
Safety
Jump to bottom

noroot edited this page 7 days ago · 17 revisions

Contents

Ethereum Contract Security Techniques and Tips ‑ Additional Requested Content

General Philosophy

Security Notifications

Recommendations for Smart Contract Security in Solidity

External Calls

Avoid external calls when possible

Use send() , avoid call.value()

Handle errors in external calls

Don't make control flow assumptions after external calls

Favor pull over push for external calls

Mark untrusted contracts

Beware rounding with integer division

Remember that on‑chain data is public

In 2‑party or N‑party contracts, beware of the possibility that some participants

may "drop offline" and not return

Keep fallback functions simple

Explicitly mark visibility in functions and state variables

Beware division by zero

Differentiate functions and events

Known Attacks

Call Depth Attack (Deprecated)

Race Conditions*

Reentrancy

Cross‑function Race Conditions

Pitfalls in Race Condition Solutions

DoS with (Unexpected) Throw

DoS with Block Gas Limit

Timestamp Dependence

Transaction‑Ordering Dependence (TOD)

Software Engineering Techniques

Upgrading Broken Contracts

Edit New Page

https://github.com/ethereum/wiki/wiki/Safety/_history
https://github.com/ethereum/wiki/wiki/Safety/_edit
https://github.com/ethereum/wiki/wiki/_new

Circuit Breakers (Pause contract functionality)

Speed Bumps (Delay contract actions)

Rate Limiting

Assert Guards

Contract Rollout

Automatic Deprecation

Restrict amount of Ether per user/contract

Security‑related Documentation and Procedures

Security Tools

Future improvements

Smart Contract Security Bibliography ‑ By Ethereum core developers ‑ By Community

Attribution

License

Ethereum Contract Security Techniques and Tips

The community is encouraged to keep this wiki updated: it becomes more complete as

more contributions are added.

If you'd like to submit your Dapp and get early traffic, check out Dapp Insight for more

information.

Currently this wiki is out‑of‑date and see its source "Smart Contract Best Practices" for more

recent updates and corrections.

Additional Requested Content

We especially welcome content in the following areas:

Testing Solidity code (structure, frameworks, common test idioms)

Software engineering practices for smart contracts and/or blockchain‑based programming

General Philosophy

Ethereum and complex blockchain programs are new and highly experimental. Therefore, you

should expect constant changes in the security landscape, as new bugs and security risks are

discovered, and new best practices are developed. Following the security practices in this

document is therefore only the beginning of the security work you will need to do as a smart

contract developer.

https://dappinsight.com/
https://github.com/ConsenSys/smart-contract-best-practices

Smart contract programming requires a different engineering mindset than you may be used

to. The cost of failure can be high, and change can be difficult, making it in some ways more

similar to hardware programming or financial services programming than web or mobile

development. It is therefore not enough to defend against known vulnerabilities. Instead, you

will need to learn a new philosophy of development:

Prepare for failure. Any non‑trivial contract will have errors in it. Your code must

therefore be able to respond to bugs and vulnerabilities gracefully.

Pause the contract when things are going wrong ('circuit breaker')

Manage the amount of money at risk (rate limiting, maximum usage)

Have an effective upgrade path for bugfixes and improvements

Roll out carefully. It is always better to catch bugs before a full production release.

Test contracts thoroughly, and add tests whenever new attack vectors are discovered

Provide bug bounties starting from alpha testnet releases

Rollout in phases, with increasing usage and testing in each phase

Keep contracts simple. Complexity increases the likelihood of errors.

Ensure the contract logic is simple

Modularize code to keep contracts and functions small

Use already‑written tools or code where possible (eg. don't roll your own random

number generator)

Prefer clarity to performance whenever possible

Only use the blockchain for the parts of your system that require decentralization

Stay up to date. Use the resources listed in the next section to keep track of new security

developments.

Check your contracts for any new bug that's discovered

Upgrade to the latest version of any tool or library as soon as possible

Adopt new security techniques that appear useful

Be aware of blockchain properties. While much of your programming experience will be

relevant to Ethereum programming, there are some pitfalls to be aware of.

Be extremely careful about external contract calls, which may execute malicious code

and change control flow.

Understand that your public functions are public, and may be called maliciously. Your

private data is also viewable by anyone.

Keep gas costs and the block gas limit in mind.

Security Notifications

This is a list of resources that will often highlight discovered exploits in Ethereum or Solidity.

The official source of security notifications is the Ethereum Blog, but in many cases

vulnerabilities will be disclosed and discussed earlier in other locations.

Ethereum Blog: The official Ethereum blog

Ethereum Blog ‑ Security only: All blog posts that are tagged Security

Ethereum Gitter chat rooms

Solidity

Go‑Ethereum

CPP‑Ethereum

Research

Reddit

Network Stats

It's highly recommended that you regularly read all these sources, as exploits they note may

impact your contracts.

Additionally, here is a list of Ethereum core developers who may write about security, and see

the bibliography for more from the community.

Vitalik Buterin: Twitter, Github, Reddit, Ethereum Blog

Dr. Christian Reitwiessner: Twitter, Github, Ethereum Blog

Dr. Gavin Wood: Twitter, Blog, Github

Vlad Zamfir: Twitter, Github, Ethereum Blog

Beyond following core developers, it is critical to participate in the wider blockchain‑related

security community ‑ as security disclosures or observations will come through a variety of

parties.

Recommendations for Smart Contract Security in Solidity

External Calls

Avoid external calls when possible

Calls to untrusted contracts can introduce several unexpected risks or errors. External calls

may execute malicious code in that contract or any other contract that it depends upon. As

such, every external call should be treated as a potential security risk, and removed if possible.

