
Mesh Access Connection

Purpose
The MeshAccessConnection works closely with the MeshAccessModule to provide a simple proxy for connecting to the
mesh network from a device that does not need to implement the FruityMesh algorithm.

Functionality
After discovering the MeshAccess Sservice and registering notifications for the TX characteristic, the
ResolverConnection will instantiate a MeshAccessConnection. The MeshAccessConnection waits for an encryption
handshake within a few seconds. If the handshake is not completed within this time, it will disconnect the connection
to save resources.

The maximum transmission unit (MTU) of the MeshAccessConnection is fixed at 16 bytes of payload together with 4
bytes if message integrity code (MIC) which gives a total of 4 bytes.

Exemplary Encryption Handshake
This section shows an exemplary encryption handshake, which should make it easier to implement a smartphone app
that supports the MeshAccessConnection protocol.

Encrypt Custom Start
Once a Central is connected to a Peripheral, the MeshAccess Service was discoverd and Notifications were set up
properly, the Central is expected to start the Encryption Handshake by sending the ENCRYPT_CUSTOM_START packet.

 The packet structure is also documented as part of the MeshAccessModule.

This packet contains:

senderId (or NODE_ID_APP_BASE (32000) in case the Central is a Smartphone)

the receiverId set to the partners nodeId (or 0 if unknown at this point)

a version that identifies the type of encryption handshake (currently 1)

the keyId, which specifies if e.g. NODE_KEY, NETWORK_KEY, etc… should be used for the connection. Different keys
have different permissions and only certain messages can be sent depending on the key.

the tunnelType which specifies if this is a peer to peer connection or if one side of the connection has other nodes
attached that will take part in the communication.

The following is an examplary ENCRYPT_CUSTOM_START packet sent from a Central to a Periphal which is sent in
cleartext:

19:01:00:00:00:01:02:00:00:00:00

Data Description

file:///C:/projects/fruitymesh/docs/opensource/modules/ROOT/pages/MeshAccessModule.adoc
file:///C:/projects/fruitymesh/docs/opensource/modules/ROOT/pages/MeshAccessModule.adoc

Data Description

0x19 MessageType::ENCRYPT_CUSTOM_START (25)

0x0001 Sent from nodeId 1

0x0000 Sent to NODE_ID_BROADCAST, but will only be
received by our connection partner during the
handshake

0x01 Encryption Protocol version is currently 1

0x00000002 KEY_ID_NETWORK should be used

0x00 MESH_ACCESS_TUNNEL_TYPE_PEER_TO_PEER
is used

Encrypt Custom ANonce
Once the peripheral receives the ENCRYPT_CUSTOM_START packet and wants to accept the connection, it must respond
with the ENCRYPT_CUSTOM_ANONCE packet. This packet is also sent in cleartext. To generate this packet it has to use a
secure random number generator to generate an 8 byte integer called ANonce:

1A:02:00:01:00:1D:4C:FA:4E:32:19:68:2A

Data Description

0x1A MessageType::ENCRYPT_CUSTOM_ANONCE
(26)

0x0002 SenderId is 2

0x0001 ReceiverId is 1

0x4EFA4C1D First part of the randomly generated ANonce

0x2A681932 Second part of the ANonce

The Peripheral will use the ANonce to decrypt all packets that it receives from the central from now on. To do this, it
has to generate the Session Key for decrypting packets. The NetworkKey that was chosen for this example is:
04:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00 . This key must be known by both devices in order to
successfully encrypt the connection. The used key is called Long Term Key and is used to generate a Session Key that is
only valid for the current connection.

To generate the Session Key, the Peripheral has to create the following cleartext first:

01:00:1D:4C:FA:4E:32:19:68:2A:00:00:00:00:00:00

Data Description

0x0001 Node Id of the Central is 1

0x4EFA4C1D First part of the randomly generated ANonce

0x2A681932 Second part of the ANonce

0x000000000000 Padded with zeros

This cleartext is then encrypted using AES-128 in Electronic Code Book Mode (ECB), which basically means that AES-
128 is used without any chaining. If an IV is requested, set it to 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00. The
result of the encryption is the Session Decryption Key for the Peripheral, which is
03:1C:BD:BA:73:42:FD:B0:95:13:81:AB:97:94:8C:D9 in this example.

Once the packet is received by the Central, it will save the received nonce and will generate the same Session Key so
that it can use this Session Key for encrypting packets. As it has received the ANonce in cleartext and as it knows the
Long Term Key, it can follow the same steps to derive the exact same Session Key.

