n-doc An Open Source Platform for CC-Documentation

Alexander Krumeich

alexander.krumeich@n-design.de

Cologne, Germany - https://n-design.de - Website in German only

High-Quality, hyperlinked PDF Documents generated with LaTeX.

In development since 2017

Successful adaptation for several in-house projects

Applicable to different certification schemes

Published in 2020 as Open Source under MIT license.

	6.2.5. Cryptographic S	ervices
	FCS_COP.1/Hash Cryptographic operation	
	FCS_COP.1.1/Hash	The TSF shall perform <u>hash value calculation</u> in accordance with a specified cryptographic algorithm <u>SHA-1</u> , SHA-256, <u>SHA-512</u> ⁸ and cryptographic key sizes <u>none</u> that meet the following: <u>FIPS PUB 180-4</u> [FIPS PUB 180-4].
	FCS_COP.1/HMAC Cryptographic operation	
MauveCorp	FCS_COP.1.1/HMAC	The TSF shall perform <u>HMAC value generation and verification</u> in accordance with a specified cryptographic algorithm <u>HMAC</u> with <u>SHA-1</u> , <u>SHA-256⁹</u> and cryptographic key sizes <u>160 and 256</u> <u>bit¹⁰</u> that meet the following: <u>FIPS PUB 180-4</u> [FIPS PUB 180- 4], RFC 2404 [RFC2404], RFC 4868 [RFC4868], RFC 5996 [RFC5996].
Common Criteria Certification	FCS_CKM.1 Cryptographic key generati	ion
BSI-DSZ-CC-xyz BSI-CC-PP-00zz	FCS_CKM.1.1	The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm <u>PRF-HMAC-SHA256</u> ¹¹ and specified cryptographic key sizes <u>256 bit</u> ¹² that meet the following: TR-03116 [TR-03116-1].
Security Target		The following algorithms and preferences are supported for TLS key negotiation
MAUVECORP MAUVEVPN CLIENT Version 2.11		• Diffie-Hellman Group 14 according to RFC 3526 [RFC 3526] for key establishment during TLS
Marrie Camp		• DH exponent shall have a minimum length of 384 bits
MauveCorp Fliederweg 98		Forward secrecy shall be provided
D-50020 Köln certification@mauvecorp.com Document Version 1.0-SNAPSHOT 2021-10-09		• Ephemeral elliptic curve DH key exchange supports the P-256 and the P-384 curves according to FIPS186-4 [FIPS PUB 186-2] as well as the brainpoolP256r1 and the brain- poolP384r1 curves according to RFC 5639 and RFC 7027 [RFC 5639; RFC 7027]
[Commit ce37255 / main]		Peer authentication (if required): X.509 certificate with RSA 2048 bit keys
	⁸ Assignment: list of SHA-2 Algorith ⁹ Assignment: list of SHA-2 Algorith ¹⁰ Assignment: cryptographic key siz ¹¹ Assignment: cryptographic key siz ¹² Assignment: cryptographic key siz	uns with 256bit size or more es neration algorithm

