Skip to content

mwgrassgreen/RobNorm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RobNorm

RobNorm is a R package to robustly normalize an expression matrix, analyzed in the paper "RobNorm: Model-Based Robust Normalization for High-Throughput Proteomics from Mass Spectrometry Platform".

Please contact Meng Wang by email mengw1@stanford.edu for questions.

Installation

library(devtools)

install_github("mwgrassgreen/RobNorm")

Usage

library(RobNorm)

norm.result = RobNorm(X.0, gamma.0=0.5, tol=10^(-4), step=200)

Example

To simulate an expression matrix

sim.result = sim.dat.fn(row.frac=0.2, col.frac=0.2, mu.up=3, mu.down=-3, n=5000, m=200, nu.fix=TRUE)

X.0 = sim.result$dat

norm.result = RobNorm(X.0, gamma.0=0.5)

X.0.norm = norm.result$norm.data

To compare sample boxplots before and after normalization

par(mfrow=c(2,1))

boxplot(X.0, main="Sample boxplots before normalization", ylab="expression", xlab="sample", cex.main=1.5, cex.lab=1.5)

boxplot(X.0.norm, main="Sample boxplots after normalization", ylab="expression", xlab="sample", cex.main=1.5, cex.lab=1.5)

Since in the simulation nu.fix=TRUE meaning the underlying nu = 0, the boxplots before and after normalization.

More information

After the normalization step, to check our AdaTiSS package for calcualizating robust z-score for each condition.

For more statistical analysis, to check our AdaReg package.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages