

to get moving. This is the

maximum torque equation:

µ x N x r – T = 0

Here, µ is the coe#cient of

friction, N is the average weight

acting on each wheel, r is the

radius of the wheels, and T is

the maximum torque to get

moving.

We can write N = W/2 since the

weight of the robot is equally

distributed among all four

wheels, but two are only

actuated. We are taking W/2 as

the average weight here.

We can write 0.6 x (50/2) x

0.045 – T = 0

Hence, T = 0.675 N-m or 6.88

kg-cm. We can use a standard

value, 10 kg-cm.

Calculation of motor RPM

From the specification, we get

to know that the maximum

speed of the robot is 0.35 m/s.

We took the wheel radius as 4.5

cm in the preceding section,

and one of the other

specifications we need to

satisfy is ground clearance. The

specified ground clearance is 3

cm, so this wheel is satisfying

those requirements too. We can

find the rotations per minuterotations per minuterotations per minuterotations per minute

(RPMRPMRPMRPM) of the motors using the

following equation:

RPM = ((60 x Speed / (3.14 x

Diameter of wheel)

RPM = (60 x 0.35) / (3.14 x 0.09)

= 21 / 0.2826 = 74 RPM

We can choose a standard 80

RPM or 100 RPM for this robot.

Design summary

After designing, we have the

following design values:

Motor RPM: 80

Motor torque: 10 kg-cm

Wheel diameter: 9 cm

Building 2D and 3D

models of the robot body

Chassis design is the next step

in designing the robot. We can

create the 2D drawing of the

robot and then draw a 3D

model of it. The only

specification need to satisfy is

that the robot's base footprint

should be circular. Here, we are

discussing a drawing that is

satisfying this condition. If your

requirements are di"erent, you

may need to modify your

design accordingly. Now let's

look at some illustrations of the

robot's footprint.

The base plate

Following figure shows the

base footprint of our robot:

Figure 1: Base plate of the robot

The preceding figure shows the

base footprint of our robot. You

can see that it is circular and

there are two slots on the left

and right for attaching motors

and wheels. M1M1M1M1 and M2M2M2M2 are the

positions of the motor body,

and the shaft will be in the

slots. The motors can be put on

the top of the plate or on the

bottom. Here, we are attaching

the motors to the bottom of this

plate. The wheels should be

inside these two slots. We have

to make sure that the slot

length is greater than the wheel

diameter. You can see C1C1C1C1 and

C2C2C2C2, which are the positions

where we are attaching the

caster wheels. Caster wheels

are freely rotating wheels

without any actuation. We can

select available caster wheels

for this purpose. Some caster

wheels may have issues moving

on uneven terrain. In that case,

we may need to use a caster

wheel with spring suspension.

This ensures that it always

touches the ground even when

the terrain is slightly uneven.

You can also see parts such as

P1-1P1-1P1-1P1-1 and P1-4P1-4P1-4P1-4, which are the

poles from the base plate. If we

want to attach an additional

layer above the base plate, we

can use these poles as the

pillars. Poles can be hard

plastic or steel, which are fixed

to the base plate and have a

provision to attach a hollow

tube on them. Each poles is

screwed on to the base plate.

The center of the base plate is

hollow; this will be useful when

we have to take wires from the

motors. Mainly, we will attach

the electronic board required

for the robot to this plate.

Here are the dimensions of base

plate and each part:

Parts ofParts ofParts ofParts of

basebasebasebase

plateplateplateplate

DimensionsDimensionsDimensionsDimensions

(length x(length x(length x(length x

height) orheight) orheight) orheight) or

(radius) in(radius) in(radius) in(radius) in

cmcmcmcm

M1 and
M2

5 x 4

C1 and
C2

Radius =
1.5

S
(screw)

0.15

P1-1,
P1-2,
P1-3,
P1-4

Outer
radius
0.7,
Height 3.5

Left
and
right
wheel
section

2.5 x 10

Base
plate

Radius =
15

The pole and tube design

The following figure shows how

to make a pole and tube for this

robot. Again, this design is all

up to you. You can design

customized poles too:

Figure 2: Pole and tube

dimension of the robot

From the preceding figure, you

can see the dimension of the

pole and tube. It's 3.53.53.53.5 cm by

1.41.41.41.4 cm. The poles that we've

used here are basically hard

plastic. We are using hollow

tubes to connect to the poles

and extend them for the second

layer. The length of the hollow

tube is 15151515 cm, and it has a

slightly bigger diameter than

the poles, that is, 1.51.51.51.5 cm. Only

then will we be able to insert

this tube into the pole. A hard

plastic piece is inserted at one

side of the hollow tube, which

helps connect the next layer.