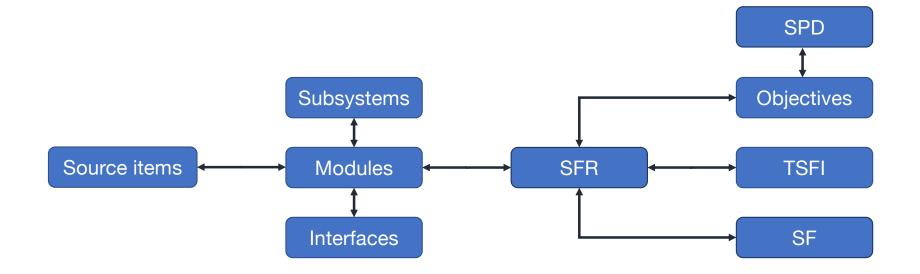
Challenges of Evaluating our Product

Demanding Protection Profile >130 SFR

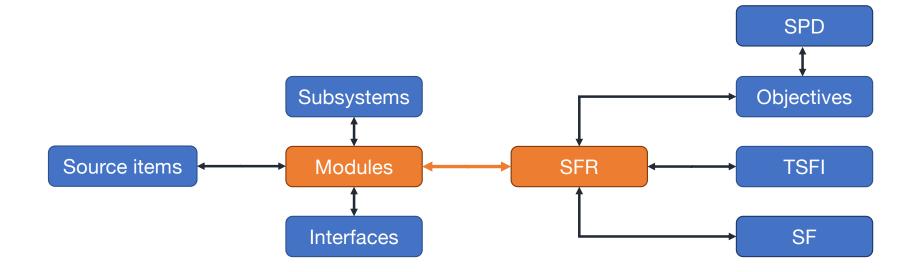
Complex TOE 160 modules, 23 subsystems, >60 TSFI

Documentation 15 documents, approx. 4,500 pages

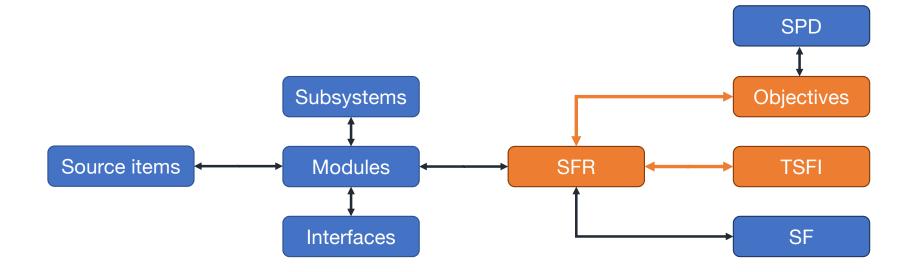
Technical / Organizational Requirements

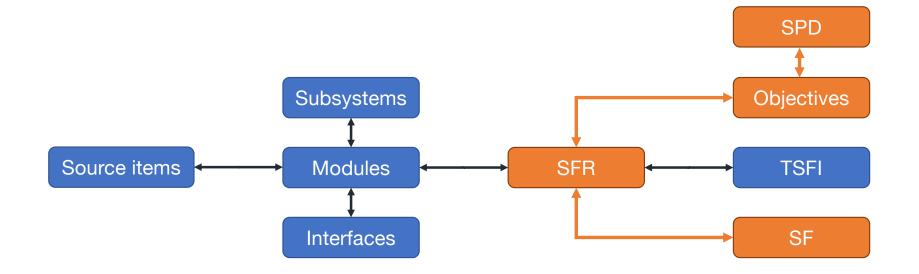

Collaboration of >6 team members, 3 orgs. Versioning to track changes in documents Consistency of content and appearance Navigation with generated hyperlinks Acceptance by editors

n-doc Key features


TOE model in a relational database

$I\!A\!T_E\!X$ as typesetting tool


Best practices of software engineering


Gaining assurance about relations in the TOE. Recognizing and using *undiscovered* relations

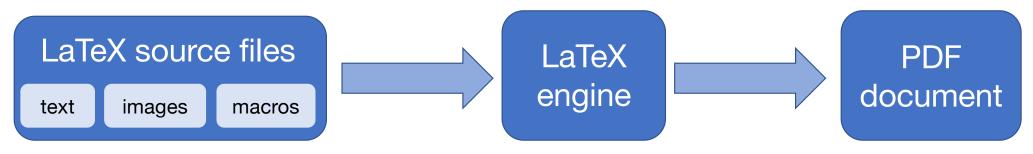
Which SFR is enforced by which module?

Which objective is fulfilled by which TSFI?

What is the relation between the Security Problem Definition and the Security Functionalities?

