Getting Real

The smarter, faster, easier way to
build a successful web application

by 37signals

Copyright © 2006 by 37signals

All rights reserved. No part of this book may be reproduced in any form
or by any electronic or mechanical means, including information storage
and retrieval systems, without permission in writing from 37signals,

except by a reviewer who may quote brief passages in a review.

First edition

Contents

I Introduction

2 What is Getting Real?

6 About 37signals

9 Caveats, disclaimers, and other preemptive strikes
12 The Starting Line

13 Build Less

14 What’s Your Problem?

17 Fund Yourself

9 Fix Time and Budget, Flex Scope
21 Have an Enemy

24 It Shouldn’t be a Chore

25 Stay Lean

26 Less Mass

29 Lower Your Cost of Change

31 The Three Musketeers

33 Embrace Constraints

35 Be Yourself

37 Priorities

38 ‘What's the Big Idea

40 Ignore Details Early On

42 Its a Problem When It’s a Problem
43 Hire the Right Customers

44 Scale Later

46 Make Opinionated Software

47 Feature Selection

48 Half, Not Half-Assed

49 It Just Doesn’t Matter

ST Start With No

53 Hidden Costs

S4 Can You Handle It?

55 Human Solutions

56 Forget Feature Requests

58 Hold the Mayo

59 Process

60 Raceto Running Software
62 Rinse and Repeat

64 From Idea to Implementation
66 Avoid Preferences

68 “Done!”

70 Test in the Wild

72 Shrink Your Time

75 The Organization

76 Unity

77 Alone Time

79 Meetings Are Toxic

81 Seek and Celebrate Small Victories
82 Staffing

83 Hire Less and Hire Later

8s Kick the Tires

86 Actions, Not Words

88 Get Well Rounded Individuals
89 You Can’t Fake Enthusiasm
90 Wordsmiths

91 Interface Design

92 Interface First

94 Epicenter Design

96 Three State Solution

97 The Blank Slate

99 Get Defensive

100 Context Over Consistency
o1 Copywriting is Interface Design
102 One Interface

103 Code

104 Less Software

107 Optimize for Happiness

109 Code Speaks

111 Manage Debt

112 Open Doors

114 Words

115 There’s Nothing Functional about a Functional Spec
118 Don’t Do Dead Documents
120 Tell Me aQuick Story

121 Use Real Words

123 Personify Your Product

124 Pricing and Signup

125 Free Samples

127 Easy On, Easy Off

129 Silly Rabbit, Tricks are for Kids
130 A Softer Bullet

131 Promotion

132 Hollywood Launch

135 A Powerful Promo Site

136 Ride the Blog Wave

137 Solicit Early

138 Promote Through Education
141 Feature Food

143 Track Your Logs

144 Inline Upsell

145 Name Hook

146 Support

147 Feel The Pain

149 Zero Training

150 Answer Quick

152 Tough Love

154 In Fine Forum

1ss Publicize Your Screwups

157 Post-Launch

158 One Month Tuneup

159 Keep the Posts Coming

161 Better, Not Beta

162 All Bugs Are Not Created Equal
163 Ride Out the Storm

164 Keep Up With the Joneses

165 Beware the Bloat Monster

166 Go With the Flow

167 Conclusion

168 Start Your Engines
171 37signals Resources

Introduction

What is Getting Real?
About 37signals

Caveats, disclaimers, and other preemptive strikes

What is Getting Real?

Want to build a successful web app? Then it’s time to Get Real.
Getting Real is a smaller, faster, better way to build software.

Getting Real is about skipping all the stuff that
represents real (charts, graphs, boxes, arrows, schematics,
wireframes, etc.) and actually building the real thing.

Getting real is less. Less mass, less software, less features,
less paperwork, less of everything that’s not essential (and
most of what you think is essential actually isn’t).

Getting Real is staying small and being agile.

Getting Real starts with the interface, the real screens that
people are going to use. It begins with what the customer
actually experiences and builds backwards from there. This lets
you get the interface right before you get the software wrong.

Getting Real is about iterations and lowering the
cost of change. Getting Real is all about launching,
tweaking, and constantly improving which makes
it a perfect approach for web-based software.

Getting Real delivers just what customers need
and eliminates anything they don't.

