
Estimation and Calibration

7.1 Introduction

Virtually all models in finance have parameters that must be specified in order
to completely describe them. Statistical estimation can be used for some or all
of these parameters under two important conditions:

1. We believe that the parameter values do not change quickly in time.

2. We have access to sufficient (recent) historical data on the underlying
process to provide reliable estimates of these parameter values.

Statistical estimation involves the distribution of the data and uses methods
such as maximum likelihood estimation or least squares.

There are also some instances in which estimation of parameters is unde-
sirable. For example we have seen that a risk-neutral distribution Q, used in
the pricing of options, is not necessarily identical to the historical distribution
P. Estimating parameter values for the distribution P based on historical data
may have little or nothing to do with their values under Q. However, market in-
formation, for example the prices of options with a given underlying stock carry
information about the expected value of certain functions of the stock under
Q and the process of arranging parameter values so that the model prescribes
options prices as close as possible to those observed is called calibration of the
model.
Although there is a substantial philosophical difference between calibration

and statistical estimation, there are many similarities in the methodology, since
both often require obtaining the root of one or more functions or maximizing or
minimizing a function and so these are the problems that we begin this section
with.
There are many numerical problems that become much more difficult in the

presence of noise, from finding the roots of a given function to solving a system
of differential equations. Problems if this sort have given rise to substantial
research in a variety of areas including stochastic approximation and Markov
Chain Monte Carlo. In statistics, for example, we typically estimate parameters
using least squares or maximum likelihood estimation. However, how do we
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340 ESTIMATION AND CALIBRATION

carry out maximum likelihood estimation in cases where no simple form for the
likelihood function is available? Suppose we are able to simulate data from a
model with a given set of parameter values, say, but unable to express the
likelihood function in a simple form amenable to numerical maximization.
For some concreteness, suppose we are interested in calibrating a model for

the price of options on the SPX, the S&P500 index. The call option prices in
Table 7.1 were observed on May 6, 2004 when the SPX was quoted at 1116.84.
All options expired on September 18, corresponding to T = .3699 years. The
option price is calculated as midpoint of the bid and ask, and K is the exercise
price, PO(K), the corresponding option price.

K 950 1005 1050 1100 1125 1150 1175 1200 1225 1250
PO(K) 173.1 124.8 88.5 53.7 39.3 27.3 17.85 10.95 6.2 3.25

Table 7.1. Price of SPX Call Options

Suppose we use the Black-Scholes formula to determine the implied volatility
for these options. The implied volatility is the value of σ solving

BS(1116.84,K, r, 0.3699,σ) = PO(K) (7.1)

where r is the spot interest rate. If exact prices were known (rather than just the
bid and ask prices), we could determine r from the put call parity relation since
there are also put options listed with the same exercise price. However, here we
used the rate r = .01 of a short-term treasury bill since it is difficult to find nearly
simultaneous trades in put and call options with the same strike price.. The
MATLAB function BLSIMPV(S0,K,r,T ,PO(K)) returns the implied volatility
i.e. provides the solution of (7.1). In Figure 7.1 we give what is often referred to
as the volatility smile, although smirks and frowns are probably more common
than smiles these days (surely a sign of the times). This is a graph of the
exercise price of the option against the implied volatility of the option. The fact
that this implied volatility is not constant is further evidence that the Black-
Scholes model (at least with constant parameters) does not fit the risk-neutral
distribution very well.
We saw in Chapter 3 that distributions such as the normal inverse Gaussian

distribution can do a better job of fitting historical distributions of stocks and
indices than does the normal and so we might hope that it can be applied suc-
cessfully to the fit of a risk-neutral distribution. The main problem in applying
distributions such as the NIG is that of calibrating the parameters of the model
to market data. In models such as this, if option prices are obtained from a
simulation, how can we hope to obtain parameter values for the model that are
consistent with a set of market prices for the options? More specifically suppose
we assume that the price of a stock at time T is given by

ST = S0e
rT exp(X)

where X has the NIG(α,β, δ, µ) distribution of Lemma 29. In order that the
discounted future price forms a martingale, we require that E(exp(X)) = 1 and
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Figure 7.1: The volatility “smile” for SPX call options

from (3.23) with s = 1 this implies that
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¶
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|β + 1| < α.

One of the four parameters, µ, is determined by the martingale condition so the
other three can be used to fit to market option data if we wish. The price of a
call option with exercise price K is now

E(S0 exp(X)− e
−rTK)+

and this expectation is either a rather complicated numerical exercise or one
that can be estimated by simulation. Whether or not we choose to price this
option using simulation, the calibration problem reduces to selecting values of
the parameters so that the theoretical option price agrees with the market price,
i.e.

E(S0 exp(X)− e
−rTK)+ = P0(K). (7.2)

If we have 10 options as in Table 7.1 and only three parameters to vary, there is
no hope for exact equality in 7.2 (10 equations in 3 unknowns is not promising).
We could either fix two of the parameters, e.g. α,β and select the third,
δ to agree with the price of a specific option or we could calibrate all three
parameters to three or more options with similar strike prices and minimize the
sum of the squared differences between observed and theoretical option prices.
We will return to this problem later, but for the present notice that in order
to solve it, we need to be able to either find roots or minima of functions when
evaluations of these functions are noisy and have measurement or simulation
error superimposed. We begin a discussion of this problem in the next section.
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7.2 Finding a Root

Let us begin with the simple problem of identifying the root of a non-decreasing
function, i.e. solving for the value x0 satisfying

f(x0) = 0.

The standard algorithm for this is the Newton-Raphson algorithm which begins
with an arbitrary value of x1 and then iterates

xn+1 = xn −
f(xn)

f 0(xn)
. (7.3)

Suppose, however, that our observations on the function f(x) are of the form

Y (x) = f(x) + εx

where the errors εx at the point x are small, with mean 0 and variance σ2x. Even
if we know the gradient D = f 0(x0) of the function at or near the root (whether
we use the gradient at the root or at the value xn approaching the root does not
materially effect our argument), the attempt at a Newton-Raphson algorithm

xn+1 = xn −
Yxn
D

= xn −
f(xn)

D
−
εxn
D

(7.4)

has a serious problem. If there is no error whatsoever in the evaluation of the
function, the iteration

xn+1 = xn −
f(xn)

D

typically converges to the root x0. However in (7.4), on each iteration we add
to the “correct” Newton-Raphson iterant xn −

f(xn)
D an error term εxn

D which
is often independent of the previous errors having variance D−2σ2xi .Therefore
after a total of N iterations of the process, we have accumulated an error which
has variance

D−2
NX
i=1

σ2xi .

The fact that this error typically increases without bound means that continuing
the iteration of (7.4) does not provide a consistent estimator of the root but
one whose error eventually grows. Newton’s method is inappropriate for any
model in which errors in the evaluation of the function, when accumulated until
convergence is declared, are comparable in size to the tolerance of the algorithm.
In general as long as the standard deviation of the function evaluations σx is of
the same order of magnitude as

tolerance × D/
√
N
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where N is the number of iterations before convergence was declared, then the
accumulation of the error in (7.4) clouds any possible conclusion concerning the
location of the root. Suppose for example you declare a tolerance of 10−4 and
it takes about 100 iterations for your program to claim convergence. Assume
for the sake of argument that D = 0.01, N ' 100. Then an error in the function
evaluation of order σx ' 10−5 will invalidate conclusions from the Newton-
Raphson iteration.
There is a relatively simple fix to the usual Newton-Raphson method which

at least corrects the lack of convergence, unfortunately at the price of greater
insensitivity when we are further from the root. Suppose we multiply the con-
stant D−1 by a sequence of constants an that depend on n so the iteration is of
the form

xn+1 = xn − anD
−1Yxn . (7.5)

It is easy to see that as long as σx is bounded, for example andX
a2n <∞ (7.6)

then, under mild conditions on the function f(x),then xn converges. This is in-
tuitively clear because the variance of the error beyond the N 0th term is roughlyP∞
n=N a

2
nσ

2
x and this approaches zero as N →∞. Furthermore, provided thatX

an =∞, (7.7)

convergence is to a root of the function f(x). This is the result of Robbins-
Monro (1951). Having the correct or asymptotically correct gradient D in (7.5)
really only matters asymptotically since it controls the rate of convergence once
we are in a small neighbourhood around the root. What is more important and
sometimes difficult to achieve is arranging that the sequence an is large when
we are quite far from the root, but small (something like 1/n) when we are
very close.
The ideal sequence of constants an in (7.5) is approximately 1 (this is the

unmodified Newton-Raphson) until we are in the vicinity of the root and then
slowly decreases to 1/n. Provided we had some easy device for determining
whether we are near the root, the Robbins-Monro method gives an adequate
solution to the problem of finding roots to functions when only one root exists.
However, for functions with many roots, other methods are required.
While searching for a root of a function, we are inevitably required to es-

timate the slope of the function at least in the vicinity of the current iterant
xn, because without knowledge of the slope, we do not know in what direction
or how far to travel. The independent values of Yxn in the Robbins-Monro
algorithm (7.5) do not serve this purpose very well. We saw in Chapter 4 that
when estimating a difference, common random numbers provide considerable
variance reduction. If the function f(x) is evaluated by simulation with a single
uniform input U to the simulation, we can express f in the form

f(x) =

Z 1

0

H(x, u)du
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for some function H. Alternatively

f(x) = E{
1

n

nX
i=1

H(x, Ui)} (7.8)

where Ui are the pseudo-random inputs to the i0th simulation, which again
we assume to be uniform[0,1]. There are many ways of incorporating variance
reduction in the Monte Carlo evaluation of (7.8). For a probability density
function g(z) other than the U [0, 1] probability density function, we may wish
to re-express (7.8) using importance sampling as

f(x) = E{
1

n

nX
i=1

H(x, Zi)

g(Zi)
} (7.9)

where the inputs Zi are now distributed according to the p.d.f. g(z) on [0,1].
Ideally the importance density g(z) is approximately proportional to the func-
tion H(x0, z) where x0 is the root and so we may wish to adjust g as our
iteration proceeds and we get closer to the root and the shape of the function
H(x, z) changes. Since the expectation is unknown we could attempt to find
the roots of an approximation to this, namely,

cfn(x) = 1

n

nX
i=1

H(x, Zi)

g(Zi)
. (7.10)

Thencfn(x)→ f(x) as n→∞. Since the error in this approximation approaches
zero as n→∞, it seems reasonable to apply Newton’s method to cfn(x),

xn+1 = xn −
bfn(xn)bf 0n(xn)

= xn −

Pn
i=1wiH(xn, Zi)Pn

i=1wi
∂
∂xH(xn, Zi)

(7.11)

with weights

wi =
1

g(Zi)
.

Notice that even if the function H(x, Zi) is only known up to a multiplicative
constant, since this constant disappears from the expression (7.11), we can
still carry out the iteration. Similarly, the weights wi need only be known up
to a multiplicative constant. There are two primary advantages to this over
the simplest version of the Robbins-Monro. The gradient has been estimated
using common random numbers Zi and we can therefore expect it to be a
better estimator. The ability to incorporate an importance sampling density
g(z) also provides some potential improvement in efficiency. There is an obvious
disadvantage to any method such as this or the Newton-Raphson which require
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the derivatives of the function ∂
∂xH(xn, Zi). If the function f(x) is expressed as

an integral against some density other than the uniform, for example if

f(x) =

Z ∞
−∞

H(x,w)h(w)dw

for density h(w) then (7.11) requires a minimal change to

xn+1 = xn −

Pn
i=1wiH(xn, Zi)Pn

i=1 wi
∂
∂xH(xn, Zi)

where

wi =
h(Zi)

g(Zi)
.

Let us now return to the calibration of the Normal Inverse Gaussian model
to the option prices in Table 7.1. We will attempt a calibration of all the
parameters in Chapter 8 but for the moment, for simplicity we will reuse the
parameter values we estimated in Chapter 1 for the S7P500 index, α = 95.23,
β = −4.72. Since µ is determined by the martingale condition this leaves only
one parameter δ, the analogue of variance, to calibrate to the option price.
We wish to solve for δ, with S0 = 1116.84, r = 0.01, T = .3699, α = 95.23,
β = −4.72 and µ determined by the martingale conditionZ ∞

−∞
(S0 exp(x)− e

−rTK)+nig(x;α,β, δ, µ)dx = P0(K)

where nig is the normal inverse Gaussian probability density function.

Since we are seeking the root over the value of δ, the derivative of the density
nig(x;α,β, δ, µ) is required for the gradient and this is cumbersome (again
involving Bessel functions) so we replaced it by fitting a cubic spline to the
observations in a neighbourhood around δ and then using the derivative of this
cubic spline. In Figure 7.2 we plot the values of

√
δ against the corresponding

strike price K. We use the square root of δ since this is the closest analogue of
the standard deviation of returns. The figure is similar to the volatility smile
using the Black Scholes model in Figure 7.1 and, at least in this case, shows
no more tendency for constancy of parameters than does the Normal model. If
the NIG model if preferable for valuing options on the S&P500 index, it doesn’t
show in the calibration of the parameter δ to observed option prices.
Similar methods for finding roots can be used when the function f is a

function of d arguments, a function from Rd to Rd and so both xn and Yxn are
d−dimensional but be forewarned, the problem is considerably more difficult in
d dimensions when d is large. The analogous procedure to the Robbins-Monro
method is

xn+1 = xn − anD
−1
n Yxn

where the d × d matrix Dn is an approximation to the gradient of the function
f at the root x0. Once again, since we do not have precise measurements of
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Figure 7.2: “Volatility” Smile for NIG fit to call option prices on the S&P500.

the function f , finding an approximation to the gradient Dn is non-trivial but
even more important than in the one-dimensional case, since it determines the
direction in which we search for the root. For noisy data, there are few simple
procedures that give reliable estimates of the gradient. One possibility that
seems to work satisfactorily is to fit a smooth function or spline to a set of values
of (x, Yx) which are in some small neighbourhood of the current iterant xn and
use the gradient of this function in place of Dn. This set of values (x, Yx) can
include previously sampled values (xj , Yxj ), j < n and/or new values sampled
expressly to estimate the gradient.

7.3 Maximization of Functions

We can use the results of the previous section to maximize a unimodal function
f(x) provided at on each iteration we are able to approximate the gradient of
the function with a noisy observation

Yx ' f
0(x)

by simply using (7.5) to solve the equation f 0(x) = 0.
For example suppose we can express the function f(x) as

f(x) =

Z 1

0

H(x, u)du

for some function H so that

f(x) = E{
1

n

nX
i=1

H(x, Ui)} (7.12)
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Again, the Ui are the pseudo-random inputs to the i0th simulation, which we
can assume to be uniform[0,1]. For a probability density function g(z) we can
rewrite (7.12) using importance sampling as

f(x) = E{
1

n

nX
i=1

H(x, Zi)

g(Zi)
} (7.13)

where the inputs Zi are distributed according to the p.d.f. g(z) on [0,1]. We
have many alternatives to finding its maximum if the function is smooth. For ex-
ample we may use the Robbins-Monro method discussed in the previous section
to find a root of bf 0(x) = 0 where

bf 0(x) = 1

n

nX
i=1

∂
∂xH(x, Zi)

g(Zi)
.

Again there is a lack of consistency unless we permit the number of simulations
n to grow to infinity, and our choice of ideal importance distribution will change
as we iterate toward convergence. With this in mind, suppose we assume that
the importance distribution comes from a one-parameter family g(z; θ) and we
update the value of this parameter from time to time with information obtained
about the function H(x, z). In other words, assume that θn is a function of
(Z1, ..., Zn) and Zn+1|θn is drawn from the probability density function

g(z; θn).

Then the sequence of approximations

cfn(x) = 1

n

nX
i=1

H(x, Zi)

g(Zi; θi−1)

all have expected value f(x) and under mild conditions on the variance of the
terms var( H(x,Zi)

g(Zi;θi−1) |Z1, ..., Zi−1), then
cfn(x)→ f(x) as n→∞. Since the error

in this approximation approaches zero as n→∞, it seems reasonable to apply
Newton’s method to such a system:

xn+1 = xn −
bf 0n(xn)bf 00n (xn) (7.14)

= xn −

Pn
i=1wi

∂
∂xH(xn, Zi)Pn

i=1wi
∂2

∂x2H(xn, Zi)
(7.15)

with weights

wi =
1

g(Zi; θi−1)
.

Notice that even if the function H(x,Zi) is only known up to a multiplicative
constant, since this constant disappears from the expression (7.15), we can still
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carry out the iteration. Similarly, the weights wi need only be known up to a
multiplicative constant.
Evidently there are at least three alternatives for maximization in the pres-

ence of noise:

1. Update the sample Zi on each iteration and use a Robbins-Monro proce-
dure, iterating

xn+1 = xn − an
∂

∂x
H(xn, Zn)

2. Fix the number of simulations n and the importance distribution and
maximize the approximation as in (Geyer, 1995)

xn = argmax{
1

n

nX
i=1

H(x, Zi)

g(Zi)
}

3. Update the importance distribution in some fashion and iterate (7.15).

The last two methods both require an importance distribution. The suc-
cess of the third alternative really depends largely on how well the importance
distribution g(Zi) adapts to the shape of the function H(x, Zi) for x near the
maximizing value.

7.3.1 Example: estimation with missing data.

This example is a special case of a maximization problem involving “Missing
Data” or latent variables. Although this methodology arose largely in biostatis-
tics where various types of censorship of data are common, it has application as
well in many areas including Finance. For example, periods such as week-ends
holidays or evenings or periods between trades for thinly traded stocks or bonds
could be considered “missing data” in the sense that if trades had occurred in
these periods, it would often simply the analysis.
For a simple example suppose we wish to the daily data for a given stock

index such as the Toronto Stock Exchange 300 index, TSE300, but on a given
day, July 1 for example, the exchange is closed. Should we simply assume that
this day does not exist on the market and use the return over a two day period
around this time as if it was the return over a single day? Since other indices
such as the S&P500 are available on this day, it is preferable to analyze the
data as a bivariate or multivariate series and essentially impute the “missing”
values for the TSE300 using its relationship to a correlated index. The data is
in Table 7.2.

Date (2003) June 30 July 1 July 2 July 3 July 4 July 7 July 8
TSE300 Close 6983.1 * 6990.3 6999.8 7001.9 * 7089.6
S&P500 Close 974.5 982.3 993.8 985.7 * 1004.42 1007.84

Table 7.2 Closing values for the S&P500 and TSE300, July 2003.
“*”= missing value
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We will give a more complete discussion of dealing with missing data later
when we introduce the EM algorithm but for the present we give a brief discus-
sion of how “imputed values”, (a statisticians euphemism for educated guesses)
can help maximize the likelihood in problems such as this one. So for the mo-
ment, suppose that X is the “complete” data set (in the above example this is
the data with the missing values “*” filled in) and Z be the data we actually
observe. Then since the probability density for X factors into the marginal
density for Z and the conditional density for X given Z,

fx(x) = fz(z)fx|z(x|z)

we have upon taking logarithms and then the conditional expectation given
Z = z the relation

ln(fz(z)) = E[ln(fx(X))|Z = z]−

Z
ln(f(x|z))f(x|z)dx (7.16)

where the second term is the entropy in the conditional distribution f(x|z). Now
suppose that we were somehow able to randomly generate the missing obser-
vations from their correct distribution, perhaps many times, while leaving the
observed data alone. Averaging the log likelihood ln(fx(X)) for the completed
data sets while holding the observed data Z constant at z is equivalent to
approximating E[ln(fx(X))|Z = z].
The maximum likelihood estimator of the parameters based on the incom-

plete data Z is obtained by maximizing the incomplete data likelihood ln(fz(z))
over the value(s) of the parameters, and a simple attempt at this would be to
maximize the first term on the right side of (7.16) instead. Of course there
is no guarantee that this is equivalent to maximizing both terms, and we re-
turn to this question later, but for the moment suppose that our objective is
maximization of

E[ln(fx(X))|Z = z]

over the parameter values. In the above example, we can assume that the daily
returns for the two indices are correlated normally distributed random variables
so that in order to model these indices we need the 2 mean values and the 3
parameters in the covariance matrix for a bivariate normal distribution. Our
strategy will be to “fill in” or impute the missing values, evaluate the likelihood
ln(fx(X)) as if these imputed observations were real data, and regard this as a
“noisy” evaluation of the function E[ln(fx(X))|Z = z] which we would like to
maximize.
In order to put this data on the more familiar ground of the bivariate normal

distribution, we fit the log-normal distribution so that (starting with t = 0 on
June 30, 2003), the close of the TSE at time t is given by

6983.1 exp{
tX
i=1

Yi}
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and of the S&P500,

974.5 exp{
tX
i=1

Xi}

where the daily returns (Xi, Yi) are correlated normal random variables with
mean (µx, µy) and with covariance matrix

Λ =

µ
σ2y ρσxσy

ρσxσy σ2x

¶
.

Then the conditional log-likelihood (given the values on June 30) for the
data, assuming all of the returns are observed, is

lC(µ,Λ) = −
n

2
ln(|Λ|)−

1

2
Σni=1

µµ
Yi
Xi

¶
−

µ
µy
µx

¶¶0
Λ−1

µµ
Yi
Xi

¶
−

µ
µy
µx

¶¶
.

(7.17)
We would like to evaluate this log-likelihood when the missing data is replaced
by imputed data and then maximize over the parameters. To this end we need
to know how to impute missing values, requiring their conditional distribution
given what is observed. So let us return to a small portion of the data as shown
in Table 7.3. Notice that we are essentially given the total return S = 0.001
for the TSE over the two-day period July 1&2 but not the individual returns
Y1, Y2 which we need to impute.

Date (2003) July 1 July 2 Total Return
TSE300 return (Yi) Y1 Y2 S = 0.001
S&P500 return (Xi) 0.008 0.0116 0.0196

TABLE 7.3 Returns for TSE300 and S&P500

In order to carry out the imputation for Y1, Y2, recall that bivariate normal
data is often expressed in terms of a linear regression relationship describing the
conditional distribution of Y given X of the form

Yi = µy + βy|x(Xi − µx) + εi

where the error term εi is a Normal(0, (1− ρ2)σ2y) random variable independent
of Xi and the regression parameter βy|x is related to the covariance matrix by

βy|x =
cov(Y,X)

var(X)
= ρ

σy
σx
.

It follows from Problem 1 at the end of the Chapter that given the values X1, X2
and the sum S = Y1 + Y2, the distribution of Y1 is normal

N(
S

2
+
βy|x
2
(X1 −X2),

1

2
(1− ρ2)σ2y). (7.18)
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If we are given tentative values of the parameters βy|x, ρ,σ2y, this distribution
can be used to generate an imputed value of Y1 with Y2 = S − Y1. Of course a
similar strategy allows us to impute the missing values of Xi, Xi+1 when Yi, Yi+1
and Xi +Xi+1 are observed. In this case the value of Xi should be generated
from a

N(
Xi +Xi+1

2
+
βx|y
2
(Yi − Yi+1),

1

2
(1− ρ2)σ2x) (7.19)

distribution where
βx|y = ρ

σx
σy
.

We are now ready to return to the maximization of the log-likelihood function

E[lC(µ,Λ)|observed data]

where lC(µ,Λ) is defined at (7.17). The maximum likelihood estimator of µ,Λ
from complete data is

bΛ = 1

n
Σni=1

µµ
Yi
Xi

¶
−

µ cµycµx
¶¶µµ

Yi
Xi

¶
−

µ cµycµx
¶¶0

(7.20)µ cµycµx
¶
=
1

n
Σni=1

µ
Yi
Xi

¶
. (7.21)

The imputed values can be treated as actual observations for the missing data
provided that we impute them many times and average the results. In other
words, the following algorithm can be used to estimate the parameters. We
begin with some arbitrary scheme for imputing the missing values. For example
we could replace the individual returns Y1, Y2 in Table 7.3 by their average
S/2 = 0.0005. Then iterate the following

1. Treating the imputed values as if they were observed, use the complete
data (observed and imputed) to obtain estimators bΛ and cµy,cµx.

2. Use the estimated parameters to estimate βy|x and βx|y and to again im-
pute the missing Xi using (7.19) and the missing Yi using the distribution
(7.18).

3. Again use the complete data (observed and imputed) to obtain estimatorsbΛ andcµy,cµx. Use as our current estimate of these parameters the average
of the values of bΛ and cµy,cµx obtained on each iteration of steps 1 or 3.

4. Repeat steps 3 and 4 until the averages used as parameter estimators of
µ and Λ appear to converge.

We ran through steps three and four above a total of 100, 000 times (in
about 70 seconds cpu time on a laptop) and obtained estimates of the mean
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and covariance matrix by averaging these 100000 estimates, resulting in

bΛav = µ 1.034 −0.115
−0.115 5.329

¶
× 10−5 (7.22)µ cµycµx

¶
=

µ
0.0025
0.0056

¶
. (7.23)

These can be compared with a naive estimator obtained by imputing the missing
returns as the mean return over a two-day period, based on the returns in Table
7.4 in which the imputed returns are in bold letters:

Date (2003) July 1 July 2 July 3 July 4 July 7 July 8
TSE300 (Expected) Return 0.0005 0.0005 0.0014 0.003 0.0062 0.0062
S&P500 (Expected) Return 0.008 0.0116 -0.0082 0.0094 0.0094 0.0034

Table 7.4: Returns and imputed returns for TSE300 and S&P500

These naive estimates are the mean and covariance matrix of the data in
Table 7.4,

bΛ = µ 1.5 1.8
1.8 7.6

¶
× 10−5,µ cµycµx

¶
=

µ
0.0025
0.0056

¶
.

Notice that the two estimates of the mean are identical. This is not acciden-
tal, because essentially this is a numerical or Monte Carlo version of the EM
algorithm discussed in the next section, and at least for estimating the mean,
replacing each unobserved by its conditional expectation given the observations
results in the correct maximum likelihood estimator. The covariance estimates,
on the other hand, are quite different. Often, a covariance matrix obtained by
naïve imputation, replacing observations with an average as we did with the
data in Table 7.4, results in underestimating variances because the variation of
to the missing observation is understated by an average. Similarly estimators
of covariance or correlation may be biased for the same reason. The estimator
(7.22), though it has random noise in it, does not suffer from bias to the same
extent, because it has does a better job of replicating the characteristics of the
random observations.

7.4 Maximum Likelihood Estimation

7.4.1 Missing and Censored Data

It is common in finance and generally in science for data to be biased by under-
reporting, and various forms of censorship. Patients who react badly to a treat-
ment may not return for a follow-up appointment and the data that would have
been obtained on this follow-up appointment is “missing” or unavailable, and
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the event that such data is unobserved may depend on the value that it would
have taken. Similarly, data on the time to failure of companies can be “cen-
sored” or only partially observed if there is a merger or take-over during the
study, since, in this case, we know only that the failure time of the original firm
exceeds some value. Other forms of data-modification which introduce bias are
also common. There is reporting bias when mutual funds that have had a poor
quarter or year are more likely to give prominence to their 3 or 5-year returns
in advertising or neglect to reply to a question on performance over a particular
period. Managers, stocks, and companies with particularly poor returns disap-
pear from data-bases, exchanges, or companies for obvious reasons. We have
already seen some techniques for adjusting for the latter “survivorship bias”
but in general, successful treatment of “missing” or “censored” data requires
some insight into the mechanism by which the data goes missing or is censored.
In order to give a simple example of survivorship or reporting bias, suppose

that the losses xi, i = 1, ..., n on portfolios managed by n managers over a period
of time are assumed normally distributed and for simplicity we assume that all
have the same mean µ and standard deviation σ. For various reasons we expect
that the probability that a manager is no longer with us at the end of this period
of time, (and so the loss for the whole period is “missing”) is a function of the
loss that would have occurred had they persisted so that the probability that a
given data value xi is observed is π(xi), a non-increasing function of the value
xi. The probability that an observation xi is missing is therefore 1 − π(xi).
Then the likelihood for this data is

L(µ,σ) =
n−1Y
i=1

{π(xi)n(xi;µ,σ
2)}∆i{

Z
(1− π(z))n(z;µ,σ2)dz}1−∆i (7.24)

where ∆i = 1 if the i0th value is observed and otherwise ∆i = 0 if it is missing,
and n(xi;µ,σ2) denotes the normal(µ,σ2) probability density function at the
point xi. The first term

π(xi)n(xi;µ,σ
2)

is the likelihood corresponding to an event “the i0th loss is xi and it is observed”
and the last term Z

(1− π(z))n(z;µ,σ2)dz = E[1− π(Xi)]

is the probability that an observation is missing. Suppose n = 7 and all of the
xi, i = 1, ..., n− 1 are observed but the last value x7 is missing. In this case we
know the values of xi for all but the last observation, which could be replaced
by a randomly generated observation if we knew the parameters µ,σ and the
function π(x). If we wish to maximize the likelihood (7.24) then one simple
approach is to complete the data by generating a missing or latent observations
X7 = Z with the normal(µ,σ2) distribution and then accepting the observation
(as missing) with probability 1− π(Z). The likelihood is proportional to

E{H(µ,σ, Z)}
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where the expectation is over the distribution of Z,

H(µ,σ, Z) = H(µ,σ, Z, θ) =
1

σ7
exp{−

P6
i=1(xi − µ)

2 + (Z − µ)2

2σ2
}
(1− π(Z))

g(Z; θ)

and we assume Z has probability density function

g(z; θ).

Consider maximizing this function over µ in the special case that σ = 1 and
π(z) = e−z, z > 0 and g(x; θ) is an exponential probability density function
with mean θ. We might fix the number of simulations m and the importance
distribution and maximize the approximation to the integral:

µn = argmax{
1

m

mX
i=1

H(µ,Zi)}

This method recommended by Geyer(1996) and has the advantage that it
essentially estimates the function unbiasedly and then one can rely on standard
maximization programs such as fminsearch in Matlab. It requires however that
we fix the importance distribution g(z, θ) and the number of simulations. Al-
ternatives are Robbins-Monro methods which have the ability to update the
importance distribution parameter θ to reduce the variance of the estimator.
Various stochastic volatility models and “Regime switching” models can also

be viewed as examples of latent variables or missing data problems. If the
market has two volatility states, “high” and “low” these can not be directly
observed but only inferred from the movement in the market over a period of
time. In this case, given the state that the market is in, the parameters are often
easily estimated, but this state is a latent variable that needs to be estimated
or imputed from the observations.

7.4.2 Example: Mixture Models

One common problem which can also be viewed as a missing data problem is
that of estimation of parameters in a mixture model. To take a simple exam-
ple, consider a vector of observations of stock returns (x1, ..., xn) and assume
that xi has a probability density function that takes one of two possible forms
f1(x|θ1) or f2(x|θ2) where the two parameters θ1, θ2 are not specified. We as-
sume that a given observation comes from population distribution f1(x|θ1) with
some probability p1 and otherwise, with probability p2 = 1− p1 it comes from
the population with density f2(x|θ2). This is an example of a mixture of two
distributions: the overall population distribution is

f(x) = p1f1(x|θ1) + p2f2(x|θ2).

If each data point came with an identifier zi taking possible values 1, 2 that
specified the parent distribution, estimation of the parameters p1, θ1, θ2 would
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be easy. We would estimate p1 using the proportion of observations from pop-
ulation 1 and then use these to estimate the parameter θ1, and similarly θ2.
However, this identifier is not usually available. For example it is a common
model in finance to assume that there are two categories of observations, or
states of the market, corresponding to high volatility (θ2 large) and low volatil-
ity (θ1 small) but of course we can only infer which state we are currently in by
the magnitude of the last few changes in price. Alternatively we might assume
that the vector of identifiers z1, z2, .... mentioned above forms a simple 2−state
Markov chain, in which case the model for stock returns is commonly referred
to as a regime-switching model.
Once again for the sake of a concrete problem, we use the returns from the

S&P500 index between January 1, 2003 and May 11, 2004 to estimate a mixture
model. In particular suppose that the density function or a return is assumed
to be a mixture of normal distributions with mean µ and variances θi, i = 1, 2,
i.e.

p1n(x;µ, θ1) + (1− p1)n(x;µ, θ2)

= p1f1(x|θ1) + (1− p1)f2(x|θ2).

For the sake of identifiability of the parameters, we assume θ1 < θ2. Consider
first the simple case in which we assume that the identifiers zi are independent
and observed. Then the likelihood function is

L(θ) =
nY
i=1

f1(xi|θ1)
∆if2(xi|θ2)

1−∆i

where ∆i = I(zi = 1). Since ∆i is not observed, the estimating function in the
missing data case is obtained by conditioning the “complete data” estimating
function on the observed information, i.e.

nX
i=1

E[∆i|x1...xn]
∂

∂θ1
ln f1(xi|θ1) = 0

nX
i=1

E[1−∆i|x1...xn]
∂

∂θ2
ln f2(xi|θ2) = 0.

In the case of independent zi the conditional probability that ∆i = 1 is given
by

wi =
p1f1(xi|θ1)

p1f1(xi|θ1) + p2f2(xi|θ2)

and this results in the estimating functions to be solved for θ,

nX
i=1

wi
∂

∂θ1
ln f1(xi|θ1) = 0 (7.25)

nX
i=1

(1− wi)
∂

∂θ2
ln f2(xi|θ2) = 0. (7.26)
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Of course typically p1, p2 are not known either and they also need to be estimated
from the data concurrently with our estimation of θ. The estimating function
can be derived in exactly the same manner; if the ∆i were observed, then we
would estimate the parameters p1, p2 using

p1 =
1

n

nX
i=1

∆i

which after conditioning is of the form

p1 =
1

n

nX
i=1

E[∆i|xi] =
1

n

nX
i=1

wi and, (7.27)

p2 = 1− p1.

Typically a simple routine which begins with initial value of the parameters and
then iteratively steps towards a solution of (7.25) and 7.27) provides at least
slow convergence to a solution. There is no absolute guarantee that the solution
corresponds to a local maximum of the likelihood function, but for the S&P500
data mentioned the likelihood appears to increase monotonically. Convergence
is to the model

0.811N(µ, 0.00852) + 0.189N(µ, 0.0152),

which corresponds to a
√
252 × .00852 =14% annual volatility on 81% of the

days and 24% volatility the other 19% of the days. In general we need to be
concerned about whether the initial values of the parameters affect the result
but in this case varying the initial values of p1, θ1, θ2 did not appear to have any
effect (except in the time to convergence). This simple algorithm, when applied
to mixture problems, can more generally be quite sensitive to the starting values.
When we estimate parameters as we did in the mixture problem above,

whether we use the EM algorithm or one of its many relatives, missing compo-
nents of the score function are replaced by their conditional expectation given
the observations. For estimation of the mean in a normal family, we replace
missing observations by their conditional expectation. On the other hand, these
imputed values typically have less variability than the actual data we were
unable to observe, and so if our interest is in the variance, the substitution for
non-observed data by a conditional expectation tends to reduce the sample vari-
ance. If we have many parameters that we wish to estimate, we can essentially
replace the missing data by repeated draws from the appropriate conditional dis-
tribution and use these repeatedly to estimate the parameter values and their
variances. If the missing data is randomly generated, it should have the same
characteristics as the data it is replacing, including the higher moments. The
next method is a Bayesian implementation of this idea, one of few excursions
into Bayesian methodology in this text.
The Data Augmentation algorithm (see Tanner and Wong, 1987) is used in

Bayesian problems when there is latent or missing data as in the above example.
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A Bayesian begins with a prior distribution π(θ) assigned to the parameters
being estimated. This distribution reflects our prior knowledge of the parameter
values and their variability and there are many possible choices for it, but ideally
it should not have too much influence on the conclusions since we always wish
the data to do more talking than the Bayesian’s preconceived ideas of where the
parameters lie. We explain the algorithm in the context of the example above
so x is the vector of observations, and the missing data is denoted by ∆. The
posterior joint distribution of the parameter θ and the missing data ∆ is the
conditional distribution of θ and ∆ given the data x and can be written

p(θ,∆|x) = p(θ|x)p(∆|θ, x).

The idea behind the data augmentation algorithm is to iteratively draw (θ,∆)
from approximations to the joint distribution of θ,∆ given the observed data.
Typically p(θ|x) is difficult to compute but the conditional densities such as
p(θ|x,∆) and p(θ|x,∆) are much easier to deal with.
The algorithm iterates these two steps:

1. Draw ∆∗ from the density p(∆|θ∗, x).

2. Draw θ∗ from the density p(θ|x,∆∗).

Iteration continues until the joint distribution of the pair (θ∗,∆∗) appears to
stabilize in which case they are regarded as a draw from the joint distribution
p(θ,∆|x). The method is, in fact, a special case of the “Gibbs sampler” to
be discussed later and its convergence to the correct conditional distribution
derived from the balance equations we give there. At this point, to provide just
a little credibility, we outline an intuitive argument for a Gibbs sampler in this
simple case.
Consider the following problem. We wish to generate random variables (θ,∆)

having some joint distribution p(θ,∆|x). To save a little notation let us abbre-
viate p(.|x) to px(.). Unfortunately, the joint conditional distribution px(θ,∆)is
difficult to deal with, but conditional distributions such as

px(θ|∆) =
px(θ,∆)

px(∆)
and

px(∆|θ) =
px(θ,∆)

px(θ)

are easy to sample from. We proceed as follows. Start with an arbitrary value
for θ1 and then generate ∆1 from the density px(∆|θ1). Now we generate θ2 from
the probability density px(θ|∆1) and then ∆2 from the density px(∆|θ2) and so
on. It is easy to see that the pairs of observations (θ1,∆1), (θ2,∆2), ... constitute
a two dimensional Markov Chain with transition kernel K(θt+1,∆t+1|θt,∆t) =
px(θt+1|∆t)px(∆t+1|θt+1) and it is our hope that the joint density px(θ,∆) is
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an invariant distribution for this chain. To verify this note thatZ Z
px(θt+1|∆)px(∆t+1|θt+1)px(θ,∆)dθd∆

=

Z Z
px(θt+1|∆)px(∆t+1|θt+1)px(θ,∆)dθd∆

= px(∆t+1|θt+1)

Z
px(θt+1|∆)px(∆)d∆

= px(∆t+1|θt+1)px(θt+1) = px(θt+1,∆t+1).

Since this is the invariant distribution, if the chain is ergodic, it will converge
in distribution to px(θ,∆). There is no certainty in this or any other Markov
chain that we have reached equilibrium after a finite number of draws, although
there are many techniques for trying to monitor whether the distribution con-
tinues to change. There are other, more elaborate, methods for estimating the
parameters in mixture models. See for example Robert (1996).
The algorithm is clearer if we apply it to the Normal mixture model for the

S&P500 data discussed above. In this case we start with initial guesses ∆∗i at
the values of ∆i. For example we could assign the smallest returns (in absolute
value) to population one so ∆∗i = 1 and the rest to population 2, ∆∗i = 0
with about equal numbers in the two camps. Then θ∗ is drawn with density
px(θ|θ,∆∗). This is easy to do in this example because the vector ∆∗ assigns
each observation to one of the two populations. For simplicity suppose that we
have subtracted the mean from the returns so that we can assume µ = 0 and
let the parameters θ1, θ2 denote the variances of the two normal distributions.
For example suppose that the prior distribution of θ1 is proportional to θ

−1
1

π(θ1) ∝ θ−11 , θ1 > 0.

There is no such probability density function, but there is a measure with this
density and it is often convenient to permit such so-called improper prior dis-
tributions. The prior π(θ1) corresponds to assuming an improper uniform prior
distribution for log(θ1) because if U is uniform on some set then θ1 = eU will
have density function

∝ |
dU

dθ1
| = θ−11 on the corresponding set.

Then the posterior density of θ1 is

p(θ1|x,∆
∗) ∝

Y
i

[n(xi; 0, θ1)]
∆∗i θ−11

∝ θ
−ν1/2−1
1 exp{−

P
∆∗i xi

2

2θ1
}

where ν1 =
P
i∆
∗
i is the degrees of freedom for this sample. The posterior
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density of the reciprocal of the variance ψ = θ−11 is

p(ψ|x,∆∗) ∝ ψν1/2+1 exp{−
ψ
P
∆∗i xi

2

2
}|
dθ1
dψ
|

∝ ψν1/2−1 exp{−
ψ
P
∆∗i xi

2

2
}

We identify this posterior distribution of θ−11 as the Gamma(ν1/2 ,2/ss21) dis-
tribution with

ss21 =
nX
i=1

∆∗i xi
2

and this means that
ss21θ

−1
1

has a chi-squared distribution with ν1/2 degrees if freedom.
Similarly with two parameters θ1, θ2, we may assume the prior density of

(θ1, θ2 ) is proportional to
θ−21 θ−22

resulting in a independent Gamma(ν1/2 ,2/ss21), Gamma(ν2/2 ,2/ss
2
2) posterior

distributions for θ−11 and θ−12 where ν2 =
P
i(1−∆

∗
i ) and

ss22 =
nX
i=1

(1−∆∗i )x
2
i .

The parameter p1 could also have a prior distribution assigned and a posterior
calculated in a similar fashion (e.g. assume a (non-informative) prior distribu-
tion for p1 with density function proportional to [p(1− p)]−1/2, so the posterior
distribution given the value of ∆ is that of a Beta (ν1 + 1

2 , ν2 +
1
2) distribu-

tion (see Box and Tiao, 1973, Section 1.3)). However, for comparison with the
mixture model above we chose p1 equal to its estimated value there, 0.81.
The algorithm therefore is as follows, beginning with k = 0 and an initial

guess at ∆∗,

1. Calculate
ν1 =

P
i∆
∗
i , ss21 =

Pn
i=1∆

∗
i x
2
i

ν2 =
P
i(1−∆

∗
i ) ss22 =

Pn
i=1(1−∆

∗
i )x

2
i

2. Generate θ−11 ∼ Gamma(ν1/2 ,2/ss21) and θ−12 ∼Gamma(ν2/2 ,2/ss22)
(and p1 ∼Beta (ν1 + 1

2 , ν2 +
1
2 )) if we wish to allow p1 to vary.

3. Generate independent

∆∗i ∼ Bernoulli(
p1f(xi|θ1)

p1f(xi|θ1) + p2f(xi|θ2)
)
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Figure 7.3: The posterior distribution of the annualized volatility parameters
for the two components of a mixture model, fit to the S&P500 index, June-July
2003.

4. Return to step 1 until the distribution of (∆∗i , θ
−1
1 , θ−11 ) has ceased to

change. Then iterate steps 1-4 m times, considering these m subsequently
generated values of (∆∗i , θ

−1
1 , θ−11 ) as draws from the joint distribution of

(∆, θ) given (x1, ..., xn).

The posterior distribution of the annualized volatilities determined by the
data augmentation algorithm is give in Figure 7.3 and this gives a better idea of
the error attached to the variances of the two normally distributed components
for fixed p1.
The next section provides a simple general technique for estimating parame-

ters in the presence of missing or censored data.

7.4.3 The EM Algorithm

In principle maximum likelihood estimation is simple. We write down the like-
lihood or the probability of the observed values and then choose the parameter
value which maximizes this expression. Difficulties occur primarily when the
likelihood does not have a simple closed-form or easily evaluated expression.
In the last section we saw an example in which we observed data Z but if
complete data X were available (including “latent” or missing variables), then
the complete-data likelihood takes a simple form as a function of the unknown
parameter

LC(θ;x), (C for “complete”).

However each missing observation in a data set gives rise to a conditional ex-
pectation. If only a portion z of the complete data x is observed, then the
likelihood function for the observed data, LO(θ, z) say, (“O” is for “observed”)
is related to the complete data likelihood. As before, since

fθ(x) = fθ(z)fθ(x|z),
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we have, for an arbitrary value of the parameter θ0,

ln(fθ(x)) = ln(fθ(z)) + ln(fθ(x|z))

Eθ0 [ln(fθ(x))|z] = Eθ0 [ln(fθ(z))|z] +Eθ0 [ln(fθ(x|z))|z]

= ln(fθ(z)) +

Z
ln{fθ(x|z)}fθ0(x|z)dx.

Denote the term on the left side by

Qθ0(θ) = Eθ0 [ln(fθ(x))|z]. (7.28)

Then the log-likelihood of the observed data ln{LO(θ, z)} is

ln(fθ(z)) = Qθ0(θ)−

Z
ln{fθ(x|z)}fθ0(x|z)dx.

From this we obtain

ln{LO(θ, z)}− ln{LO(θ0, z)} = Qθ0(θ)−Qθ0(θ0) +H(θ0, θ) (7.30)

where

H(θ0, θ) = Eθ0 [ln(
fθ0(x|z)

fθ(x|z)
|z]

is the cross entropy between the conditional density of x|z at the two values of
the parameter.
The EM algorithm proceeds as follows: We begin with what we think is

a good estimator of the parameter θ0 and then maximize over the value of θ
the function Qθ0(θ). The maximizing value of θ, θ1, say, is the next estimator.
Replacing θ0 by θ1 we repeat, now maximizing Qθ1(θ) and so on, obtaining
a sequence of estimators θn, n = 1, 2, ..... It is not hard to show that under
fairly simple conditions, this sequence converges to the maximum likelihood
estimator, i.e. the value bθ satisfying LO(bθ; z) = max{LO(θ; z)}. In other words,
the algorithm switches back and forth between the two steps starting with an
initial guess at the parameter value θ0 and n = 0 and stopping when the sequence
θn appears to converge:

E Step Obtain the conditional expected value

Qθn(θ) = Eθn [lnLC(θ;x)|z]

M Step Maximize this function Qθn(θ) over θ, letting

θn+1 = argmaxQθn(θ)

be the next approximation to the parameter value. Increment n.
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This algorithm works because of the identity (7.30). Notice that because of
the M-step above, Qθn(θn+1)−Qθn(θn) ≥ 0 and the term H(θn+1, θn), because
it is the cross-entropy between two distributions, is always non-negative. This
shows that

ln{LO(θn+1, z)}− ln{LO(θn, z)} ≥ 0

and that the observed data likelihood is a non-decreasing sequence. It must
therefore converge.
The score function for the complete data

SC(θ;x) =
∂

∂θ
lnLC(θ;x)

is related to the observed data score SO(θ; z) = ∂
∂θ lnLO(θ; z) even more simply:

SO(θ; z) = Eθ[SC(θ;x)|z]. (7.31)

Therefore on the E−step of the EM algorithm, we may solve the equation for
θn+1 (checking as always that the solution corresponds to a maximum)

Sobs(θn+1|θn) = 0.

Thus, the EM algorithm can be more simply expressed as a simple resubstitution
algorithm for solving the score equation (7.31) equals zero:

E Step For an initial guess at the parameter value θ0, obtain the conditional
expected value

SO(θ|θn) = Eθn [SC(θ;x)|z]. (7.32)

Solve for θn+1 the equation

SO(θn+1|θn) = 0.

It is clear from this formulation that if the algorithm converges it must converge
to a point θ satisfying

SO(θ|θ) = 0

which, in view of (7.31) is the score equation for the observed data.
If there are m missing observations, notice that both (7.28) and (7.31) are

m−fold integrals and may be difficult to compute. Nevertheless, (7.31) leads
to an extremely useful observation that applies to missing or “censored” data,
within the normal family of distributions and more generally, to exponential
families. Equation (7.32) indicates that any term in the score function that is
unobserved should be replaced by its conditional expectation given the observed
data. If the score function contained terms like X2 or sin(X) then the condi-
tional expectation of such terms would need to be computed. This is, of course,
NOT the same as replacing X by its conditional expectation and then using X2

or sin(X). However, one of the marvelous features of the normal distributions
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is that, for estimating the mean, the score function is linear in X. For exam-
ple, differentiating (7.17) with respect to µX , µY we obtain the score function
corresponding to estimation of µ for complete data.

Σni=1Λ
−1
µµ

Yi
Xi

¶
−

µ
µy
µx

¶¶
Notice that taking the expected value given the observed data is equivalent to
replacing each unknown component ofXi, Yi by its conditional expectation given
the observed. Moreover, within the multivariate normal family of distributions,
taking conditional expectation is accomplished essentially by linear regression.
For a simple example of its application let us return to the problem with

“missing” values in the S&P500 index and the TSE300 index discussed above.
Suppose, for example we wish to fill in the value for the TSE300 on July 1 using
conditional expectation. Which observations are directly relevant? Table 7.3
gives the daily returns for the two indices leaving out values that are independent
of the unknowns Y1, Y2.
Recall from (7.18) that the conditional distribution of Yi given Xi,Xi+1 and

S = Yi + Yi+1 is

N(
S

2
+
βy|x
2
(Xi −Xi+1),

1

2
(1− ρ2)σ2y). (7.33)

and so the conditional expectation

E(Yi|Xi, Xi+1, S] =
S

2
+
βy|x
2
(Xi −Xi+1)

with βy|x = ρσy/σx. Rather than naively replacing the unknown returns Yi, Yi+1
by their average S/2 the term 1

2βy|x(Xi −Xi+1) provides an adjustment deter-
mined from the values of X. The regression coefficient βy|x can either be found
by regressing Y on X preferably with data around the same period of time
(since these coefficients tend to be somewhat time-dependent) or by using the
current values of the maximum likelihood estimator of the covariance matrix
Λ. Using the observed data for June and July 2003, we arrived at an estimated
regression coefficient

βy|x ' 0.432

and this allows to to fill in the missing values in the table with their conditional
expected values:

Date (2003) July 1 July 2
TSE300 Return −0.0003 0.0013
S&P500 Return 0.008 0.0116

TABLE 7.4

Filling in the expected returns for all of the missing value for July 4 in the
same way, but using the regression coefficient for X on Y of βx|y ' 1.045, we
observe the following for the unknowns in Table 7.5.
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Date (2003) July 1 July 2 July 3 July 4 July 7 July 8
TSE300 (Expected) Return −0.0003 0.0013 0.0014 0.003 Y7 Y8
S&P500 (Expected) Return 0.008 0.0116 -0.0082 X4 X7 0.0034

TABLE 7.5

X4 =
1

2
(0.0188 + 1.045(0.003− Y7))

Y7 =
1

2
(0.0124 + 0.432(X7 − 0.0034))

X4 +X7 = 0.0188

Y7 + Y8 = 0.0124

and these four equations in four unknown can be solved in the four unknowns
giving

Y7 = −0.0634, Y8 = 0.0758,
X4 = 0.0441, X7 = −0.0253.

Assuming that this pair of returns follows a correlated geometric Brownian
motion then in order to estimate cov(X,Y ) in the presence of complete data we
would solve the following equations:

cµx = 1

n

nX
i=1

xi (7.34)

cµy = 1

n

nX
i=1

xi (7.35)

\cov(X,Y ) =
1

n

nX
i=1

(xi −cµx)(yi −cµy). (7.36)

For small sample size the estimator (7.36) can be adjusted for bias by replacing
1
n by

1
n−1 . The projection argument underlying the EM algorithm indicates

that the maximum likelihood estimating function for the incomplete data is
obtained by conditioning on the observed information. Projecting the three
equations above on the observed data corresponds to doing the following: terms
xi, yi or (xi −cµx)(yi −cµy) in which one or both of (xi, yi) are unobserved,
1. If xi is unobserved but xi + xi+1, yi, yi+1 are all observed, is observed,
replace xi by bxi = xi + xi+1

2
+
βx|y
2
(yi − yi+1)

and bxi+1 = (xi + xi+1)− bxi.
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2. If yi is unobserved but yi + yi+1, xi, xi+1 are all observed, replace yi by

byi = yi + yi+1
2

+
βy|x
2
(xi − xi+1)

and byi+1 = (yi + yi+1)− byi.
3. If all of xi, yi xi+1, yi+1 are unobserved but xi + xi+1 and yi + yi+1 are
observed, replace the two terms (xi−cµx)(yi−cµy) and (xi+1−cµx)(yi+1−cµy)
in (7.36) by the single term

1

2
(xi + xi+1 − 2cµx)(yi + yi+1 − 2cµy).

