
blog.mapbox.com

Drawing Antialiased Lines with
OpenGL - maps for developers

Mapbox

9-12 minutes

By Konstantin Käfer

Maps are mostly made up of lines, as well as the occasional

polygon thrown in. Unfortunately, drawing lines is a weak point

of OpenGL. The GL_LINES drawing mode is limited: it does not

support line joins, line caps, non-integer line widths, widths

greater than 10px, or varying widths in a single pass. Given

these limitations, it’s unsuitable for the line work necessary for

high-quality maps. Here’s an example of GL_LINES:

Additionally, OpenGL’s antialiasing (multisample antialiasing) is

not reliably present on all devices, and generally is of poor

quality anyway.

As an alternative to native lines, we can tessellate the line to

polygons and draw it as a shape. A few months ago, I

investigated various approaches to line rendering and



experimented with one that draws six triangles per line:

Two pairs of triangles form a quadrilateral gradient on each

sides, and a quadrilateral in the middle makes up the actual line.

The gradients provide antialiasing, so that the line fades out at

the edges. When scaled down, this produces high quality lines:



Unfortunately, generating six triangles per line segment means

generating eight vertices per line segment, which requires a lot

of memory. I worked on an experiment that uses only two

vertices per line segment, but this way of drawing lines requires

three draw calls per line. To maintain a good framerate we need

to minimize the number of draw calls per frame.

Attribute interpolation to the rescue

OpenGL’s drawing works in two stages. First, a list of vertices is

passed to the vertex shader. The vertex shader is basically a

small function that transforms every vertex (in the model

coordinate system) to a new position (the screen coordinate

system), so that you can reuse the same array of vertices for

every frame, but still do things like rotate, translate, or scale the

objects.

Three consecutive vertices form a triangle. All pixels in that area

are then processed by the fragment shader, also called the pixel

shader. While the vertex shader is run once for every vertex in

the source array, the fragment shader is run once for every pixel

in a triangle to decide what color to assign to that pixel. In the

simplest case, it might assign a constant color, like this:

glsl

void main() {

gl_FragColor = vec4(0, 0, 0, 1);

}

The color order is RGBA, so this example renders all fragments

as opaque black. If we rendered lines by creating polygons from

those lines, and assign a constant color to all pixels in that

polygon, we’d still have horribly aliased lines. We need a way to

decrease the alpha value from 1 to 0 as the pixels approach the



polygon’s border. When transforming vertices in the vertex

shader, OpenGL allows us to assign attributes to every vertex,

for example:

These attributes are then passed on to the pixel shader. The

interesting part is this: since a pixel can’t be directly associated

with a single vertex, the attributes are interpolated between

three discrete values according to the pixel’s distance to the

three vertices that make up the triangle:

This interpolation produces gradients between the vertices. This

is the basis for the line drawing method I’m going to describe.

Requirements

When drawing lines, we have a couple of requirements:

Variable line width: We want to change the line width in every

frame we draw so that when the user zooms in/out, we don’t

have to tessellate the line to triangles over and over again. This



means that the final vertex position must be calculated in the

vertex shader at render time and not when we set up the scene.

End caps (butt, round, square): This describes how the ends of

lines are drawn.

Line joins (miter, round, bevel): This describes how joints

between two lines are drawn.

Multiple lines: For performance reasons, we want lines with

varying widths and colors in one draw call.

Line Tessellation

Since we want to change the line width dynamically, we cannot

perform the complete tessellation at setup time. Instead, we

repeat the same vertex twice, so that for a line segment, we end

up with four vertices (marked 1-4) in our array:

In addition, we calculate the normal unit vector for the line

segment and assign it to every vertex, with the first vertex

getting a positive unit vector and the second a negative unit

vector. The unit vectors are the small arrows you see in this

picture:



In our vertex shader, we can now adjust the line width at render

time by multiplying the vertex’s unit vector with the line width set

for that draw call, and end up with two triangles, visualized in

this picture by the red dotted line.