Encrypt Custom SNonce
The Central must now also generate a unique 8 byte random number that is called SNonce. It must then send a packet
to the Peripheral that contains the SNonce. This packet must be sent in its encrypted form by using the Session Key that
was generated using the ANonce.

The cleartext of the ENCRYPT_CUSTOM_SNONCE packet might look like this:

1B:01:00:02:00:FC:D3:B8:64:AD:0F:E8:19:00:00:00

Data Description

0x1B MessageType::ENCRYPT_CUSTOM_SNONCE
(27)

0x0001 Sent from nodeId 1

0x0002 Sent to nodeId 2

0x64B8D3FC First part of the randomly generated SNonce

0x19E80FAD Second part of the SNonce

0x000000 Padded with zeros to have a block of 16
bytes

The Central has already calculated the encryption key from the ANonce as described above, it can now also generate
the Session Key for decrypting packets by using the generated SNonce. Using the same procedure as above, it has to
first construct the cleartext and then encrypt this cleartext by using the Long Term Key.

01:00:FC:D3:B8:64:AD:0F:E8:19:00:00:00:00:00:00

Data Description

0x0001 Node Id of the Central is 1

0x64B8D3FC First part of the randomly generated SNonce

0x19E80FAD Second part of the SNonce

0x000000000000 Padded with zeros

After encrypting this, it will have derived the Session Key for decrypting messages from the Peripheral which is
A4:13:1A:68:D2:64:B6:55:90:6E:87:AD:5F:BF:F0:A0 in this example.

Generating the Keystream and Encrypting the Data

Next, it must encrypt the ENCRYPT_CUSTOM_SNONCE packet before it can be sent to the Peripheral by using the
Session Encryption Key. To do this, it will first generate a cleartext from the ANonce, encrypt this with the Session
Encryption key and then XOR this keystream with the cleartext data to be sent.

In this example, the cleartext to generate the keystream is 1D:4C:FA:4E:32:19:68:2A:00:00:00:00:00:00:00:00 .

Data Description

0x4EFA4C1D First part of the ANonce

0x2A681932 Second part of the ANonce

0x0000000000000000 Padded with zeros

Encrypting this cleartext with the Session Encryption Key (03:1C:BD:BA:73:42:FD:B0:95:13:81:AB:97:94:8C:D9)
results in a keystream that is 62:64:A5:B4:A6:5B:8B:31:69:45:78:05:C5:26:69:E4 . After this keystream was
XOR’ed with the data that should be sent (1B:01:00:D1:07:FC:D3:B8:64:AD:0F:E8:19:00:00:00), we get the
ciphertext, which is 79:65:A5:B6:A6:A7:58:89:0D:E8:77:ED:DC:26:69:E4 . As the keystream was only XOOed with
the original data, we can omit the last bytes that were only padded with zeros and only need to send the part that
contains data, which is 79:65:A5:B6:A6:A7:58:89:0D:E8:77:ED:DC .

Generating the MIC

To be able to check, whether the packet was properly encrypted, a message integrity code (MIC) needs to be attached to
the packet. Calculating the MIC is done by increasing the encryption nonce by 1 to generate a new cleartext. The new
cleartext in this example is 1D:4C:FA:4E:33:19:68:2A:00:00:00:00:00:00:00:00 . Notice the 0x33 which is where
the second part of the ANonce was increased by 1. This cleartext is then encrypted with our Session Encryption Key to
get the MIC keystream, which is 04:14:36:4B:49:93:9C:40:68:49:7A:55:73:AB:E7:73 .

To finally generate the MIC, the MIC keystream is again XOR’ed with the original cleartext data packet in its zero
padded form (79:65:A5:B6:A6:A7:58:89:0D:E8:77:ED:DC:00:00:00) which results in
7D:71:93:FD:EF:34:C4:C9:65:A1:0D:B8:AF:AB:E7:73 . Once this is encrypted again with the Session Encryption
Key, we have the final data for the MIC CA:CA:47:57:CB:48:41:6D:56:12:F5:63:DE:10:2C:D3 from which we use
the first 4 bytes (CA:CA:47:57) and append it to the end of our encrypted data packet:

79:65:A5:B6:A6:A7:58:89:0D:E8:77:ED:DC:CA:CA:47:57

This data is then sent to the Peripheral where it can be decrypted using the same procedure as above as XOR’ing data
twice will give the initial data.

