
Specification

Most parts of the protocol should not be modified to enable interoperability. Some of the protocol
decisions are found on this page and ongoing discussions will show whether some of these specifications
should be changed.

Advertising Packets
FruityMesh uses a number of advertising packets, the most important one being the JOIN_ME packet that is used for discovery of
nearby nodes that also run FruityMesh.

Advertising Packet with Manufacturer Speci�c Data
There are two types of advertising packets used by FruityMesh. One uses the manufacturer specific advertisement structure, the
other uses the serviceData advertisement structure.

Table 1. Advertising Header With Manufacturer Specific Data

Bytes Type Name Description

3 advStructureFlags Flags Mandatory Flags Adv
Structure

4 advStructureManufacturer Manufacturer Data Manufacturer
Specific Adv Structure
with 0x024D as
company identifier.

1 u8 meshIdentifier Identifies this as a
mesh advertising
packet

2 NetworkId networkId The network ID of
this node

1 u8 messageType Used to identify a
number of different
advertising messages
within the mesh

Manufacturer ID

The company ID 0x024D (M-Way Solutions GmbH) is registered with the Bluetooth SIG and may be used by any implementation
that conforms to the latest specifications of the FruityMesh protocol.

Mesh Identi�er

The mesh identifier is 0xF0. No other identifier shall be used. Future versions might change this identifier. The purpose of the
mesh identifier is to enable different protocols under the same manufacturer ID.

Network Identi�er

The network identifier can be changed by the user. In combination with the networkKey, this allows different meshes to co-exist
in the same physical area. It is set either during flashing or during enrollment.

Message Type

The messageType is used to distinguish between different messages. The same messageType definitions are used for advertising
packets and for connection packets. This allows us to send the same message over another "transport" if desired and compatible
with the message format.

JOIN_ME Packet (MessageType 1)
The JOIN_ME packet contains all the information that other nodes can use to determine their best connection partner. The
messageId in the header must be set to 1. Future JOIN_ME packets can have a different messageId and different values that can
then be used in the Cluster Score Function. The current implementation uses the clusterSize and the number of freeIn and freeOut
connections.

Bytes Type Name Description

11 advHeaderManufacturerSpecific header The above depicted
manufacturer
specific header

2 NodeId sender The nodeId of the
sending node

4 ClusterId clusterId Consists of the
founding node’s ID
and the connection
loss / restart counter

2 ClusterSize clusterSize The number of
nodes in this cluster

3 bit u8 : 3 freeMeshInConnections Number of free in
connections (as
peripheral)

5 bit u8 : 5 freeMeshOutConnections Number of free out
connections (as
central)

1 u8 batteryRuntime Contains the
expected runtime of
the device (1-
59=minutes, 60-
83=1-23hours, 84-
113=1-29days, 114-
233=1-119months,
234-254=10-29years,
255=infinite)

1 i8 txPower Power of two’s
complement in dBm

Bytes Type Name Description

1 u8 deviceType cf. Device Types

2 u16 hopsToSink Number of hops to
the shortest sink

2 u16 meshWriteHandle The GATT handle for
the mesh
communication
characteristic

4 ClusterId ackField Contains the
acknowledgement
from another node
for the slave
connection
procedure

Advertising Packet With Service Data
Another type of advertising packet used by FruityMesh uses the Service Data Adv Structure. This is important when dealing with
mobile devices since some have hardware filtering with no support for manufacturer specific data.

Bytes Type Name Description

Mandatory data

3 Flags advStructureFlags (len, type, flags byte)

4 Service UUID
complete

advStructureUUID16 (len, type, 2 byte UUID
0xFE12)

4 Service Data header advStructureServiceData (len, type, 2 byte UUID
0xFE12)

CustomDataHeader

2 u16 messageType Used to determine
between different
messages.

Other Advertising Packets
FruityMesh can be used to distribute all advertising packets that conform to the BLE specification. These can be Eddystone,
iBeacon or any other kind of advertising messages. These are however not essential for FruityMesh itself and are therefore not
documented here. Have a look at the AdvertisingModule for more information.

Connection Packets

file:///C:/projects/fruitymesh/docs/opensource/modules/ROOT/pages/AdvertisingModule.adoc

The mesh uses a number of packets that are sent over connections. Most packets that are sent over connections must have this
header. There are some exceptions to this (e.g. split packets use a two byte message header for less overhead. The messageType is
used to identify if the connPacketHeader is used or not.