The vertex shader looks something like this:

```glsl

attribute vec2 a_pos;

attribute vec2 a_normal;

uniform float u_linewidth;

uniform mat4 u_mv_matrix;

uniform mat4 u_p_matrix;

void main() {

vec4 delta = vec4(a_normal * u_linewidth, 0, 0);

vec4 pos = u_mv_matrix * vec4(a_pos, 0, 1);

gl_Position = u_p_matrix * (pos + delta);

}

```

In the main function, we multiply the normal unit vector with the

line width to scale it to the actual line width. The correct vertex

position (in screen space) is determined by multiplying it with the

model/view matrix. Afterward, we add the extrusion vector so

that the line width is independent of any model/view scaling.

Finally, we multiply by the projection matrix to get the vertex

position in projection space (in our case, we use a parallel

projection so there is not much going on, except for scaling the

screen space coordinates to the range of 0..1).

Antialiasing

We now have line segments of arbitrary width, but we still don’t



have antialiased lines. To achieve the antialiasing effect, we’re

going to use the normal unit vectors, but this time in the pixel

shader. In the vertex shader, we just pass through the normal

unit vectors to the pixel shader. Now, OpenGL interpolates

between both normals so that the calculated vector we receive

in the pixel shader is a gradient between the two unit vectors.

This means they are no longer unit vectors, since their length is

less than one. When we calculate the length of the vector, we

get the perpendicular distance of that pixel from the original line

segment, in the range of 0..1. We can use this distance to

calculate the pixel’s alpha value. If we factor in the line width, we

just assign the opaque color to all distances that are within the

line width, minus a “feather” distance (see image below).

Between linewidth - feather and linewidth +

feather, we assign alpha values between one and zero, and

to all fragments that are further than the unit vector away from

the line, we assign an alpha value of zero (right now, there are

no pixels that fulfill that property, but we’ll encounter them soon).

Apart from the line width, we can also vary the feather distance

to get blurred lines, or shadows. We can reduce it to zero to

have aliased lines. A feather value of 0.5 produces regular

antialiasing that looks very similar to what Agg produces. A

feather value between 0 and 0.5 produces results mimicking

Mapnik’s gamma value.



Line Joins

The technique above works for singular line segments, but in

most cases we’re drawing lines composed of several segments

joined together. When joining line segments, we have to choose

a line join style and move the vertices accordingly:

Earlier we calculated the normal of the line segment and

assigned that to the vertex. This no longer works in the case of

line joins because we actually need to calculate a per-vertex

normal, rather than a per line segment normal. The per-vertex

normal is the angle bisector normal of the two line segment

normals.

Unit vectors for line joins also don’t work because the distance

of the vertex from the line at join locations is actually further

away than one. So rather than using the angle bisector unit

vector, we just add the line segment unit vectors, which results

in a vector that is neither a unit vector nor a normal. I call it an

extrusion vector.

Unfortunately, we now have another problem: extrusion vectors

are no longer normal to the line segment, so interpolation

between two of them will not yield a perpendicular distance.



Instead, we introduce another per-vertex attribute, the texture

normal. This is a value of either 1 or -1, depending on whether

the normal points up or down. This is of course not an actual

normal because it has no orientation in 2D space, but it’s

sufficient for achieving interpolation between 1 and -1 to get our

line distance values for the antialiasing.

Since we don’t want to introduce yet another byte, of which we’d

effectively use only a single sign bit, we encode the texture

normal into the actual vertex attribute. The vertex attributes use

16-bit integers (-32768..32767) that are big enough to hold

our typical vector tile coordinates of 0..4095. We double each

coordinate (0..8190) and then use the least significant bit to

store the texture normal. In the vertex shader, we extract that bit

and use the model/view matrix to scale our coordinates down to

the actual size.

To save memory, we encode the extrusion vectors with one byte

per axis, so we have an (integer) range of -128..127 for every

axis. Unfortunately, extrusion vectors can grow arbitrarily long

for line joins because the extrusion vector length grows to

infinity as the angle gets more acute. This is a common problem

when drawing line joins, and the solution is to introduce a “miter

limit”. If the extrusion vector gets longer than the miter limit, the

line join is switched to a bevel join. This allows us to scale up

the floating point normal dramatically so that we retain enough

angle precision for the extrusion vector.

Mapbox GL

Look for future blog posts as we talk about more of the design

and engineering work that has gone into Mapbox GL. Lines are

just a small but necessary part of the bigger picture of what

goes into high-quality custom maps rendered in realtime on the



device.