Since there is now one fewer term in (7.36), reduce the value of n appearing
there by one.

Here the regression coefficients βx|y = cov(x, y)/var(y) and βy|x = cov(x, y)/var(x)
can either be estimated in a similar fashion from the data at hand, or estimated
from a larger data-set in which both xi and yi are observed provided we think
they are reasonably stable over time.
There are, of course, patterns for the missing data other than those consid-

ered in 1-3 above. They are rare in the case of two-dimensional data but much
more likely in the case of higher dimensional correlated observations. The ad-
justments to the maximum likelihood estimators required to accommodate such
patterns become increasingly complex, virtually impossible to provide a simple
formula. The imputation method discussed earlier in this chapter, in which the
missing observations are replaced not by their conditional mean but by imputed
values with the same characteristics as the original complete data is the most
successful method for providing estimates in such circumstances since it has only
two ingredients, the relatively simple formulae for the complete data maximum
likelihood estimators, and the ability to impute or generate the missing data
with the correct distribution.

7.4.4 Monte Carlo Maximum Likelihood Estimation

Consider to begin with independent observations X1, ..., Xn all from the same
probability density function fθ(x). The maximum likelihood estimator of the
parameter is the value θ which maximizes the likelihood

L(θ) =
nY
i=1

fθ(xi).

The ideal Monte Carlo methodology for maximum likelihood estimation would
not require specification of the family of densities fθ at all, but only the ability
to generate variables Xi corresponding to any value of θ. However a moment’s
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reflection will convince us that in general this is a tall order. By repeated simu-
lation of variables Xi under the parameter value θ and averaging, Monte Carlo
methods permit us to estimate unbiasedly any expected value, such as Eθ[ψ(X)]
for arbitrary function ψ. Unfortunately the probability density function at a par-
ticular point xi cannot be written as such an expected value, except in the case
of a discrete random variable X where, of course, Pθ(X = xi) = Eθ[I(X = xi)].
If we have a method for estimating the density (or probability function if X
is discrete) from simulations Xi(θ) taken for each parameter value θ, we might
use these simulations to estimate fθ(x) say with bfθ(x) and then maximize the
estimated likelihood bL(θ) = nY

i=1

bfθ(xi). (7.37)

This estimator

argmax
nY
i=1

bfθ(xi)
avoids any explicit form for the likelihood function at the cost of dealing only
with an approximation to the likelihood and typically will require a very large
simulation. Since the optimality properties of the maximum likelihood estimator
depend on the local first and second derivatives of fθ(xi) in a neighbourhood
of the true value it is essential that such an approximation be very accurate
in a neighbourhood of the estimator. One of the most common methods for
approximating fθ(x) is that of kernel density estimation which relies on a kernel
function K(x) satisfying Z ∞

−∞
K(x)dx = 1,

often a probability density function centered around 0. Let Xj(θ), j = 1, ...,m
denote simulated data under the parameter value θ, if possible using common
random numbers. When the distributions have easily inverted cumulative dis-
tribution functions Fθ, for example, we could define Xi(θ) = F−1θ (Ui) where
Ui are independent uniform[0,1]. We must choose a window width parameter h
controlling the degree of smoothing, and then we estimate the density using

bfθ(xi) = 1

mh

mX
j=1

K(
xi −Xj(θ)

h
)

and so (7.37) becomes

bL(θ) = (mh)−n nY
i=1

{
mX
j=1

K(
xi −Xj(θ)

h
)}. (7.38)

Instead of operating completely free of the likelihood function, if we have
partial information on fθ, Monte Carlo Maximum Likelihood can be made more
efficient. For example it is reasonably common to know fθ only up to the
normalizing constant (which, in theory we could obtain by laborious integration)
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and wish to estimate θ by maximum likelihood without evaluating this scaling
constant. To be more specific, suppose that

fθ(x) =
hθ(x)

c(θ)
(7.39)

where the function hθ(x) is known and relatively easily evaluated but c(θ) is
unknown. There are many examples where probability density functions take
a form such as this, but perhaps the most common is in a problem involving
conditioning. For example suppose that we know the joint probability density
function of two random variables fθ(x, y) and we wish to condition on the value
of one, say Y. Then the conditional probability density function is

fθ(x|y) =
fθ(x, y)R
fθ(z, y)dz

which is of the form (7.39) with c(θ) replaced by
R
fθ(z, y)dz.

There are several methods available for generating a random sample from
the density fθ without using the constant c(θ) including acceptance-rejection
and the Metropolis-Hastings algorithm. Notice that the likelihood for a sample
of size n will take the form

lnL(θ) =
nX
i=1

lnhθ(xi)− nEθ[lnhθ(X)] (7.40)

and so the constant is used to simply center the the estimating function
Pn
i=1

∂
∂θ lnhθ(xi)

at its expected value. If we replace fθ by a density with respect to some other
value of the parameter or some completely different density function g(x), then
the maximizer of (7.40) satisfies

0 =
nX
i=1

∂

∂θ
ln fθ(xi) (7.41)

=
nX
i=1

∂

∂θ
lnhθ(xi)− nEθ[

∂

∂θ
lnhθ(X)] or (7.42)

1

n

nX
i=1

∂
∂θhθ(xi)

hθ(xi)
= lnE[

∂
∂θhθ(X)

g(X)
] (7.43)

where the expected value in the second term is under the density g(x) for X.
Geyer(1996) suggests using this as the likelihood equation but with the expected
value replaced by an average over Monte-Carlo simulations. In other words if
we use N simulations of Xj generated under the density g(x), we would solve
for θ the estimating equation

1

n

nX
i=1

∂
∂θhθ(xi)

hθ(xi)
= ln[

1

N

NX
j=1

hθ(Xj)

g(Xj)
]. (7.44)
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This gives rise to several additional questions. How is the asymptotic normal
distribution of the maximum likelihood estimator effected by the introduction
of the Monte Carlo estimator of

lnE[
∂
∂θhθ(X)

g(X)
],

and what sort of importance distribution g(X) leads to the most efficient esti-
mator of θ? For the first question, Geyer (1995) provides an estimator of the
additional variance or covariance (over and above the usual covariance of a maxi-
mum likelihood estimator) introduced by the Monte Carlo estimation, and some
discussion on the choice of importance distribution. The considerations around
the choice of g(x) are much the same here as in any application of importance
sampling; we must avoid values of g(x) which are too small and lead to large

tails in the distribution of
∂
∂θhθ(X)

g(X) . Mixtures are suggested, for example

g(x) =
kX
j=1

pj
hθj (x)

c(θj)

for various choices of the parameter values θ1, ...θk and accompanying weights
p1 + ... + pk = 1. Unfortunately this introduces the additional parameters
p1, ..., pk which also need estimation, so it seems best to be parsimonious in
our choice of k.
The rather restrictive condition that

fθ(x) =
hθ(x)

c(θ)

for known function hθ(x) can be relaxed considerably above. In fact its primary
purpose is to lead to the estimating function

ψ(xi, θ) =
∂
∂θhθ(xi)

hθ(xi)

which was centered at its expectation using Monte Carlo and then added over all
i to provide the estimating function for θ. The only purpose of the assumption
(7.39) was to motivate a specific choice of function ψ. If we know virtually
nothing about fθ(x), but have the ability to generate random variables Xi(θ)
for any given parameter value, we might well begin with a number of candidate
estimating functions like ψ1(x, θ), ....ψk(x, θ), center them with Monte Carlo as
before, and then determine the weighted average which results in the minimum
possible asymptotic variance. When we do this, of course, we are not using
the exact likelihood function (presumably this is unavailable), but since we are
implicitly estimating the score function with a function of the formX

i

βi(θ)[ψi(x, θ)− µi(θ)],
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we are essentially approximating the likelihood with an exponential family dis-
tribution

c(θ) exp{
X
i

Bi(θ)Ψi(x, θ)}

with the functions Ψi either given by ψi or by ∂
∂θψi. Suppose we approximate

the expectation
µi(θ) = Eθ[ψi(X(θ), θ)]

using m simulations with

bµi(θ) = 1

m

mX
j=1

ψi(Xj(θ), θ).

These same simulations allow us to estimate the covariance matrix Cij(θ) =
covθ(ψi(X, θ),ψj(X, θ)) as well as a difference of the form where h is small.

bδi(θ) = 1

2mh

mX
j=1

[ψi(Xj(θ + h), θ)− ψi(Xj(θ − h), θ)]

(here it is important that we use common random numbers). Then the optimal
estimating function constructed as a linear combination of the functions ψi isX

j

βj(θ)
X
i

[ψj(xi, θ)− bµj ]
where the vector of values of βj is estimated by

bβT (θ) = bδT (θ)C−1(θ). (7.45)

In order assess the feasibility of this method, we consider a simple example,
the symmetric stable laws whose density functions are quite difficult to evaluate,
but for which it is easy to generate random variables. Suppose X1, ..., Xn are as-
sumed independent identically distributed with symmetric stable distributions,
parameters µ = θ, with parameters c = 1 and α assumed known. Consider
M−estimating functions of the form

ψk(x, θ) =
X
i

φk(xi − θ), k = 1, 2, ...4

where the candidate functions φk are

φk(x) = max(min(x,
k

2
),−

k

2
), k = 1, ...4.

Although we know that these functions satisfy

Eθ[φk(xi − θ)] = 0
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for members of the symmetric stable family and therefore the functions ψk(x, θ)
are unbiased, we do not wish to use that knowledge so we will continue to use
Monte Carlo to generate the estimators bµk(θ). What combination of these four
estimating functions provides the best estimator of θ? If we fix the value c = 1,
we have seen that we can generate X(θ) using

X(θ) = θ + sin(αU)

�
cos(U(1− α))

E

¸ 1
α−1

(cosU)−1/α (7.46)

with U1 uniform[−π/2,π/2] and E standard exponential, independent of U . A
single pair (U,E) permits generating X(θ) for any θ. In this case, estimation of

δk(θ) =
∂

∂θ
ψk(x, θ) =

X
i

φ0k(xi − θ)

is a little easier sinceX
i

φ0k(xi − θ) =
X
i

I(|xi − θ| < k).

We tested this routine on data the data below, with n = 21, generated from
a symmetric stable distribution with parameters (0, 1, 1.5).

-3.1890 -2.0491 -1.8185 -1.7309 -1.5403 -1.3090 -1.2752
-0.8266 -0.7154 -0.2706 -0.2646 -0.0478 0.2827 0.9552
1.0775 1.1009 1.6693 1.6752 2.4415 2.4703 5.5746
Table 7.5: Data from the symmetric stable(0, 1, 1.5) distribution

The mean of these values is 0.105 and the median is −0.2646. By running
1000 simulations with θ updated 100 times using a Robbins-Monro procedure
and beginning with θ estimated by its median, we obtained an estimator of the
parameter bθ = −0.0954
with coefficients on the four estimating functions given by

β = (0.3561 0.6554 0.8705 1.0096).

Evidently the last two functions ψ3(x, θ),ψ4(x, θ) receive more weight than the
first two. The resulting estimator is, of course, not really the maximum likeli-
hood estimator, but it approximates the same to the extent that the functions
φk and

R
φk can be used to approximate the density function. Convergence of

a Robbins-Monro algorithm here, as is frequently the case, is quite slow. To
some extent this is a necessary payment made for our assumed ignorance about
the form of the distribution and the expected value of the estimating functions.
We are repeatedly approximating the latter using Monte Carlo and the noise so
introduced results in the slow convergence. Here, as elsewhere, there is a price
to pay for ignorance.
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There are certainly more efficient estimators of the median of a symmetric
stable distribution, but what is notable about this method is that it provides
a “black-box” estimation of parameters requiring no knowledge of the distribu-
tion beyond the ability to simulate values with a particular parameter value and
a set of vaguely reasonable estimating functions. Arguably, a fairly broad set
of candidate estimating functions together with massive computer power may
ultimately generate Monte Carlo estimators that rival maximum-likelihood es-
timation in efficiency without any knowledge of the structure of the distribution
beyond the ability to generate samples from it.