The benefits of Getting Real

Getting Real delivers better results because it forces you to deal
with the actual problems you're trying to solve instead of your
ideas about those problems. It forces you to deal with reality.

Getting Real foregoes functional specs and other transitory
documentation in favor of building real screens. A functional
spec is make-believe, an illusion of agreement, while an actual
web page is reality. That’s what your customers are going to see
and use. That’s what matters. Getting Real gets you there faster.
And that means you're making software decisions based on the
real thing instead of abstract notions.

Finally, Getting Real is an approach ideally suited to web-based
software. The old school model of shipping software in a box
and then waiting a year or two to deliver an update is fading
away. Unlike installed software, web apps can constantly evolve
on a day-to-day basis. Getting Real leverages this advantage for
all its worth.

How To Write Vigorous Software

Vigorous writing is concise. A sentence should contain no unnecessary
words, a paragraph no unnecessary sentences, for the same reason that a
drawing should have no unnecessary lines and a machine no unnecessary
parts. This requires not that the writer make all sentences short or avoid
all detail and treat subjects only in outline, but that every word tell.

From “The Elements of Style” by William Strunk Jr.

No more bloat

The old way: a lengthy, bureaucratic, we’re-doing-this-to-cover-
our-asses process. The typical result: bloated, forgettable soft-
ware dripping with mediocrity. Blech.

Getting Real gets rid of...

Timelines that take months or even years
Pie-in-the-sky functional specs

Scalability debates

Interminable staff meetings

The “need” to hire dozens of employees
Meaningless version numbers

Pristine roadmaps that predict the perfect future
Endless preference options

Outsourced support

Unrealistic user testing

Useless paperwork

Top-down hierarchy

You don’t need tons of money or a huge team or a lengthy
development cycle to build great software. Those things are the
ingredients for slow, murky, changeless applications. Getting
real takes the opposite approach.

In this book we’ll show you...

The importance of having a philosophy
Why staying small is a good thing

How to build less

How to get from idea to reality quickly
How to staff your team

Why you should design from the inside out
Why writing is so crucial

Why you should underdo your competition

How to promote your app and spread the word
Secrets to successful support

Tips on keeping momentum going after launch
...and lots more

The focus is on big-picture ideas. We won’t bog you down with
detailed code snippets or css tricks. We’ll stick to the major
ideas and philosophies that drive the Getting Real process.

Is this book for you?

You're an entrepreneur, designer, programmer, or marketer
working on a big idea.

You realize the old rules don’t apply anymore. Distribute your
software on CD-ROMs every year? How 2002. Version numbers?
Out the window. You need to build, launch, and tweak. Then
rinse and repeat.

Or maybe youre not yet on board with agile development and
business structures, but you’re eager to learn more.

If this sounds like you, then this book is for you.

Note: While this book’s emphasis is on building a web app,
a lot of these ideas are applicable to non-software activities too.
The suggestions about small teams, rapid prototyping, expect-
ing iterations, and many others presented here can serve as a
guide whether you're starting a business, writing a book,
designing a web site, recording an album, or doing a variety
of other endeavors. Once you start Getting Real in one area of
your life, you’ll see how these concepts can apply to a wide
range of activities.

About 37signals

What we do

37signals is a small team that creates simple, focused software.
Our products help you collaborate and get organized. More
than 350,000 people and small businesses use our web-apps to
get things done. Jeremy Wagstaft, of the Wall Street Journal,
wrote, “37signals products are beautifully simple, elegant and
intuitive tools that make an Outlook screen look like the soft-
ware equivalent of a torture chamber.” Our apps never put you
on the rack.

Our modus operandi

We believe software is too complex. Too many features, too
many buttons, too much to learn. Our products do less than
the competition — intentionally. We build products that work
smarter, feel better, allow you to do things your way, and are
easier to use.

Our products

As of the publishing date of this book, we have five commercial
products and one open source web application framework.

Basecamp turns project management on its head. Instead of
Gantt charts, fancy graphs, and stats-heavy spreadsheets, Base-
camp offers message boards, to-do lists, simple scheduling, col-
laborative writing, and file sharing. So far, hundreds of thou-
sands agree it’s a better way. Farhad Manjoo of Salon.com said
“Basecamp represents the future of software on the Web.”