Using the Database

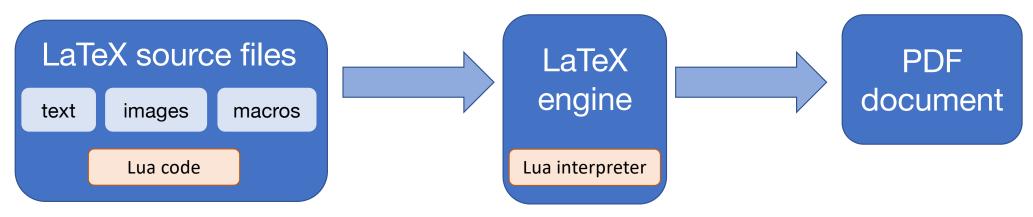
Within the documents Enforcing consistent terminology Generating tables, text and references


> As an additional deliverable Evaluator receives the DB file to formulate their own queries

FAL

Typesetting system mostly used in academia 40 years old – and still going strong! Workflow similar to software development

General LaTeX Workflow


LaTeX reads source files and creates PDF

Formatting and structure by using macros This text is in \textit{italics}. \section{Headline on Level 1}

General LaTeX Workflow

LaTeX reads source files and creates PDF

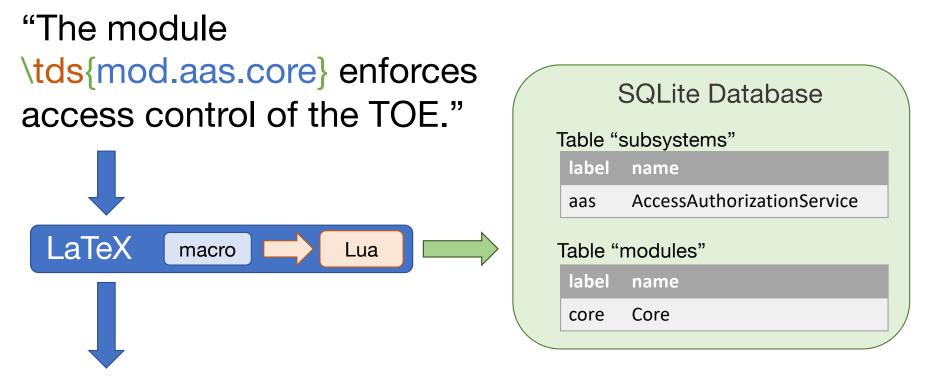
Formatting and structure by using macros This text is in \textit{italics}. \section{Headline on Level 1}

Domain Specific Macros separating content from layout

\keyword{CACHED} for printing keywords

\kocobox{} name of the TOE "Kocobox MED+"

\tds{mod.aas.core}


Resolve the name of a subsystem, module or interface

Semantic Markup

FCS_COP.1/Hash Cryptographic operation	ion
FCS_COP.1.1/Hash	The TSF shall perform hash value calculation in accordance with a specified cryptographic algorithm <u>SHA-1</u> , SHA-256, <u>SHA-512⁸</u> and <u>Value calculation in accordance with</u>
	ithm SHA-1, SHA-256, SHA-512 ⁸ an

...in accordance with a specified cryptographic algorithm \ppassigned{\stdeleted{SHA-1,} SHA-256, \stassigned{SHA-512}} and key sizes \ppassigned{none} that meet...

Enforcing Consistent Terminology

"The module AccessAuthorizationService::Core enforces access control of the TOE."

Generating Text and Tables

Programatically generated text

Automatically generated hyperlinks

3.1.1. Module VPN Client::Core

This module fulfills the requirements levied upon the TOE by the SFR in Table 3.1. The module is SFR-enforcing.

