
Arseny Reutov Follow

Application Security Researcher at Positive.com
Feb 1 · 10 min read

Predicting Random Numbers in Ethereum
Smart Contracts

Ethereum has gained tremendous popularity as a platform for initial

coin o�erings (ICOs). However, it is used in more than just ERC20

tokens. Roulettes, lotteries, and card games can all be implemented

using the Ethereum blockchain. Like any blockchain implementation,

Ethereum is incorruptible, decentralized, and transparent. Ethereum

allows running Turing-complete programs, which are usually written in

Solidity, making it a “world supercomputer” in the words of the

platform’s founders. All these features are especially bene�cial in the

context of computer gambling, in which user trust is crucial.

The Ethereum blockchain is deterministic and as such it imposes

certain di�culties for those who have chosen to write their own

pseudo-random number generator (PRNG), which is an inherent part

of any gambling application. We decided to research smart contracts in

order to assess the security of PRNGs written in Solidity and to

https://blog.positive.com/@theRaz0r?source=post_header_lockup
https://blog.positive.com/@theRaz0r?source=post_header_lockup
Mour Zhao

highlight common design antipatterns that lead to vulnerabilities

allowing prediction of the future state.

Our research was performed in the following steps:

3,649 smart contracts were collected from etherscan.io and

GitHub.

These contracts were then imported into the Elasticsearch open-

source search engine.

Using the Kibana web UI for rich search and �ltering, 72 unique

PRNG implementations were found.

Based on manual assessment of each contract , 43 contracts were

identi�ed as vulnerable.

Vulnerable implementations
Analysis identi�ed four categories of vulnerable PRNGs:

PRNGs using block variables as a source of entropy

PRNGs based on a blockhash of some past block

PRNGs based on a blockhash of a past block combined with a seed

deemed private

PRNGs prone to front-running

Let’s examine each category and examples of vulnerable code.

PRNGs based on block variables

There are a number of block variables that may be wrongly used as a

source of entropy:

block.coinbase represents the address of the miner who mined

the current block.

block.difficulty is a relative measure of how di�cult it was to

�nd the block.

block.gaslimit restricts maximum gas consumption for

transactions within the block.

block.number is the height of current block.

block.timestamp is when the block was mined.

1.

2.

3.

4.

•

•

•

•

•

•

•

•

•

First of all, all these block variables can be manipulated by miners, so

they cannot be used as a source of entropy because of the miners’

incentive. More importantly, the block variables are obviously shared

within the same block. So if an attacker’s contract calls the victim

contract via an internal message, the same PRNG in both contracts will

yield the same outcome.

Example 1 (0x80ddae5251047d6ceb29765f38fed1c0013004b7):

// Won if block number is even
// (note: this is a terrible source of randomness, please
don’t use this with real money)

bool won = (block.number % 2) == 0;

Example 2 (0xa11e4ed59dc94e69612f3111942626ed513cb172):

// Compute some *almost random* value for selecting winner
from current transaction.

var random = uint(sha3(block.timestamp)) % 2;

Example 3 (0xcC88937F325d1C6B97da0AFDbb4cA542EFA70870):

address seed1 = contestants[uint(block.coinbase) %
totalTickets].addr;
address seed2 = contestants[uint(msg.sender) %
totalTickets].addr;
uint seed3 = block.difficulty;
bytes32 randHash = keccak256(seed1, seed2, seed3);
uint winningNumber = uint(randHash) % totalTickets;
address winningAddress = contestants[winningNumber].addr;

PRNGs based on blockhash

Each block in the Ethereum blockchain has a veri�cation hash. The

Ethereum Virtual Machine (EVM) enables obtaining such blockhashes

via the block.blockhash() function. This function expects a numeric

argument that speci�es the number of the block. In the course of

research, we discovered that the result of block.blockhash() is

frequently misused in PRNG implementations.

https://etherscan.io/address/0x80ddae5251047d6ceb29765f38fed1c0013004b7
https://etherscan.io/address/0xa11e4ed59dc94e69612f3111942626ed513cb172
https://etherscan.io/address/0xcC88937F325d1C6B97da0AFDbb4cA542EFA70870

There are three major �awed variations of such PRNGs:

block.blockhash(block.number) , which is the blockhash of the

current block.

block.blockhash(block.number - 1) , which is the blockhash of

the last block.

block.blockhash() of a block that is at least 256 blocks older

than the current one.