6

Campfire brings simple group chat to the business setting.
Businesses in the know understand how valuable real-time
persistent group chat can be. Conventional instant messaging is
great for quick 1-on-1 chats, but it’s miserable for 3 or more
people at once. Campfire solves that problem and plenty more.

Backpack is the alternative to those confusing, complex, “orga-
nize your life in 25 simple steps” personal information managers.
Backpack’s simple take on pages, notes, to-dos, and cellphone/
email-based reminders is a novel idea in a product category that
suffers from status-quo-itis. Thomas Weber of the Wall Street
Journal said it’s the best product in its class and David Pogue of
the New York Times called it a “very cool” organization tool.

Writeboard lets you write, share, revise, and compare text
solo or with others. It’s the refreshing alternative to bloated
word processors that are overkill for 95% of what you write.
John Gruber of Daring Fireball said, “Writeboard might be the
clearest, simplest web application I've ever seen.” Web-guru
Jeffrey Zeldman said, “The brilliant minds at 37signals have
done it again.”

Ta-da List keeps all your to-do lists together and organized
online. Keep the lists to yourself or share them with others for
easy collaboration. There’s no easier way to get things done.
Over 100,000 lists with nearly 1,000,000 items have been
created so far.

Ruby on Rails, for developers, is a full-stack, open-source
web framework in Ruby for writing real-world applications
quickly and easily. Rails takes care of the busy work so you can
tocus on your idea. Nathan Torkington of the O’Reilly publish-
ing empire said “Ruby on Rails is astounding. Using it is like
watching a kung-fu movie, where a dozen bad-ass frameworks
prepare to beat up the little newcomer only to be handed their
asses in a variety of imaginative ways.” Gotta love that quote.

You can find our more about our products and our company on
our web site at: http://www.37signals.com.

Caveats, disclaimers, and other
preemptive strikes

Just to get it out of the way, here are our responses to some com-
plaints we hear every now and again:

“These techniques won’t work for me.”

Getting real is a system that’s worked terrifically for us. That
said, the ideas in this book won’t apply to every project under
the sun. If you are building a weapons system, a nuclear control
plant, a banking system for millions of customers, or some other
life/finance-critical system, youre going to balk at some of our
laissez-faire attitude. Go ahead and take additional precautions.

And it doesn’t have to be an all or nothing proposition. Even if
you can’t embrace Getting Real fully, there are bound to be at
least a few ideas in here you can sneak past the powers that be.

“You didn’t invent that idea.”

We’re not claiming to have invented these techniques.
Many of these concepts have been around in one form or
another for a long time. Don’t get hufly if you read some
of our advice and it reminds you of something you read
about already on so and so’s weblog or in some book pub-
lished 20 years ago. It’s definitely possible. These tech-
niques are not at all exclusive to 37signals. We're just telling
you how we work and what’s been successful for us.

“You take too much of a black and white view.”

If our tone seems too know-it-allish, bear with us. We think it’s
better to present ideas in bold strokes than to be wishy-washy
about it. If that comes off as cocky or arrogant, so be it. We’d
rather be provocative than water everything down with “it
depends...” Of course there will be times when these rules need
to be stretched or broken. And some of these tactics may not
apply to your situation. Use your judgement and imagination.

“This won’t work inside my company.”

Think you’re too big to Get Real? Even Microsoft is Getting
Real (and we doubt you're bigger than them).

Even if your company typically runs on long-term schedules
with big teams, there are still ways to get real. The first step is

to break up into smaller units. When there’s too many people
involved, nothing gets done. The leaner you are, the faster — and
better — things get done.

Granted, it may take some salesmanship. Pitch your company on
the Getting Real process. Show them this book. Show them the
real results you can achieve in less time and with a smaller team.

Explain that Getting Real is a low-risk, low-investment way to
test new concepts. See if you can split off from the mothership
on a smaller project as a proof of concept. Demonstrate results.

Or, if you really want to be ballsy, go stealth. Fly under the
radar and demonstrate real results. That’s the approach the
Start.com team has used while Getting Real at Microsoft. “I've
watched the Start.com team work. They don’t ask permission,”
says Robert Scoble, Technical Evangelist at Microsoft. “They
have a boss that provides air cover. And they bite off a little bit
at a time and do that and respond to feedback.”