Enforcing SFR		
FCS_CKM.2/IKE FTP_ITC.1/VPN		
Supporting SFR		
FTP_TRP.1/Admin		
Table 3.1.: SFR of module VPN Client::Core		
	1	17

Generating Text and Tables

Programatically generated text

Automatically generated hyperlinks

This Table shows the coverage of SFR by their enforcing and supporting modules

SFR	Relation	subsystem::module
FCS_CKM.1	Enforcing Supporting	Crypto Services::Key Management (none)
FCS_CKM.2/IKE	Enforcing Supporting	VPN Client::Core (none)
FCS_CKM.2/TLS	Enforcing Supporting	TLS-Server::Core (none)
	Enformina	Crunta Carviaca: Kay Managamant

Programatically generated text

Automatically generated hyperlinks

	0.Admin	0.Cert_Check	0. Protection	0.Time_Service	0.TLS_Crypto	0.VPN_Auth	0.VPN_Conf	0.VPN_Integrity
FCS_CKM.1	•	•	•	•	\checkmark	\checkmark	\checkmark	\checkmark
FCS_CKM.2/IKE						\checkmark	\checkmark	\checkmark
FCS_CKM.2/TLS	•		•		\checkmark	•		•
FCS_CKM.4			•		\checkmark	\checkmark	\checkmark	\checkmark
FCS_COP.1/Hash		\checkmark						
FCS_COP.1/HMAC		\checkmark	•					
FCS_COP.1/TLS.AES					\checkmark		•	
FCS_COP.1/TLS.Auth			•		\checkmark			
FCS_RNG.1/Hash_DRBG					\checkmark	\checkmark	\checkmark	\checkmark
FDP_RIP.1			\checkmark					
FPT_TDC.1/TLS.Zert					\checkmark			
FPT_TDC.1/Zert		\checkmark						
FPT_STM.1				\checkmark				
FPT_TST.1			\checkmark					
FTP_ITC.1/TLS					\checkmark			
FTP_ITC.1/VPN						\checkmark	\checkmark	\checkmark
FTP_TRP.1/Admin	\checkmark				\checkmark			

19

3.1. Modules for Subsystem VPN Client

This section describes the modules of subsystem VPN Client.

3.1.1. Module VPN Client::Core

This module fulfills the requirements levied upon the TOE by the SFR in Table 3.1. The module is SFR-enforcing.

Enforcing SFR		
FCS_CKM.2/IKE	FTP_ITC.1/VPN	
Supporting SFR		
FTP_TRP.1/Admin		

Table 3.1.: SFR of module VPN Client::Core

3.1.1.1. Description

The module Core of subsystem VPN Client provides interfaces and processes to...

3.1.1.2. Processes

3.1.1.2.1. Open Connection to VPN concentrator This process opens a connection to the VPN concentrator using IPSec and IKEv2. During the connection process, the peer presents its identity in the form of an X.509 certificate which must be verified. It is verified using the functionality reached by the interface[VPN Client:Certificate Service//Check-VPN-Certificate.]

Implemented SFR FTP_ITC.1/VPN FCS_CKM.2/IKE

3.1.1.2.2. Close Connection to VPN concentrator This process opens a connection to the VPN concentrator.

ZU

Using non-linear Navigation

3.5. Modules for Subsystem Crypto Services This section describes the modules of subsystem Crypto Services.
3.5.1. Module Crypto Services::Algorithms
This module fulfills the requirements levied upon the TOE by the SFR in Table 3.8. The module is
SFR-enforcing.
Enforcing SFR
FCS_COP1/Hash FCS_COP1/HMAC
Supporting SFR
(none)
Table 3.8.: SFR of module Crypto Services::Algorithms
3.5.1.1. Description
Module Algorithms of subsystem Crypto Services provides cryptographic base functionalities.
3.5.1.2. Processes
3.5.1.2.1. Calculate Hash Values This process calculates SHA-2 hash values.
Implemented SFR
FCS_COP.1/Hash
3.5.1.2.2. Calculate HMAC This process calculates HMAC.
Implemented SFR FCS_COP1/HIMAC
3.5.1.3. Interfaces To Other Modules
3.5.1.3.1. Get-Hash (Provided) This interface triggers the hash value calculation (see Section 3.5.1.2.1)
3.5.1.3.2. Get-HMAC (Provided) This interface triggers the HMAC calculation (see Section 3.5.1.2.2)
29

3.1.1.2.1. Open Connection to VPN concentrator This process opens a connection to the VPN concentrator using IPSec and IKEv2. During the connection process, the peer presents its identity in the form of an X.509 certificate which must be verified. It is verified using the functionality reached by the interface VPN Client::Certificate Service//Check-VPN-Certificate.