Let’s examine each of these cases.

block.blockhash(block.number)

The block.number state variable allows obtaining the height of the

current block. When a miner picks up a transaction that executes

contract code, the block.number of the future block with this

transaction is known, so the contract can reliably access its value.

However, at the moment of transaction execution in the EVM, the

blockhash of the block that is being created is not yet known for

obvious reasons and the EVM will always yield zero.

Some contracts misinterpret the meaning of the expression

block.blockhash(block.number) . In these contracts, the blockhash of

the current block was deemed known at runtime and was used as a

source of entropy.

Example 1 (0xa65d59708838581520511d98fb8b5d1f76a96cad):

function deal(address player, uint8 cardNumber) internal
returns (uint8) {
 uint b = block.number;
 uint timestamp = block.timestamp;
 return uint8(uint256(keccak256(block.blockhash(b), player,
cardNumber, timestamp)) % 52);
}

Example 2 (https://github.com/axiomzen/eth-random/issues/3):

function random(uint64 upper) public returns (uint64
randomNumber) {
 _seed = uint64(sha3(sha3(block.blockhash(block.number),
_seed), now));

•

•

•

https://etherscan.io/address/0xa65d59708838581520511d98fb8b5d1f76a96cad
https://github.com/axiomzen/eth-random/issues/3

 return _seed % upper;
}

block.blockhash(block.number-1)

A certain number of contracts use another variation of blockhash-based

PRNGs, relying on the blockhash of the last block. Needless to say, this

approach is also �awed: an attacker can make an exploit contract with

the same PRNG code in order to call the target contract via an internal

message. The “random” numbers for the two contracts will be the

same.

Example 1 (0xF767fCA8e65d03fE16D4e38810f5E5376c3372A8):

//Generate random number between 0 & max

uint256 constant private FACTOR =
115792089237316195423570985008687907853269984665640564039457
5840079131296399;
function rand(uint max) constant private returns (uint256
result){
 uint256 factor = FACTOR * 100 / max;
 uint256 lastBlockNumber = block.number - 1;
 uint256 hashVal =
uint256(block.blockhash(lastBlockNumber));
 return uint256((uint256(hashVal) / factor)) % max;
}

Blockhash of a future block

A better approach is to use the blockhash of some future block. The

implementation scenario is as follows:

The player makes a bet and the house stores the block.number of

the transaction.

In a second call to the contract, the player requests that the house

announces the winning number.

The house retrieves the saved block.number from storage and gets

its blockhash, which is then used to generate a pseudo-random

number.

This approach works only if an important requirement is met. The

Solidity documentation warns about the limit of saved blockhashes

•

•

•

https://etherscan.io/address/0xF767fCA8e65d03fE16D4e38810f5E5376c3372A8

that the EVM is able to store:

Therefore, if a second call was not made within 256 blocks and there is

no validation of the blockhash, the pseudo-random number will be

known beforehand — the blockhash will be zero.

The most well-known case of this weakness being exploited is the hack

of the SmartBillions lottery. The contract had insu�cient validation of

the block.number age, which resulted in 400 ETH being lost to an

unknown player who waited for 256 blocks before revealing the

predictable winning number.