7.5 Using Historical Data to estimate the para-
meters in Diffusion Models.

7.5.1 General Ito Processes

Typically a diffusion model for financial data includes parameters with unknown
values which require estimation. We might, for example, wish to fit a diffusion
model like

dr(t) = µ(t, r(t))dt+ σ(t, r(t))dWt

to historical data on spot interest rates. Here as elsewhere we assume that
the drift and diffusion coefficients are such that a solution exists. There are
many choices of the drift and diffusion coefficients µ(t, r(t)),σ(t, r(t)) leading
to common models such as the Vasicek (1977), the CIR (Cox, Ingersoll, Ross,
1985), the Ho-Lee (Ho and Lee, 1986) model etc. but they all have unspecified
parameters θ that must be either estimated or fit to price data before they can
be used. Suppose for the present our intended use is not the pricing of bonds or
interest rate derivatives, but using the model to simulate interest rate scenarios
for an insurance company. In this case it is the P -measure that is our interest
and so historical values of r(t) are directly relevant. Unknown parameters θ
may lie in either the drift term µ(t, r(t)) or in the diffusion σ(t, r(t)) so we will
add the argument θ to either or both function as required. There is a great deal
of literature dealing with estimation of parameters in a diffusion model. We will
largely follow McLeish and Kolkiewicz (1997).
According to the simplest discrete time approximation to the process, the

Euler Scheme, the increments in the process over small intervals of time are
approximately conditionally independent and normally distributed. Suppose
we have already simulated the spot interest rate for integer multiples of ∆t
up to time t = j∆t. Provided the time increment ∆t is small, if we denote
∆r = r(t +∆t) − r(t), we can generate the interest rate at time t +∆t using
the approximation:

∆r − µ(t, r(t), θ)∆t ∼ N(0,σ2(t, r(t), θ))∆t). (7.47)

Thus, if θ is a parameter in the drift term only, it can be estimated using
weighted least squares; i.e. by minimizing the sum of the squared standardized
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normal variates.
minθ

X
t

wt(∆r − µ(t, r(t), θ)∆t)
2

where the weights wt are proportional to the reciprocal of the variances w =
1/σ2(t, r(t)). The solution to this is obtained by setting the derivative with
respect to θ equal to zero and solving for θ :X

t

wt
∂µ(t, r(t), θ)

∂θ
(∆r − µ(t, r(t), θ)∆t) = 0. (7.48)

and it is not hard to see that this is the maximum likelihood estimator of θ as-
suming the normal approximation in (7.47) is exact. If the unknown parameter
θ is in the diffusion term only, or in both drift and diffusion term, it is also easy
to see that the log likelihood for the normal approximation is

−n
1

2
ln(σ(t, r(t), θ))−

1

2

X
t

(∆r − µ(t, r(t), θ)∆t)2

σ2(t, r(t), θ)

with n the number of time points t at which we observed the spot interest rate.
Maximizing this over the parameter θ results in the estimating functionX
t

∂µ(t, r(t), θ)

∂θ

(∆r − µ(t, r(t), θ)∆t)

σ2(t, r(t), θ)
+
∂ ln[σ2(t, r(t), θ)]

∂θ
{
(∆r − µ(t, r(t), θ)∆t)2

2σ2(t, r(t), θ)
−1} = 0

which combines the estimating function for the drift (7.48) with that for the
diffusion term, using weights inversely proportional to their variances.
Girsanov’s Theorem allows us to construct maximum likelihood estimators

also for the continuously observed processes analogous to some of the estimators
above. For example, suppose the parameter θ resides in the drift term only, so
the model is of the form

dXt = µ(t,Xt, θ)dt+ σ(t,Xt)dWt, Xo = x0

Suppose P is the measure on C[0, T ] induced by Xt with X0 = 0 and the
measure P0 on the same space is induced by a similar equation but with zero
drift:

dXt = σ(t,Xt)dWt, X0 = x0. (7.49)

Then Girsanov’s Theorem (see the appendix) asserts that with

Mt = E(

Z t

0

µ(s,Xs, θ)

σ(s,Xs)
dWs) = exp{

Z t

0

µ(s,Xs, θ)

σ2(s,Xs)
dXs −

1

2

Z t

0

µ2(t,Xt, θ)

σ2(t,Xt)
ds},

(7.50)
under some boundedness conditions, then the Radon Nikodym derivative of P
with respect to P0 is given by MT ,

dP

dP0
=MT .
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The exponential martingale

Mt = E(

Z t

0

µ(s,Xs, θ)

σ(s,Xs)
dWs)

describes the Radon-Nikodym derivative for the processes restricted to [0, t]
and the process Xs appearing in (7.50) is assumed generated from the relation
(7.49). Thus the maximum likelihood estimate of θ is obtained by maximizing
MT . Setting the derivative of its logarithm equal to 0 results in the likelihood
equationZ

∂µ(t,Xt, θ)

∂θ

1

σ2(t,Xt)
dXt −

Z
∂µ(t,Xt, θ)

∂θ

1

σ2(t,Xt)
µ(t,Xt, θ)dt = 0

or
Z

∂µ(t,Xt, θ)

∂θ

1

σ2(t,Xt)
(dXt − µ(t,Xt, θ)dt) = 0

Of course if we only had available observations taken at discrete time points
t1 < t2 < . . . rather than the continuously observed process, we would need
to replace the integral by a sum resulting in the same estimating function as
(7.48), namely

X
ti

σ−2(ti,Xti)
∂µ(ti, Xti , θ)

∂θ
(∆Xti − µ(ti, Xti , θ)∆ti) = 0. (7.51)

For a continuous time model of the form

dXt = µ(t,Xt, θ)dt+ σ(t,Xt, θ)dWt

in which unknown parameters θ are in both the drift and the diffusion part of
the stochastic differential, estimation of the parameter θ is very different than in
the discrete time case. Consider, for example, solving the estimating equation

ψ(θ) =
X
i

{(∆Xti − µ(ti, Xti , θ)∆ti)
2 − σ2(ti, Xti, θ)∆ti} = 0 (7.52)

to obtain an estimator of θ. Since for sufficiently small time increments ∆ti the
Euler increments are approximately normal, this estimating function is asymp-
totically unbiased as max{∆ti}→ 0. Moreover, for any normal random variable
Z with mean 0 var(Z2) = 2(var(Z))2 so the variance of the estimating function
above is, in the limit,

var(ψ(θ))→ 2
X
i

σ4(ti, Xti, θ)(∆t)
2

· max
i
{∆ti}

X
i

σ4(ti, Xti, θ)(∆ti)

→ 0



374 ESTIMATION AND CALIBRATION

the convergence to zero since
P

i σ
4(ti,Xti, θ)(∆ti) converges to the integralZ T

0

σ4(t,Xt, θ)dt

which is finite, provided for example that the function σ(t, x, θ) is bounded.
In general the asymptotic variance of the estimator obtained by solving an
equation of the form (7.52) is, under fairly modest regularity assumptions on
the estimating function ψ, asymptotic to

var(ψ(θ))

E2[ ∂∂θψ(θ)]
. (7.53)

It is easy to see that E[ ∂∂θψ(θ)]is asymptotic to

−2

Z
∂σ(t,Xt, θ)

∂θ
σ(t,Xt, θ)dt

which is typically non-zero if σ depends on θ. Then (7.53) approaches 0 since
the denominator is asymptotically nonzero. We conclude that the estimator
of θ determined by the estimating function (7.52) approaches perfection (i.e.
its variance approaches zero) as ∆t→ 0 and this it true regardless of how long
or how short the time interval is over which the process has been observed.
Restated, this says that for a continuously observed process, a parameter in
the diffusion term (including the volatility parameter) can be perfectly estimated
from an arbitrarily short period of observation. Now if you think this is too good
to be true, you are right, at least in a practical sense. In practice, volatility is
by no means known or estimated precisely, because the diffusion model does not
fit on the minute time scale necessary for the above argument to go through.
Far from having nearly perfect knowledge of the volatility parameters, volatility
appears to change rapidly on any time scale for which the diffusion model is con-
sidered a good fit. In the next section we discuss various estimates of volatility
obtained from a discretely observed time (geometric) Brownian motion.

7.6 Estimating Volatility

In the last section, we saw that those parameters in the diffusion coefficient of
a general diffusion were all too easily estimated. In fact from an arbitrarily
short segment of the path, we can, at least in theory, obtain an estimator of
the volatility which is exact (is unbiased and has zero variance) because of the
infinite variation of a diffusion process in these arbitrarily short periods of time.
Information for estimating the diffusion coefficient obtains much more rapidly
than for the drift, and in this respect the continuous time processes are quite
different than their discrete analogues. Two diffusions processes with different
diffusion coefficients are mutually singular. Intuitively this means that the sam-
ple paths generated by these two measure lie in two disjoint subsets of C[0, T ]



7.6. ESTIMATING VOLATILITY 375

and so that we can theoretically determine from a single sample path the exact
diffusion term. Of course to determine which set a path lies in, we need to
estimate or examine the quadratic variation of the process, something which
requires a perfectly graphed sample path and an infinitely powerful microscope.
The real world is considerably different than this idealized situation for several
reasons. First, we never observe a process in continuous time but only at dis-
crete time points that may be close together. Second, diffusion processes fit
data on security prices, interest rates and exchange rates only when viewed over
a longer time intervals than a minute, hour, or day. Short-term behaviour is
very different; for example they usually evolve through a series of jumps corre-
sponding to trades of varying magnitudes and frequencies. Third, information
obtained from the derivatives market can be used to obtain implied volatili-
ties but these are not the same as theP -measure or historical volatilities in a
discrete-time model. In theory, they should agree in the continuous time Black-
Scholes model, since the risk neutral measure has the same diffusion coefficient
as does the P measure, but this is of limited use since volatilities can change
rapidly.
The volatility parameter is the single most important parameter for pricing

short-term options and arguably the most important parameter for virtually all
financial time series. In Figure 7.4 we plot the price of a call option on a stock
currently trading at $10. The strike price of the stock is $12 and the time to
maturity is 1/2 year. Notice that the option price ranges from close to 0 when
σ = 0.1 to around $1.40 when σ = 0.7 indicating that different estimates
of volatility will have substantial impact on the option price. In fact over a
large part of the range of this graph the relationship between option price and
volatility is nearly linear.
Complicating the estimation of σ is its time-varying behaviour, with periods

of persistent high volatility followed by periods of relatively lower volatility. Fail-
ure to accommodate the behaviour of the volatility process may result in highly
misleading models, substantial pricing errors, and the catastrophic consequences
that can accompany them. We have already distinguished between estimation
of volatility based on historical data and the calibration of the volatility para-
meter to option price data. The latter is required if we are pricing derivatives
since it chooses a value of the volatility parameter that is most consistent with
the observed prices of options and futures. The former is necessary if we are
interested in volatility for the purpose prediction, risk management, or scenario
generation. The implied volatility is obtained from the price of one or more
heavily-traded or benchmark derivatives sold on the open market having the
same price process St for the underlying asset. We determine the volatility
parameter which produces the market price of a given option. For example sup-
pose an option with strike price K, maturity T, and initial value of the stock S0
is traded on the market at a price given by V. Then, because the Black-Scholes
price is increasing in σ, we may solve the equation

BS(S0,K, r, T,σ) = V (7.54)

for the implied volatility parameter σ. Because BS(S0,K, r, T,σ) is monotone
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Figure 7.4: Price of Call option as a function of volatility, S0 = 10, K = 12, r =
0.05, T = 0.5 years.

in σ a solution exists (as long is V is within a reasonable range) and is unique.
This estimate of volatility differs from the historical volatility obtained by com-
puting the sample variance of the returns log(St+1/St). Since it agrees with the
market price of a specific option, it reflects more closely the risk-neutral distri-
bution Q and is therefore used for pricing other derivatives. There are several
disadvantages of this method of calibrating the parameter. The calibrated value
of σ depends on the stock, the strike price of the option, as well as the current
time t, the time to maturity T − t and to some extent on other parameters
that are harder to measure such as the liquidity of the option and the degree to
which it is used as a benchmark. Nevertheless it is common to transform option
prices V to volatility σ using (7.54) and then rather than deal with option prices,
analyze these implied volatilities. This transformation may be justified if the re-
sulting model is simpler or smoother as a function of σ. However there are many
monotonic transformations of price that could do a better job of simplifying a
non-Gaussian model.

In this section we will concentrate on the estimation of volatility based on
historical data, as opposed to calibration. An estimator based on historical
data approximates a parameter of the real world measure P whereas the cali-
brated parameter is a property of the risk-neutral measure Q. To explore the
differences between implied and historical volatility, we downloaded two years
of daily stock price data (Nov 1, 1998 to Nov 1, 2000) for Nortel (NT), listed
on the New York Stock Exchange from the web-site http://finance.yahoo.com
and on the basis of this, wish to estimate the volatility. We used the “adjusted
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Figure 7.5: Nortel Returns, Nov 1, 1998-Nov 1, 2000.

close” since these have been adjusted for stock splits and dividends. The daily
returns over this period are graphed in Figure 7.5 and the significant increase
in volatility is evident towards the end of the sequence. Since the logarithm
of daily stock prices is assumed to be a Brownian motion we may estimate the
daily volatility using the sample variance of the first differences in these loga-
rithms. To obtain the variance over a year, multiply by the number of trading
days (around 253) in these years. Thus the annual volatility is estimated by
sqrt(253*var(diff(log(ntprice)))) which gives a volatility of around 0.635.
How does this historical estimate of volatility compare with the volatility as

determined by option prices?
Table 7.5 is a segment of a table of option prices obtained from the Chicago

Board of Options Exchange and provides the current price (on November 2,
2000) of calls and puts on NT. There was a January $40 call selling for $858
and a $40 January put for $418 . The price of the stock when these options prices
were recorded was $44 (evidently the “good old days”!)