Connection Packet Header
Table 2. Format of a connPacketHeader

Bytes Type Name Description

1 u8 messageType Type of message

2 u16 senderId Node ID of the sender

2 u16 receiverId Node ID of the receiver

Modules
FruityMesh uses a concept of modules to group functionality into different parts. This works together nicely with the featuresets.
A user is able to write his own modules that extend the basic functionality of FruityMesh. Each module is identified using a
module id.

ModuleIds
There are two types of module ids: the standard ModuleId has a size of one byte and is solely used by standardized modules. The
VendorModuleId on the other hand uses 4 bytes to allow different vendors to develop modules that can run together in a single
network without clashing with other modules that were written by different vendors on different nodes in the same mesh
network. This is done by including a vendor id as part of the VendorModuleId. This vendor id must be set to the company
identifier that can be acquired from the BLE SIG. See this page
(https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers/) for instructions on how to get this company identifier
and for a complete list of known company identifiers.

VendorModuleIds were not part of FruityMesh prior to version 1.x.x. FruityMesh tries to keep the usage of VendorModuleIds as
easy as possible and does most of the work when using VendorModuleIds. Some parts will e.g. use different message types for
messages with ModuleId and VendorModuleId and other parts use the ModuleIdWrapper to be able to work with both module id
types in the same data structure. As a convention, whenever a ModuleId is printed out as a string, it is printed as a decimal
number, e.g. 123 . VendorModuleIds on the other hand are printed as a string like this "0xABCD01F0" to make the individual
parts easier to read.

To get started, see Implementing a Custom Module.

ModuleId

In the implementation, the ModuleId is either used as a single byte or stored using the 4 byte ModuleIdWrapper with the subId
and vendorId set to 0. This depends on the implementation of a feature.

VendorModuleId

The VendorModuleId is always composed of 4 bytes can be put together using the ModuleIdWrapper.

Bytes Type Name Description

1 u8 prefix This must be set to
VENDOR_MODULE_ID_RESERVED(0xF0)
to be recognized as a VendorModuleId

https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers/
file:///C:/projects/fruitymesh/docs/opensource/modules/ROOT/pages/Implementing-a-Custom-Module.adoc

Bytes Type Name Description

1 u8 subId The user can use this to specify up to
254 different modules with his
vendorId. 0x00 and 0xFF are reserved

2 u16 vendorId The company identifier as assigned by
the BLE SIG

Module Packet Header
Modules use an bigger message header to guarantee that there are no collisions between different functionality. The following
describes the format of the header:

Table 3. Format of a connPacketModule or connPacketModuleVendor Header

Bytes Type Name Description

5 connPacketHeader header MessageType must be one
e.g. of the above.

1 or 4 u8 or u32 moduleId or
vendorModuleId

Either a ModuleId of a core
module or the
VendorModuleId of a
vendor specific module.

1 u8 requestHandle A handle that can be used
e.g. like a counter.
Responses will always be
returned with the same
handle given in the
request.

Bytes Type Name Description

1 u8 actionType This is the type of action
that should be executed by
the module. An individual
list of subCommands is
available for each of the
messageTypes given above.
E.g. there could be a
MODULE_TRIGGER_ACTION
message with the
actionType set to 1 (PING)
to execute a ping. The
response would be a
MODULE_ACTION_RESPONSE
message with the
actionType set to 1
(PING_RESPONSE).

… u8[] data additional payload data for
the command

The connPacketModule differs from the connPacketModuleVendor header in the size of the module id. They can be differentiated
by checking the first byte, which is set to ModuleId::VENDOR_MODULE_ID_PREFIX (0xF0) in case of a VendorModuleId. While the
connPacketModule has a size of 8 bytes, the connPacketModuleVendor needs 11 bytes.

Module Packet Header for Actions / Responses and Events

The most common usage of the connPacketModule header is to provide the possibility to trigger actions, get responses and to fire
events. This is a command and response based schema that is very well suited to communicate between different nodes in a mesh
network. The following MessageTypes are used for this:

Table 4. Module MessageTypes for Actions / Responses and Events

MessageType Name Description

51 / 0x33 MODULE_TRIGGER_ACTION A request for a node to perform
an action

52 / 0x34 MODULE_ACTION_RESPONSE Response message for a
previous request

53 / 0x35 MODULE_GENERAL An event that does not need a
response

Actuator and Sensor Messages

Often, FruityMesh must tunnel a different protocol such as Modbus because it is installed on a controller that is attached to a 3rd
party controller. In this case, it is necessary to have a tunneling protocol that is generic enough to provide access to all
functionality while still allowing a platform or MeshGateway to interpret the received data in a useful manner. This is why we
have introduced the component_sense and component_act message types. You should use them whenever you report sensor
data or when you want to write data to the node that should be written to a specific "address".