Blockhash with a private seed

In order to increase entropy, some of the analyzed contracts employed

an additional seed deemed private. One such case is the Slotthereum

lottery. The relevant code is as follows:

bytes32 _a = block.blockhash(block.number - pointer);
for (uint i = 31; i >= 1; i--) {
 if ((uint8(_a[i]) >= 48) && (uint8(_a[i]) <= 57)) {
 return uint8(_a[i]) - 48;
 }
}

The variable pointer was declared as private, meaning that other

contracts cannot access its value. After each game, the winning number

between 1 and 9 was assigned to this variable, which was then used as

an o�set of the current block.number when retrieving the blockhash.

Being transparent in nature, the blockchain must not be used to store

secrets in plaintext. Although private variables are protected from other

contracts, it is possible to get the contents of contract storage o�-chain.

For instance, popular Ethereum client web3 has the API method

web3.eth.getStorageAt() , which allows retrieving storage entries at

the speci�ed indices.

Given this fact, it is trivial to extract the value of the private variable

pointer from the contract storage and supply it as an argument to an

https://www.reddit.com/r/ethereum/comments/74d3dc/smartbillions_lottery_contract_just_got_hacked/
https://github.com/slotthereum/source/issues/1

exploit:

function attack(address a, uint8 n) payable {
 Slotthereum target = Slotthereum(a);
 pointer = n;
 uint8 win = getNumber(getBlockHash(pointer));
 target.placeBet.value(msg.value)(win, win);
}

Front-running

In order to receive the maximum reward, miners choose transactions to

create a new block based on the cumulative gas used by each

transaction. The order of transaction execution in a block is determined

by the gas price. The transaction with the highest gas price will be

executed �rst. So by manipulating the gas price, it is possible to get a

desired transaction executed ahead of all others in the current block.

This may constitute a security issue — commonly referred to as front-

running — when a contract’s execution �ow depends on its position in a

block.

Consider the following example. A lottery uses an external oracle to get

pseudo-random numbers, which are used to determine the winner

from among the players who submitted their bets in each round. These

numbers are sent unencrypted. An attacker may observe the pool of

pending transactions and wait for the number from the oracle. As soon

as the oracle’s transaction appears in the transaction pool, an attacker

sends a bet with a higher gas price. The attacker’s transaction was

made last in the round, but thanks to the higher gas price, is actually

executed before the oracle’s transaction, making the attacker

victorious. Such a task was featured in the ZeroNights ICO Hacking

Contest.

Another example of a contract prone to front-running is the game

called “Last is me!”. Every time a player buys a ticket, that player claims

the last seat and the timer starts counting down. If nobody buys the

ticket within a certain number of blocks, the last player to “take a seat”

wins the jackpot. When the round is about to �nish, an attacker may

observe the transaction pool for other contestants’ transactions and

claim the jackpot by means of a higher gas price.

Towards a safe(r) PRNG

https://blog.positive.com/zeronights-ico-hacking-contest-writeup-63afb996f1e3
https://etherscan.io/address/0x5d9b8fa00c16bcafae47deed872e919c8f6535bf

There are several approaches for implementing safer PRNGs on the

Ethereum blockchain:

External oracles

Signidice

Commit–reveal approach

External oracles: Oraclize

Oraclize is a service for distributed applications that provides a bridge

between the blockchain and the external environment (Internet). With

Oraclize, smart contracts can request data from web APIs such as

currency exchange rates, weather forecasts, and stock prices. One of

the most prominent use cases is the ability of Oraclize to serve as a

PRNG. Some of the analyzed contracts used Oraclize to obtain random

numbers from random.org via the URL connector. This scheme is

depicted in Figure 1.

The key drawback of this approach is that it is centralized. Can we trust

the Oraclize daemon not to tamper with the results? Can we trust

random.org and all its underlying infrastructure? Although Oraclize

provides TLSNotary veri�cation of the results, it can be used only o�-

chain — in case of a lottery, only after a winner has been chosen. A

better use of Oraclize is as a “random” data source using Ledger proofs

that can be veri�ed on-chain.