When it is not possible to remove external calls, use the recommendations in the rest of this

section to minimize the danger.

https://blog.ethereum.org/
https://blog.ethereum.org/category/security/
https://gitter.im/orgs/ethereum/rooms
https://gitter.im/ethereum/solidity
https://gitter.im/ethereum/go-ethereum
https://gitter.im/ethereum/cpp-ethereum
https://gitter.im/ethereum/research
https://www.reddit.com/r/ethereum
https://ethstats.net/
https://github.com/ConsenSys/smart-contract-best-practices#smart-contract-security-bibliography
https://twitter.com/vitalikbuterin
https://github.com/vbuterin
https://www.reddit.com/user/vbuterin
https://blog.ethereum.org/author/vitalik-buterin/
https://twitter.com/ethchris
https://github.com/chriseth
https://blog.ethereum.org/author/christian_r/
https://twitter.com/gavofyork
http://gavwood.com/
https://github.com/gavofyork
https://twitter.com/vladzamfir
https://github.com/vladzamfir
https://blog.ethereum.org/author/vlad/

Use send() , avoid call.value()

When sending Ether, use someAddress.send() and avoid someAddress.call.value()() .

External calls such as someAddress.call.value()() can trigger malicious code. While

send() also triggers code, it is safe because it only has access to gas stipend of 2,300 gas.

Currently, this is only enough to log an event, not enough to launch an attack.

// bad
if(!someAddress.call.value(100)()) {
 // Some failure code
}

// good
if(!someAddress.send(100)) {
 // Some failure code
}

Handle errors in external calls

Solidity offers low‑level call methods that work on raw addresses: address.call() ,
address.callcode() , address.delegatecall() , and address.send . These low‑level
methods never throw an exception, but will return false if the call encounters an exception.

On the other hand, contract calls (e.g., ExternalContract.doSomething()) will automatically
propagate a throw (for example, ExternalContract.doSomething() will also throw if

doSomething() throws).

If you choose to use the low‑level call methods, make sure to handle the possibility that the

call will fail, by checking the return value.

// bad
someAddress.send(55);
someAddress.call.value(55)(); // this is doubly dangerous, as it will forward
all remaining gas and doesn't check for result
someAddress.call.value(100)(bytes4(sha3("deposit()"))); // if deposit throws an
exception, the raw call() will only return false and transaction will NOT be
reverted

// good
if(!someAddress.send(55)) {
 // Some failure code
}

ExternalContract(someAddress).deposit.value(100);

Don't make control flow assumptions after external calls

Whether using raw calls or contract calls, assume that malicious code will execute if

ExternalContract is untrusted. Even if ExternalContract is not malicious, malicious code

can be executed by any contracts it calls. One particular danger is malicious code may hijack

the control flow, leading to race conditions. (See Race Conditions for a fuller discussion of this

problem).

Favor pull over push for external calls

As we've seen, external calls can fail for a number of reasons, including external errors. To

minimize the damage caused by such failures, it is often better to isolate each external call into

its own transaction that can be initiated by the recipient of the call. This is especially relevant

for payments, where it is better to let users withdraw funds rather than push funds to them

automatically. (This also reduces the chance of problems with the gas limit.)

// bad
contract auction {
 address highestBidder;
 uint highestBid;

 function bid() {
 if (msg.value < highestBid) throw;

 if (highestBidder != 0) {
 if (!highestBidder.send(highestBid)) { // if this call consistently
fails, no one else can bid
 throw;
 }
 }

 highestBidder = msg.sender;
 highestBid = msg.value;
 }
}

// good
contract auction {
 address highestBidder;
 uint highestBid;
 mapping(address => uint) refunds;

 function bid() external {
 if (msg.value < highestBid) throw;

 if (highestBidder != 0) {
 refunds[highestBidder] += highestBid; // record the refund that this
user can claim
 }

 highestBidder = msg.sender;
 highestBid = msg.value;
 }

https://github.com/ConsenSys/smart-contract-best-practices/#race-conditions
https://github.com/ConsenSys/smart-contract-best-practices/#dos-with-block-gas-limit

 function withdrawRefund() external {
 uint refund = refunds[msg.sender];
 refunds[msg.sender] = 0;
 if (!msg.sender.send(refund)) {
 refunds[msg.sender] = refund; // reverting state because send failed
 }
 }
}

Mark untrusted contracts

When interacting with external contracts, name your variables, methods, and contract

interfaces in a way that makes it clear that interacting with them is potentially unsafe. This

applies to your own functions that call external contracts.

// bad
Bank.withdraw(100); // Unclear whether trusted or untrusted

function makeWithdrawal(uint amount) { // Isn't clear that this function is
potentially unsafe
 UntrustedBank.withdraw(amount);
}

// good
UntrustedBank.withdraw(100); // untrusted external call
TrustedBank.withdraw(100); // external but trusted bank contract maintained by
XYZ Corp

function makeUntrustedWithdrawal(uint amount) {
 UntrustedBank.withdraw(amount);
}

Beware rounding with integer division

All integer divison rounds down to the nearest integer. If you need more precision, consider

using a multiplier, or store both the numerator and denominator.

(In the future, Solidity will have a fixed‑point type, which will make this easier.)

// bad
uint x = 5 / 2; // Result is 2, all integer divison rounds DOWN to the nearest
integer

// good
uint multiplier = 10;
uint x = (5 * multiplier) / 2;

uint numerator = 5;
uint denominator = 2;

Remember that on‑chain data is public

Many applications require submitted data to be private up until some point in time in order to

work. Games (eg. on‑chain rock‑paper‑scissors) and auction mechanisms (eg. sealed‑bid

second‑price auctions) are two major categories of examples. If you are building an application

where privacy is an issue, take care to avoid requiring users to publish information too early.

Examples:

In rock paper scissors, require both players to submit a hash of their intended move first,

then require both players to submit their move; if the submitted move does not match the

hash throw it out.

In an auction, require players to submit a hash of their bid value in an initial phase (along

with a deposit greater than their bid value), and then submit their action bid value in the

second phase.

When developing an application that depends on a random number generator, the order

should always be (1) players submit moves, (2) random number generated, (3) players

paid out. The method by which random numbers are generated is itself an area of active

research; current best‑in‑class solutions include Bitcoin block headers (verified through

http://btcrelay.org), hash‑commit‑reveal schemes (ie. one party generates a number,

publishes its hash to "commit" to the value, and then reveals the value later) and RANDAO.

If you are implementing a frequent batch auction, a hash‑commit scheme is also desirable.