Shipping Microsoft’s Start.com

In big companies, processes and meetings are the norm. Many months are
spent on planning features and arguing details with the goal of everyone
reaching an agreement on what is the “right” thing for the customer.

That may be the right approach for shrink-wrapped software, but with the web
we have an incredible advantage. Just ship it! Let the user tell you ifit’s the right
thing and if it’s not, hey you can fix it and ship it to the web the same day it
you want! There is no word stronger than the customer’s — resist the urge to
engage in long-winded meetings and arguments. Just ship it and prove a point.

Much easier said than done — this implies:

Months of planning are not necessary.

Months of writing specs are not necessary — specs should have the foundations
nailed and details figured out and refined during the development phase. Don’t
try to close all open issues and nail every single detail before development starts.

Ship less features, but quality features.
You don’t need a big bang approach with a whole new release and
bunch of features. Give the users byte-size pieces that they can digest.

If there are minor bugs, ship it as soon you have the core scenarios
nailed and ship the bug fixes to web gradually after that. The faster
you get the user feedback the better. Ideas can sound great on paper
but in practice turn out to be suboptimal. The sooner you find out
about fundamental issues that are wrong with an idea, the better.

Once you iterate quickly and react on customer feedback, you
will establish a customer connection. Remember the goal is
to win the customer by building what they want.

-Sanaz Ahavri, Program Manager of Start.com, Microsoft

The Starting Line

Build Less

What’s Your Problem?

Fund Yourself

Fix Time and Budget, Flex Scope

Have an Enemy
It Shouldn’t be a Chore

Build Less

Underdo your competition

Conventional wisdom says that to beat your competitors you
need to one-up them. If they have four features, you need five
(or 15, or 25). If they’re spending X, you need to spend xx. If
they have 20, you need 3o0.

This sort of one-upping Cold War mentality is a dead-end. It’s
an expensive, defensive, and paranoid way of building products.
Defensive, paranoid companies can’t think ahead, they can only
think behind. They don’t lead, they follow.

If you want to build a company that follows, you might as well put down
this book now.

So what to do then? The answer is less. Do less than your com-
petitors to beat them. Solve the simple problems and leave the

hairy, difficult, nasty problems to everyone else. Instead of one-
upping, try one-downing. Instead of outdoing, try underdoing.

We’ll cover the concept of less throughout this book, but for
starters, less means:

Less features

Less options/preferences

Less people and corporate structure
Less meetings and abstractions

Less promises

What’s Your Problem?

Build software for yourself

A great way to build software is to start out by solving your own
problems. You’ll be the target audience and you’ll know what’s
important and what’s not. That gives you a great head start on
delivering a breakout product.

The key here is understanding that you’re not alone. If you're
having this problem, it’s likely hundreds of thousands of others
are in the same boat. There’s your market. Wasn’t that easy?

Basecamp originated in a problem: As a design firm we
needed a simple way to communicate with our clients
about projects. We started out doing this via client ex-
tranets which we would update manually. But changing the
HTML by hand every time a project needed to be updated
just wasn’t working. These project sites always seemed to
go stale and eventually were abandoned. It was frustrating
because it left us disorganized and left clients in the dark.

So we started looking at other options. Yet every tool we found
either 1) didn’t do what we needed or 2) was bloated with fea-
tures we didn’t need — like billing, strict access controls, charts,
graphs, etc. We knew there had to be a better way so we decided
to build our own.

When you solve your own problem, you create a tool that you're
passionate about. And passion is key. Passion means you’ll truly
use it and care about it. And that’s the best way to get others to
feel passionate about it too.

Scratching your own itch

The Open Source world embraced this mantra a long time ago
— they call it “scratching your own itch.” For the open source
developers, it means they get the tools they want, delivered the
way they want them. But the benefit goes much deeper.

As the designer or developer of a new application, you're faced with
hundreds of micro-decisions each and every day: blue or green? One
table or two? Static or dynamic? Abort or recover? How do we make
these decisions? If it’s something we recognize as being important, we
might ask. The rest, we guess. And all that guessing builds up a kind of
debt in our applications — an interconnected web of assumptions.