The motor, wheel, and

motor clamp design

You can choose a motor and

wheels that satisfy the design

criteria. Most of the standard

motors come with clamps. The

motor can be connected to the

base plate using this clamp. If

you don't have one, you may

need to make it. This is the

drawing of a standard clamp

that goes with one of the

motors:

Figure 3: The clamp design

The clamp can be fixed on the

base plate, and the motor shaft

can be put through the clamp

slot which is perpendicular to

the clamp base.

The caster wheel design

You can use any caster wheel

that can be move freely on the

ground. The main use of caster

wheels is distributing the

weight of the robot and

balancing it. If you can use a

spring suspension on the caster

wheel, it can help you navigate

the robot on uneven terrain.

Here are some caster wheels

that you can use for this robot:

http://www.robotshop.com/en/r

obot-wheel.html.

Middle plate and top plate

design

If you want a more layers for

the robot, you can simply make

circular plates and hollow tubes

which are compatible with the

base plate. Here you can see

middle plate design and the

tubes used to connect it to the

base plate:

Figure 4: The middle plate

design

The middle plate is simply a

circular plate having screw

holes to connect it to the tubes

from the base plate. We can

use following kind of hollow

tubes to connect the base plate

tubes and middle plate.

Figure 5: The hollow tube from

the second plate

Here you can see that a screw

is mounted on one side of the

tube; the screw can be used to

connect tubes to the base

plate. We can mount the top

plate on top of the tube too.

The top plate

Here is a diagram of the top

plate:

Figure 6: The top plate

The top plate can be placed in

a hollow tube. If we want to put

anything on top of the robot,

we can put it on the top plate.

On the middle plate, we can put

vision sensors, PC, and so on

for processing.

These are the main structural

elements that we need for this

robot. These drawing can be

develop in any CAD software

like AutoCAD and LibreCAD.

AutoCAD is a proprietary

software whereas LibreCAD is

free

(http://librecad.org/cms/home.

html). We have used LibreCAD

for developing the preceding

sketches.

You can simply install LibreCAD

in Ubuntu using the following

command:

In the next section, we can see

how we can model the robot in

3D. The 3D modeling is mainly

using for robot simulation.

3D modeling of the robot

The 3D modeling of the robot

can be done in any 3D CAD

software. You can use popular

commercial software such as

AutoCAD, SOLIDWORKS, and

CATIA or free software such as

Blender. The design can be

customized according to your

specification. Here, you can see

a 3D model of the robot built

using Blender. Using the 3D

model, we can perfect the

robot's design without building

the actual hardware. We can

also create the 3D simulation of

the robot using this model. The

following screenshot shows the

3D model of a robot designed

using Blender:

$ sudo apt-get install 
librecad

Copy Explain

http://learn-robotics.com/
http://www.robotshop.com/en/robot-wheel.html
http://librecad.org/cms/home.html
Mobile User



Figure 7: The 3D model

You can check out this model

at chapter_9_codes/chefbo
t.

Simulating the robot

model in Gazebo

After modeling the robot, the

next stage that we have to do is

simulation. The simulation is

mainly for mimicking the

behavior of designed robot. For

the simulation, normally we are

putting ideal parameters to the

simulated model. When we do

the actual robot, there can be

some changes from the

simulated parameters. We can

simulate the robot using

Gazebo. Before simulating the

robot, it will be good if you

understand the mathematical

model of a di"erential robot.

The mathematical

representation will give you

more insight about the working

of robot. We are not going to

implement the robot controllers

from scratch. Instead of that,

we are using existing one.

Mathematical model of a

di"erential drive robot

As you may know, robot

kinematics is the study of

motion without considering the

forces that a"ect the motion,

and robot dynamics is the

study of the forces acting on a

robot. In this section, we will

discuss the kinematics of a

di"erential robot.

Typically, a mobile robot or

vehicle can have six degreesdegreesdegreesdegrees

of freedomof freedomof freedomof freedom (DOFDOFDOFDOF), which are

represented as x, y, z, roll,

pitch, and yaw. The x, y, and z

degrees are translation, and

roll, pitch, and yaw are rotation

values. The roll movement of

robot is sideways rotation,

pitch is forward and backward

rotation, and yaw is the

heading and orientation of the

robot. A di"erential robot

moves along a 2D plane, so we

can say it will have only three

DOF, such as x, y, and theta,

where theta is the heading of

the robot and points along the

forward direction of the robot.