In 2‑party or N‑party contracts, beware of the possibility that some
participants may "drop offline" and not return

Do not make refund or claim processes dependent on a specific party performing a particular

action with no other way of getting the funds out. For example, in a rock‑paper‑scissors game,

one common mistake is to not make a payout until both players submit their moves; however, a

malicious player can "grief" the other by simply never submitting their move ‑ in fact, if a player

sees the other player's revealed move and determiners that they lost, they have no reason to

submit their own move at all. This issue may also arise in the context of state channel

settlement. When such situations are an issue, (1) provide a way of circumventing non‑

participating participants, perhaps through a time limit, and (2) consider adding an additional

economic incentive for participants to submit information in all of the situations in which they

are supposed to do so.

Keep fallback functions simple

Fallback functions are called when a contract is sent a message with no arguments (or when

no function matches), and only has access to 2,300 gas when called from a .send() . If you
wish to be able to receive Ether from a .send() , the most you can do in a fallback function is
log an event. Use a proper function if a computation or more gas is required.

http://btcrelay.org/
http://github.com/randao/randao
http://solidity.readthedocs.io/en/latest/contracts.html#fallback-function

// bad
function() { balances[msg.sender] += msg.value; }

// good
function() { throw; }
function deposit() external { balances[msg.sender] += msg.value; }

function() { LogDepositReceived(msg.sender); }

Explicitly mark visibility in functions and state variables

Explicitly label the visibility of functions and state variables. Functions can be specified as

being external , public , internal or private . For state variables, external is not

possible. Labeling the visibility explicitly will make it easier to catch incorrect assumptions

about who can call the function or access the variable.

// bad
uint x; // the default is private for state variables, but it should be made
explicit
function transfer() { // the default is public
 // public code
}

// good
uint private y;
function transfer() public {
 // public code
}

function internalAction() internal {
 // internal code
}

Beware division by zero

Currently, Solidity returns zero and does not throw an exception when a number is divided by

zero. You therefore need to check for division by zero manually.

// bad
function divide(uint x, uint y) returns(uint) {
 return x / y;
}

// good
function divide(uint x, uint y) returns(uint) {
 if (y == 0) { throw; }

https://github.com/ethereum/solidity/issues/670

 return x / y;
}

Differentiate functions and events

Favor capitalization and a prefix in front of events (we suggest Log), to prevent the risk of

confusion between functions and events. For functions, always start with a lowercase letter,

except for the constructor.

// bad
event Transfer() {}
function transfer() {}

// good
event LogTransfer() {}
function transfer() external {}

Known Attacks

Call Depth Attack (Deprecated)

With the Call Depth Attack, any call (even a fully trusted and correct one) can fail. This is

because there is a limit on how deep the "call stack" can go. If the attacker does a bunch of

recursive calls and brings the stack depth to 1023, then they can call your function and

automatically cause all of its subcalls to fail (subcalls include send()).

An example based on the previous auction code:

// INSECURE
contract auction {
 mapping(address => uint) refunds;

 // [...]

 function withdrawRefund(address recipient) {
 uint refund = refunds[recipient];
 refunds[recipient] = 0;
 recipient.send(refund); // this line is vulnerable to a call depth attack
 }
}

The send() can fail if the call depth is too large, causing ether to not be sent. However, the rest

of the function would succeed, including the previous line which set the victim's refund

balance to 0. The solution is to explicitly check for errors, as discussed previously:

https://github.com/ConsenSys/smart-contract-best-practices/blob/master/docs/known_attacks.md#call-depth-attack-deprecated

contract auction {
 mapping(address => uint) refunds;

 // [...]

 function withdrawRefund(address recipient) {
 uint refund = refunds[recipient];
 refunds[recipient] = 0;
 if (!recipient.send(refund)) { throw; } // the transaction will be
reverted in case of call depth attack
 }
}

Race Conditions

One of the major dangers of calling external contracts is that they can take over the control

flow, and make changes to your data that the calling function wasn't expecting. This class of

bug can take many forms, and both of the major bugs that led to the DAO's collapse were bugs

of this sort.

Reentrancy

The first version of this bug to be noticed involved functions that could be called repeatedly,

before the first invocation of the function was finished. This may cause the different

invocations of the function to interact in destructive ways.

// INSECURE
mapping (address => uint) private userBalances;

function withdrawBalance() public {
 uint amountToWithdraw = userBalances[msg.sender];
 if (!(msg.sender.call.value(amountToWithdraw)())) { throw; } // At this
point, the caller's code is executed, and can call withdrawBalance again
 userBalances[msg.sender] = 0;
}

Since the user's balance is not set to 0 until the very end of the function, the second (and

later) invocations will still succeed, and will withdraw the balance over and over again. A very

similar bug was one of the vulnerabilities in the DAO attack.

In the example given, the best way to avoid the problem is to use send() instead of

call.value()() . This will prevent any external code from being executed.

However, if you can't remove the external call, the next simplest way to prevent this attack is to

make sure you don't call an external function until you've done all the internal work you need to

do:

*

https://github.com/ConsenSys/smart-contract-best-practices#use-send-avoid-callvalue

mapping (address => uint) private userBalances;

function withdrawBalance() public {
 uint amountToWithdraw = userBalances[msg.sender];
 userBalances[msg.sender] = 0;
 if (!(msg.sender.call.value(amountToWithdraw)())) { throw; } // The user's
balance is already 0, so future invocations won't withdraw anything
}

Note that if you had another function which called withdrawBalance() , it would be potentially
subject to the same attack, so you must treat any function which calls an untrusted contract as

itself untrusted. See below for further discussion of potential solutions.

Cross‑function Race Conditions

An attacker may also be able to do a similar attack using two different functions that share the

same state.

// INSECURE
mapping (address => uint) private userBalances;

function transfer(address to, uint amount) {
 if (userBalances[msg.sender] >= amount) {
 userBalances[to] += amount;
 userBalances[msg.sender] -= amount;
 }
}

function withdrawBalance() public {
 uint amountToWithdraw = userBalances[msg.sender];
 if (!(msg.sender.call.value(amountToWithdraw)())) { throw; } // At this
point, the caller's code is executed, and can call transfer()
 userBalances[msg.sender] = 0;
}

In this case, the attacker calls transfer() when their code is executed on the external call in

withdrawBalance . Since their balance has not yet been set to 0, they are able to transfer the
tokens even though they already received the withdrawal. This vulnerability was also used in

the DAO attack.

The same solutions will work, with the same caveats. Also note that in this example, both

functions were part of the same contract. However, the same bug can occur across multiple

contracts, if those contracts share state.

Pitfalls in Race Condition Solutions

Since race conditions can occur across multiple functions, and even multiple contracts, any

solution aimed at preventing reentry will not be sufficient.

Instead, we have recommended finishing all internal work first, and only then calling the

external function. This rule, if followed carefully, will allow you to avoid race conditions.

However, you need to not only avoid calling external functions too soon, but also avoid calling

functions which call external functions. For example, the following is insecure:

// INSECURE
mapping (address => uint) private userBalances;
mapping (address => bool) private claimedBonus;
mapping (address => uint) private rewardsForA;

function withdraw(address recipient) public {
 uint amountToWithdraw = userBalances[recipient];
 rewardsForA[recipient] = 0;
 if (!(recipient.call.value(amountToWithdraw)())) { throw; }
}

function getFirstWithdrawalBonus(address recipient) public {
 if (claimedBonus[recipient]) { throw; } // Each recipient should only be
able to claim the bonus once

 rewardsForA[recipient] += 100;
 withdraw(recipient); // At this point, the caller will be able to execute
getFirstWithdrawalBonus again.
 claimedBonus[recipient] = true;
}

Even though getFirstWithdrawalBonus() doesn't directly call an external contract, the call in

withdraw() is enough to make it vulnerable to a race condition. you therefore need to treat

withdraw() as if it were also untrusted.

mapping (address => uint) private userBalances;
mapping (address => bool) private claimedBonus;
mapping (address => uint) private rewardsForA;

function untrustedWithdraw(address recipient) public {
 uint amountToWithdraw = userBalances[recipient];
 rewardsForA[recipient] = 0;
 if (!(recipient.call.value(amountToWithdraw)())) { throw; }
}

function untrustedGetFirstWithdrawalBonus(address recipient) public {
 if (claimedBonus[recipient]) { throw; } // Each recipient should only be
able to claim the bonus once

 claimedBonus[recipient] = true;
 rewardsForA[recipient] += 100;
 untrustedWithdraw(recipient); // claimedBonus has been set to true, so
reentry is impossible
}

In addition to the fix making reentry impossible, untrusted functions have been marked. This

same pattern repeats at every level: since untrustedGetFirstWithdrawalBonus() calls

untrustedWithdraw() , which calls an external contract, you must also treat
untrustedGetFirstWithdrawalBonus() as insecure.

Another solution often suggested is a mutex. This allows you to "lock" some state so it can

only be changed by the owner of the lock. A simple example might look like this:

// Note: This is a rudimentary example, and mutexes are particularly useful
where there is substantial logic and/or shared state
mapping (address => uint) private balances;
bool private lockBalances;

function deposit() public returns (bool) {
 if (!lockBalances) {
 lockBalances = true;
 balances[msg.sender] += msg.value;
 lockBalances = false;
 return true;
 }
 throw;
}

function withdraw(uint amount) public returns (bool) {
 if (!lockBalances && amount > 0 && balances[msg.sender] >= amount) {
 lockBalances = true;

 if (msg.sender.call(amount)()) { // Normally insecure, but the mutex
saves it
 balances[msg.sender] -= amount;
 }

 lockBalances = false;
 return true;
 }

 throw;
}

If the user tries to call withdraw() again before the first call finishes, the lock will prevent it

from having any effect. This can be an effective pattern, but it gets tricky when you have

multiple contracts that need to cooperate. The following is insecure:

// INSECURE
contract StateHolder {
 uint private n;
 address private lockHolder;

 function getLock() {
 if (lockHolder != 0) { throw; }

https://github.com/ConsenSys/smart-contract-best-practices#mark-untrusted-contracts
https://en.wikipedia.org/wiki/Mutual_exclusion

 lockHolder = msg.sender;
 }

 function releaseLock() {
 lockHolder = 0;
 }

 function set(uint newState) {
 if (msg.sender != lockHolder) { throw; }
 n = newState;
 }
}

An attacker can call getLock() , and then never call releaseLock() . If they do this, then the
contract will be locked forever, and no further changes will be able to be made. If you use

mutexes to protect against race conditions, you will need to carefully ensure that there are no

ways for a lock to be claimed and never released. (There are other potential dangers when

programming with mutexes, such as deadlocks and livelocks. You should consult the large

amount of literature already written on mutexes, if you decide to go this route.)

* Some may object to the use of the term race condition, since Ethereum does not currently

have true parallelism. However, there is still the fundamental feature of logically distinct

processes contending for resources, and the same sorts of pitfalls and potential solutions

apply.

DoS with (Unexpected) Throw

Consider a simple auction contract:

// INSECURE
contract Auction {
 address currentLeader;
 uint highestBid;

 function bid() {
 if (msg.value <= highestBid) { throw; }

 if (!currentLeader.send(highestBid)) { throw; } // Refund the old
leader, and throw if it fails

 currentLeader = msg.sender;
 highestBid = msg.value;
 }
}

When it tries to refund the old leader, it throws if the refund fails. This means that a malicious

bidder can become the leader, while making sure that any refunds to their address will always

fail. In this way, they can prevent anyone else from calling the bid() function, and stay the

leader forever. A natural solution might be to continue even if the refund fails, under the theory

that it's their own fault if they can't accept the refund.

Another example is when a contract may iterate through an array to pay users (e.g., supporters

in a crowdfunding contract). It's common to want to make sure that each payment succeeds. If

not, one should throw. The issue is that if one call fails, you are reverting the whole payout

system, meaning the loop will never complete. No one gets paid, because one address is

forcing an error.

address[] private refundAddresses;
mapping (address => uint) public refunds;

// bad
function refundAll() public {
 for(uint x; x < refundAddresses.length; x++) { // arbitrary length iteration
based on how many addresses participated
 if(refundAddresses[x].send(refunds[refundAddresses[x]])) {
 throw; // doubly bad, now a single failure on send will hold up all
funds
 }
 }
}

Again, the recommended solution is to favor pull over push payments.

DoS with Block Gas Limit

You may have noticed another problem with the previous example: by paying out to everyone

at once, you risk running into the block gas limit. Each Ethereum block can process a certain

maximum amount of computation. If you try to go over that, your transaction will fail.

This can lead to problems even in the absence of an intentional attack. However, it's especially

bad if an attacker can manipulate the amount of gas needed. In the case of the previous

example, the attacker could add a bunch of addresses, each of which needs to get a very small

refund. The gas cost of refunding each of the attacker's addresses could therefore end up

being more than the gas limit, blocking the refund transaction from happening at all.

This is another reason to favor pull over push payments.

If you absolutely must loop over an array of unknown size, then you should plan for it to

potentially take multiple blocks, and therefore require multiple transactions. You will need to

keep track of how far you've gone, and be able to resume from that point, as in the following

example:

struct Payee {
 address addr;
 uint256 value;
}
Payee payees[];
uint256 nextPayeeIndex;

function payOut() {
 uint256 i = nextPayeeIndex;
 while (i < payees.length && msg.gas > 200000) {
 payees[i].addr.send(payees[i].value);
 i++;
 }
 nextPayeeIndex = i;
}

You will need to make sure that nothing bad will happen if other transactions are processed

while waiting for the next iteration of the payOut() function. So only use this pattern if

absolutely necessary.

Timestamp Dependence

The timestamp of the block can be manipulated by the miner, and so should not be used for

critical components of the contract. Block numbers and average block time can be used to

estimate time, but this is not future proof as block times may change (such as the changes

expected during Casper).

uint startTime = SOME_START_TIME;

if (now > startTime + 1 week) { // the now can be manipulated by the miner

}

Transaction‑Ordering Dependence (TOD)

Since a transaction is in the mempool for a short while, one can know what actions will occur,

before it is included in a block. This can be troublesome for things like decentralized markets,

where a transaction to buy some tokens can be seen, and a market order implemented before

the other transaction gets included. Protecting against this is difficult, as it would come down

to the specific contract itself. For example, in markets, it would be better to implement batch

auctions (this also protects against high frequency trading concerns). Another way to use a

pre‑commit scheme (“I’m going to submit the details later”).

Software Engineering Techniques

As we discussed in the General Philosophy section, it is not enough to protect yourself against

the known attacks. Since the cost of failure on a blockchain can be very high, you must also

adapt the way you write software, to account for that risk.

The approach we advocate is to "prepare for failure". It is impossible to know in advance

whether your code is secure. However, you can architect your contracts in a way that allows

them to fail gracefully, and with minimal damage. This section presents a variety of techniques

that will help you prepare for failure.

Note: There's always a risk when you add a new component to your system. A badly designed

fail‑safe could itself become a vulnerability ‑ as can the interaction between a number of well

designed fail‑safes. Be thoughtful about each technique you use in your contracts, and

consider carefully how they work together to create a robust system.

Upgrading Broken Contracts

Code will need to be changed if errors are discovered or if improvements need to be made. It is

no good to discover a bug, but have no way to deal with it.

Designing an effective upgrade system for smart contracts is an area of active research, and

we won't be able to cover all of the complications in this document. However, there are two

basic approaches that are most commonly used. The simpler of the two is to have a registry

contract that holds the address of the latest version of the contract. A more seamless

approach for contract users is to have a contract that forwards calls and data onto the latest

version of the contract.

Whatever the technique, it's important to have modularization and good separation between

components, so that code changes do not break functionality, orphan data, or require

substantial costs to port. In particular, it is usually beneficial to separate complex logic from

your data storage, so that you do not have to recreate all of the data in order to change the

functionality.

It's also critical to have a secure way for parties to decide to upgrade the code. Depending on

your contract, code changes may need to be approved by a single trusted party, a group of

members, or a vote of the full set of stakeholders. If this process can take some time, you will

want to consider if there are other ways to react more quickly in case of an attack, such as an

emergency stop or circuit‑breaker.

Example 1: Use a registry contract to store latest version of a contract

In this example, the calls aren't forwarded, so users should fetch the current address each time

before interacting with it.

contract SomeRegister {
 address backendContract;
 address[] previousBackends;

https://github.com/ConsenSys/smart-contract-best-practices/#circuit-breakers-pause-contract-functionality

 address owner;

 function SomeRegister() {
 owner = msg.sender;
 }

 modifier onlyOwner() {
 if (msg.sender != owner) {
 throw;
 }
 _
 }

 function changeBackend(address newBackend) public
 onlyOwner()
 returns (bool)
 {
 if(newBackend != backendContract) {
 previousBackends.push(backendContract);
 backendContract = newBackend;
 return true;
 }

 return false;
 }
}

There are two main disadvantages to this approach:

1. Users must always look up the current address, and anyone who fails to do so risks using

an old version of the contract

2. You will need to think carefully about how to deal with the contract data, when you replace

the contract

The alternate approach is to have a contract forward calls and data to the latest version of the

contract:

Example 2: Use a DELEGATECALL to forward data and calls

contract Relay {
 address public currentVersion;
 address public owner;

 modifier onlyOwner() {
 if (msg.sender != owner) {
 throw;
 }
 _
 }

 function Relay(address initAddr) {

http://ethereum.stackexchange.com/questions/2404/upgradeable-contracts

 currentVersion = initAddr;
 owner = msg.sender; // this owner may be another contract with multisig,
not a single contract owner
 }

 function changeContract(address newVersion) public
 onlyOwner()
 {
 currentVersion = newVersion;
 }

 function() {
 if(!currentVersion.delegatecall(msg.data)) throw;
 }
}

This approach avoids the previous problems, but has problems of its own. You must be

extremely careful with how you store data in this contract. If your new contract has a different

storage layout than the first, your data may end up corrupted. Additionally, this simple version

of the pattern cannot return values from functions, only forward them, which limits its

applicability. (More complex implementations attempt to solve this with in‑line assembly code

and a registry of return sizes.)

Regardless of your approach, it is important to have some way to upgrade your contracts, or

they will become unusable when the inevitable bugs are discovered in them.

Circuit Breakers (Pause contract functionality)

Circuit breakers stop execution if certain conditions are met, and can be useful when new

errors are discovered. For example, most actions may be suspended in a contract if a bug is

discovered, and the only action now active is a withdrawal. You can either give certain trusted

parties the ability to trigger the circuit breaker, or else have programmatic rules that

automatically trigger the certain breaker when certain conditions are met.

Example:

bool private stopped = false;
address private owner;

modifier isAdmin() {
 if(msg.sender != owner) {
 throw;
 }
 _
}

function toggleContractActive() isAdmin public
{
 // You can add an additional modifier that restricts stopping a contract to
be based on another action, such as a vote of users

https://github.com/ownage-ltd/ether-router

 stopped = !stopped;
}

modifier stopInEmergency { if (!stopped) _ }
modifier onlyInEmergency { if (stopped) _ }

function deposit() stopInEmergency public
{
 // some code
}

function withdraw() onlyInEmergency public
{
 // some code
}

Speed Bumps (Delay contract actions)

Speed bumps slow down actions, so that if malicious actions occur, there is time to recover.

For example, The DAO required 27 days between a successful request to split the DAO and the

ability to do so. This ensured the funds were kept within the contract, increasing the likelihood

of recovery. In the case of the DAO, there was no effective action that could be taken during

the time given by the speed bump, but in combination with our other techniques, they can be

quite effective.

Example:

struct RequestedWithdrawal {
 uint amount;
 uint time;
}

mapping (address => uint) private balances;
mapping (address => RequestedWithdrawal) private requestedWithdrawals;
uint constant withdrawalWaitPeriod = 28 days; // 4 weeks

function requestWithdrawal() public {
 if (balances[msg.sender] > 0) {
 uint amountToWithdraw = balances[msg.sender];
 balances[msg.sender] = 0; // for simplicity, we withdraw everything;
 // presumably, the deposit function prevents new deposits when
withdrawals are in progress

 requestedWithdrawals[msg.sender] = RequestedWithdrawal({
 amount: amountToWithdraw,
 time: now
 });
 }
}

function withdraw() public {

https://github.com/slockit/DAO/

 if(requestedWithdrawals[msg.sender].amount > 0 && now >
requestedWithdrawals[msg.sender].time + withdrawalWaitPeriod) {
 uint amountToWithdraw = requestedWithdrawals[msg.sender].amount;
 requestedWithdrawals[msg.sender].amount = 0;

 if(!msg.sender.send(amountToWithdraw)) {
 throw;
 }
 }
}

Rate Limiting

Rate limiting halts or requires approval for substantial changes. For example, a depositor may

only be allowed to withdraw a certain amount or percentage of total deposits over a certain

time period (e.g., max 100 ether over 1 day) ‑ additional withdrawals in that time period may fail

or require some sort of special approval. Or the rate limit could be at the contract level, with

only a certain amount of tokens issued by the contract over a time period.

Example

Assert Guards

An assert guard triggers when an assertion fails ‑ such as an invariant property changing. For

example, the token to ether issuance ratio, in a token issuance contract, may be fixed. You can

verify that this is the case at all times with an assertion. Assert guards should often be

combined with other techniques, such as pausing the contract and allowing upgrades.

(Otherwise you may end up stuck, with an assertion that is always failing.)

The following example reverts transactions if the ratio of ether to total number of tokens

changes:

contract TokenWithInvariants {
 mapping(address => uint) public balanceOf;
 uint public totalSupply;

 modifier checkInvariants {
 _
 if (this.balance < totalSupply) throw;
 }

 function deposit(uint amount) public checkInvariants {
 // intentionally vulnerable
 balanceOf[msg.sender] += amount;
 totalSupply += amount;
 }

 function transfer(address to, uint value) public checkInvariants {
 if (balanceOf[msg.sender] >= value) {

https://gist.github.com/PeterBorah/110c331dca7d23236f80e69c83a9d58c#file-circuitbreaker-sol

 balanceOf[to] += value;
 balanceOf[msg.sender] -= value;
 }
 }

 function withdraw() public checkInvariants {
 // intentionally vulnerable
 uint balance = balanceOf[msg.sender];
 if (msg.sender.call.value(balance)()) {
 totalSupply -= balance;
 balanceOf[msg.sender] = 0;
 }
 }
}

Contract Rollout

Contracts should have a substantial and prolonged testing period ‑ before substantial money is

put at risk.

At minimum, you should:

Have a full test suite with 100% test coverage (or close to it)

Deploy on your own testnet

Deploy on the public testnet with substantial testing and bug bounties

Exhaustive testing should allow various players to interact with the contract at volume

Deploy on the mainnet in beta, with limits to the amount at risk

Automatic Deprecation

During testing, you can force an automatic deprecation by preventing any actions, after a

certain time period. For example, an alpha contract may work for several weeks and then

automatically shut down all actions, except for the final withdrawal.

modifier isActive() {
 if (block.number > SOME_BLOCK_NUMBER) {
 throw;
 }
 _
}

function deposit() public
isActive() {
 // some code
}

function withdraw() public {
 // some code

}

Restrict amount of Ether per user/contract

In the early stages, you can restrict the amount of Ether for any user (or for the entire contract)

‑ reducing the risk.

Security‑related Documentation and Procedures

When launching a contract that will have substantial funds or is required to be mission critical,

it is important to include proper documentation. Some documentation related to security

includes:

Status

Where current code is deployed

Current status of deployed code (including outstanding issues, performance stats, etc.)

Known Issues

Key risks with contract

e.g., You can lose all your money, hacker can vote for certain outcomes

All known bugs/limitations

Potential attacks and mitigants

Potential conflicts of interest (e.g., will be using yourself, like Slock.it did with the DAO)

History

Testing (including usage stats, discovered bugs, length of testing)

People who have reviewed code (and their key feedback)

Procedures

Action plan in case a bug is discovered (e.g., emergency options, public notification

process, etc.)

Wind down process if something goes wrong (e.g., funders will get percentage of your

balance before attack, from remaining funds)

Responsible disclosure policy (e.g., where to report bugs found, the rules of any bug

bounty program)

Recourse in case of failure (e.g., insurance, penalty fund, no recourse)

Contact Information

Who to contact with issues

Names of programmers and/or other important parties

Chat room where questions can be asked

Security Tools

Oyente ‑ An upcoming tool, will analyze Ethereum code to find common vulnerabilities

(e.g., Transaction Order Dependence, no checking for exceptions)

Solgraph ‑ Generates a DOT graph that visualizes function control flow of a Solidity

contract and highlights potential security vulnerabilities.

solint ‑ Another upcoming tool, will provide Solidity linting that helps you enforce

consistent conventions and avoid errors in your Solidity smart‑contracts.

Future improvements

Editor Security Warnings: Editors will soon alert for common security errors, not just

compilation errors. Browser Solidity is getting these features soon.

New functional languages that compile to EVM bytecode: Functional languages gives

certain guarantees over procedural languages like Solidity, namely immutability within a

function and strong compile time checking. This can reduce the risk of errors by providing

deterministic behavior. (for more see this, Curry‑Howard correspondence, and linear logic)

Smart Contract Security Bibliography

A lot of this document contains code, examples and insights gained from various parts already

written by the community. Here are some of them. Feel free to add more.

By Ethereum core developers

How to Write Safe Smart Contracts (Christian Reitwiessner)

Smart Contract Security (Christian Reitwiessner)

Thinking about Smart Contract Security (Vitalik Buterin)

Solidity

Solidity Security Considerations

By Community

http://forum.ethereum.org/discussion/1317/reentrant‑contracts

http://hackingdistributed.com/2016/06/16/scanning‑live‑ethereum‑contracts‑for‑bugs/

http://hackingdistributed.com/2016/06/18/analysis‑of‑the‑dao‑exploit/

http://hackingdistributed.com/2016/06/22/smart‑contract‑escape‑hatches/

http://www.comp.nus.edu.sg/~loiluu/papers/oyente.pdf
https://github.com/raineorshine/solgraph
https://github.com/weifund/solint
https://plus.google.com/u/0/events/cmqejp6d43n5cqkdl3iu0582f4k
https://chriseth.github.io/notes/talks/safe_solidity
https://blog.ethereum.org/2016/06/10/smart-contract-security/
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
http://solidity.readthedocs.io/
http://solidity.readthedocs.io/en/latest/security-considerations.html
http://forum.ethereum.org/discussion/1317/reentrant-contracts
http://hackingdistributed.com/2016/06/16/scanning-live-ethereum-contracts-for-bugs/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/22/smart-contract-escape-hatches/

http://martin.swende.se/blog/Devcon1‑and‑contract‑security.html

http://publications.lib.chalmers.se/records/fulltext/234939/234939.pdf

http://vessenes.com/deconstructing‑thedao‑attack‑a‑brief‑code‑tour

http://vessenes.com/ethereum‑griefing‑wallets‑send‑w‑throw‑considered‑harmful

http://vessenes.com/more‑ethereum‑attacks‑race‑to‑empty‑is‑the‑real‑deal

https://blog.blockstack.org/simple‑contracts‑are‑better‑contracts‑what‑we‑can‑learn‑

from‑the‑dao‑6293214bad3a

https://blog.slock.it/deja‑vu‑dao‑smart‑contracts‑audit‑results‑d26bc088e32e

https://github.com/Bunjin/Rouleth/blob/master/Security.md

https://github.com/LeastAuthority/ethereum‑analyses

https://medium.com/@ConsenSys/assert‑guards‑towards‑automated‑code‑bounties‑

safe‑smart‑contract‑coding‑on‑ethereum‑8e74364b795c

https://medium.com/@coriacetic/in‑bits‑we‑trust‑4e464b418f0b

https://medium.com/@hrishiolickel/why‑smart‑contracts‑fail‑undiscovered‑bugs‑and‑

what‑we‑can‑do‑about‑them‑119aa2843007

https://medium.com/@peterborah/we‑need‑fault‑tolerant‑smart‑contracts‑

ec1b56596dbc

https://pdaian.com/blog/chasing‑the‑dao‑attackers‑wake

http://www.comp.nus.edu.sg/~loiluu/papers/oyente.pdf

Attribution

This work, "Safety", is a derivative of "Smart Contract Best Practices", used under CC BY.

"Safety" is licensed under CC BY by the Ethereum community.

License

Licensed under Apache 2.0

Licensed under Creative Commons Attribution‑NonCommercial‑ShareAlike 4.0 International

White paper needs some Chinese translation.

 Pages 206

Basics

Home

Ethereum Whitepaper

Ethereum Introduction

http://martin.swende.se/blog/Devcon1-and-contract-security.html
http://publications.lib.chalmers.se/records/fulltext/234939/234939.pdf
http://vessenes.com/deconstructing-thedao-attack-a-brief-code-tour
http://vessenes.com/ethereum-griefing-wallets-send-w-throw-considered-harmful
http://vessenes.com/more-ethereum-attacks-race-to-empty-is-the-real-deal
https://blog.blockstack.org/simple-contracts-are-better-contracts-what-we-can-learn-from-the-dao-6293214bad3a
https://blog.slock.it/deja-vu-dao-smart-contracts-audit-results-d26bc088e32e
https://github.com/Bunjin/Rouleth/blob/master/Security.md
https://github.com/LeastAuthority/ethereum-analyses
https://medium.com/@ConsenSys/assert-guards-towards-automated-code-bounties-safe-smart-contract-coding-on-ethereum-8e74364b795c
https://medium.com/@coriacetic/in-bits-we-trust-4e464b418f0b
https://medium.com/@hrishiolickel/why-smart-contracts-fail-undiscovered-bugs-and-what-we-can-do-about-them-119aa2843007
https://medium.com/@peterborah/we-need-fault-tolerant-smart-contracts-ec1b56596dbc
https://pdaian.com/blog/chasing-the-dao-attackers-wake
http://www.comp.nus.edu.sg/~loiluu/papers/oyente.pdf
https://github.com/ConsenSys/smart-contract-best-practices
http://www.apache.org/licenses/LICENSE-2.0
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://github.com/ethereum/wiki/wiki/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/Ethereum-introduction
https://github.com/ethereum/wiki/wiki/Decentralized-apps-(dapps)
https://github.com/ethereum/wiki/wiki/_Footer/_edit
https://github.com/ethereum/wiki/wiki/_Sidebar/_edit

Uses: DAOs and dapps

Getting Ether

Releases

FAQs

Design Rationale

EVM intro: Ethereum Yellow Paper, Beige Paper and Py‑EVM.