As a developer, I hate this. The knowledge of all these small-scale
timebombs in the applications I write adds to my stress. Open Source
developers, scratching their own itches, don’t suffer this. Because they are
their own users, they know the correct answers to 9o% of the decisions
they have to make. I think this is one of the reasons folks come home
after a hard day of coding and then work on open source: It’s relaxing.

—Dave Thomas, The Pragmatic Programmers

Born out of necessity

Campaign Monitor really was born out of necessity. For years we'd
been frustrated by the quality of the email marketing options out
there. One tool would do x and vy but never z, the next had v

and z nailed but just couldn’t get x right. We couldn’t win.

‘We decided to clear our schedule and have a go at building our
dream email marketing tool. We consciously decided not to look
at what everyone else was doing and instead build something that
would make ours and our customer’ lives a little easier.

As it turned out, we weren't the only ones who were unhappy with
the options out there. We made a few modifications to the software
so any design firm could use it and started spreading the word. In
less than six months, thousands of designers were using Campaign
Monitor to send email newsletters for themselves and their clients.

—David Greiner, founder, Campaign Monitor

You need to care about it

When you write a book, you need to have more than an interesting story.
You need to have a desire to tell the story. You need to be personally
invested in some way. If you're going to live with something for two
years, three years, the rest of your life, you need to care about it.

—Malcolm Gladwell, author (from A Few Thin Slices of Malcolm Gladwell)

Fund Yourself

Outside money is plan B

The first priority of many startups is acquiring funding from
investors. But remember, if you turn to outsiders for funding,
you’ll have to answer to them too. Expectations are raised.
Investors want their money back — and quickly. The sad fact is
cashing in often begins to trump building a quality product.

These days it doesn’t take much to get rolling. Hardware
is cheap and plenty of great infrastructure software is open
source and free. And passion doesn’t come with a price tag.

So do what you can with the cash on hand. Think hard and
determine what’s really essential and what you can do without.
What can you do with three people instead of ten? What can
you do with $20K instead of $100k? What can you do in three
months instead of six? What can you do if you keep your day
job and build your app on the side?

Constraints force creativity

Run on limited resources and you’ll be forced to reckon with
constraints earlier and more intensely. And that’s a good thing.
Constraints drive innovation.

Constraints also force you to get your idea out in the wild
sooner rather than later — another good thing. A month or two
out of the gates you should have a pretty good idea of whether
you're onto something or not. If you are, you’ll be self-sustain-
able shortly and won’t need external cash. If your idea’s a lemon,
it’s time to go back to the drawing board. At least you know
now as opposed to months (or years) down the road. And at least
you can back out easily. Exit plans get a lot trickier once inves-
tors are involved.

If you're creating software just to make a quick buck, it will
show. Truth is a quick payout is pretty unlikely. So focus on
building a quality tool that you and your customers can live
with for a long time.

Two paths

[Jake Walker started one company with investor money (Disclive) and one
without (The Show). Here he discusses the differences between the two paths.]

The root of all the problems wasn’t raising money itself, but everything that
came along with it. The expectations are simply higher. People start taking salary,
and the motivation is to build it up and sell it, or find some other way for the
initial investors to make their money back. In the case of the first company,

we simply started acting much bigger than we were — out of necessity...

[With The Show]| we realized that we could deliver a much better product
with less costs, only with more time. And we gambled with a bit of our own
money that people would be willing to wait for quality over speed. But the
company has stayed (and will likely continue to be) a small operation. And ever
since that first project, we've been fully self funded. With just a bit of creative
terms from our vendors, we've never really need to put much of our own
money into the operation at all. And the expectation isn’t to grow and sell, but
to grow for the sake of growth and to continue to benefit from it financially.

—A comment from Signal vs. Noise

Fix Time and Budget, Flex Scope

Launch on time and on budget

Here’s an easy way to launch on time and on budget: keep them
fixed. Never throw more time or money at a problem, just scale
back the scope.

There’s a myth that goes like this: we can launch on time, on
budget, and on scope. It almost never happens and when it does
quality often suffers.

If you can’t fit everything in within the time and budget allot-
ted then don’t expand the time and budget. Instead, pull back
the scope. There’s always time to add stuff later — later is eternal,
now is fleeting.