The following figure shows the

coordinate system of a

di"erential-drive robot:

Figure 8: The coordinate system

representation of a di"erential-

drive robot

So how to control this robot? It

has two wheels, right? So the

velocity of each wheel

determines the new position of

the robot. Let's say V-left and

V-right are the respective wheel

velocities, (x, y, θ) is the

standing position of the robot

at time t, and (x', y', θ') is the

new position at time t+ δt,

where δt is a small time

interval. Then, we can write the

standard forward kinematic

model of a di"erential robot like

this:

Figure 9: Forward kinematics

model of a di"erential drive

robot

Here are the unknown variables

in the preceding equation:

R = l/2 (nl + nr ) / (nr - nl )

ICC = [ x-R sinθ, y+R cosθ ]

ωδt = (nr - nl ) step / l

nl and nr are encoder counts for

left and right wheels. l is the

length of the wheel axis and

step is the distance covered by

the wheel in each encoder ticks.

ICCICCICCICC stands for instantaneousinstantaneousinstantaneousinstantaneous

center of curvaturecenter of curvaturecenter of curvaturecenter of curvature, and it is

the common point for rotation

of the robot wheels.

Figure 10: Forward kinematic

diagram of di"erential drive

You can also refer the equations

of inverse kinematics of mobile

robotics from the following

reference.

So we've seen the kinematics

equations of this robot; the next

stage is to simulate the robot.

Simulating Chefbot

The robot in the book is

actually designed for carrying

food and delivering to the

customers in a hotel. It is called

Chefbot. Now let's see what are

the steps involved for

simulating Chefbot. We are

using the Gazebo simulator

along with ROS for simulating

the capabilities of a robot. We'll

look at the basic teleoperation

of the mapping and localization

of a robot in Gazebo.

Building the URDF model of
Chefbot

The first step in the simulation

is building a robot model

compatible with ROS. The URDF

(http://wiki.ros.org/urdf) file is

the robot model that is

compatible with ROS. We are

not going to discuss how to

write a URDF model; instead,

we will see the important

sections we have to focus on

while creating the URDF of a

robot.

Inserting 3D CAD parts into
URDF as links

Creating URDF is a time-

consuming task; in this section,

we will learn how to create a

URDF package for a robot and

insert 3D CAD models as a

robot link in URDF. The first step

is to create a robot description

package; in this case,

chapter_9_codes/chefbot_
code/chefbot_description
is our robot model ROS

package. This package

contains all the URDF files and

3D mesh files required for a

robot. The

chefbot_description/mesh
es folder has some 3D models

that we designed earlier. These

3D models can be inserted into

the URDF file. You can check

the existing URDF file from

chefbot_description/urdf
. Here is a snippet that inserts a

3D model into URDF, which can

act as a robot link. The code

snippet can be found in

urdf/chefbot_base.urdf.x
acro.

Here, you can see we are

inserting the base_plate.dae
mesh into the URDF file.

Inserting Gazebo controllers
into URDF

After inserting the link and

assigning joints, we need to

insert Gazebo controllers for

simulating di"erential drive and

the depth camera plugin, which

is done with software models of

actual robots. Here is a snippet

of the di"erential drive Gazebo

plugin. You can find this code

snippet in

urdf/chefbot_base_gazebo
.urdf.xacro.

In this plugin, we are providing

the designed values of the

robot, such as motor torque,

wheel diameter, and wheel

separation. The di"erential

drive plugin that we are using

here is kobuki_controller,

which is used in the TurtleBot

simulation.

After creating this controller,

we need to create a depth

sensor plugin for mapping and

localization. Here is the code

snippet to simulate the Kinect,

a depth sensor. You can find the

code snippet from

urdf/chefbot_gazebo.urdf
.xacro.

In the depth sensor plugin, we

can provide necessary design

values inside it for simulating

the same behavior.

Running the simulation

To simulate the robot, you may

need to satisfy some

dependencies. The di"erential

robot controller used in our

simulation is of Turtlebot. So we

have to install Turtlebot

packages to get those plugins

and run the simulation:

You can also install ROS

packages such as

chefbot_bringup,

chefbot_description,

chefbot_simulator to start

the simulation. You can copy

these package into your ROS

workspace and launch the

simulation using the following

command:

If everything is working

properly, you will get this

window, which has the

designed robot:

Figure 11: Simulation of Chefbot

in Gazebo

You can move the robot around

using a teleop node. You can

start teleop using the following

command:

You can move the robot with

your keyboard, using the keys

shown in the following

screenshot:

Figure 12: Keyboard teleop

If you can move the robot using

teleop, you can now implement

its remaining capabilities.

Mapping and localization

Now we can perform mapping

and localization of the

simulated robot. Mapping is

done using the ROS gmapping
package, which is based on the

Simultaneous LocalizationSimultaneous LocalizationSimultaneous LocalizationSimultaneous Localization

and Mappingand Mappingand Mappingand Mapping (SLAMSLAMSLAMSLAM)

algorithm, and localization is

done using the amcl  AdaptiveAdaptiveAdaptiveAdaptive

Monte Carlo LocalizationMonte Carlo LocalizationMonte Carlo LocalizationMonte Carlo Localization

(AMCLAMCLAMCLAMCL) package, which has an

implementation of the AMCL

algorithm.

In this section, we will launch a

new simulated world and see

how to map and localize in the

world.

MappingMappingMappingMapping

Here is the command to start

the simulated world that has

our robot:

This will launch the world as

shown in the following

screenshot. The environment is

similar to a hotel conference

room with tables placed in it:

Figure 13: Hotel environment in

Gazebo

To start mapping the

environment, we can use the

following launch file. This will

start the gmapping node and

finally create the map file.

After launching gmapping

nodes, we can start Rviz for

visualizing the map building

done by the robot. The

following command will start

Rviz with necessary settings to

view the map file:

You can start the teleop node

and move around the world;

this will create a map like the

following:

Figure 14: The map visualized in

Rviz

After building the map, we can

save it using the following

command:

This will save the map in the

home folder with the name

hotel_world.

Congratulations; you have

successfully built the map of

the world and saved it. The next

step is to use this map and

navigate autonomously around

the world. We need the amcl
package to localize on the map.

Combining this with the amcl
package and ROS navigation,

we can autonomously move

around the world.

Navigation and localizationNavigation and localizationNavigation and localizationNavigation and localization

Close all the Terminals we have

used for mapping, and launch

the simulated world in Gazebo

using the following command:

Note

For more information,

check the publication

titled Kinematics

Equations for Di"erential

Drive and Articulated

Steering, ISSN-0348-0542

and the first author is

Thomas Hellstrom.

Note

       <joint 
name="base_joint" 
type="fixed"> 
          <origin 
xyz="0 0 0.0102" rpy="0 
0 0" /> 
          <parent 
link="base_footprint"/> 
          <child 
link="base_link" /> 
       </joint> 
        <link 
name="base_link"> 
          <visual> 
            <geometry> 
 
              <!-- new 
mesh --> 
              <mesh 
     
filename="package://chefbot_description/meshes/base_plate.dae" 
/> 
            </geometry> 

Copy Explain

        <gazebo> 
          <plugin 
name="kobuki_controller" 
    
filename="libgazebo_ros_kobuki.so"> 
 
            
<publish_tf>1</publish_tf> 
        
<left_wheel_joint_name>wheel_left_joint
        
</left_wheel_joint_name> 
          
<right_wheel_joint_name>wheel_right_joint
          
</right_wheel_joint_name> 
            
<wheel_separation>.30</wheel_separation> 
            
<wheel_diameter>0.09</wheel_diameter> 
            
<torque>18.0</torque> 
            
<velocity_command_timeout>0.6</velocity_command_timeout> 
         
            
<imu_name>imu</imu_name> 
          </plugin> 
        </gazebo> 

Copy Explain

           <plugin 
name="kinect_camera_controller" 
    