3.1.2. Module VPN Client::Certificate Service

This module fulfills the requirements levied upon the TOE by the SFR in Table 3.2. The module is SFR-enforcing.

Enforcing SFR		
FPT_TDC.1/Zert		
Supporting SFR		
(none)		

Table 3.2.: SFR of module VPN Client::Certificate Service

3.1.2.1. Description

The module Certificate Service of subsystem VPN Client provides interfaces and processes to...

3.1.2.2. Processes

3.1.2.2.1. Verification of the VPN concentrator certificate The certificate is checked mathematicately and for validity. The expiry date must be at least one day in the future. The SHA-256 hash of the certificate is calculated by calling the function Crypto Services::Algorithms//Get-Hash.

Implemented SFR FPT_TDC.1/Zert

3.1.2.3. Interfaces To Other Modules

3.1.2.3... Check-VPN-Certificate (Provided) This interface is called to check the certificate of a VPN concentrator (see Section 3.1.2.2.1).

 $\label{eq:2.1.2.3.2.} \textbf{Get-Hash} (\textbf{Required}) \quad \text{The interface Crypto Services::Algorithms//Get-Hash is required to calculate the hash value of the certificate.}$

nis section describes	the modules of subsystem Crypto Services.
	are mounted or subsystem of pro do noted.
5.1. Module Cry	vpto Services::Algorithms
nis module fulfills th	e requirements levied upon the TOE by the SFR in Table 3.8. The module
nis module fulfills th R-enforcing.	\ensuremath{e} requirements levied upon the TOE by the SFR in Table 3.8. The module
	e requirements levied upon the TOE by the SFR in Table 3.8. The module
R-enforcing.	FCS_COP1/HMAC
R-enforcing.	

3.5.1.1. Description

Module Algorithms of subsystem Crypto Services provides cryptographic base functionalities.

3.5.1.2. Processes 3.5.1.2.1. Calculate Hash Values This process calculates SHA-2 hash values.

> Implemented SFR FCS_COP.1/Hash

3.5.1.2.2. Calculate HMAC This process calculates HMAC.

Implemented SFR FCS_COP.1/HMAC

3.5.1.3. Interfaces To Other Modules

3.5.1.3.1. Get-Hash (Provided) This interface triggers the hash value calculation (see Section 3.5.1.2.1)

3.5.1.3.2. Get-HMAC (Provided) This interface triggers the HMAC calculation (see Section 3.5.1.2.2)

29

3.1. Modules for Subsystem VPN Client

This section describes the modules of subsystem VPN Client.

3.1.1. Module VPN Client::Core

This module fulfills the requirement	is levied upon th	ne TOE by the SFR	in Table 3.1.	The module is
SFR-enforcing.				

Enforcing SFR		
FCS_CKM.2/IKE	rp_itc.1/vpn	
Supporting SFR		
FTP_TRP.1/Admin		

Table 3.1.: SFR of module VPN Client::Core

3.1.1.1. Description

The module Core of subsystem VPN Client provides interfaces and processes to ...

3.1.1.2. Processes

3.1.1.2.1. Open Connection to VPN concentrator This process opens a connection to the VPN concentrator using IPSec and IKFv2. During the connection process, the peer presents its identify in the form of an X-509 certificate which must be verified. It is verified using the functionality reached by the interface (VPN Clint:Certificate Service)/Check-VPN-Certificate.

Implemented SFn FTP_ITC.1/VPN FCS_CKM:z, **

 $\label{eq:2.1.1.2.2.} \textbf{Close Connection to VPN concentrator} \quad \text{This process opens a connection to the VPN concentrator.}$

Implemented SFR FTP_ITC.1/VPN

3.1.1.3. Interfaces To Other Modules

3.1.1.3.1. Connect-to-VPN (Provided) This interface triggers the creation of a new VPN connection (see Section 3.1.1.2.1).