Launching something great that’s a little smaller in scope than
planned is better than launching something mediocre and full
of holes because you had to hit some magical time, budget, and
scope window. Leave the magic to Houdini. You've got a real
business to run and a real product to deliver.

Here are the benefits of fixing time and budget, and keeping
scope flexible:

Prioritization

You have to figure out what’s really important. What’s
going to make it into this initial release? This forces

a constraint on you which will push you to make
tough decisions instead of hemming and hawing.

19

20

Reality

Setting expectations is key. If you try to fix time, budget,
and scope, you won'’t be able to deliver at a high level
of quality. Sure, you can probably deliver something,

but is “something” what you really want to deliver?

Flexibility

The ability to change is key. Having everything fixed
makes it tough to change. Injecting scope flexibility
will introduce options based on your real experience
building the product. Flexibility is your friend.

Our recommendation: Scope down. It’s better to make half'a
product than a half-assed product (more on this later).

Ome, two, three...

How does a project get to be a year behind schedule? One day at a time.

-Fred Brooks, software engineer and computer scientist

Have an Enemy

Pick a fight

Sometimes the best way to know what your app should be is
to know what it shouldn’t be. Figure out your app’s enemy and
you’ll shine a light on where you need to go.

When we decided to create project management software, we
knew Microsoft Project was the gorilla in the room. Instead of
fearing the gorilla, we used it as a motivator. We decided Base-
camp would be something completely different, the anti-Project.

We realized project management isn’t about charts, graphs,
reports and statistics — it’s about communication. It also isn’t
about a project manager sitting up high and broadcasting a
project plan. It’s about everyone taking responsibility together to
make the project work.

Our enemy was the Project Management Dictators and the tools
they used to crack the whip. We wanted to democratize project
management — make it something everyone was a part of (in-
cluding the client). Projects turn out better when everyone takes
collective ownership of the process.

When it came to Writeboard, we knew there were competi-
tors out there with lots of whizbang features. So we decided to
emphasize a “no fuss” angle instead. We created an app that let
people share and collaborate on ideas simply, without bogging
them down with non-essential features. If it wasn’t essential, we
left it out. And in just three months after launch, over 100,000
Writeboards have been created.

22

When we started on Backpack our enemy was structure and
rigid rules. People should be able to organize their information
their own way — not based on a series of preformatted screens or
a plethora of required form fields.

One bonus you get from having an enemy is a very clear mar-
keting message. People are stoked by conflict. And they also
understand a product by comparing it to others. With a chosen
enemy, you're feeding people a story they want to hear. Not
only will they understand your product better and faster,
they’ll take sides. And that’s a sure-fire way to get attention and
ignite passion.

Now with all that said, it’s also important to not get too ob-
sessed with the competition. Overanalyze other products and
you’'ll start to limit the way you think. Take a look and then
move on to your own vision and your own ideas.

Don’t follow the leader

Marketers (and all human beings) are well trained to follow the leader. The
natural instinct is to figure out what’s working for the competition and then
try to outdo it — to be cheaper than your competitor who competes on
price, or faster than the competitor who competes on speed. The problem
is that once a consumer has bought someone else’s story and believes that
lie, persuading the consumer to switch is the same as persuading him to
admit he was wrong. And people hate admitting that they’re wrong.

Instead, you must tell a different story and persuade listeners that
your story is more important than the story they currently believe.
If your competition is faster, you must be cheaper. If they sell the
story of health, you must sell the story of convenience. Not just the
positioning x/y axis sort of “We are cheaper” claim, but a real story
that is completely different from the story that’s already being told.

—Seth Godin, author/entrepreneur (from Be a Better Liar)

23

What’s the key problem?

One of the quickest ways to get yourself into trouble is to look at what
your competitors are doing. This has been especially true for us at BlinkList.
Since we launched there have been about 10 other social bookmarking
services that have been launched. Some people have even started to generate
spreadsheets online with a detailed feature by feature comparison.

However, this can quickly lead one astray. Instead, we stay focused
on the big picture and keep asking ourselves, what is the key
problem we are trying to solve and how can we solve it.

—Michael Reining, co-founder, MindValley & Blinklist

It Shouldn’t be a Chore

Your passion — or lack of — will shine through

The less your app is a chore to build, the better it will be. Keep
it small and managable so you can actually enjoy the process.