filename="libgazebo_ros_openni_kinect.so"> 
              
<cameraName>camera</cameraName> 
              
<alwaysOn>true</alwaysOn> 
              
<updateRate>10</updateRate> 
              
<imageTopicName>rgb/image_raw</imageTopicName> 
              
<depthImageTopicName>depth/image_raw 
     
         
</depthImageTopicName> 
              
<pointCloudTopicName>depth/points</pointCloudTopicName> 
              
<cameraInfoTopicName>rgb/camera_info 
                   
</cameraInfoTopicName>  
      
       
<depthImageCameraInfoTopicName>depth/camera_info 
       
        
</depthImageCameraInfoTopicName> 
              
<frameName>camera_depth_optical_frame</frameName> 
              
<baseline>0.1</baseline> 
              
<distortion_k1>0.0</distortion_k1> 
              
<distortion_k2>0.0</distortion_k2> 
              
<distortion_k3>0.0</distortion_k3> 
              
<distortion_t1>0.0</distortion_t1> 
              
<distortion_t2>0.0</distortion_t2> 
              
<pointCloudCutoff>0.4</pointCloudCutoff> 
            </plugin> 

Copy Explain

Note

You can clone the book

code using the following

command: $ git clone
https://github.com/qbotic

slabs/ros_robotics_project

s

Note

$ sudo apt-get install 
ros-kinetic-turtlebot-
simulator ros-kinetic-
turtlebot-navigation 
ros-kinetic-create-node 
ros-kinetic-turtlebot-
bringup ros-kinetic-
turtlebot-description

Copy Explain

$ roslaunch 
chefbot_gazebo 
chefbot_empty_world.launch

Copy Explain

$ roslaunch 
chefbot_bringup 
keyboard_teleop.launch

Copy Explain

$ roslaunch 
chefbot_gazebo 
chefbot_hotel_world.launch

Copy Explain

$ roslaunch 
chefbot_gazebo 
gmapping_demo.launch

Copy Explain

$ roslaunch 
chefbot_bringup 
view_navigation.launch

Copy Explain

$ rosrun map_server 
map_saver -f 
~/hotel_world

Copy Explain

$ roslaunch 
chefbot_gazebo 
chefbot_hotel_world.launch

Copy Explain

http://wiki.ros.org/urdf
https://github.com/qboticslabs/ros_robotics_projects


Start localization using the

following command:

This will load the saved map

and amcl nodes. To visualize

the robot, we can start Rviz

using the following command:

Now, we can start navigating

the robot autonomously. You

can click on the 2D Nav Goal2D Nav Goal2D Nav Goal2D Nav Goal

button and click on the map to

set the destination. When we

set the position, the robot will

autonomously move from its

starting point to the

destination, as shown here:

Figure 15: Visualizing

autonomous navigation with

AMCL particles

Congratulations! You have

successfully set up the robot

simulation and performed

autonomous navigation using

the simulator. Now let's see how

can we create the actual robot

hardware and program it.

$ roslaunch 
chefbot_gazebo 
amcl_demo.launch 
map_file:=/home/<user_name>/hotel_world.yaml

Copy Explain

$ roslaunch 
chefbot_bringup 
view_navigation.launch

Copy Explain

Designing and building

actual robot hardware

Let's build the actual hardware

of this robot. We need

components that satisfy our

design values and additional

vision sensors to perform SLAM

and AMCL. Here is the list::

Let's discuss the use of each

hardware part of the robot.

Motor and motor driver

The motors are controlled using

a motor driver circuit. Adjusting

the speed of the motors will

adjust the speed of the robot.

The motor drivers are basically

H-bridges that are used to

control the speed and direction

of the motors. We are using

motors and drivers from Pololu.

You can check them out from

the link in the table.

Motor encoders

Motor encoders are sensors

that provide a count

corresponding to the speed of

the robot wheel. Using the

encoder counter, we can

compute the distance travelled

by each wheel.

Tiva C Launchpad

The Tiva C Launchpad is the

embedded controller board

used to control the motor and

interface with other sensors.

The board we are using here is

running at 80 MHz and on 256

KB of flash memory. We can

program this board using the

Arduino language, called

WiringWiringWiringWiring (http://wiring.org.co/).

Ultrasonic sensor

The ultrasonic sensor is used to

detect nearby obstacles, if any,

in front of the robot. This sensor

is an optional one; we can

enable or disable it in the

embedded controller code.

Ultrasonic sensor

MPU 6050 The IMU of the robot

is used improve the odometry

data from the robot. The

odometry data provides the

current robot position and

orientation with respect to its

initial position. Odometry data

is important while building a

map using SLAM.

OpenNI depth sensor

To map the environment, we will

need a laser scanner or a depth

sensor. Laser scanner data is

one of the inputs to the SLAM

node. One of the latest depth

sensors we can use is the

Orbbec Astra Pro

(https://orbbec3d.com/product

-astra-pro/). You can also use a

Kinect for this purpose. Using

the

depthimage_to_laserscan
(http://wiki.ros.org/depthimage

_to_laserscan) ROS package,

we can convert the depth value

to laser scan data.

Intel NUC

To run ROS and its packages,

we need a computer. A

compact PC we can use is the

Intel NUC. It can smoothly run

all the packages needed for our

robot.

Interfacing sensors and

motors with the Launchpad

In this section, we will see how

to interface each sensor with

the Launchpad. The Launchpad

can be used to interface motor

controllers and also to interface

sensors. Here is a block

diagram showing how to

connect the Launchpad and

sensors:

Figure 16: Interconnection

between the Launchpad and

sensors

The Launchpad works on 3.3V

(CMOS) logic, so we may need

a logic level shifter to convert

from 3.3V to 5V and vice versa.

In board like Arduino UNO is

having 5V level, so it can

directly interface to motor

driver without any need of level

shifter. Most of the ARM based

controller boards are working in

3.3V, so level shifter circuit will

be essential while interfacing to

a 5V compatible sensor or

circuit.

Programming the Tiva C

Launchpad

The programming of the Tiva C

Launchpad is done using the

Energia IDE, which is the

customized version of the

Arduino IDE. You can download

it from http://energia.nu/. As

with  Arduino, you can choose

the serial port of the board and

the board name.

Figure 17: Energia IDE

The embedded code is placed

in the chapter_9_codes/
chefbot_code/tiva_c_ener
gia_code_final folder. Let's

look at some important

snippets from the main

embedded code.

Here are headers files of the

main code. We need to include

the following MPU 6050

headers to reading values from

it. The MPU6050 library for

Energia is also given along with

the book's code:

The Messenger library is used

to handle serial data from the

PC:

In the following code, the first

line is the object of the

MPU6050 class for handling

data from the IMU, and the

second one is the object of the

Messenger library for handling

serial input:

The following is the main

setup() function of the code.

This will initialize all sensors

and motors of the robot. The

setup() function will initialize

the serial port with a baud rate

of 115200 and initialize

encoders, motors, ultrasonic,

MPU6050, and the messenger

object. You can see the

definition of each function in

the code itself.

The following is the main

loop() function of the code. It

will read sensor values and

send motor speed commands to

the motor driver. The speed

commands are received from

the PC.

We can compile the code and

upload it into the board using

Energia. If the upload is

successful, we can

communicate with the board

using the miniterm.py tool.

Assume that the serial port

device is /dev/ttyACM0. First,

change the permission using

following command:

We can communicate with the

board using the following

command:

If everything is successful, you

will get values like these:

Figure 18: The serial port values

from the board

The messages that you are

seeing can be decoded like this:

the first letter denotes the

device or parameter. Here is

what the letters mean:

LetterLetterLetterLetter
Device orDevice orDevice orDevice or

parameterparameterparameterparameter

b Battery

t Time

e Encoder

u
Ultrasonic
sensor

s Motor speed

i IMU value

The serial messages are

separated by spaces and tabs

so that each value can be

decoded easily.

If we are getting serial

messages, we can interface the

board with ROS.

NoNoNoNo
ComponentComponentComponentComponent

namenamenamename
LinkLinkLinkLink

1
DC gear
motor with
encoder

https://www.pololu.com/product/2824

2
Motor
driver

https://www.pololu.com/product/708

3
Tiva C 123
or 129
Launchpad

http://www.ti.com/tool/EK-TM4C123GXL or
http://www.ti.com/tool/EK-TM4C1294XL

4
Ultrasonic
sensor

http://www.robotshop.com/en/hc-sr04-ultrasonic-range-finder.html

5
MPU 6050
(IMU)

http://www.robotshop.com/en/mpu-6050-6-dof-gyro-accelerometer-imu.html
http://www.robotshop.com/en/imu-breakout-board-mpu-9250.html

6

OpenNI
compatible
depth
sensor
(Astra
Pro)

https://orbbec3d.com/product-astra-pro/

7 Intel NUC http://www.intel.in/content/www/in/en/nuc/products-overview.html

8
12V, 10AH
battery

Any battery with the specifications provided

Note

You can clone the book

code using the following

command: $ git
clonehttps://github.com/

qboticslabs/ros_robotics_

projects

Note

    #include "Wire.h" 
    #include "I2Cdev.h" 
    #include 
"MPU6050_6Axis_MotionApps20.h" 

Copy Explain

    #include 
<Messenger.h> 
    #include <limits.h> 

Copy Explain

    MPU6050 
accelgyro(0x68); 
 
    Messenger 
Messenger_Handler = 
Messenger(); 