Calls Last Sale Net Bid Ask Volume Open Interest

01 Jan 40 (NT AH-E) 8 5/8 -7/8 8 3/8 8 7/8 79 10198
01 Jan 45 (NT-AI-E) 6 1/8 -1/4 5 7/8 6 1/4 460 4093
Puts Last Sale Net Bid Ask
01 Jan 40 (NT MH-E) 4 1/8 +1/4 3 7/8 4 1/4
01 Jan 45 (NT-MI-E) 6 3/8 +1/4 6 1/8 6 5/8

Table 7.5: Option Prices for Nortel, Nov 2, 2000.

Suppose the current interest rate (in US dollars since these are US dollar
prices) is 5.8%. This is roughly the interest rate on a short term risk free deposit
like a treasury bill. Then the implied volatility is determined by finding the value
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of the parameter σ (it turns out to be around 0.79) so that the Black-Scholes
formula gives exactly this value for an option price, i.e. finding a value of σ so
that PUT=4.125 and CALL=8.625, for example:

[call,put]=blsprice(44,40,.058,55/253,.79,0) ( returns call =8.6077, put =4.1066)
The implied volatility of a roughly at the money option is about σ = 0.79

and this roughly agrees with the price of the January 45 options
[call,put]=blsprice(44,45,.058,55/253,.79,0) (returns call =6.2453, put =6.6815)
Differences between the observed and theoretical option prices of the mag-

nitude observed here are inevitable. Transaction cost and the fact that some
options are more liquid than others can affect option prices. If we ignore this
problem, we can find a pair of values (r,σ) by minimizing the sum of squared
pricing error between the observed and Black-Scholes price of the put and call
options, but because short-term option prices are quite insensitive to r, the
estimates of r determined in this way can be unreliable.
We now have two estimates of volatility, historical volatility (0.635) and

implied volatility (0.79). Which volatility is “correct”? The answer is both.
The market conditions for this company changed enough over this period and
subsequently to effect enormous changes in volatility and if we used a period of
less than 2 years, our estimate of historical volatility would be larger (the one-
year estimated volatility is 0.78, very close to the implied volatility). Moreover
the implied volatility is a property of the Q measure, and this is determined not
only by the recent history of the stock, but also investor risk preferences and
fears. The Q measure is a distribution for stock prices assigned by the market
for options. The P -measure was assigned by investor’s past tastes for the stock,
sometimes in a substantially different economic climate. It is often the case that
“implied volatilities” are greater than the historical ones, although in theory for
a Geometric Brownian motion process which allows frictionless continuous-time
hedging, the risk-neutral Q and the actual distribution P should have the same
volatilities.

7.6.1 Using Highs and Lows to estimate Volatility

There are many competing estimators of the volatility parameter of a geometric
Brownian motion and to date we have used only one, the sample variance of
stock returns. To set the stage for these estimators, suppose S(t) is a geometric
Brownian motion

d ln(S(t)) = µdt+ σdWt, S(0) = S0

and we observe certain properties of non-overlapping segments of this process,
for example days or weeks. In particular suppose t1 < t2 < tn.. are the begin-
nings of certain observation periods of length ∆i where ti+∆i · ti+1 and so we
can define, for this period, the open, the close, the high and the low respectively

Oi = S(ti), Ci = S(ti +∆i)

Hi = max{S(t); ti · t · ti +∆i},

Li = min{S(t); ti · t · ti +∆i}.
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The observation periods may or may not be assumed equal in length (for example
daily in which case ∆i is around 1

252 for all i). We will sometimes assume that
the market does not move outside of these observation periods, in which case
Oi = Ci−1 since in practice the open of many stocks at the beginning of the day
is nearly identical to the close at the end of the previous day.
The simplest estimator of σ is that based on the variance of returns

var(Ri), where Ri = ln(Ci/Oi).

Since Ri is Normal(µ∆i, σ2∆i), we can construct a regression problem towards
estimating the parameters µ,σ

Ri√
∆i

= µ
p
∆i + εi, where εi are i.i.d. N(0,σ2).

By regarding the left side as the response in an ordinary least squares re-
gression, we obtain the standard estimators

bµ = Pn
i=1RiPn
i=1∆i

(7.55)

bσ2OC = 1

n− 1

nX
i=1

1

∆i
(Ri − bµ∆i)2, (7.56)

both unbiased estimators of their respective parameters. Regression theory also
provides the variance of these estimators:

var(bµ) = σ2Pn
i=1∆i

,

var(bσ2OC) = 2σ4

n− 1
.

There are more efficient estimators than bσ2OC if we include not only an open
and a close but also the high and the low for those periods. In Chapter 5,
we discovered that for a Geometric Brownian motion, the random variables
ZHi = log(Hi/Oi) log(Hi/Ci) and ZLi = log(Li/Oi) log(Li/Ci) are both expo-
nentially distributed with expected value σ2∆i/2 and each of ZLi and ZHi are
independent of the open Oi and the close Ci. This auxiliary information can
be used in addition to obtain an unbiased estimator of the parameter σ2. For
example consider the estimator

bσ2HH = 2

n

nX
i=1

ZHi
∆i

which, in view of the exponential distribution of ZH is unbiased and has variance

var(bσ2HH) = σ4

n
,
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about half of the variance based on returns. Of course we can build a similar
estimator using the lows,

bσ2LL = 2

n

nX
i=1

ZLi
∆i
.

One might guess that an estimator which simply averages bσ2HH and bσ2LL would
be four times as good as (7.56) but in fact because of the negative correlation
between the two estimators being averaged it is better still! The average is the
Rogers and Satchell (1991) estimator

bσ2RS = 1

n

nX
i=1

ZHi + ZLi
∆i

(7.57)

which has variance depending on the correlation coefficient ς ' −0.338 between
ZHi and ZLi

var(bσ2RS) = 2

n
var(

ZHi
∆i

)(1 + ς)

'
σ4

2n
(1− 0.338)

' 0.331
σ4

n
.

Evidently the Rogers and Satchell estimator is around 6 times as efficient (one
sixth the variance) as the usual estimator or volatility (7.56). In fact it is
independent of (7.56) as well and so we can combine the two with weights
inversely proportional to the estimator variances to get a best linear unbiased
estimator with weights rounded,

bσ2BLU ' 1

7
bσ2OC + 67bσ2RS

and this estimator has variance

var(σ̂2BLU ) ≈ 0.284
σ4

n

around one seventh of (7.56). Using a single high, low, open, close for a seven day
period to estimate volatility is roughly equivalent to using daily returns and the
estimator (7.56). Related estimators have been suggested in the literature. See
for example Parkinson(1980). Garman and Klass (1980) suggest the estimator

σ̂2GK =
1

2
(log(Hi/Li))

2 − (2 ln(2)− 1)(log(Ci/Oi))
2 (7.58)

which is similar to bσ2BLU .
We could quibble over which of the above estimators to use, based on extra-

ordinarily precise efficiency calculations for a geometric Brownian motion but
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much of this exercise would be wasted. Most indeed improve efficiency over
(7.56) but not quite to the extent predicted by theory and provided that we use
the extremes, the differences between those estimators which do use them are
relatively small. To demonstrate this we compared them on the Dow Jones In-
dustrial average for the period January 1999 to May 20, 2004. We computed all
of the estimators for daily data on the open, close, high, and low and then plot-
ted a 21-day moving average of these estimators against time. For example two
of the estimators, bσOC and bσHH are given in Figure 7.8. The other estimators
are not plotted since they closely resemble one of these two. The curve labelled
“intraday volatility” measures the annualized volatility as determined by bσHH
and that labelled “interday volatility”, bσOC . The estimators when evaluated on
the whole data set provide values as follows:

bσOC = 0.18 bσHH = 0.29 bσLL = 0.31 bσRS = 0.30 bσBLU = 0.29 bσGK = 0.31
indicating only minor differences between all of the estimators except bσOC .
Over this period January 1999 to May 20, 2004, the intraday volatility was
consistently greater than the interday volatility, often by 50% or more, and there
is a high correlation among the estimators that use the highs and lows as well as
the open and close. This indicates a profound failure in the Geometric Brownian
motion assumption for the Dow Jones Industrial index, and this discrepancy
between two estimators of volatility is much greater than for any other index
I have investigated. Since we have seen substantial differences in the variances
of the estimators based on the geometric Brownian motion model, it is worth
comparing the estimators for their empirical variance. However since the first,bσOC appears to have a different mean, we will compare them after normalizing
by their mean: i.e. we compare values of

CV =
sqrt(var(bσ2))
E(bσ2))

as estimated from the 21-day moving averages. These values are given below

CVOC = 0.83 CVHH = 0.53 CVLL = 0.59 CVRS = 0.54 CVBLU = 0.55 CVGK = 0.55

and again, except for the first, they are virtually indistinguishable. What hap-
pened to the gains in efficiency we expected when we went from bσHH to bσBLU?
These gains are, in part at least, due to the negative correlation −0.338 between
ZHi and ZLi but for this data, they are positively correlated and in fact the
21-day moving averages of ZHi and ZLi have correlation around 0.90. The
only explanation that seems reasonable is that the DJA is quite far from a Geo-
metric Brownian motion. If the volatility were stochastic or time-dependent,
as most believe it is, then this can account for the apparently high correlation
between ZHi and ZLi. For example suppose that the volatility parameter σi
was stochastic (but constant throughout the day) and possibly dependent on i.
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Figure 7.6: The construction of an Eggtimer plot

Then since

cov(ZHi, ZLi) = E[cov(ZHi, ZLi|σi)] + cov(E[ZLi|σi], E[ZLi|σi])

= E[cov(ZHi, ZLi|σi)] + var(
σ2i∆i
2
)

it is possible for the first term to be negative (as predicted by a geometric
Brownian motion model) and yet the second term is sufficiently large that the
covariance itself is large and positive.
Thus we have three estimators of the volatility parameter,

{
ln(C/O)}2

∆t
,
2 ln(L/O) ln(L/C)

∆t
,
2 ln(L/O) ln(L/C)

∆t
}.

While the first is independent of the other two given O, unfortunately the second
and third are themselves not uncorrelated. In order to weight them optimally
we need some information about their joint distribution. It follows that both
{ln(C/O)}2/∆t and (ZH+ZL)/∆t provide unbiased estimators of the volatility
parameter σ2 and indeed the latter is independent of the former.
These estimators are areas illustrated in Figure 7.6. Consider the plot cor-

responding to time t. The vertical scale is logarithmic so that logs are plotted.
This plot is constructed using an arbitrarily chosen angle θ from the four values
(O,C,H,L) using two lines `1, `2 through the point (t, 12( ln(O)+ ln(C))) with
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Figure 7.7: Eggtimer Plot for the Dow Jones Average, Feb 1-March 27, 2000.

slopes ±tan(θ). Horizontal lines are drawn at the ordinate values ln(H), ln(L),
ln(O), ln(C) and using the points where ln(O)and log(C) strike the two lines as
corners, a rectangle is constructed. The area of this rectangle tan(θ)( ln(C/O))2

is an unbiased estimator of tan(θ)σ2∆t provided the Brownian motion has no
drift. The second region consists of “wings” generated by the four points at
which the horizontal line at ln(H), ln(L) strike the lines `1, `2. The total area of
this region (both wings) is tan(θ)(ZL+ZH) which is another unbiased estimator
of tan(θ)σ2T independent of the first, and also independent of whether or not
the underlying Brownian motion has drift. By comparing these areas, we can
detect abnormal changes in the volatility, or changes in the drift of the process
that will increase the observed value of ( ln(C/O))2 while leaving the second
estimator unchanged. Because each estimator is based only on a single period,
it is useful to provide as well a plot indicating whether there is a persistent
change in either or both of the two estimators of volatility. Related estimators
have been suggested in the literature.
We also show empirically the effectiveness of incorporating the high low close

information in a measure of volatility. For example, the plot below gives the
eggtimer plot for the Dow Jones Industrial Index for the months of February
and March 2000. The vertical scale is logarithmic since the Black Scholes model
is such that the logarithm of the index is Brownian motion. A preponderance
of black rectangles shows periods when the drift dominates, whereas where the
grey tails are larger, the volatility is evidenced more by large values of the high
or small values of the low, compared to the daily change.
The 21-day rolling sum of the areas of the regions, either grey or black,

is graphed in Figure 7.8 and provides two measures of volatility. The rolling
sum of the grey areas is called the “intraday volatility” and that of the black
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Figure 7.8: 21-day average volatility estimates for the Dow Jones Average, 1999-
May 20, 2004

rectangles, the interday volatility. In the absence of substantial drift, both
measure the same theoretical quantity but they differ in this case.
This difference is equally evident from Figure 7.9, the plot of the cumulative

variance for the same period of time. Of course in this plot, it is the slope not
the level which indicates the variance.
Consistent differences between the intra-day and the inter-day volatility or

variances would be easy to explain if the situation were reversed and the inter-
day volatility were greater, because one could argue that the inter-day measure
contains a component due to the drift of the process and over this period there
was a significant drift. A larger intraday volatility is more difficult to explain
unless it is a failure of the Black-Scholes model. In this case, one might expect
a similar behaviour in another market. If we generate a similar plot over the
identical period of time for the NASDAQ index (Figure 7.10) we find that the
comparison is reversed. This, of course, could be explained by the greater drift of
the technology dependent NASDAQ (relative to its volatility) compared to the
relatively traditional market of the Dow Jones but other indices we compared
were more like the NASDAQ here than like the DJA.
There is no doubt that this difference reflects a greater intraday range for the

DJA than other indices. In fact if we plot the cumulative value of the range of
the index divided by the close (H−L)/C as in Figure 7.11, it confirms that the
daily range as measured by this ratio is consistently smaller for the NASDAQ



7.6. ESTIMATING VOLATILITY 385

Figure 7.9: Cumulative Variances of the Dow Jones Average

Figure 7.10: Cumulative Variances for the NASDAQ index
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Figure 7.11: Comparison of the cumulative variance of the Dow Jones and the
NASDAQ, Jan 1999-July 2000

than for the Dow Jones for this period.
Although high, low, open, close data is commonly available for many finan-

cial time series, the quality of the recording is often doubtful. When we used
older data from the Toronto Stock Exchange, there were a number of days in
which the high or low were so far from open and close to be explicable only as
a recording error (often the difference was almost exactly $10). When the data
on highs and lows is accurate, there is substantial improvement in efficiency
and additional information available by using it. But there is no guarantee
that published data is correct, particularly old data. A similar observation on
NYSE data is made by Wiggins (1991); “In terms of the CUPV data base itself,
there appear to be a number of cases where the recorded high or low prices are
significantly out of line relative to adjacent closing prices”.