If your app doesn’t excite you, something’s wrong. If you're only
working on it in order to cash out, it will show. Likewise, if you
feel passionately about your app, it will come through in the
final product. People can read between the lines.

The presence of passion

In design, where meaning is often controversially subjective or
painfully inscrutable, few things are more apparent and lucid than
the presence of passion. This is true whether the design of a product
delights you or leaves you cold; in either case it’s difficult not to
detect the emotional investment of the hands that built it.

Enthusiasm manifests itself readily of course, but indifference is equally
indelible. If your commitment doesn’t encompass a genuine passion
for the work at hand, it becomes a void that is almost impossible to
conceal, no matter how elaborately or attractively designed it is.

—Khoi Vinh, Subtraction.com and co-founder of Behavior LLC

The bakery

American business at this point is really about developing an idea,
making it profitable, selling it while it’s profitable and then getting

out or diversifying. It’s just about sucking everything up. My idea was:
Enjoy baking, sell your bread, people like it, sell more. Keep the bakery
going because you're making good food and people are happy.

—Ian MacKaye, member of Fugazi and co-owner of Dischord Records
(from Salon.com People | Ian MacKaye)

24

Stay Lean

Less Mass
Lower Your Cost of Change
The Three Musketeers

Embrace Constraints
Be Yourself

Less Mass

The leaner you are, the easier it is to change

The more massive an object, the more energy is required to
change its direction. It’s as true in the business world as it is in
the physical world.

When it comes to web technology, change must be easy and
cheap. If you can’t change on the fly, you’ll lose ground to
someone who can. That’s why you need to shoot for less mass.

Mass is increased by...

Long term contracts

Excess staff

Permanent decisions

Meetings about other meetings

Thick process

Inventory (physical or mental)
Hardware, software, technology lock-ins
Proprietary data formats

The past ruling the future

Long-term roadmaps

Office politics

Mass is reduced by...

Just-in-time thinking

Multi-tasking team members

Embracing constraints, not trying to lift them
Less software, less code

Less features

Small team size

Simplicity

Pared-down interfaces

Open-source products

Open data formats

An open culture that makes it easy to admit mistakes

Less mass lets you change direction quickly. You can react and
evolve. You can focus on the good ideas and drop the bad ones.
You can listen and respond to your customers. You can integrate
new technologies now instead of later. Instead of an aircraft
carrier, you steer a cigarette boat. Revel in that fact.

27

For example, let’s imagine a lean, less mass company that has
built a product with less software and less features. On the

other side is a more mass company that’s got a product with
significantly more software and more features. Then let’s say a
new technology like Ajax or a new concept like tagging comes
around. Who is going to be able to adapt their product quicker?
The team with more software and more features and a 12-month
roadmap or the team with less software and less features and

a more organic “let’s focus on what we need to focus on right
now’”’ process?

Obviously the less-mass company is in a better position to
adjust to the real demands of the marketplace. The more-mass
company will likely still be discussing changes or pushing
them through its bureaucratic process long after the less-mass
company has made the switch. The less mass company will be
two steps ahead while the more mass company is still figuring
out how to walk.

Nimble, agile, less-mass businesses can quickly change their
entire business model, product, feature set, and marketing
message. They can make mistakes and fix them quickly. They
can change their priorities, product mix, and focus. And, most
importantly, they can change their minds.

28

29

Lower Your Cost of Change

Stay flexible by reducing obstacles to change

Change is your best friend. The more expensive it is to make a
change, the less likely you’ll make it. And if your competitors
can change faster than you, you’re at a huge disadvantage. If
change gets too expensive, you're dead.

Here’s where staying lean really helps you out. The ability to
change on a dime is one thing small teams have by default that
big teams can never have. This is where the big guys envy the
little guys. What might take a big team in a huge organization
weeks to change may only take a day in a small, lean organiza-
tion. That advantage is priceless. Cheap and fast changes are
small’s secret weapon.

And remember: All the cash, all the marketing, all the people in
the world can’t buy the agility you get from being small.