Copy Explain

    void setup() 
    { 
   
      //Init Serial 
port with 115200 baud 
rate 
      
Serial.begin(115200);   
   
      //Setup Encoders 
      SetupEncoders(); 
      //Setup Motors 
      SetupMotors(); 
      //Setup 
Ultrasonic 
      
SetupUltrasonic();   
      //Setup MPU 6050 
      Setup_MPU6050(); 
      //Setup Reset 
pins 
      SetupReset(); 
      //Set up 
Messenger  
      
Messenger_Handler.attach(OnMssageCompleted); 
     
     
    } 

Copy Explain

    void loop() 
    { 
 
        //Read from 
Serial port 
        
Read_From_Serial(); 
     
    
        //Send time 
information through 
serial port 
        Update_Time(); 
     
        //Send encoders 
values through serial 
port 
        
Update_Encoders(); 
     
        //Send 
ultrasonic values 
through serial port 
        
Update_Ultra_Sonic(); 
         
 
        //Update motor 
values with 
corresponding speed and 
send speed 
     values through 
serial port 
        
Update_Motors(); 
 
 
        //Send MPU 6050 
values through serial 
port 
        
Update_MPU6050(); 
     
        //Send battery 
values through serial 
port 
        
Update_Battery(); 
     
     
   
    } 

Copy Explain

$ sudo chmod 777 
/dev/ttyACM0

Copy Explain

$ miniterm.py 
/dev/ttyACM0 115200

Copy Explain

Note

The latest ROS Tiva C

Launchpad interface can

be found here:

http://wiki.ros.org/rosseri

al_tivac.

Note

Interfacing robot

hardware with ROS

In this section, we will see how

we can interface a robot's

embedded controller with ROS.

The embedded controller can

send speed commands to the

motors and obtain speed

commands from robot

controller nodes. The ROS robot

controller nodes receive linear

and angular Twist command

from the ROS navigation stack.

The Twist command will be

subscribed to by the robot

controller node and converted

into equivalent motor velocity,

that is Vl and Vr.

The robot controller nodes also

receive encoder ticks from the

embedded controller and

calculate the distance traveled

by each wheel. Let's take a look

at the robot controller nodes.

The Chefbot robot controller

nodes are placed in

chefbot_bringup/scripts.

You can check out each node;

they're all written in Python.

launchpad_node.py:

This is the ROS driver

node for handling

Launchpad boards. This

node will receive serial

data from Launchpad

and also send data to

the board. After

running this node, we

will get serial data from

the board as topics,

and we can send data

to the board through

topics too.

SerialDataGateway
.py: This Python

module is used to

handle serial receive or

transmit data in a

thread. The

launchpad_node.py
node uses this module

to send or receive data

to or from the board.

Twist_to_motors.p
y: This node will

subscribe to Twist
messages from the ROS

navigation stack or

teleop node and

convert them into wheel

target velocities.

pid_velocity.py:

This is a node that

implements the PID

controller, which

subscribes to the wheel

target velocity and

converts it into

equivalent motor

velocity.

diff_tf.py: This

node basically

subscribes to the

encoder data and

http://wiring.org.co/
https://orbbec3d.com/product-astra-pro/
http://wiki.ros.org/depthimage_to_laserscan
http://energia.nu/
https://www.pololu.com/product/2824
https://www.pololu.com/product/708
http://www.ti.com/tool/EK-TM4C123GXL
http://www.ti.com/tool/EK-TM4C1294XL
http://www.robotshop.com/en/hc-sr04-ultrasonic-range-finder.html
http://www.robotshop.com/en/mpu-6050-6-dof-gyro-accelerometer-imu.html
http://www.robotshop.com/en/imu-breakout-board-mpu-9250.html
https://orbbec3d.com/product-astra-pro/
http://www.intel.in/content/www/in/en/nuc/products-overview.html
https://github.com/qboticslabs/ros_robotics_projects
http://wiki.ros.org/rosserial_tivac


Here is the graph showing the

communication between the

nodes:

Figure 19: Communication

among ROS driver nodes

Here is the list of ROS launch

files that we need in order to

work with the actual robot. All

launch files are placed in the

chefbot_bringup/launch
folder:

Running Chefbot ROS driver

nodes

The following is the block

diagram of the connection.

Make sure that you are all set

with connecting the devices.

Make sure you have connected

all sensors and the Launchpad

board to your PC before

running the driver.