7.7 Estimating Hedge ratios and Correlation Co-
efficients

The correlation coefficient between two asset prices is important not only be-
cause it indicates a degree of dependence between the two assets but because it
is a required component for many practical investment decisions such as optimal
portfolio selection, risk management, and hedging. There is no perfect hedge
(except apparently in a Japanese garden) and so in practice we are required to
use one asset to hedge another (hopefully highly correlated) asset. These may
include derivatives or similar investments (for example bonds on the same or
related underlying) which react similarly to market conditions.
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Suppose we wish to hedge one investment, say in stock 2 using another, stock
1. As before, assume that we have data on the high, low, open and close of both
stocks over non-overlapping time intervals (ti, ti+∆i

), i = 1, 2, ..., n. Denote the
high, low, open and close for stock j on time interval i by (Hij , Lij , Oij , Cij), i =
1, .., n , j = 1, 2. Again we will denote the returns by

Rij = ln(Cij/Oij).

Then under the Geometric Brownian motion assumption, the return vector
(Ri1, Ri2) has a bivariate normal distribution with variances σ21∆i,σ

2
2∆i and

correlation coefficient ρ.
If we assume that we are able to rehedge our portfolio at the beginning of

each time interval, and at the beginning of interval i we are long 1 unit worth
of stock 2 and short hi units worth of stock 1, then our total return at the end
of the i’th period is Ri2 − hiRi1. The optimal hedge ratio is the value of hi
which minimizes the variance of Ri2 − hiRi1 and this is given by

hi =
cov(Ri2, Ri1)

var(Ri1)
= ρ

σ2
σ1
.

Note that hi is a constant independent of time, at least over periods when the
stock volatilities and correlation coefficients remain unchanged. While implied
volatilities σ1 ,σ2 may be obtained from derivative prices for each of these assets,
the correlation parameter ρ is unknown and, unless there is a traded option such
as a spread option whose value depends specifically on this correlation, ρ needs
to be estimated from historical data. The simplest estimator of the correlation
coefficient is the sample covariance of the returns,

ρ̂C = ccor(Ri2, Ri1) = P
i(Ri2 − R2)(Ri1 − R1)qP
i(Ri2 − R2)

P
i(Ri1 − R1)

(7.59)

where ccor denotes the sample correlation coefficient. By a common argument
( see for example Anderson (1958, Theorem 4.2.6) this has asymptotic variance

1

n
(1− ρ2)2.

Here, as in McLeish(2004), we will consider using historical data for (Hij , Lij , Oij, Cij), i =
1, .., n , j = 1, 2 to estimate ρ. In the case of two or more correlated geometric
Brownian motion processes, the joint distributions of highs, lows and closing
values is unknown, and so we will need to revert to a simpler alternative than
maximum likelihood estimation. We have seen that in the Black-Scholes model,
the statistics

ZHi1 = ln(Hi1/Oi1) ln(Hi1/Ci1)

ZHi2 = ln(Hi2/Oi2) ln(Hi2/Ci2)

ZLi1 = ln(Li1/Oi1) ln(Li1/Ci1)

ZLi2 = ln(Li2/Oi2) ln(Li2/Ci2)
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Figure 7.12: The Normal approximation (dashed line) to the distribution of
Z1/3 where Z is exponential.

all have marginal exponential distributions and each is independent of the open
and close for the i’th interval.

Suppose we transform each of the above exponential random variables with
some function g and assume that we can determine the correlation coefficients
cor(g(ZH1), g(ZH2)) = b(ρ) as a function of ρ. For simplicity assume that we
have subtracted the mean and divided by the standard deviation to provide
a function g such that E{g(ZH1)} = 0, var{g(ZH1)} = 1. There are various
possibilities for the transformation g, the simplest being a standardized power
g(ZpH1) = (ZpH1 − E(Z

p
H1))/

p
var(ZpH1) for some suitable value of p > 0. A

transformation of the gamma distributions in general and the exponential dis-
tribution in particular that make them very nearly normal is the cube root
transformation (p = 1/3) (see Sprott, 2000, Chapter 9, Appendix).

For an exponential random variable ZH there is only a slight difference
between the graph of the probability density function of

Z
1/3
H − E(Z1/3H )q
var(Z

1/3
H )

(7.60)

and the graph of the standard normal probability density function, this differ-
ence lying in the left tail (see Figure 7.12), the region in which we are least
interested in the maximum since it is very close to the open or close. We re-
placed the theoretical mean and variance in (7.60) by the sample mean and
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variance and so the function used ultimately was

g(ZHi) =
Z
1/3
Hi − Z

1/3
Hqdvar(Z1/3H )
.

Although it is theoretically possible to obtain the function b(ρ), the exact
expression requires the evaluation of Bessel functions. For simplicity we fit
polynomials of varying degrees. For example the polynomial of degree 9

b(ρ) ≈ .4822ρ9+.2102ρ8−.9629ρ7−.3104ρ6+.7006ρ5+.1887ρ4−.1288ρ3+.1822ρ2+.6385ρ+.0008

is accurate to within 1%.
Inverting this approximation to b(ρ) provides a tractable estimator of the

correlation between stocks based only on the correlation between the marginally
exponential statistics ZHi, ZLi. This estimator is

ρ̂HL = b
−1(

1

2
(ccor(Z1/3H1 , Z

1/3
H2 ) + ccor(Z1/3L1 , Z

1/3
L2 ))) (7.14)

A similar estimator obtains as well from the cross terms since corρ(Z
1/3
H1 , Z

1/3
H2 ) =

b(−ρ).

ρ̂2 = −b
−1(

1

2
(ccor(Z1/3H1 , Z

1/3
L2 ) + ccor(Z1/3L1 , Z

1/3
H2 ))) (7.15)

where again ccor denotes the sample correlation, but this estimator is very inef-
ficient and adds little to our knowledge of the correlation. We will not consider
it further. Since all that is required is the inverse of the function b, we can
use a simple polynomial approximation to the inverse without sacrificing much
precision, for example

b−1(c) ≈ 0.1567c5 − 0.5202c4 + 0.6393c3 − 0.8695c2 + 1.5941c.

The contenders for reasonable estimators are ρ̂HL, ρ̂C , or some combination such
as an average, the simplest being a straight average of these two

ρ̂AV =
1

2
ρ̂C +

1

2
ρ̂HL.

It remains to see how these estimators perform in practice both on real and
simulated data. First we simulated one year’s worth of daily observations on
two stocks, simulating the High, Low, Open, and Close for each day. There is
considerable benefit to using both of the estimators ρ̂C and ρ̂HL at least for
simulated data. For example in Figure 7.13 we graph the two variances var(ρ̂C)
and var(ρ̂AV ) for various (positive) values of ρ. Notice that the estimator ρ̂AV
which combines information from all of the high, low, open, close has variance
roughly one half of that of ρ̂C which uses only the values of the open and the
close.
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Figure 7.13: Variance of Estimators ρ̂C and ρ̂AV as a function of ρ.

We also use these methods to investigate the correlation between two processes.
To this end we downloaded data for both the S&P500 index and Nortel (NT)
over the period June 17, 1998-June 16, 2003. This was a period when Nortel
rose and fell sharply showing increasing volatility. In Figure 7.14, we plot the
two measures of the correlation ρ̂AV and ρ̂C between the returns for these two
series in moving windows of 63 days (approximately 3 months) over this period.
Note that the estimator ρ̂AV , indicated by a dotted line, tends to give lower
correlation than ρ̂C since it includes a component due to the movements within
days and these have lower correlation than the the movements between days.

7.8 Problems
1. Suppose Y1 and Y2 are independent normal random variables with pos-
sibly different variances σ21 ,σ

2
2 and expected values E(Yi) = µi, i = 1, 2.

Show that the conditional distribution of Y1 given Y1+Y2 = S is Normal
with mean

µ1 + w(S − µ1 − µ2)

and variance
σ21(1− w)

where

w =
σ21

σ21 + σ22
.

2. Consider data generated from the mixture density

pN(θ1,σ
2
1) + (1− p)N(θ2,σ

2
2)
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Figure 7.14: Two Measures of Correlation between Nortel (NT) and the S&P500
Index

where θ1 < θ2 (so that the parameters are identifiable). Write a pro-
gram which uses the EM algorithm to estimate the five parameters in this
model and test it on simulated data for sample sizes n = 100, 1000, 2000.
Comment on bias and variance of the estimators.

3. Consider the following algorithm: the random variables ε denote standard
normal random variables, independently generated at every occurrence:

(a) GenerateX0 from an arbitrary distribution. Put Y0 = ρX0+
p
1− ρ2ε

(b) Repeat for n = 1, 2, ....10, 000

i. Define Xn = ρYn−1 +
p
1− ρ2ε

ii. Define Yn = ρXn +
p
1− ρ2ε

(c) Output (Xj , Yj), j = 5000, ...10000
Plot the points (Xj , Yj), j = 5000, ...10000 and explain what this
algorithm is designed to provide.

4. Suppose two interest rate derivatives (F and G) have price processes de-
pending on the spot interest rate r(t)

exp{f(t, r(t))) and exp{g(t, r(t)} respectively,
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where, under the risk-neutral distribution,

df = αf (t)dt+ σf (t)dWt

dg = αg(t)dt+ σg(t)dWt.

In this case both derivatives are driven by the same Brownian motion
process Wt which drives the interest rates r(t). Show that if we maintain
a proportion of our investment

πt =
σg(t)

σg(t)− σf (t)

(a negative value corresponds to short selling) in derivative F and the
remainder 1− πt in derivative G, then our investment is risk-free and has
value Vt satisfying

dVt = Vt{πtαf (t) + (1− πt)αg(t)}dt.

Therefore
πtαf (t) + (1− πt)αg(t) = r(t)

and this implies a relationship between the drift and diffusion terms:

αg(t)− r(t)

σg(t)
=
αg(t)− r(t)

σg(t)
= λ(t), say,

with λ(t) independent of the particular derivative. In other words all
interest rate derivatives can be expressed in the form

df = [r(t) + σf (t)λ(t)]dt+ σf (t)dWt.

Assume you have available observations on the price of two interest rate
derivatives taken daily over a period of 100 days as well as current interest
rates r(t). Assume the diffusion coefficients σf (t),σg(t) do not depend on
time and λ(t) is a linear function of t. Explain how you would calibrate
the parameters in this model to market data. Simulate data using con-
stant values for σf < σg and a constant value for λ(t) and compare your
estimates with the true values.

5. Assume a diffusion model for interest rates with time-varying coefficient;

drt = a(rt, t)dt+ σ(rt, t)dWt.

Consider a 0-coupon bond which, if invested today at time t returns 1
dollar at time T . If the current short rate is rt, the value of this bond can
be written as a function

f(rt, t) = EQ[exp{−

Z T

t

rsds}]
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where EQ denotes expectation under the risk-neutral measure. The yield
curve describes the current expectations for average interest rates;

Yield(T − t) = −
log(f(rt, t))

T − t

The more common models such as the Vasicek, the CIR and the Merton
models for interest rate structure are such that the yield curve is affine or
a linear function of the interest rate, i.e. f(r, t) = exp{c(T−t)+d(T−t)r}
for some functions c(.), d(.). Generally this linearity occurs provided that
both the drift term and the square of the diffusion coefficient σ2(x, t)are
linear in r. Suggest a graphicsl method for calibrating the parameters
c(T − t), d(T − t) to market data if we are provided with the prices of zero
coupon bonds with a variety of maturities T at a number of time points
t1 < t2 < ...tn.