3.1.1.3.2. Disconnect-from-VPN (Provided) This interface closes the VPN connection (see Section 3.1.1.2.2).

20

3.1. Modules for Subsystem VPN Client

This section describes the modules of subsystem VPN Client.

3.1.1. Module VPN Client::Core

This module fulfills the requirements levied upon the TOE by the SFR in Table 3.1. The module is SFR-enforcing.

Enforcing SFR		
FCS_CKM.2/IKE	FTP_ITC.1/VPN	
Supporting SFR		
FTP_TRP.1/Admir		

Table 3.1.: SFR of module VPN Client::Core

3.1.1.1. Description

The module Core of subsystem VPN Client provides interfaces and processes to...

3.1.1.2. Processes

3.1.1.2.1. Open Connection to VPN concentrator This process opens a connection to the VPN concentrator using IPSec and IKFv2. During the connection process, the peer presents its identity in the form of an X-509 certificate which must be verified. It is verified using the functionality reached by the interface (VPN Clint:Certificate Service)/Check-VPN-Certificate.

Implemented SFR FTP_ITC.1/VPN FCS_CKM.2/IKE

 $\label{eq:2.1.1.2.2.} \textbf{Close Connection to VPN concentrator} \quad This process opens a connection to the VPN concentrator.$

Implemented SFR FTP_ITC.1/VPN

3.1.1.3. Interfaces To Other Modules

3.1.1.3.1. Connect-to-VPN (Provided) This interface triggers the creation of a new VPN connection (see Section 3.1.1.2.1).

3.1.1.3.2. Disconnect-from-VPN (Provided) This interface closes the VPN connection (see Section 3.1.1.2.2).

20

3.1.2. Module VPN Client::Certificate Service

This module fulfills the requirements levied upon the TOE by the SFR in Table 3.2. The module is SFR-enforcing.

Enforcing SFR		
FPT_TDC.1/Zert		
Supporting SFR		
(none)		

Table 3.2.: SFR of module VPN Client::Certificate Service

3.1.2.1. Description

The module Certificate Service of subsystem VPN Client provides interfaces and processes to \ldots

3.1.2.2. Processes

3.1.2.2.1. Verification of the VPN concentrator certificate The certificate is checked mathematical and for validity. The expiry date must be at least one day in the future. The SHA-256 hash of the certin ate is calculated by calling the function Crypto Services: Appointms//GetHash.

Implemented SFR FPT_TDC:1/Zert 3.1.2.3. Interfaces To Other Modules

3.1.2.1. Check-VPN-Certin. ate (Provided) This interface is called to check the certificate of a VPN concentrator (see Section 3.1.2.2.1).

3.1.2.3.2. Get-Hash (Required) The interface Crypto Services::Algorithms//Get-Hash is required calculate the hash value of the certificate.

22

3.5. Modules for Subsystem Crypto Services

This section describes the modules of subsystem Crypto Services.

3.5.1. Module Crypto Services::Algorithms

This module fulfills the requirements levied upon the TOE by the SFR in Table 3.8. The module is SFR-enforcing.

Enforcing SFR

FCS_COP.1/Hash FCS_COP.1/HMAC

Supporting SFR

(none)

Table 3.8.: SFR of module Crypto Services:: Algorithms

3.5.1.1. Description

Module Algorithms of subsystem Crypto Services provides cryptographic base functionalities.