Figure 20: Block diagram of the

Chefbot

If we want to launch all driver

nodes of the robot, you can

simply do it using the following

command. Don't forget to

change the serial port

permission.

If everything working fine, you

will get the following ROS

topics:

Figure 21: The Chefbot driver

topics

You can also visualize the ROS

computational graph using

rqt_graph. Here is the

visualization of rqt_graph,

showing the communication

between all nodes:

Figure 22: The computation

graph view of Chefbot driver

nodes

encoder data and

calculates the distance

traversed by the robot.

It then publishes as the

odometry and

transformationtransformationtransformationtransformation (TFTFTFTF)

topic.

robot_standalone.
launch: This will

launch the ROS driver

nodes of Chefbot.

model_robot.launc
h: This launch file loads

the URDF file of

Chefbot.

view_robot.launch:

This will display the

robot model on Rviz.

keyboard_teleop.l
aunch: This will start

the keyboard teleop

node, which can drive

the robot using a

keyboard.

3dsensor.launch:

This will launch OpenNI

to enable depth camera

drivers. There may

changes to this launch

file according to the

sensor.

gmapping_demo.lau
nch: This will launch

the gmapping nodes,

which will help us map

the robot environment.

amcl_demo.launch:

This will launch the

AMCL nodes, which

help us localize the

robot on the map.

view_navigation.l
aunch: This will

visualize the map and

robot, which helps us

command the robot to

move to the destination

on the map.

Note

Orbbec Astra camera ROS

driver:

http://wiki.ros.org/astra_c

amera

https://github.com/orbbec

/ros_astra_camera

Note

$ roslaunch 
chefbot_bringup 
robot_standalone.launch

Copy Explain

Gmapping and

localization in Chefbot

After launching the ROS driver,

we can teleop the robot using

keyboard teleop. We can use

the following command to start

keyboard teleoperation:

If we want to map the robot

environment, we can start the

gmapping launch file like we

did in the simulation:

You can visualize the map

building in Rviz using the

following command:

You can build the map by

teleoperating the robot around

the room. After mapping, save

the map as we did in the

simulation:

After getting the map, launch

AMCL nodes to perform final

navigation. You have to restart

all the launch files and start

again.

Let's look at the commands to

launch the AMCL nodes.

First, start the ROS driver nodes

using the following command:

Now start the AMCL nodes:

Then start Rviz to command the

robot on the map:

You will see Rviz showing

something like the following

screenshot, in which you can

command the robot and the

robot can run autonomously:

Figure 23: Localization and

navigation with Chefbot

The following diagram

shows the actual robot

hardware. As per our design,

we can see circular plate and

hollow tubes to add additional

layers to the robot. You can

also see the Intel NUCIntel NUCIntel NUCIntel NUC and

KinectKinectKinectKinect camera for robot

navigation:

Figure 24: The actual Chefbot

prototype

$ roslaunch 
chefbot_bringup 
keyboard_teleop.launch

Copy Explain

$ roslaunch 
chefbot_bringup 
gmapping_demo.launch

Copy Explain

$ roslaunch 
chefbot_bringup 
view_navigation.launch

Copy Explain

$ rosrun map_server 
map_saver -f ~/test_map

Copy Explain

$ roslaunch 
chefbot_bringup 
robot_standalone.launch

Copy Explain

$ roslaunch 
chefbot_bringup 
amcl_demo.launch 
map_file:=~/test_map.yaml

Copy Explain

$ roslaunch 
chefbot_bringup 
view_navigation.launch

Copy Explain

Questions

How to convert encoder

data to estimate the

robot's position?

What is the role of

SLAM in robot

navigation?

What is AMCL and why

is it used?

What is the importance

of the ROS navigation

stack?

Summary

In this chapter, we designed

and built an autonomous

mobile robot from scratch. The

design of the robot started with

its specification. From the

specification, we designed

various parameters of the

robot, such as motor torque

and speed. After finding out

each parameter, we modeled

the robot chassis and simulated

it using ROS and Gazebo. After

simulation, we saw how to

create the actual hardware. We

selected the components and

interconnected the sensors and

actuators to the embedded

board. We wrote the firmware

of the embedded board. The

board can communicate with

the PC on which the ROS is

running. The ROS driver node

receives the data from the

robot and interfaces with the

gmapping and AMCL packages

to perform autonomous

navigation.

In the next chapter, we will see

how to create a self-driving car

and interface to Robot

Operating System.

Previous Chapter

Next Chapter

http://wiki.ros.org/astra_camera
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