Wiki for (old) website (still a good introduction)

Glossary

R&D

Sharding introduction & R&D Compendium, FAQs & roadmap

Casper Proof‑of‑Stake compendium and FAQs.

Alternative blockchains, randomness, economics, and other research topics

Hard Problems of Cryptocurrency

Governance

Ethereum Virtual Machine (EVM)

Ethereum clients, tools, wallets, dapp browsers and other projects

ÐApp Development

Infrastructure

Chain Spec Format

Inter‑exchange Client Address Protocol

URL Hint Protocol

NatSpec Determination

Network Status

Raspberry Pi

Mining

Licensing

Consortium Chain Development

ÐΞV Technologies

RLP Encoding

Node Discovery Protocol

ÐΞVp2p Wire Protocol

ÐΞVp2p Whitepaper (WiP)

Web3 Secret Storage

libp2p

Ethereum Technologies

Patricia Tree

Wire protocol

Light client protocol

Subtleties

Solidity Documentation

https://github.com/ethereum/wiki/wiki/Decentralized-apps-(dapps)
https://github.com/ethereum/wiki/wiki/Getting-Ether
https://github.com/ethereum/wiki/wiki/Releases
https://github.com/ethereum/wiki/wiki/FAQs
https://github.com/ethereum/wiki/wiki/Design-Rationale
https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/chronaeon/beigepaper
https://github.com/ethereum/py-evm
https://github.com/ethereum/ethereum.org/wiki
https://github.com/ethereum/wiki/wiki/Glossary
https://github.com/ethereum/wiki/wiki/R&D
https://github.com/ethereum/wiki/wiki/Sharding-introduction-R&D-compendium
https://github.com/ethereum/wiki/wiki/Sharding-FAQs
https://github.com/ethereum/wiki/wiki/Sharding-roadmap
https://github.com/ethereum/wiki/wiki/Casper-Proof-of-Stake-compendium
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs
https://github.com/ethereum/wiki/wiki/Alternative-blockchains,-randomness,-economics,-and-other-research-topics
https://github.com/ethereum/wiki/wiki/Problems
https://github.com/ethereum/wiki/wiki/Governance-compendium
https://github.com/ethereum/wiki/wiki/Ethereum-Virtual-Machine-(EVM)-Awesome-List
https://github.com/ethereum/wiki/wiki/Clients,-tools,-dapp-browsers,-wallets-and-other-projects
https://github.com/ethereum/wiki/wiki/%C3%90App-Development
https://github.com/ethereum/wiki/wiki/Ethereum-Chain-Spec-Format
https://github.com/ethereum/wiki/wiki/ICAP:-Inter-exchange-Client-Address-Protocol
https://github.com/ethereum/wiki/wiki/URL-Hint-Protocol
https://github.com/ethereum/wiki/wiki/NatSpec-Determination
https://github.com/ethereum/wiki/wiki/Network-Status
https://github.com/ethereum/wiki/wiki/Raspberry-Pi-instructions
https://github.com/ethereum/wiki/wiki/Mining
https://github.com/ethereum/wiki/wiki/Licensing
https://github.com/ethereum/wiki/wiki/Consortium-Chain-Development
https://github.com/ethereum/wiki/wiki/%C3%90%CE%9EV-Technologies
https://github.com/ethereum/wiki/wiki/RLP
https://github.com/ethereum/wiki/wiki/Node-discovery-protocol
https://github.com/ethereum/wiki/wiki/%C3%90%CE%9EVp2p-Wire-Protocol
https://github.com/ethereum/wiki/wiki/libp2p-Whitepaper
https://github.com/ethereum/wiki/wiki/Web3-Secret-Storage-Definition
https://libp2p.io/
https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://github.com/ethereum/wiki/wiki/Ethereum-Wire-Protocol
https://github.com/ethereum/wiki/wiki/Light-client-protocol
https://github.com/ethereum/wiki/wiki/Subtleties
https://solidity.readthedocs.io/en/latest/
https://github.com/ethereum/wiki/wiki/Ethereum-Natural-Specification-Format

NatSpec Format

Contract ABI

Bad Block Reporting

Bad Chain Canary

Ethash/Dashimoto

Ethash

Ethash Yellow Paper appendix

Ethash C API

Ethash DAG

Whisper

Whisper Proposal

Whisper Overview

PoC‑1 Wire protocol

PoC‑2 Wire protocol

PoC‑2 Whitepaper

Clone this wiki locally

https://github.com/ethereum/wiki.wiki.git

 Clone in Desktop

https://github.com/ethereum/wiki/wiki/Ethereum-Natural-Specification-Format
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI
http://github.com/ethereum/wiki/wiki/Bad-Block-Reporting
http://github.com/ethereum/wiki/wiki/Bad-Chain-Canary
https://github.com/ethereum/wiki/wiki/Ethash
https://ethereum.github.io/yellowpaper/paper.pdf#appendix.J
https://github.com/ethereum/wiki/wiki/Ethash-C-API
https://github.com/ethereum/wiki/wiki/Ethash-DAG
https://github.com/ethereum/wiki/wiki/Whisper-pages
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Wire-Protocol
https://github.com/ethereum/wiki/wiki/Whisper-PoC-2-Wire-Protocol
https://github.com/ethereum/wiki/wiki/Whisper-PoC-2-Protocol-Spec
x-github-client://openRepo/https://github.com/ethereum/wiki.wiki