Decrypting the Packet on the Peripheral

The Peripheral will follow the same procedure that was also used during encryption once it receives the encrypted
data packet (79:65:A5:B6:A6:A7:58:89:0D:E8:77:ED:DC:CA:CA:47:57).

First, it must check if the MIC matches and must only decrypt the packet if this is the case. Therefore it will first
generate a cleartext with the ANonce that it generated initially incremented by one
(1D:4C:FA:4E:33:19:68:2A:00:00:00:00:00:00:00:00) which it will encrypt with its Session Decryption Key
(03:1C:BD:BA:73:42:FD:B0:95:13:81:AB:97:94:8C:D9) which produces the MIC Keystream
04:14:36:4B:49:93:9C:40:68:49:7A:55:73:AB:E7:73 . This is now XOR’ed with the zero padded ciphertext (aka.
the encrypted data packet: 79:65:A5:B6:A6:A7:58:89:0D:E8:77:ED:DC:00:00:00) to get
7D:71:93:FD:EF:34:C4:C9:65:A1:0D:B8:AF:AB:E7:73 . After encrypting this with the Session Decryption Key it will
have produced the exact same MIC keystream CA:CA:47:57:CB:48:41:6D:56:12:F5:63:DE:10:2C:D3 and can check
if the first 4 bytes match the received MIC.

After checking the MIC, the Peripheral is ready to decrypt the data for which it has to use the original ANonce
(Decremented by 1 compared with the ANonce that was used to calculate the MIC) which is
1D:4C:FA:4E:32:19:68:2A:00:00:00:00:00:00:00:00 . Encrypting this with the Session Decryption Key results in
62:64:A5:B4:A6:5B:8B:31:69:45:78:05:C5:26:69:E4 . After this was XOR’ed with the encrypted data packet, we
get the original SNonce data packet:

1B:01:00:D1:07:FC:D3:B8:64:AD:0F:E8:19:00:00:00

As the length of this packet is known, we can now remove the zero padding. The Peripheral must then store the
received SNonce and use it to encrypt all further packets

Encrypt Custom Done
The Peripheral can now use the encryption nonce and can generate the Session Encryption Key before it sends the final
ENCRYPT_CUSTOM_DONE handshake packet:

1C:02:00:01:00:00

Data Description

0x1C MessageType::ENCRYPT_CUSTOM_DONE
(28)

0x0002 SenderId

0x0001 ReceiverId

Data Description

0x00 Status OK

This data is now encrypted again in the same manner as before:

Session Encryption Key: A4:13:1A:68:D2:64:B6:55:90:6E:87:AD:5F:BF:F0:A0

Keystream Cleartext from SNonce: FC:D3:B8:64:AD:0F:E8:19:00:00:00:00:00:00:00:00

Data Encryption Keystream: 83:30:E5:B0:4F:7B:EB:04:92:D8:75:84:DC:80:54:FE

Data Cleartext: 1C:02:00:01:00:00:E8:19:00:00:00:00:00:00:00:00

Data Cleartext XOR’ed with Encryption Keystream (Data Ciphertext):
9F:32:E5:B1:4F:7B:03:1D:92:D8:75:84:DC:80:54:FE

MIC calculation:

MIC Intermediate Keystream Cleartext: FC:D3:B8:64:AE:0F:E8:19:00:00:00:00:00:00:00:00

MIC Intermediate Keystream: 0B:B1:CC:00:F4:53:33:92:3B:A7:71:98:FF:77:95:4E

Padded Data Ciphertext: 9F:32:E5:B1:4F:7B:00:00:00:00:00:00:00:00:00:00

Padded Data Ciphertext XOR’ed with MIC Intermediate Keystream:
94:83:29:B1:BB:28:33:92:3B:A7:71:98:FF:77:95:4E

Above thingy encrypted with Session Encryption Key (MIC Data):
62:92:E7:B6:4C:A0:88:E2:B0:7E:95:87:01:84:01:86

MIC: 62:92:E7:B6

Final Encrypted Packet:

9F:32:E5:B1:4F:7B:62:92:E7:B6

Final Words
Hopefully, the above examples together with the source code in the MeshAccessConnection should provide enough
help to be able to implement the complete Handshake and the following encryption of all data packets. Keep in mind
that the ANonce and SNonce are increased by two for every data packet as one Nonce is used to encrypt the data and
the second Nonce is used to generate the MIC.

Data splitting happens before encryption, so if a message is sent or received that has more than 16 bytes, it must be
split into multiple parts before the individual parts are encrypted.