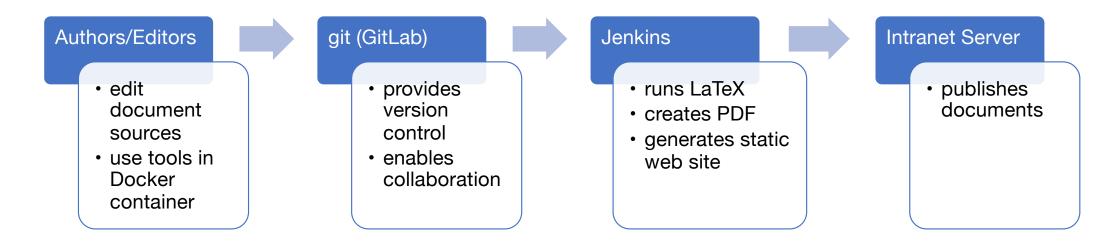
3.5.1.2. Processes

3.5.1.2.1. Calculate Hash Values This process calculates SHA-2 hash values.

 Implemented SFR
 FCS_COP.1/Hash

 3.5.1.2.2. Calculate
 IMAC
 This process calculates HMAC.

FCS_COP.1/HMAC


3.5.1.3. Interfaces To Other Modules

3.5.1.3.1. Get-Ha sh (Provided) This interface triggers the hash value calculation (see Section 3.5.1.2.1)

3.5.1.3.2. Get- [MAC (Provided) This interface triggers the HMAC calculation (see Section 3.5.1.2.2)

29

Continuous Delivery of Documents

"Where is the current version?" "What did we ship three weeks ago?"

What's in the Bag?

CC documents for a fictional TOE: ASE, ADV_FSP, ADV_TDS, ATE_COV

Templates for ADV_ARC, ALC

Lua programs, sample DB, Makefiles, CI pipeline, Source files for Docker image, documentation

MIT License Free software

•• • <		🔒 github.com		
Search or jump t	o / Pulls	Issues Marketplace	Explore 🗘 + - 🌘	
n-design / n-doc	Public	⊙ Watch → 1	Y Unstar 3 양 Fork	
<> Code · Issues	় ়াঁ Pull requests 🕑	Actions III Projects	🕮 Wiki 🔸	
운 main 🗸	Go to file	Add file - Code -	About	
酸 krumeich Merge p	ull request #69 from	✓ 21 hours ago [™] 353	A template for creatin Common Criteria ASI	
.github/workflows	Added glossaries package	17 days ago	ADV and ATE documents in the	
adv_arc	Print bibliography in sections	16 months ago	German certification scheme	
adv_fsp	Change double to single quot	es wh 17 days ago		
adv_tds	Edit TDS text to look nice on (CCUF yesterday		
alc alc	Print bibliography in sections	16 months ago		
ase	Fix SFR definition	2 days ago	Readme	
ate_cov	ATE_COV and minor fixes	5 months ago	শ্রী MIT License	
common	Added glossaries package	17 days ago		
config	Continued I10n of ADV_TDS	5 months ago	Releases	
documentation	Renamed documentation dir	ed documentation dir 21 hours ago		
engine	Added glossaries package	17 days ago	Create a new release	
🖿 lua	Preparing dynamic number of	f colu 3 months ago		
mwe_arc	Dokumentenheader vereinhei	tlicht 2 years ago	Packages	
mwe_ate	Dokumentenheader vereinhei	tlicht 2 years ago	No packages published	
mwe_fsp	Dokumentenheader vereinhei	tlicht 2 years ago	Publish your first package	
mwe st	Dokumentenheader vereinhei	tlicht 2 years ago		

https://github.com/n-design/n-doc

Sounds good! How can I use n-doc?

- Step 1 Install git and Docker
- Step 2 Clone https://github.com/n-design/n-doc.git
- Step 3 Call ./runmake.sh
- Step 4 Enjoy documents in ./deliverables
- optional Reach out to us for support, Step 5 customization and training.

Do we have time for final thoughts?

Highly scalable solution

15 Documents, 4,500 pages, 10 minutes delivery time

Tremendous gains in efficiency

Document management takes 10% of a single person's time.

Outstanding evaluator satisfaction

Fewer routine tasks because of TOE database model. High degree of automation ensures reliability.

Thanks – Merci – Gracias – Danke Questions?

https://github.com/n-design/n-doc

alexander.krumeich@n-design.de