External oracles: BTCRelay

BTCRelay is a bridge between Ethereum and Bitcoin blockchains. Using

BTCRelay, smart contracts in the Ethereum blockchain can request

future Bitcoin blockhashes and use them as a source of entropy. One

project that uses BTCRelay as a PRNG is The Ethereum Lottery.

•

•

•

Figure 1. Oraclize scheme of operation

http://www.oraclize.it/
https://blog.oraclize.it/welcoming-our-brand-new-ledger-proof-649b9f098ccc
http://btcrelay.org/
https://etherscan.io/address/0x302fE87B56330BE266599FAB2A54747299B5aC5B

The BTCRelay approach is not safe against the miner incentive

problem. Although this approach sets a higher barrier compared to

relying on Ethereum blocks, it simply takes advantage of the fact that

the price of Bitcoin is higher than Ethereum, thus reducing but not

eliminating the risk of cheating by miners.

Signidice

Signidice is an algorithm based on cryptographic signatures that can be

used as a PRNG in smart contracts involving only two parties: the

player and the house. The algorithm works as follows:

The player makes a bet by calling a smart contract.

The house sees the bet, signs it with its private key, and sends the

signature to the smart contract.

The smart contract veri�es the signature using the known public

key.

This signature is then used to generate a random number.

Ethereum has a built-in function ecrecover() for verifying ECDSA

signatures on-chain. However, ECDSA cannot be used in Signidice since

the house is able to manipulate input parameters (speci�cally,

parameter k) and thus a�ect the resulting signature. A proof-of-concept

of such cheating has been created by Alexey Pertsev.

Fortunately, with release of the Metropolis hardfork, a modular

exponentiation operator has been introduced. This allows

implementing RSA signature veri�cation, which unlike ECDSA does not

allow manipulating input parameters to �nd a suitable signature.

Commit–reveal approach

As the name implies, the commit–reveal approach consists of two

phases:

A “commit” stage, when the parties submit their cryptographically

protected secrets to the smart contract.

A “reveal” stage, when the parties announce cleartext seeds, the

smart contract veri�es that they are correct, and the seeds are

used to generate a random number.

A proper commit–reveal implementation should not rely on any single

party. Although players do not know the original seed submitted by the

•

•

•

•

•

•

https://github.com/gluk256/misc/blob/master/rng4ethereum/signidice.md
https://github.com/pertsev/web3_utilz/tree/master/ECDSA%20signature%20generating%20%28cheating%29
https://github.com/ethereum/EIPs/pull/198

owner, and their chances are equal, the owner may also be a player,

due to which players cannot trust the owner.

A better implementation of the commit–reveal approach is Randao.

This PRNG collects hashed seeds from multiple parties, and each party

is paid a reward for participation. Nobody knows the others’ seeds so

the result is truly random. However, a single party refusing to reveal

the seed will result in denial of service.

Commit–reveal can be combined with future blockhashes. In this case,

there are three sources of entropy:

owner’s sha3(seed1)

player’s sha3(seed2)

a future blockhash

The random number is then generated as follows: sha3(seed1, seed2,

blockhash) . Thus, the commit–reveal approach solves the miner

incentive problem: a miner can decide on the blockhash but does not

know the owner’s and player’s seeds. It also solves the owner incentive

problem: an owner knows only the owner’s own seed, but the player’s

seed and future blockhash are unknown. In addition, this approach

solves the case when a person is both owner and miner: that person

decides on the blockhash and knows the owner’s seed, but does not

know the player’s seed.

Conclusion
Secure PRNG implementation in the Ethereum blockchain remains a

challenge. As our research suggests, developers tend to use their own

implementations due to the lack of ready-made solutions. But when

creating these implementations, it is easy to make a mistake because

the blockchain has limited sources of entropy. When designing a PRNG,

developers should be sure to �rst understand each party’s incentive and

only then choose an appropriate approach.

1.

2.

3.

https://github.com/randao/randao
https://blog.winsome.io/random-number-generation-on-winsome-io-future-blockhashes-fe44b1c61d35