Emergence

Emergence is one of the founding principles of agility, and is the closest
one to pure magic. Emergent properties aren’t designed or built in, they
simply happen as a dynamic result of the rest of the system.“Emergence”
comes from middle 17th century Latin in the sense of an “unforeseen
occurrence.”You can’t plan for it or schedule it, but you can cultivate

an environment where you can let it happen and benefit from it.

A classic example of emergence lies in the flocking behavior of birds.

A computer simulation can use as few as three simple rules (along the
lines of “don’t run into each other”) and suddenly you get very complex
behavior as the flock wends and wafts its way gracefully through the

sky, reforming around obstacles, and so on. None of this advanced
behavior (such as reforming the same shape around an obstacle) is
specified by the rules; it emerges from the dynamics of the system.

Simple rules, as with the birds simulation, lead to complex behavior. Complex
rules, as with the tax law in most countries, lead to stupid behavior.

Many common software development practices have the unfortunate side-
effect of eliminating any chance for emergent behavior. Most attempts at
optimization — tying something down very explicitly — reduces the breadth
and scope of interactions and relationships, which is the very source of
emergence. In the flocking birds example, as with a well-designed system,
it’s the interactions and relationships that create the interesting behavior.

The harder we tighten things down, the less room there is for a creative,
emergent solution. Whether it’s locking down requirements before

they are well understood or prematurely optimizing code, or inventing
complex navigation and workflow scenarios before letting end users
play with the system, the result is the same: an overly complicated, stupid
system instead of a clean, elegant system that harnesses emergence.

Keep it small. Keep it simple. Let it happen.

—Andrew Hunt, The Pragmatic Programmers

The Three Musketeers

Use a team of three for version 1.0

For the first version of your app, start with only three people.
That’s the magic number that will give you enough manpower
yet allow you to stay streamlined and agile. Start with a develop-
er, a designer, and a sweeper (someone who can roam between

both worlds).

Now sure, it’s a challenge to build an app with only a few
people. But if you've got the right team, it’s worth it. Talented
people don’t need endless resources. They thrive on the chal-
lenge of working within restraints and using their creativity to
solve problems. Your lack of manpower means you’ll be forced
to deal with tradeoffs earlier in the process — and that’s alright. It
will make you figure out your priorities earlier rather than later.
And you’ll be able to communicate without constantly having to
worry about leaving people out of the loop.

If you can’t build your version one with three people, then you
either need different people or need to slim down your initial
version. Remember, it’s OK to keep your first version small and
tight. You'll quickly get to see if your idea has wings and, if it
does, you’ll have a clean, simple base to build on.

Metcalfe’s Law and project teams

Keep the team as small as possible. Metcalfe’s Law, that “the value of a
communication system grows at approximately the square of the number
of users of the system,” has a corollary when it comes to project teams:
The efficiency of the team is approximately the inverse of the square of
the number of members in the team. I'm beginning to think three people
is optimal for a 1.0 product release...Start out by reducing the number

of people you plan to add to the team, and then reduce some more.

—Marc Hedlund, entreprenenr-in-residence at O’Reilly Media

Communication flow

Communication flows more easily on small teams than large teams. If

you're the only person on a project, communication is simple. The only
communication path is between you and the customer. As the number of’
people on a project increases, however, so does the number of communication
paths. It doesn’t increase additively, as the number of people increases, it
increases multiplicatively, proportional to the square of the number of people.

—Steve McConnell, Chief Software Engineer at Construx Software Builders
Inc. (from Less is Move: Jumpstarting Productivity with Small Teams)

Embrace Constraints

Let limitations guide you to creative solutions

There’s never enough to go around. Not enough time. Not
enough money. Not enough people.

That’s a good thing.

Instead of freaking out about these constraints, embrace
them. Let them guide you. Constraints drive innovation and
force focus. Instead of trying to remove them, use them to
your advantage.

When 37signals was building Basecamp, we had plenty of limi-
tations. We had:

A design firm to run
Existing client work

A 7-hour time difference (David was doing the programming
in Denmark, the rest of us were in the States)

A small team

No outside funding

We felt the “not enough” blues. So we kept our plate small.
That way we could only put so much on it. We took big tasks
and broke them up into small bits that we tackled one at a time.
We moved step by step and prioritized as we went along.

That forced us to come up with creative solutions. We lowered
our cost of change by always building less software. We gave
people just enough features to solve their own problems their
own way — and the