Table 5. Module MessageTypes for Actuators and Sensors

MessageType Name Description

58 / 0x3A COMPONENT_ACT A request to trigger an actuator

59 / 0x3B COMPONENT_SENSE A response from a sensor

Take a look at the detailed documentation for Sensors and Actuators.

Raw Data

Another use-case is to tunnel any kind of data through FruityMesh where the nodes do not need to parse or process the data at all,
e.g. a smartphone might want to send data to a MeshGateway or Backend. This could also be data of an entirely different protocol
such as HTTP, etc… This could be a small data packet or a rather large file that needs to be split into several parts. To do this, we
have introduced raw_data and raw_data_light which are documented in a lot of detail at the Raw Data page.

Table 6. Module MessageTypes for Raw Data

MessageType Name Description

54 / 0x36 MODULE_RAW_DATA Used to transmit large files or
large amounts of data
(acknowledged, similar to TCP)

55 / 0x37 MODULE_RAW_DATA_LIGHT Used to transmit up to
"MAX_MESH_PACKET_SIZE"
bytes of data (see Config.h)
(unacknowledged, similar to
UDP)

Module Con�guration Messages

Another MessageType is dedicated to configure modules and to get more information about them.

Table 7. Module MessageTypes for Configuring Modules

MessageType Name Description

50 / 0x32 MODULE_CONFIG Used to retrieve or set a module
configuration or get more
information about modules

Node IDs
A NodeId is a way of addressing devices in a network. Each device in a network must have a unique nodeId assigned to it that
must not clash with the node ID of another device.

There are different node ID ranges that are used for different purposes:

Table 8. Node ID ranges

Name Node ID Usage

file:///C:/projects/fruitymesh/docs/opensource/modules/ROOT/pages/SensorsAndActuators.adoc
file:///C:/projects/fruitymesh/docs/opensource/modules/ROOT/pages/RawData.adoc

Name Node ID Usage

NODE_ID_BROADCAST 0 Broadcast address to reach all
nodes in a network

NODE_ID_DEVICE_BASE 1… 1999 Uniquely address devices
(nodes, sinks, …) given by
enrollment

NODE_ID_VIRTUAL_BASE 2000… 19999 Virtual addresses to address
smartphones connected to the
mesh (dynamically assigned,
aka. virtual partner id)

NODE_ID_GROUP_BASE 20000… 20999 Address groups of devices
(statically assigned at compile
time)

NODE_ID_LOCAL_LOOPBACK 30000 Address for the current node
itself (similar to localhost)

NODE_ID_HOPS_BASE 30001… 30999 Specify the number of hops
that a packet can travel. (30
001 e.g. specifies that the
packet must only reach the
direct neighbours)

NODE_ID_SHORTEST_SINK 31000 Used to send a packet to all
sink nodes (see Device Types)

NODE_ID_APP_BASE 32000 NodeId given to non-mesh
devices that can connect via a
MeshAccessConnection (e.g. a
Smartphone). This is replaced
by a virtual partner id during
communication.

NODE_ID_GLOBAL_DEVICE_BASE 33000… 39999 Assign nodeIds uniquely over
multiple meshes for the same
organization (used for assets
that roam between different
networks)

NODE_ID_INVALID 65535 Invalid node ID, which is used
for internal errors

Name Node ID Usage

- others All other node IDs are
currently reserved

Serial Numbers / SerialNumberIndex
The serial numbers use a special alphabet of ASCII characters that is easily readable (BCDFGHJKLMNPQRSTVWXYZ123456789) and
will not result in funny words because it does not contain vocals. Serial numbers are either 5 or 7 characters long. Each serial
number can be converted to a serialNumberIndex which is represented as an unsigned 32 bit integer. If a serial number is
human readable, it can be printed in its ASCII representation, but if sending a serialNumber over the network or using it in code,
the serialNumberIndex should be used. Check out the appropriate methods (GenerateBeaconSerialForIndex and
GetIndexForSerial) in the Utility class on how to convert the serial number. Also see the appropriate tests in the TestUtility class.

There are two types of serial number ranges. There is a range of two billion serial numbers that is exclusively managed by M-Way
Solutions. This range contains serial numbers with 5 characters and also serial numbers with 7 characters. Parts of this range are
licensed to partners. The second range can be used for projects working with the open source version of FruityMesh completely
free of charge. This is always a 7 character serial number.

M-Way Solutions Proprietary Serial Number Range
The serialNumberIndex of this range starts with 0 for the serial number BBBBB and increments up to 0x7FFFFFFF for the serial
number D8PJQ8K . This range should not be used without consulting us beforehand because serial numbers will clash otherwise.
We assign sub-ranges to our partners which allows them to use serial numbers with 5 characters.

Open Source Testing Range
To provide beginners with an easy method for testing FruityMesh, we decided to open source a part of our proprietary range that
contains nicely readable serial numbers. This range starts from 2673000 (FMBBB) and ranges until 2699999 (FM999).By default,
the serial number is generated randomly (from the unique deviceId stored in the chipset) within this testing range if there is no
UICR data available (see generateRandomSerialAndNodeId in the Config class). This makes it easier to start testing FruityMesh. You
should not distribute products that use a serial number from this range as it will clash with others.

Open Source Serial Number Range for Products
The open sourced serial number range that you can use for final products uses serial numbers with 7 characters to avoid a clash
between different vendors. A serial number is constructed by setting the most significant bit of the serialNumberIndex to 1. The
next 16 bits must be set to a two byte company identifier assigned by the Bluetooth SIG
(https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers/). The remaining 15 bits are used to generate the
individual serial numbers for this vendorId. This gives each vendor the possibility to generate around 32 thousand unique serial
numbers. (See VendorSerial type).

If you do not have a Bluetooth SIG company identifier yet, you can use the manufacturer id from M-Way Solutions (0x024D). This
range starts from 0x81268000 (D9HCK3N) and ranges until 0x8126FFFF (D9HDSHW). You should not publicly distribute products
that use this serial number range as it could clash with other serial numbers. If you want to distribute a product, you should
register with the Bluetooth SIG to get a free company identifier that you can set as the MANUFACTURER_ID in the configuration.

Encryption Keys
There are a number of different keys used throughout FruityMesh. These are all 128-bit keys and are used for AES encryption
between the nodes, as well as for communication with smartphones or other devices.

No Key (FM_KEY_ID_ZERO = 0)
Can only be used if a node is not enrolled and uses a key filled with all 0x00 for encryption.

Node Key (FM_KEY_ID_NODE = 1)

https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers/

This key is used for the lifetime of a device and is uniquely generated during production. It must be kept secure because it allows
full configuration access, e.g. enrolling and removing the enrollment.

Network key (FM_KEY_ID_NETWORK = 2)
The network key is shared between all nodes that belong to a mesh network. Whoever is in posession of this key can configure all
nodes in the network and can send any message. It is important to keep this key secret, but it is possible to change it if it is
compromised.

UserBase Key (FM_KEY_ID_BASE_USER = 3)
This is a key that can’t be used to connect. It is used to derive all other user keys.

Organization Key (FM_KEY_ID_ORGANIZATION = 4)
The organization key is shared between all networks of an organization. It allows access to a limited set of functionality, e.g.
necessary for tracking assets between differen meshes. If the organization key leaks, it is necessary to reconfigure all meshes of
the organization.

Restrained Key (FM_KEY_ID_RESTRAINED = 5)
The restrained key is generated based on the node key. It is a node key with limited access rights.

The "restrained key" can be derived from the node key by using an AES-128 bit encryption by encrypting the ASCII-String
"RESTRAINED_KEY00" (without terminating 0) using the node key as the AES key. Example values are:

Table 9. Examples of node keys and "restrained keys"

Node Key Restrained Key

00:11:22:33:44:55:66:77:88:99:AA:BB:CC:DD:EE:FF 2A:FC:35:99:4C:86:11:48:58:4C:C6:D9:EE:D4:A2:B6

FF:EE:DD:CC:BB:AA:99:88:77:66:55:44:33:22:11:00 9E:63:8B:94:65:85:91:99:A9:74:7D:A7:40:7C:DD:B3

DE:AD:BE:EF:DE:AD:BE:EF:DE:AD:BE:EF:DE:AD:BE:EF 3C:58:54:FC:29:96:00:59:B7:80:6B:4C:78:49:8B:27

00:01:02:03:04:05:06:07:08:09:0A:0B:0C:0D:0E:0F 60:AB:54:BB:F5:1C:3F:77:FA:BC:80:4C:E0:F4:78:58

User Keys (FM_KEY_ID_USER_DERIVED_START = 10 to UINT32_MAX / 2)
The user base key is used to generate millions of user keys that can be given to users or user groups. A user key allows access to a
limited set of commands and can be restricted in functionality depending on the use case. If the userBaseKey leaks, all userKeys
have to be regenerated and distributed to users.

 A key that is filled with 0xFF is considered invalid and cannot be used.

Device Types
There are different device types that are given to nodes with specific functionality:

Table 10. List of Device Types

DeviceType Name Description

0 DEVICE_TYPE_INVALID Not used

DeviceType Name Description

1 DEVICE_TYPE_STATIC A node that is installed
somewhere with a position that
will not change much over
time.

2 DEVICE_TYPE_ROAMING A node that can move around
freely.

3 DEVICE_TYPE_SINK A node that is installed at a
fixed place and collects all the
data (typically a MeshGateway).

4 DEVICE_TYPE_ASSET A node that moves around and
broadcasts its presence so that
it can be detected by a mesh.

5 DEVICE_TYPE_LEAF A node that will only connect to
the mesh as a leaf but will not
relay any data (Useful if its
position changes but it needs a
constant data connection)

For more explanation, see Device Types.

UICR
The UICR is a special persistant storage that is used to store factory defaults once a node is flashed. The NRF_UICR→CUSTOMER
area is used to store the data on nRF chips.

If you want to store a serial number, nodeKey, etc. for a node, you must write the UICR during flashing. The
NRF_UICR→CUSTOMER area is used for that purpose and starts at 0x10001080. You can use srec_cat (http://srecord.sourceforge.net/)

to produce a .hex file containing the desired UICR data. This can then be merged with the SoftDevice and Application or you can
flash each one separately. For detailed instructions, see our Developers chapter.

FruityMesh will boot with random data (random nodeId / serialNumber / …) if no data is present in the UICR. The data will
however be persistent across reboots as it is generated according to the internal chip id from the FICR. Layout of UICR memory:

Table 11. Layout of UICR memory

Offset Size (Bytes) Name Description

0 4 MAGIC_NUMBER Must be set to 0x00F07700
when UICR data is
available

file:///C:/projects/fruitymesh/docs/opensource/modules/ROOT/pages/Concepts.adoc#deviceTypes
http://srecord.sourceforge.net/
file:///C:/projects/fruitymesh/docs/opensource/modules/ROOT/pages/Developers.adoc#UICR

Offset Size (Bytes) Name Description

4 4 BOARD_TYPE Accepts an integer that
defines the hardware
board that FruityMesh
should be running on
(boardId, a.k.a. boardType)

8 8 SERIAL_NUMBER Deprecated: This
contained the given serial
number as ASCII (zero
terminated) but is not used
anymore (since
12.05.2020). Must now be
set to FFFF… .FFFF. The
serial number is instead
calculated from the
SERIAL_NUMBER_INDEX

16 16 NODE_KEY Should be securely and
randomly generated

32 4 MANUFACTURER_ID Set to manufacturer ID
according to the BLE
company identifiers
(https://www.bluetooth.org/en-
us/specification/assigned-
numbers/company-identifiers)

36 4 DEFAULT_NETWORK_ID 0: unenrolled; 1: using an
enrollment network;
other: default enrollment

40 4 DEFAULT_NODE_ID Node ID to be used while
not enrolled

44 4 DEVICE_TYPE Type of device according
to Device Types

48 4 SERIAL_NUMBER_INDEX Unique index that
represents the serial
number

52 16 NETWORK_KEY Default network key if pre-
enrollment is used

Heap usage

https://www.bluetooth.org/en-us/specification/assigned-numbers/company-identifiers

Heap usage (malloc / new) is prohibited in the FruityMesh codebase. To ensure that this rule is followed, a linker flag for ld is used
that generates a linker error if malloc is used. The error looks something like this:

Make: new_op.cc:(.text._Znwj+0xe): undefined reference to ̀ __wrap_malloc'

If this happened to you, you have to remove the malloc / new usage.

